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Nano-sized structures incorporating
ferromagnetic metal layers:
new effects due to the passage
of a perpendicular current

Yu V Gulyaev, P E Zil'berman, E M Epshtein

Over the last decade, the effects caused by a current flowing
through a magnetic junction Ð a nano-sized layered
structure comprising contacting ferromagnetic layers Ð
have been actively studied. Particular experimental and
theoretical attention is being given to `spin valve' type
structures which consist of three layers: one pinned ferro-
magnetic layer with a fixed direction of magnetization; one
free ferromagnetic layer whose magnetization direction can
be varied by an external magnetic field and/or by a passing
current, and one nonmagnetic layer closing the electric
circuit. The ferromagnetic layers are separated by a thin
nonmagnetic spacer which prevents direct exchange coupling
between them; the current transport through the spacer is
ballistic, diffusive, or tunnel in character. Importantly, the
spacer is thin compared to the spin mean free path, implying
that the electron spin state is unchanged during the passage
of current through the spacer.

It has been shown experimentally (see, for example,
Ref. [1]) that an electric current flowing perpendicular to the
layers can cause a jumplike change in the way the magnetiza-
tion of the free ferromagnetic layer is oriented with respect to
that of the pinned one. Specifically, this effect was observed to
occur for current densities above a certain threshold value
falling in the range of � 106ÿ108 A cmÿ2 (see, for example,
Refs [1, 2]) and consisted in switching the initial antiparallel
configuration to the parallel one. The parallel configuration
persisted with decreasing the current to zero and reversing the
current direction. When the reverse current density reached
the above-mentioned threshold value, the system underwent
backswitching and returned to the antiparallel configuration.
Because the resistance of the magnetic junction depends on
the relative orientation of the magnetic layers (whence the
well-known effect of giant magnetoresistance), a change in
the junction resistance accompanied the switching, resulting
in a hysteretic dependence of resistance on current.

Most experimenters standardly rely on the theory devel-
oped by Slonczewski [3] and Berger [4] to interpret the
observed effects. According to this theory, as the electrons
of a spin-polarized current pass through the boundary
between two noncollinear ferromagnets, they transfer their
spin torque to the magnetic lattice (when an electron enters a
medium with a different direction of the spin quantization
axis, its transverse spin component Ð the one perpendicular
to this new direction Ð is lost to the lattice). In reality,
however, even if the ferromagnetic layers are initially
collinear, this collinearity is continuously violated by fluctua-
tions. At a sufficiently high current density, the fluctuations
become unstable, and their buildup leads to the free-layer
magnetization reversal. It takes a distance of the order of the
Fermi electron wavelength (� 1 nm) from the boundary for
the transverse component of the electron magnetization to
relax.

An alternative mechanism for how a spin-polarized
current affects the configuration of a magnetic junction was
suggested in Refs [5, 6] by taking into account the fact that
the passage of a current is accompanied by the injection of
nonequilibrium spins from the pinned to the free layer. As a
result of this, regions of nonequilibrium spin polarization
appear near the boundaries between these layers, as well as
between the free layer and the nonmagnetic layer, whose
widths are determined by the spin diffusion length and are an
order of magnitude greater than the relaxation length of the
transverse magnetization component. Due to the sd-
exchange interaction between the electrons and the mag-
netic lattice, the presence of such regions can either decrease
or increase the magnetic energy of the junction, depending
on the parameters of the magnetic layers and how their
magnetizations are oriented. As a result, the initial magnetic
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configuration may prove to be energetically unfavorable at a
sufficiently high current density, leading to a nonequilibrium
phase transition with a change in the magnetic configuration
of the structure.

To elucidate what the relative roles of the above two
mechanisms are when a spin-polarized current produces
sd-exchange switching in a magnetic junction, a theory
incorporating both mechanisms was developed [7 ± 9]. It
was found that in the general case both mechanisms
contribute comparably. On the other hand, further studies
[10 ± 12] revealed the existence of a strong injection regime,
in which the injection mechanism becomes the dominant
one, and new effects Ð such as the irreversible switching
from a parallel to antiparallel configuration, the occurrence
of a noncollinear stationary state, and the inverse population
of spin subbands Ð become possible. Therefore, although
typical, it is by no means always true that the forward-
directed current (spin-polarized electrons flowing from the
pinned to the free layer) switches the antiparallel configura-
tion to the parallel one and that the oppositely directed
current acts the other way round.

By studying the dependence of the injection level on
boundary conditions for a nonequilibrium electron spin
polarization it was shown [13] that the injection level depends
on the so-called spin resistance Z of the layers, defined as
Z � rl=�1ÿQ 2�, where r is the resistivity, l is the spin
diffusion length, and Q is the degree of conduction spin
polarization. When spin-polarized current flows through the
contact of two layers, it is primarily in the lower-Z layer where
spin equilibrium is violated, so that if the chosen free-layer
material has lower spin resistance compared to the neighbor-
ingÐ pinned and nonmagnetic Ð layers, then pinned-to-free
layer spin injection will be effective and that at the exit from
the free ferromagnetic layer it will be suppressed. This leads to
a large increase in the free-layer nonequilibrium spin polar-
ization and a corresponding reduction in the threshold
current density. The instability threshold can be reduced by
an estimated two to four orders of magnitude, with the result
that the spin torque produced by the current has little or no
effect on the magnetic junction [3, 4].

Because there is no contribution from the spin torque,
the energy approach can be applied to see what stationary
states can be produced in the course of developing
instability. This approach is entirely equivalent to Ð but
easier to grasp than Ð the dynamic scheme based on the
solution of the Landau ±Lifshitz ±Gilbert equations.

The energy U of a magnetic junction has four terms: the
Zeeman energy in an external magnetic fieldH; the energy of
the demagnetization field; magnetic anisotropy energy, and
the sd-exchange interaction energy between the magnetic
lattice and the conduction electrons. In a free layer that is
thin compared to both the spin diffusion length and the
domain wall thickness, the nonequilibrium spin polarization
and the lattice magnetization are constant over the thickness
of the layer. Calculations for such a layer yield the following
expression for the magnetic energy per unit area:

U � 4pM 2L
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where M is the saturation magnetization, h � H=4pM,
ha � Ha=4pM, Ha is the anisotropy field, M̂ �M=jMj is a

unit vector in the magnetization vector direction, j1 �
4pelM=�mBatQ1�, l is the spin diffusion length, t is the
longitudinal spin relaxation time, a is the sd-exchange
interaction constant (all the above quantities refer to the free
layer), e is the electron charge, mB is the Bohr magneton, L is
the free layer thickness, Q1 is the spin polarization of the
pinned layer conduction, l � L=l, Z1, Z2, Z3 are the
respective spin resistances of the pinned, free, and nonmag-
netic layers, and the parameter b describes the relative
amount the pinned layer contributes to the sd-exchange
interaction energy. The external magnetic field as well as the
anisotropy andmagnetization of the pinned layer are directed
along the z-axis, while the current flows along the x-axis
perpendicular to the magnetic junction plane. Formula (1)
refers to the case of a forward current flowing in the direction
1! 2! 3 and is modified for a reverse current by making
the replacement M̂z ! �M̂z�ÿ1 in the last term in the curly
brackets on the right-hand side. The stable stationary state
corresponds to the minimum of the magnetic energy.

Figure 1 depicts the dependence of the energy on the angle
w � arccos M̂z between the magnetization vectors of the free
and pinned layers for Z3 4Z1 4Z2 and different values of
the forward current density. At a certain current density,
along with the stable stationary states w � 0 and w � p, a
stationary noncollinear state appears in the region
0 < w < p=2, which is separated by a potential barrier from
the state with w � 0. At the threshold current density j � jth,
the parallel configuration corresponding to w � 0 becomes
unstable (the minimum turns into a maximum), and the
system is switched to a noncollinear state at an angle of
w � w1 (for fixed parameter values w1 � 70�). Increasing the
current further has little effect on the angle w1. As the current
decreases, the noncollinear state disappears at a current
density considerably (about three times) lower than the
threshold value, and the system restores its initial parallel
configuration. We also assigned negative values to the angles
w and w1. Negative w and w1 imply a negative projection M̂y,
whereas for positive angles w and w1 this projection is positive.
The dependence of the angle w1 on the current density is
shown in Fig. 2, in which it is seen that over a wide range of
current densities the system exhibits the property of multi-
stability, meaning that there are several stationary states
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Figure 1. Magnetic energy vs relative orientation of ferromagnetic layers

for forward current (H � 0,Ha=4pM � 0:2, b � 1, l � 0:1,Z1=Z2 � 100,

and Z1=Z3 � 0:1).
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corresponding to one current density value. Exactly which of
these materializes depends on the history of how the current
has changed over time. Notice that noncollinear states are
nonequilibrium ones and they exist only in the presence of a
current, so that switching to them is reversible.

As mentioned earlier, the resistance of a magnetic
junction depends on the mutual orientation of magnetization
in the ferromagnetic layers. Because the appearance of a
noncollinear stationary state strongly affects the orientation
of magnetization, it should also lead to changes in the
resistance of the structure. It is these changes which seem to
be the easiest to detect. Figure 3 demonstrates a typical
current dependence of magnetization calculated for a
structure with Z3 4Z1 4Z2, in which the stationary state
arises for layers initially oriented parallel to each other with
increasing forward �1! 2! 3� current. It is exactly this

situation which is clarified with Fig. 1, in which it is seen that
instability of magnetic configuration at the forward current
case results in a minimum at an angle of w � w1.

The other (antiparallel) mutual orientation of the layers
also gives rise to a noncollinear stationary state provided that
the spin resistances follow a different relation, namely,
Z1 4Z3 4Z2, and that a reverse current �1 2 3� is
increased. This stationary state also leads to current-depen-
dent magnetoresistance (see Fig. 4 for an example).

The initial antiparallel configuration �w � p�, for
Z3 4Z1 4Z2, remains stable with increasing current [the
function U�w� has a minimum at w � p (see Fig. 1)]. Because
in such a configuration the spins injected into the free layer
are aligned opposite to their local counterparts, the non-
equilibrium spin polarization is negative. Under high-
injection conditions �Z1;Z3 4Z2�, for a current density of
� 107 ± 108 A cmÿ2, it is possible to achieve a negative total
spin polarization (i.e., the spin subbands are inversely
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Figure 2.Orientation angle w1 of noncollinear state as a function of current
density. Structure parameters are the same as in Fig. 1. The arrows
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populated) Ð potentially leading to the possibility of
inventing terahertz amplifiers and generators relying on
transitions between spin subbands (a possibility announced
earlier in Ref. [14]).

Figure 5 shows the dependence of the magnetic energy on
angle w for the case ofZ3 4Z1 4Z2 and for various values of
reverse current density. In this event, the parallel configura-
tion w � 0 at the threshold current density j � jth (the same as
for the forward current) becomes unstable, switching the
system to the stable antiparallel magnetic configuration
w � p, which is also stable for forward current (see Fig. 1),
so that the switching is irreversible. This behavior can be used
to magnetically record one-time (archival) information using
spin-polarized current.With the sd-exchange interaction with
a characteristic length of � 10ÿ6 cm underlying the process,
extremely high recording density can be achieved.
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The generalized Landau ±Lifshitz equation
and spin transfer processes
in magnetic nanostructures

A K Zvezdin, K A Zvezdin, A V Khvalkovskiy

1. Introduction

Recently, a new method for magnetic-body magnetization
reversal has been proposed [1, 2] and experimentally
substantiated [3 ± 5], based on the fact that a current
traversing a magnetic system transfers not only charge but
also spin, and constitutes therefore a flux of the angular
momentum. Spin polarization of the current (i.e., nonvan-
ishing total spin momentum) arises due to the exchange
interaction, for the current flowing through a ferromagnetic.
If the current flows from a ferromagnetic to a nonmagnetic
material, it retains its polarization over a certain length.
However, if the polarized current traverses a nonuniformly
magnetized magnetic system, its spin moment has to adjust
itself to the system's magnetization. Because spin is locally

conserved, the change in the angular momentum of the
current is transferred to the ferromagnetic; thus, the
divergence in the spin flow gives rise to a torque that acts
on the magnetization. Such a process has come to be known
as spin transfer. Under certain conditions, the spin transfer
can result in the magnetization reversal of magnetic
structures, as well as causing spin wave generation and
domain wall motion. This effect is quantum in nature and
undoubtedly one of fundamental interest.

Adding to the interest in exciting magnetization in this
way are the successes achieved and problems encountered in
developing MRAM (Magnetoresistance Random Access
Memory) elements, microwave devices, and magnetic logic
elements [6]. Various aspects of the effect under study were
discussed in reviews [6 ± 8].

The theoretical description of spin transfer process in
nonuniform ferromagnetic media usually relies on the so-
called sd-model which assumes that charge and spin currents
are carried by external electrons whose (Bloch) wave func-
tions are primarily formed by the s- and p-orbitals of the
material's atoms, while the magnetization is determined by
the inner underpopulated d-orbitals (for details see Ref. [9]).
In this approach, the spÿd hybridization is assumed to be
sufficiently small and responsible for the exchange interaction
(with the energy on the order of several tenths of an electron-
volt) between the sp and d electrons. The corresponding
exchange fields are on the order of or higher than 107 Oe.

The mechanism by which the current's spin moment (or
more precisely, its transverse component [1, 2]) adjusts itself to
the direction of the local magnetization is the exchange
interaction mentioned above, and because of the large value
of the exchange field this adaptation process occurs over
distances on the order of 1 nm. This distance is much smaller
than the characteristic length of spin ± lattice relaxation,
which is several dozen nanometers in ferromagnetic metals.
Thus, the spin flow is not scattered by the impurities, it is only
redistributed. The spin flux Q̂ is transferred from moving to
localized electrons in the form of torque T which causes their
spins to reorient themselves or to precess; Q̂ andT are defined
asQi j �

P
vjSi, Ti � ÿHjQi j, where v and S are, respectively,

the velocity and spin vectors, the summation runs over all the
electrons of the flow, and i; j are the Cartesian indices. The
spin-current-induced dynamics of a nonuniformly magne-
tized sÿd system are described approximately by the general-
ized Landau ±Lifshitz equation (GLLE) involving an addi-
tional spin torque Ts:t: � gT (where g is the gyromagnetic
ratio):

dM

dt
� ÿgM�Heff � Ts:t: � a

Ms

�
M� dM

dt

�
; �1�

where M is the magnetization vector, t is the time, a is the
Gilbert damping parameter, Ms is the saturation magnetiza-
tion, and the effective field Heff [10] sums the contributions
from the external magnetic field and the magnetostatic,
exchange interaction, and anisotropy fields.

Usually, two configurations of planar structure are
employed to consider spin transfer processes. In the first and
most widely used CPP (current perpendicular to the plane)
configuration, the current flows perpendicular to layers in a
structure containing layers with different magnetization
directions. In the second, CIP (current in the plane) config-
uration, the current flows along themagnetic layer containing
a domain wall (DW).
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The CPP system with a spin transfer (see inset to Fig. 1) is
a nanopillar containing a multilayer magnetic structure
N1=F1=N=F2=N2 (F and N referring, respectively, to ferro-
magnetic and nonmagnetic layers) and having an oval-shaped
cross section with a typical dimension of 100 nm (the lateral
dimensions of the system are determined by the desire to
reduce the parasitic influence of the eddy magnetic field from
the current flowing through the system). Comprising the
nanopillar are (see Fig. 1) a free layer 1 with a thickness of
1 ± 2 nm; a reference layer 3 with a fixed direction of
magnetization mref (for example, along the x-axis), and a
nonmagnetic layer 2 with a thickness on the order of 10 nm
(enough to reduce the interlayer exchange interaction to an
acceptably small value), which is sandwiched between two
above layers. The free-layer magnetic anisotropy, generally
determined by the layer's shape, is assumed to be sufficiently
small that spin direction in the layer can be easily controlled
by an external field and/or a torque.

Spin moment transfer in this system occurs as follows. If
we suppose that the magnetic moments in layers 1 and 3 are
not collinear and that the electron flux emerges from layer 3,
then the spin flux is defined by a single component
Qxz � ÿ��h=2e�PJ, where J is the electric current density,
and P is the spin polarization of the current (interpreted as
the difference-to-sum ratio of partial currents with a spin
projection of 1=2 onto the quantization axis). The partial
reflection of polarized carriers at the interfaces between the
layers results in the spin flux acquiring a component
perpendicular to the magnetizations of both the free and
reference layers. The electrons entering layer 1 have their
spins rotated by the exchange field to align with the layer's
localized spins [11]. We have already mentioned that this
process occurs over a length on the order of 1 nm from the
interface between layers 1 and 2, and that in this region div Q̂
and the vector ÿT equal to it are different from zero. Thus,
spin transfer constitutes in fact a surface effect. However, if
the free layer is sufficiently thin, then due to exchange rigidity
the torque extends its action over the whole of the layer.

The magnetization dynamics of the free layer can be
described by the generalized Landau ±Lifshitz equation (1).

Although the spin torque Ts:t: can be calculated quantum-
mechanically [8], for our purposes it suffices to employ a
phenomenological approach of the type Landau and Lifshitz
used when deriving their equation in 1935 [12].

Let us resolve the vector Ts:t: along three mutually
perpendicular axes parallel to the vectors M, �M�mref�, and
M� �M�mref�, wheremref is a unit vector directed along the
reference layer magnetization. The projection of Ts:t: ontoM
is zero because the Landau ±Lifshitz equation presupposes
the validity of the condition M � const. Two other compo-
nents of Ts:t:, the parallel �Tk� and the perpendicular �T?� to
the plane of �M;mref�, are usually written in the form

Tk � ÿ gaJ
Ms

M� �M�mref� ; �2�

T? � gbJ�M�mref� : �3�
Here, the coefficients aJ and bJ (with the dimensionality of the
field) are proportional to the current density J and depend on
the material parameters and interface characteristics
involved. In the general case, aJ and bJ also depend on the
angle between M and mref Ð a dependence which can,
however, be neglected in the first approximation [13, 14].
The inequality jbJj5 jaJj holds true for real systems. Typical
values of the parameters are as follows: aJ � 10ÿ100 Oe for
J � 107 A cmÿ2; jbJ=aJj � 0:1, with aJ and bJ being opposite
in sign [15].

There are two regimes in which the magnetic layer of such
a structure can be excited by a spin-polarized current. The
first occurs when the momentum of the current flowing
through such a structure acts Ð via the spin transfer effect
Ð to reverse the magnetization of the free layer in the
direction of one of the stable magnetic states (precisely
which depends on the direction of the current) [5]. The
second regime is usually achieved by applying a strong
(several kOe) magnetic field to the system. In this case, the
field and current combined cause the magnetic moment of the
free layer to perform high-amplitude oscillations (rotation in
the plane of a film being an example) [16]. The polarized
current should have a density on the order of 107 A cmÿ2 to be
able to excite the magnetic structure.

A typical example of a CIP spin transfer system is a thin
magnetic film or a nanowire comprising a DW. As current
carriers pass through the DW, their spin moment tends at
every point of the line of flow to realign with the local
magnetization, resulting in the system's magnetization being
affected by the torque Ts:t:.

Let us write out the components of Ts:t: by analogy with
those for CPP systems. In CIP systems, the role of mref is
played by the vector �jeH�M (with je being a unit vector
along the current) which determines the variation in the
magnetization along the lines of current flow. The nonzero
Cartesian components of Ts:t: along M, �M� �jeH�M�,
M� �M� �jeH�M� vectors are written in the form [17 ± 19]

Ta � ÿ cJ
M 2

s

M� �M� �jeH�M� ; �4�

Tna � ÿ dJ
Ms

�
M� �jeH�M

�
: �5�

Here, the parameters cJ and dJ are proportional to the
current. The components Ta and Tna are called adiabatic
and nonadiabatic torques, respectively. As shown in
Refs [17 ± 19], the former describes the effect of spin transfer
based on the assumption that the spin subsystem of the
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Figure 1. Layer and time averaged and Ms-normalized x-component of

magnetization for the free layer of the CPP structure shown in inset, as a

function of current through the system (MMA and QMA calculations).

Calculation parameters are given in the text. Shown in the inset is a CPP

geometry typically used to study the polarized-current-induced magneti-
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carriers during their passing is at every point of the domain
wall in equilibrium with the magnetic system. The second
component accounts for how the average spin moment of the
electrons deviates from a local magnetization direction. The
ratio xCIP � dJ=cJ, or the nonadiabaticity of the process, is a
material parameter and usually ranges between 0.001 and
0.05 [19]. Experiments on the use of a polarized current to
induce domain wall motion are normally carried out on thin
films (a few nanometers thick) with a critical current density
of about 108 A cmÿ2 sufficient for a DW to detach itself from
pinning centers [20].

Some significant aspects of the solution of the GLLE (1)
for various types of systems are discussed in what follows.

2. On the role of the micromagnetic approach
in modeling current-induced magnetization
dynamics in CPP structures

Because the width of the domain wall (� 30ÿ50 nm) in
nanopillar CPP structures described in the Introduction is of
the same order as the size of the free layer, it is often assumed
that the free layer mostly resides in the single-domain state Ð
leading to the belief that the dynamics of the system are
adequately described by the macrospin approximation (in
which layer magnetization is represented by a unit magnetic
moment). Calculations using this approximation do indeed
agree qualitativelyÐand in some cases quantitativelyÐwith
the experimental results. However, recent direct observations
of polarized-current-induced switching [21] and oscillations
[22] show strongly nonuniform magnetization distributions
to be involved in their dynamics Ð a finding which full-scale
micromagnetic modeling calculations also support [23, 24].
This raises the question of how far the macrospin approxima-
tion can be applied to these processes. Another important
point to understand is through the behavior of what
parameters and in which way can the difference between the
macrospin description of the system and the more realistic
micromagnetic description be seen.

To investigate these queries, we simulated the current-
induced magnetization dynamics of a nanopillar CPP
structure (see the inset to Fig. 1) using both the micromag-
netic approximation (MMA) and the quasimacrospin
approximation (QMA). The quasimacrospin approximation
consists in modifying a micromagnetic calculation by addi-
tionally requiring that the system be uniformly magnetized.
The free layer of the system is assumed to be a 3-nm-thick
ellipsewithmajor andminor semiaxis lengths of 32 and 16nm,
respectively. The material parameters correspond to permal-
loy (saturationmagnetizationMs � 800G, exchange stiffness
A � 1:3� 10ÿ6 erg cmÿ1, anisotropy constant K � 0, and the
Gilbert damping parameter a � 0:014). The system used to
model QMA was the same except for a factor of 16 larger
exchange stiffness. For this system, the magnetization
magnitude averaged over all cells differed from Ms by no
more than 0.2% for all dynamic processes, being indicative of
a highly spatially uniformmagnetization. It was assumed that
aJ � 100 Oe and bJ � 0 for J � 107 A cmÿ2. To numerically
integrate the GLLE (1), our program package SpinPM was
utilized. In accordance with current practice, only calcula-
tions for the free layer were made [23]. The vector mref was
assumed to be along the x-axis, and the eddy field was
assumed to contribute nothing.

The first case considered was structure switching by a
current in a zero magnetic field. As it turned out, the QMA is

quite adequate for describing both the structure switching
current and the behavior of the layer- and time-averaged
x-component of the magnetization (see Fig. 1). That
measured switching currents agree well with the single-
domain approximation has also been shown by other
authors [7]. However, even for such a small structure the
QMA-calculated switching time differed appreciably from
(was about 10% larger than) the MMA result, which is in
agreement with available experimental data [21].

The next case considered was one in which the application
of an external magnetic field leads to the excitation of
magnetization oscillations in the system. Figure 2 displays
free-layer magnetization trajectories calculated in the MMA
for an external magnetic field H � 1000 Oe. For sufficiently
low currents, these trajectories are very nearly periodic in the
sense that each curve passes within a close proximity of the
point where it started. However, this periodicity is lost at a
certain critical current density Jch, the trajectories become to a
large extent chaotic [24], and essentially nonuniform (multi-
domain) states, occasionally containing vortices or distinct
domain walls, start to develop in the system. Figure 3 depicts
the Fourier spectra of the function hMxi�t� for quasiperiodic
(dark curve) and nonperiodic (light curve) trajectories. The
first spectrum is a set of narrow peaks, among which one
distinguishes the main peak and a set of its higher-order
harmonic satellites. The second spectrum also exhibits the
main peak, but it is very broad (with a width of more than
1 GHz).

Along with chaotization of system's magnetization
trajectories, other effects are lost in QMA calculations. In
Fig. 4 are shown MMA- and QMA-calculated positions of
the main spectral peak f as functions of current density J.
These dependences match almost exactly up to a certain
critical value of Js (� 2:2� 107 A cmÿ2 in Fig. 4) and start
to noticeably differ above this value. It is important to note
that in the general case Js < Jch and that these dependences
may differ sufficiently greatly Ð by several times. In the
interval Js < J < Jch, spatially nonuniform spin wave modes
are excited in the system [22] Ð one for every current density
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Figure 2. Mechanical trajectories of the layer-averaged and Ms-normal-

izedmagnetization vector of the free layer.MMP calculations are done for

different values of the current (represented by different color hues) for a

magnetic fieldH � 1000 Oe applied along the ÿx direction.
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value except for small J intervals where mode-to-mode
transitions occur; the spectrum here is reduced to a narrow
peak, and magnetization trajectories are quasiperiodic. For
J > Jch, several nonuniform spin wave modes are excited,
which are comparable in amplitude and interact between
themselves due to nonlinearities in the system Ð thus
broadening the spectral peak and leading to chaotic mechan-
ical trajectories.

Thus, even in the case of a very small free layer, treating a
CPP system in the QMAmeans losing important information
about its dynamics, in particular, the time of the full
magnetization reversal in the switching regime; the frequency
of the main spectral peak, and the onset of the regime when
the magnetization trajectories become chaotic for the oscilla-
tions.

3. Current-induced motion of the domain wall
in a nanowire of elliptic cross section

This section examines the solution of the GLLE (1) for a one-
dimensional magnetic system comprising a DW, specifically

for an infinitely long nanowire with an elliptic cross section.
The system is allowed to have anisotropy of the easy-axis type
with the easy axis directed along a structure's �z� axis. It is
assumed that anisotropy of the easy-axis type can be present
when the axis lies in the transverse plane �xy�; for definiteness
sake, the axis is specified to be along x. We denote the
corresponding uniaxial anisotropy constants by Ku and Kp.
The magnetization distribution is allowed to vary only along
z-axis; the magnetostatic interaction is assumed to be taken
into account by the coefficients Ku and Kp.

Using expressions (4) and (5) for the torques, the solution
of the GLLE (1) for this system is approximately given by

qj
qz
� 0 ;

�6�
y � 2 arctan exp

�
zÿ q�t�
D�j�

�
;

wherej, y are the polar angles, q�t� determines the position of
the DW's center, and D�j� � �a=�Ku � Kp sin

2 j��1=2 is the
DW width. The functions q�t�, j�t� satisfy the system of
equations

_q� cJ ÿ aD _j � gD
Kp

Ms
sin 2j ;

�8�
a _q� dJ � D _jÿ gDH � 0 :

For Kp � 0, H � 0, system (7) allows a solution of the form
[25]

_q � ÿ cJ � adJ
a 2 � 1

;
�8�

_j � 1

a 2 � 1

�
acJ ÿ dJ

D

�
:

This solution describes the z-directed translational motion of
the DWwhose plane rotates with a constant angular velocity.
It should be noted that both current-induced torques Ð the
adiabatic and nonadiabaticÐmake their contributions to the
stationary DWmotion.

In most real systems, however, Kp 6� 0 (for example, due
to the elliptic cross section of the nanowire). In this case,
system (7) admits the solution _j � 0 for H � 0:

_q � ÿ dJ
a
;

�9�
sin 2j � Ms

agDKp
�acJ ÿ dJ� ;

where the second of relationships (9) (with D being the DW
parameter, and j the DW plane angle) determines the
existence range for the solution (cf. Ref. [26]). Solution (9)
for constant current describes the constant-velocity DW
motion with time-independent slope j. Unlike the preceding
case, here the adiabatic torque Ta has no effect on the steady
velocity of theDW. Themotion of theDW is determined only
by the nonadiabatic torque Tna. In the limiting case of a thin
magnetic film, this solution was obtained in Refs [18, 19].

4. Current-induced motion of the domain wall
in a CPP spin-valve structure

This section discusses the solution of the GLLE (1) for a
multilayer DW-containing system with a current flowing
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Figure 4. The position of the main frequency peak versus density current.

Calculations are made in the MMA and QMA for an external magnetic
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zation hMxi�t� of the free layer obtained for quasiperiodic ( j �
3� 107 A cmÿ2, H � 103 Oe) and nonperiodic ( j � 1� 108 A cmÿ2,
H � 103 Oe) trajectories (dark and light curves, respectively).
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perpendicular to the layers. As shown in the inset to Fig. 5a,
the spin-valve structure under consideration consists, from
the bottom up, of a layer with pinned magnetization
(polarizer), a thin nonmagnetic spacer, a free magnetic layer,
and a nonmagnetic metal contact. It is assumed that the free
magnetic layer contains a single infinitely thin DW and that
the layer with pinnedmagnetization is aligned in the positive z
direction. There is a current flowing through this system, and
the spin transfer effect can bring the DW into motion. A
solution is sought for sufficiently low current densities for
which each of the domains is, on its own, stable relative to
current-induced excitation.

The solution method used was micromagnetic modeling,
and the computations were limited to the free layer [23]. The
influence of boundary effects was reduced by modeling the
layer as a long strip (8 mm in length) 50� 3 nm in cross section
with a `head-to-head' DW in its center. The magnetic
parameters, chosen close to those of Co, were as follows:
Ms � 1400 emu cmÿ3,A � 2� 10ÿ6 erg cmÿ1, and a � 0:007.
No bulk anisotropy was taken into account. The position of
the DW at each instant of time was calculated from the
system-averaged magnetization [27]. It was assumed that
aJ � 25 Oe and bJ � ÿ2:5 Oe for a current density
J � 107 A cmÿ2. To explore the role of the torques Tk and
T? in DWmotion, calculations for the same system were also
carried out by considering these torques separately (which
was rather a straightforward analysis due to the linearity of
the system: the displacement of the DW under the action of
the sum ofTk andT? is equal, to within 1%or less, to the sum
of its displacements under the separate action of the torques
Tk and T?).

The results of the simulation are shown in Fig. 5. The
domain wall starts moving at a finite velocity (Fig. 5a),
accelerates for about 1 ns after switching on the current and
then starts moving uniformly. As seen from Figs 5b and 5c,
the initial velocity of the DW is determined by the action of

the torqueTk, while its stationary motion depends exclusively
on T?. When under Tk (Fig. 5b), the DW starts moving at a
finite velocity, but after a period of 1 ns it stops. Under T?
(Fig. 5c), the DW starts moving at zero velocity and then
accelerates to a finite velocity. The velocity of the stationary
DW motion is linear in the current (Fig. 5d).

There is a noteworthy similarity between this solution and
that for CIP systems (see Refs [18, 19] and the results
presented in Section 3) which consists, in particular, in a
major torque not producing stationary DW motion. This
similarity is due to the fact that the torques Tk and T? acting
on a DW respectively in the CPP and CIP systems are Ð
although different in origin Ð pointing in the same direction
relative to the domain wall. The same is true for the pair of
moments T? and Tna, either of which produces stationary
DW motion [26].

Similar to what was done in Section 3, it is possible to
construct a one-dimensional analytical model for this system
[27]. According to this model, the velocity of the domain wall
is given by the expression

uCPP � ÿ gbJD
a

: �10�

This expression describes the simulation results to within
about 10%. It is of interest to compare this result with that for
DW motion in the CIP configuration [see formula (9)].
Taking dJ � 0:007 m sÿ1 at a current density J � 106 A cmÿ2

(the upper estimate for dJ according to Refs [18, 19]), it is
found that u � 1 m sÿ1 for Co, whereas for our system
(D � 19 nm) Eqn (10) yields uCPP � 14 m sÿ1 for the same
value of J. A similar relation between u and uCPP is observed in
other 3d-metals and for typical geometries of the structure.
Thus, in terms of current-induced DW excitation the spin-
valve CPP structure can be an order of magnitude more
efficient than the similar monolayer CIP structure, defining
the efficiency as the DW velocity at a given current density.
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Figure 5. Current-induced DW displacements calculated for (a) the torques Tk and T? combined, (b) the torque Tk alone, and (c) the torque T? alone.

Calculations are made for current densities J � 5, 10, 15, 20 [106 A cmÿ2] (curves 1 ± 4, respectively). The upper limit for this set is J � 24� 106 A cmÿ2, a
current value at which the current-induced magnetization reversal of one of the domains occurs. The inset to panel (a) depicts the geometry of the system.

(d) Velocity of stationary DW motion as a function of current density J.
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This result, due to the fact that the torque T? is much larger
than Tna in typical magnetic nanostructures, can be of
practical importance for developing controlled magnetic
elements (magnetic memory and logic) [28].

5. Spin current in molecular systems

One further class of experimental configurations for studying
spin-current-induced effects comprises systems containing
conducting organic molecules. Such molecules are grown by
self-assembly methods and brought into contact with a
nonmagnetic or ferromagnetic metal (for example, Au or
Ni). Such a contact is created by the chemosorption of so-
called thiol groups that form at that end of an organic
molecule which is in contact with a metal electrode. An
example of such organic molecules with thiol terminal
groups is benzene-thiol molecules. To the other end of an
organic molecule, a magnetic element (a magnetic nanoclus-
ter or an ion with the `easy-plane' anisotropy) attaches itself,
either chemically or by van der Waals forces. Another
possible type of contact is the magnetic metallic (for
example, Ni) probe tip of an atomic force microscope. Such
an experimental configuration is currently typical in molecu-
lar spintronics.

At sufficiently low temperatures and low damping, the
quantum effects show themselves in the dynamics of such a
system [29]. A spin current induces excitations of a quasianion
nature and gives rise to coherent quantum effects: Bloch
oscillations in magnetic moment precession and tunneling
effects between various quantum precession modes (so-called
Zener macroscopic tunneling). These quantum effects can
manifest themselves as jumps in the magnetic moment and
peaks in the magnetic susceptibility of the system under
consideration.

6. Conclusion

In this paper we have discussed various aspects of application
of the Landau ± Lifshitz equation modified by including
additional, current-dependent torques. First, the study of
the switching and oscillation dynamics of magnetization in
CPP systems showed that the full-scale micromagnetic
approach is of crucial importance even in the analysis of the
smallest-sized systems. The analysis of CIP and CPP config-
urations of the systems with DWs showed that, although the
current-induced spin torque Ts:t: is of a different origin in
these two configurations, the solutions of the GLLE can be
similar for certain system parameters. The reason for this lies
in the fact that the corresponding components of the Ts:t: are
pointing in the same direction relative to the domain wall. On
the other hand, the current-induced DW motion in CPP
structures can be more effective by far than in CIP
structures. Finally, attention was brought to the quantum
effects that spin-polarized current induces in molecular
systems. The most noteworthy of these are Bloch-oscillating
precession and Zener macroscopic tunneling of magnetiza-
tion, both observed in sufficiently low-damping systems at
low temperatures.

The work was supported by RFBR, project No. 07-02-
91589.
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