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Abstract. The theory of eigenmode generation by a given cur-
rent was developed for a uniform, transparent, anisotropic and
gyrotropic medium with a temporal and spatial dispersion.
Different approaches were employed to determine the eigen-
mode dispersion relations and polarization vectors. A close
interrelation was traced between the principal values and eigen-
vectors of the Maxwellian tensor and the properties of the linear
eigenmodes of a given medium. The spectral energy density
radiated in a given direction in the medium was calculated for
different medium modes having different phase velocities and
polarizations. Anisotropic factors were derived, which change
the eigenmode radiation intensity in comparison with that for an
isotropic medium with the same refractive index. Several typi-
cal examples were considered.

1. Introduction

The problem of electromagnetic energy radiation by a given
current in an anisotropic and gyrotropic medium with
dispersion is nontrivial even under simplifying assumptions
(a uniform medium, neglect of dissipation). The complexity of
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the problem in comparison with the similar problem for a
vacuum or an isotropic medium stems from the fact that, in an
anisotropic medium with dispersion, there exist, in the general
case, a wealth of eigenmodes for which the dispersion
relations and the geometry of polarization vectors may differ
greatly. An analysis of the eigenmodes is therefore a necessary
constituent part of the general radiation problem. Important
special cases have been considered in the scientific literature,
beginning with pioneering works (see, for instance, Refs [1—
5]). Several helpful results and general relations concerning
plasmas and crystal media are found in monographs and
review papers [6—19]. However, the general solution to the
problem and a comprehensive elucidation of the eigenmode
generation problem for anisotropic and gyrotropic media are,
as far as we know, lacking in the literature for general use
(including learning aids [20 —24]), although their significance
for many practical purposes is evident.

To solve the problem formulated in the present paper we
invoke both the permittivity tensor &,s(w,k) and the more
general Maxwellian tensor T,(w,k) [see formula (7) in
Section 2] which arises when the Maxwell equations are
written down in the Fourier representation. A link is
established between the medium eigenmodes and the princi-
pal values and eigenvectors of the Maxwellian tensor.
Although there are only three eigenvectors of the Maxwel-
lian tensor, they describe the complete set of polarization
vectors of the eigenmodes, whose number is generally
unlimited. The eigenvectors b(w, k) are shown to transform
into polarization vectors e(w?(k), k) when their arguments
and k are assigned values that satisfy the dispersion relation
o = (k) corresponding to an eigenmode. These important
relations, to our knowledge, are lacking in the literature,
including the references cited above.

We derived general expressions for the spectral energy
density radiated in a given direction. The integration rules
were formulated for the singular expressions to satisfy the
radiation principle. The general expressions were defined
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concretely and applied to the special cases of a medium
without spatial dispersion, a uniaxial anisotropic medium, a
uniaxial gyrotropic medium in different frequency ranges,
etc.

So, let us calculate the spectral energy density radiated by
some given current j(r,?) in a certain direction in a uniform
anisotropic medium with a negligible absorption, but with the
inclusion of temporal and spatial dispersion. It is noteworthy
that a dispersive medium, in principle, always exhibits
absorption proportional to the anti-Hermitian part of the
complex dielectric tensor. This fact follows explicitly from the
Kramers — Kronig dispersion relations. However, absorption
may be quite weak in certain frequency ranges. It is precisely
these ‘transparency windows’ that we have in mind below.
The radiation field will be considered at distances from the
oscillation source that are shorter than the wave absorption
length in the medium, and yet longer than the radiation
formation zone.

We proceed from the energy balance in the transparent
dispersion medium:

ow .
o +VS=-jE, (1)
where w and S are the energy density and energy flux density
of the electromagnetic field, respectively. The expressions for
these quantities, which we will not employ below, may be
found in Ref. [24]. The right-hand side of Eqn (1) may be
treated as a source of field energy due to extraneous current, if
the field E is generated by the same current. Having integrated
both sides of Eqn (1) over the entire space and with respect to
time we arrive at the field energy increment W during the
whole life of the extraneous current:

W=— J% dtJVj(r, N E(r,1)d*r

—00

- _ﬁ ke Jw d‘“Ji*(w,k) E(0, k) dk. 2)

Here, we passed on to the Fourier representation and made
use of the properties of the Fourier components of an
arbitrary real function f*(w,k) = f(—w,—k). Equality (2)
may be rewritten in the form

W= J WK(/) dw dQ7 (3)

where dQ is the solid angle of vector k, and W, is the energy
radiated by the extraneous current in the direction k = k/k at
a frequency w:

Wiw = 7L Re J j*(w, k) E((U, k)k2 dk . (4)
0

(2m)*

The factor 2 and the sign denoting extraction of the real part
in expressions (2) and (4) appeared because integration in
expression (2) is performed only over positive frequencies.

2. FElectric field calculations

We now calculate the electric field induced by an extraneous
current jin an anisotropic medium. Let us consider a uniform
medium whose electromagnetic properties at real values of k
and o are characterized by a Hermitian permittivity tensor

ép(,K) = ¢, (w, k) and a permeability u= 1. Electric
vectors obey the relation

Da((}J, k) = 80('/;((,07 k) E/;(a), k) . (5)

From the Maxwell vector equations it follows that the vector
E of the macroscopic electric field in the Fourier representa-
tion satisfies the equation

C4m
Taﬁ(w, k)Eﬁ((D, k) = —1 E ]a(a)7k) 5 (6)

where the tensor

c2k? Kk
Tt =eafonk) = (5 - ) )

will be referred to as Maxwellian for brevity [25].

We write down the solution of system (6) in terms of
the inverse tensor T -1 which satisfies the condition
T“/”(Til)[}v = 81‘/:

Ey=—i F ), . (8)

As is known from linear algebra [26—29], for 4 # 0 one has

~ A
—1 v
(T7) BT 9)

Here, 4 = |T,p] is the determinant of tensor 7,4, and 4, are
its algebraic adjuncts. The explicit form of the inverse tensor
may turn out to be rather complicated; its different special
cases for cool and hot magnetoactive plasmas were given in
Ref. [25]. With the help of relationships (8) and (9) we write
down the electric field in the form

4

E,=—-1—
” la)A

ijvoc . (10)

In the general case, this vector is not transverse relative to k in
an anisotropic and gyrotropic medium. The induction vectors
D and B are transversely aligned.

In view of expression (10), the energy loss of a given
current j in the medium may, according to relation (4), be
represented by the integral

OO ijva( /;

1
w === Rei| 02 g2,
i 2r? elJO wd(w,k) dk

(11)

The necessary and sufficient existence condition for the
inverse tensor (9) is that the determinant 4 is nonzero,
A # 0. Since in the integration over real values of k and o
there are points in the integration path at which 4 = 0, it is
required to introduce the rules of bypassing these points in the
complex plane in such a way that the perturbations generated
by extraneous current would asymptotically (at long dis-
tances) be represented by diverging spherical waves. A
similar bypass rule is also introduced for a vacuum. To
obtain the desired result in a medium, it would suffice to
take into account weak damping, i.e., the small anti-
Hermitian part of the permittivity tensor. We will revert to
this issue when performing integrations, but prior to that we
will derive a more lucid expression for the radiated energy and
determine its relation to the eigenmodes of the medium.
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3. Dispersion relations for the eigenmodes
of an anisotropic and gyrotropic medium

The dispersion relations and polarization vectors eg(w, k) of
the eigenmodes should be calculated from the system of
homogeneous equations

T.p(w,k)eg(w, k) =0, a=1,2,3. (12)
The existence condition for a nontrivial solution of this
system of equations is that its determinant is equal to zero:

A(w, k) = |Typ(w, k)| =0. (13)
The Hermitian tensor g = s;ﬂ + 193’(//3 has a symmetric,
&,3 = &f,» real part and an antisymmetric, &,; = —¢g,, imagin-
ary part. The latter may be written in terms of the gyration
pseudovector g,:

Supp = 8;/3 + e gy - (14)
We take into consideration that the tensor determinant is
invariant under spatial rotations and select the coordinate
axes along the mutually perpendicular principal axes of the
symmetric tensor ¢, ;; we denote the tensor principal values as
&1, &, and e3. With the axes selected, the tensor 7,4 takes the
form

e —n>(1 —x})
—igs + n2KK
igs 4+ n’i1c;

ig3 + nKi K —igs + nK K3
e —n*(1—x}) g +n’kaxs |,
—ig +nliary &3 —n*(1 — K?32)

(15)

where k =k/k is a unit vector in the direction of wave
propagation, and n = ck/w is the refractive index.

By equating the determinant A to zero we find the
refractive indices for the eigenmodes of the medium under
consideration. We expand the determinant to ascertain that
the terms proportional to n° cancel out and the equation in 7>
takes on the form

?:

an* — [e1(e2 + e3)ki +ea(er + &3)KF + e3(er + )it
+ (kg)’ — & + e1eaey — 187 — e2g7 — e3g3 =0,
(16)

2 2 2
a(w, k) = g1k + e2x) + e3K5 .

Equation (16) is a generalization of the Fresnel equation, well
known in crystal optics, to the case of a gyrotropic medium
(see Ref. [30]). The quantity a(w, k) = e,px,kp is the permit-
tivity longitudinal relative to the vector k: a = &!(, k).

If Eqn (16) is treated as a quadratic equation in the
explicitly appearing quantity n2, it is easy to find two roots
n? and n? of this equation. This enables writing the
Maxwellian tensor determinant (13) as a product of three
factors:

A=a(n® —ni)(n® —n3); (17)
setting any of the factors equal to zero leads to correct
dispersion relations for possible eigenmodes.

The convenience of writing the determinant in the form of
expression (17) manifests itself when the spatial dispersion is
nonexistent, i.e., when the quantities ¢;, &, &3, and g depend

only on w and not on the absolute value |k|. Then, the
relationships 72 = nf, turn out to be the solutions of the
dispersion equation, so that in each direction (for a given k)
two waves can propagate through the medium under
consideration with two, generally different, phase velocities
v1,2 = ¢/ny,5. Here, nj > (o, k) are the positive solutions of the
biquadratic equation (16), which depend only on the
frequency and the propagation direction of the correspond-
ing wave. The roots n? may be negative in some frequency
ranges. For a Hermitian permittivity tensor, this signifies
damping without dissipation, i.e., the absence of the corre-
sponding mode. In this case, relation @ = 0 corresponds to the
oscillating modes of the medium, whose properties are
independent of the magnitude of the wave vector, the electric
vector in these modes being directed along the vector k, i.c.,
the oscillations are longitudinal.

In the presence of spatial dispersion, relations ¢ = 0 and
n* =n{, are the equations for determining the refractive
indices rather than the solutions of the dispersion equation,
because a and 1), themselves are functions of n. That is why,
in principle, there is nothing to limit the number of
eigenmodes, which are solutions of these equations. To
determine the refractive indices in this case requires specify-
ing the explicit dependence of the dielectric tensor on w and k.

4. Current energy losses by radiation

In this section we consider the case where the quantities
n1,2(w, k) are known and represent the refractive indices. We
take advantage of formula (11) for the spectral energy density
radiated in a given direction. In view of expression (17), the
denominator of the integrand in integral (11) is written down
as

I I I s)
wd  ac?(nf —nd) \k2 —w?ni/c? k?—ow?n}/c?)’

Eventually, the expression for radiative losses (11) takes the
form

o wjaAoc[ij

1
W === Reil| ———5<
Y < JO ac2(n} —n})

1 1
— k2 dk. 19
% (kz—coznlz/c2 k2—w2n22/cz) (19)

When performing integration we take into account the weak
eigenmode damping resulting in the occurrence of small
positive imaginary parts of refractive indices: Imn? > 0 for
o > 0. These conditions give the rules of integration in the
vicinity of singular points, because

i T wn,
Re ——— —— 5 k——2 =1,2.
“ k2 — w?nt/c? Tk <k ¢ >’ 7=

Imn2 —+0
(20)

It must also be remembered that the tensor 4,,, is Hermitian:
A =45, That is why .the f:onvolution Judw J) 18 r(?al for real
o and k. We integrate, in view of rules (20), expression (19) to

obtain

602

Wkw = -
4nlac3(n} —

nz) (nl(jotAaﬁjE)l - ”Z(lelocﬂjg)z) :
2
(1)
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We now represent the algebraic adjuncts which appear in
expression (21) in terms of the polarization vectors of the
eigenmodes of the medium. We ascertain that the polarization
vector may be written in the form

S i 400)
ey —AAW,

(22)
where i is the root number, A’ is the normalization constant,
and the subscript u takes an arbitrary value. On substituting
the value of n =n; and solution (22) into system (12), it
transforms into a system of identities. In this case, two
equalities (with u # o) are fulfilled irrespective of the value
of n, and the third one (with u = a) for n = n; is fulfilled
because the determinant vanishes. Similarly, by taking
advantage of the Hermitian character of the tensor T3 we
ascertain that the first subscript of the algebraic adjunct
relates the components of the complex conjugate polariza-
tion vector e;. This permits expressing the algebraic
adjuncts at n = n; in terms of the normalized polarization
vectors:

Al =COere,, (23)
where eje, =1, and c® :A(’Z is a real normalization

constant which may have different signs. We emphasize that
the algebraic adjuncts reduce to polarization vectors only
when the corresponding dispersion relation is fulfilled; in an
arbitrary case, relationship (23) does not hold.

The spectral radiation density is, in view of the last-
derived relations, written down in terms of polarization
vectors:

(U2

4nla(w, k)c3(n? — n})

Wi =

x <n1C(1)’(e!<t‘)*jﬂ)‘2 —n2C(2)’(ep(l2>*j”)’2). (24)

Formula (24) describes the conversion of the energy of
extraneous current to the energy of electromagnetic radia-
tion and must, in passing to the vacuum case (&, — O4p), give
the radiation of transverse vacuum modes. In this passage to
the limit, however, in expression (24) there emerges a 0/0 type
indeterminate form; to evaluate this indeterminate form, it is
expedient to revert to the previous stages of the calculations.

For &, — 6,5 we turn to expression (15) to obtain the
corresponding limiting representations for the determinant
and its algebraic adjuncts:

0 242

A—A"=(1-n")", (25)

Aaﬁ — Ag/ﬁ = (1 — }’lz)(aa/; — I’IQKMK/;) .

On substitution of relations (25) into formula (10), the
common multipliers in the numerator and denominator
cancel and we obtain the Fourier transform of the electric
field induced by extraneous current in a vacuum:

E——i ﬁ (i — n(xj)x)

. Ckjk
Ry R e

(26)

We substitute value (26) for a field in a vacuum into formula
(4) to find

W)co) =

o |3 2
o’ Re(—i)J i (K[ dk (27)

2m3c4 0o k?—w?/c?

Selection of the retarded solution is made by adding an
infinitesimal positive imaginary part to the frequency w,
which leads to the well-known expression

602

. 2
cha) - W ’]L(wv K)

: (28)

which describes the emission of two transversely polarized
vacuum modes.

The above-discussed waves in a medium may be termed
quasitransverse, because on escaping from the medium they
transform into purely transverse vacuum modes and have a
nonzero magnetic vector, B # 0. The latter condition was
used in the derivation of Eqn (6). Modes with B =0 and a
purely longitudinal (relative to the direction of propagation)
electric field may also occur in media. In the Fourier
representation these modes satisfy the equations

cAn

kxE=0, FkyuepEkp=—i o ko jo(@,K) . (29)
We will seek for the field in the form E = Ejx, and from the
above equations we will find

, 4nxi(.k)

E, —
I wel(w,k) ’

e'(w,k) = a(w, k) = KKpeqp(0, k) .
(30)

Calculating the spectral density of the generated longitudinal
waves by formula (4) leads, with the inclusion of the
infinitesimal imaginary part of the longitudinal permittivity
¢!, to the following result

(31)

1 [~ . 2
W,lw, :mjo dk’kj(w7k)| é(sl(w,k)).

Here, unlike formula (24), account should be taken of the
spatial dispersion. In its absence, the oscillations generated by
the current cannot propagate in the form of waves and
transfer energy in space. Neglecting spatial dispersion, such
oscillations may occur only for specific discrete frequencies.
Integration in expression (31) can be performed by employing
the relationship
: d(k = ka(w,x))
é(e'(w,k)) = Za: 1021 Jok| ) (32)
where summation is performed over all roots of the equation
e¢!'(w,k) =0, which defines the dispersion laws for long-
itudinal waves in the medium, i.e., over all longitudinal
waves possible in this medium. The number of such modes
may be quite large.

5. Principal values and eigenvectors

of the Maxwellian tensor and their relation

to the eigenmodes of the medium

It turns out that in many cases electromagnetic phenomena

are conveniently considered in the system of orthogonal unit
vectors, in which the Maxwellian tensor is diagonal in form.
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In particular, this allows a consistent inclusion of spatial
dispersion in the generation of quasitransverse modes and
enables investigating the polarization of these modes.

We take into consideration that the Hermitian character
of the permittivity tensor &,s(w,k) implies that the tensor
T.p(w, k) is also Hermitian. As is known from linear algebra,
the principal values 2" (w,k) (m =1,2,3) of a Hermitian
tensor are real and its eigenvectors b (w, k) are generally
complex and mutually orthogonal:

(m)* (m) =
b (e, k)b (0, k) =0 for m #n.

Both sets should be calculated from the system of algebraic
equations

waﬁ = ﬂba y o= 1, 2, 3. (34)

The principal values must obey a cubic algebraic equation,
which is obtained by setting to zero the determinant of system
(34):

|Top — AByp| = 0. (35)

Once Eqns (34) and (35) are solved, the tensor T,
obtained from the Maxwell equations and its inverse tensor
can be expressed in terms of the principal values and the
complex eigenvectors:

3

Typ(,k) = > A" (0,K) b (0, k) " (0, k), (36)
m=1
- 23 1 (m) (m)

m=17"

On multiplying these tensors we obtain
Tiﬁ(wv k)(?il)ﬁv(wv k)
_ b,.(l)b,(l)* + b£2)b(2)* + bi?)b(S)* _ Sav )

The last equality follows from the completeness property of
the Hermitian tensor eigenvectors.

It is significant that the eigenvectors b (w,k) in an
anisotropic medium are essentially dependent on the fre-
quency and the wave vector, with the result that this case is
substantially different from the cases of vacuum and isotropic
media. In an isotropic medium, polarization degeneracy
occurs, making it possible to arbitrarily select the electro-
magnetic-wave polarization vectors in the plane perpendicu-
lar to the wave vector. An implication of this degeneracy is the
possibility of selecting the same eigenvector basis for
perturbations with any frequencies for a given direction k.
As a result, eigenvectors with different frequencies and
wavenumbers, and not only with equal ones, turn out to be
mutually orthogonal in an isotropic medium:

b (w0, k, k)b (', k' k) =0 for m#n. (38)
Polarization degeneracy arises from the symmetry of an
isotropic medium about rotations by any angle in the plane
perpendicular to the vector k. In an anisotropic medium, this
symmetry is absent in the general case (although it may occur
relative to the preferred directions), and the orthogonality of
the eigenvectors of the Maxwellian tensor is ensured only for
coinciding sets of w and k [see expressions (33)].

Let us determine the link between the quantities intro-
duced in the foregoing and the electromagnetic eigenmodes of
an anisotropic medium. We will use the notation of the tensor
in terms of its principal values (36) and express in these terms
the determinant of the system:

Aw,k) = 2V (w, k) 22 (0,k) 1V (w,k) . (39)
Condition (13) that the determinant is equal to zero signifies
that at least one of the principal values of the tensor should
vanish:

A" (w0, k) =0, m=1,2,3. (40)

Equations (40) give the dispersion relations w?(k) for the
eigenmodes of the medium. The number of these modes in the
presence of spatial dispersion is unlimited in the general case.

Notice that both notation forms of the determinant
A(w, k), expressions (17) and (39), represent it in the form of
three factors. This leads to the temptation to identify the
principal values A of the Maxwellian tensor with the factors
a, (n* — n}), and (n> — n}) [31]. But this identification would
be incorrect, because two other requisite relations would be
violated in this case:

A 423 408 = Ty + T+ T3, )

2052 420280 4 2@96) = Ay 4 Ay + 433,

which become evident when determinant (35) is expanded.
We return to the determination of the principal values 2™ in
the subsequent discussion.

Let us now express the eigenvector components in terms
of the real basis vectors of the Cartesian coordinate system in
which Maxwellian tensor (15) was written. Consider for
definiteness the eigenvector which corresponds to the first
principal number A = 2. Then, by multiplying tensor (15)
by b;; we obtain, in view of expressions (33), the equation

Tyl = 20p(0) (42)
which is conveniently rewritten as
Ty = (Tp — 1 V5,)bf" = 0. (43)

Equation (43) always has a solution, because by definition of
the principal value the determinant A of the tensor 7, is
always equal to zero. Writing equation (43) so as to solve it for
the components we arrive at
T]lbl(l) + T]zbz(l) + T13b§l) =0,
7~121171(1) + Tzzbz(l) + 7~"23b3<l) =0.

(44)
(45)

We do not give the third equation, because it is a linear
combination of these two owing to the zero value of the
determinant A. In these equations we express the y- and
z-components of vector b() in terms of the x-component bl(l)
to obtain

To1 T3 — T3 T

bz(l) _ s =TT oy (46)
TioTos — T13Tx
TiTo, — T T

p0 _ T2To IEE-BYON (47)

a T12T23 - TB T22
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Considering that the combinations of the Taﬁ tensor compo-
nents in the numerator and denominator of Eqns (46) and
(47) are the algebraic adjuncts of the elements of the third line
of tensor Ty (431 = T12To3— T13T2, 432 = T Tz — Ta3 Ty,
and As3 = T11 Ty — T12T31), we represent Eqns (46) and (47)
in a compact form:

1 j32 1 1 74]33 1
ph 2w b,

2 T 5 3

- (48)
43 43

This allows writing the vector bV in the form of a
decomposition into the real unit vectors of the initial
Cartesian coordinate system:

b(l) = C(j;x]ex + j}gey - j33e:) s (49)
where the constant C is determined from the condition that
the vector b)) is normalized to unity, so that
b — Ayie, + dye, — Asze. .
\/|j31|2 + 145l + |45

(50)

The other two eigenvectors, b® and b, are expressed in a
similar manner, but the tensor Ta,g should, in place of /I(U,
contain the principal values 2%) and 1), respectively.

Now let us determine the relation between the polariza-
tion vector e’(w, k) of a given eigenmode and the eigenvec-
tors b (w,k) of the Maxwellian tensor. By substituting
expression (36) for T,s(w,k) in the homogeneous equation
(12), we arrive at

AWpIp e 4 22p D pDer 4 0p B pPe” =0, (51)

where the arguments (o, k) of variables 2, b and e° were
omitted for brevity.

Consider for definiteness the mode which corresponds to
the condition A"(w,k) =0 (there may be several such
modes). In this case, o =w(k), A?(w’ k) #0, and
A3 (w7 k) #0. Then, equality (51) will be fulfilled only
provided the polarization vector e’(w?,k) is orthogonal to
the eigenvectors b® (w7, k) and b®) (w7, k). This signifies that
the polarization vector e’ (w?, k) simply coincides (in view of
normalization to unity) with the eigenvector b'") (w7, k) of the
Maxwellian tensor 7,s3(w, k). Attention is drawn to the fact
that the other two eigenvectors, b® (w7, k) and b®) (w7, k),
do not represent the polarization vectors of some eigenmodes
of the medium. They would turn into polarization vectors
only under the conditions 2% (w,k) = 0 and A®)(w,k) =0,
respectively, i.e., when the dispersion law for the eigenmode
with the same number is fulfilled, and not in an arbitrary case.
In particular, the polarization vectors of the ordinary and
extraordinary modes of equal frequency propagating through
an anisotropic medium in the same direction are nonorthogo-
nal, because they differ in wave vector magnitude (due to the
difference in the refractive indices).

Eventually, we showed that the polarization vectors of the
eigenmodes of a medium are constructed from three eigen-
vectors b (w? k) (m = 1,2, 3) of the Maxwellian tensor by
assigning their arguments @ and k the values corresponding
to the dispersion relation w= w?(k) for the corresponding
eigenmode.

Lastly, let us obtain in explicit form the expressions for the
polarization vectors of the electromagnetic eigenmodes of a
given anisotropic medium. For some eigenmode, say, with

number 1, we have A = 0, and therefore the tensor Tw
reduces merely to the Maxwellian tensor T,4. Therefore, the
polarization vector e (! is expressed similarly to b'") in terms
of the algebraic adjuncts of the Maxwellian tensor (i.e., in
terms of the quantities 4,, without a tilde):

el Az1ey + A3e, — Azze;

\/|4|31|2 + |A3]* + |43

(52)

Of course, expression (52) is obtained from formula (50) on
substituting into it A"’ = 0 and taking into account in the
remaining terms the dispersion law corresponding to this
condition. The polarization vector e® of the second
eigenmode is expressed similarly to expression (52) but
under the condition A?) =0 and with the dispersion law
corresponding to this condition. It may turn out that the
polarization vectors are conveniently decomposed into other
sets of algebraic adjuncts, for instance

Arey — Axey, + Anze.

e 7A116x+4|126_v+4|13e: .

\/|All P+ 14 + |4, \/|Azl P+ 4l + |4/
(53)

The polarization vectors of different eigenmodes of
anisotropic media, including magnetoactive plasma, are
given in many monographs and review papers (see, for
instance, Refs [6, 7, 19, 25]). In particular, monograph [6,
p- 59] gives the components of the polarization vectors for
several specific eigenmodes of magnetoactive plasma. This
monograph makes extensive use of quantum-mechanical
language and introduces, in particular, the quantity N/ (r, ?)
— the number density of the plasmons of a given mode ¢ with
the wave vector k. Use is also made of the notion of
permittivity ¢ = ¢(k) for the given mode ¢, which already
includes the dispersion relation for the wave under considera-
tion. In our paper we restrict ourselves to classical electro-
dynamics and do not resort to the notion of plasmons.
However, the permittivity ¢°(k) of individual modes can
naturally be introduced in our treatment, too. We shall
show how this can be done.

From relationships (36) and (33) we express, for the
general case, the eigenvalues of the Maxwellian tensor in
terms of its eigenvectors and the permittivity tensor:

c2k?
A (0, k) =" (w,k) ——, (54)
(0]
where
) (@.K) = B (0. K) 650, K) b (0. K)
b (0.0 kb ™ (0. k 55
+E oDy (wv)ﬂ[f(w7) ( )

Equating eigenvalue (54) to zero corresponds to the disper-
sion law which can define several eigenmodes of a medium
when spatial dispersion is taken into account. For every
specific mode, as shown above, the eigenvector b turns into
the polarization vector e of this mode and the dispersion
relation (40) takes, on substituting expression (54) into it, the
form

" (0, k) — c?k> = 0. (56)
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By the index ¢ we denote the elgenmode frequencies which are
generated by the eigenvalue 2™ (w,k) and are calculated
from Eqn (56) to obtain the quantltles

e (k) =M (w7 (k). k) =

2
" 2
4 m e(lﬂ) &y, e[(i ) + k2 !(ke(m))‘ :

(57)

Here, on the right-hand side the frequency w is everywhere
replaced by the mode frequency w/ (k), i.e., practical use of
these relations can be made only when the dispersion law is
known for the mode under consideration. Quantities (57), as
follows from Eqn (56), are the squares of the refractive indices
corresponding to individual modes, and they may therefore
be termed the permittivities by analogy with the case of an
isotropic medium. Of course, the two indices, m and o, may be
combined into one, as was done in monograph [6], and the
permittivity of the given mode may be denoted by ¢ (k).

6. Spectral energy density
of the generated modes

We revert to calculations of the radiated energy. With the help
of formulas (4), (8), and (37) we obtain

1
- 1
2w Jo

b(m o, k) |2

k* dk |
Z )11 (w7 k)

m=1

W;co) =
(58)

Recall that the Maxwellian tensor is Hermitian in a non-
absorbing medium, and its pl‘lnClpdl values A" (w, k) are real.
This signifies that for any values A" (w,k) # 0 the integral in
expression (58) is also real, so that its imaginary part (and
hence the radiated energy) vanishes. An imaginary contribu-
tion emerges only from the integration in the vicinity of the
points at which the qudntlties 2™ (e, k) vanish. However, it is
from the conditions 2 (w, k) = 0 that the dispersion laws of
the eigenmodes, @ = w/(k), result. Therefore, it is evident
that the energy losses of extraneous current j(w,k) in a
nonabsorbing medium are entirely due to the excitation of
the eigenmodes of this medium (including the traveling high-
frequency electromagnetic waves which escape to infinity, as
well as all kinds of modes which vanish when passing to empty
space).

To take into account the imaginary contributions to
integral (58), we introduce weak mode damping in the
medium and assign a small positive imaginary part to the
refractive indices: n — n + ie, € — +0. Then we will obtain

ﬂ””(w,k):;fm)( Cfi ,k) ~ A" (0 — iy, k)
n c
~ 2" (w,k) — iy @g

We next resort to the Sokhotskii formula

ol
- 1))7]() 7—0

(m)
o > S(A" (e, K)) .
o=wg(k)

'm

ST

(59)

— +msign <

Considering that the eigenvectors b™ (w, k) coincide with the
polarization vectors of the corresponding mode when the

dispersion law " (w, k) = 0 is fulfilled, we find the energy
expended by the extraneous current for the generation of
medium eigenmodes:

§ : m
Wi = th )

m=1

(60)

where W,Ef;’) is the energy emitted in the form of an eigenmode
with index m:

m 1 x 2 m)x . 2
W)Eo) = _21'52(0 L) k dk|e( ) (w7k).l(w7k)|
oAlm
i 2 (w,k)) . 1
csien (G| )otem) (61)

m

Therefore, the resulting expressions represent the decomposi-
tion of the radiated energy into the medium eigenmodes. We
note that every dispersion equation may have several roots,
and therefore the number of terms in sum (60) may be greater
than three.

In principle, expression (61) permits finding the genera-
tion energy of mode m, because all quantities that appear in it
can be calculated by performing algebraic operations, and the
calculation of integrals with delta functions presents no
fundamental problems. However, these calculations for an
arbitrary anisotropic medium are rather cumbersome. Espe-
cially complicated in the general case are Cardano formulas
for the solution of cubic equation (35) which defines the
principal values of the Maxwellian tensor. Simplifications
emerge only when some additional symmetry properties are
inherent in the medium under consideration.

Nevertheless, the problem of finding the principal values
of the Maxwellian tensor may be simplified (reduced to the
solution of a quadratic equation) when one of these numbers
tends to zero. In the radiation problem this turns out to be
sufficient, because the vanishing of the principal value
corresponds, according to condition (40), to the excitation
of medium modes.

Writing equation (35) so as to solve it for the Maxwellian
tensor components and resorting to the representation (17) of
its determinant, we derive the characteristic equation for the
determination of the principal values A:

/13 — (81 + & + &3 — 2712)).2
+ [n4 —(e1+e+e+ a)n2 +e180 + 283 + €183 — gz]),
—am* —n?)(n*—n}) =0. (62)

As noted in the foregoing, the principal values in the general
case do not reduce to @, (n*> — n}), or (n? — n?) and are found
by solving characteristic equation (62). We consider the
special case of interest when dispersion law (40) is fulfilled
for one of the medium eigenmodes, for instance, n> = n?.
Then, the constant term in Eqn (62) vanishes and / can be
factorized, so that the cubic equation reduces to a quadratic

of the form
/l{/lz —(e1+e+e— 2n12)/1

+ [0} = (e1 + &2 + &3 + @)ni+ erea+ o263+ 8183—g2}}: 0,
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whose solutions are easily found:

P (64)

1
A3 = 3 {81 +& +e —2nf

+ \/812 + &7 47 +4g% — 2(e160 + e263 + £163) + dan} } .
(65)

According to expression (61), the contribution to radia-
tion is made only by the values of 4 = 0, and in this case we are
therefore concerned with the root A" whose behavior as
n? — n} must be defined more precisely. To this end we

represent equation (62) as
A{/IZ —(e1+e+e— 2n2))»

+n* = (a1 + &2+ &3+ @)n’ + e1en + 263 + E163 — gz}}

=a(n® —n})(n* —n}).

(66)

Condition A — 0 permits putting 4 =0 in braces in
Eqn (66). After that, the vanishing principal value A" takes
on the form

a(n? —n3)

20—
n14 — (a1 +e+e+ a)nl2 +e1en +ere3 +e163 — g2

2 2)20(”12_”22)(,12 2y,

x (n” = nj 712,0) —

(67)

i.e., the principal value JADEN proportional to the difference
n? — n{ with a factor which is generally not equal to unity; the
latter equality in formula (67) was written with the use of the

Victa theorem applied to Eqn (63):

MO0 =nf— (61 + &2 + &5 + a)nf + 162 + 283 + 2183 — g7,
(68)

i.e., finding the eigenvalue 2" does not require finding the
other two eigenvalues separately; all we need to know is their
product (68). It should be noted that one can easily verify,
considering the explicit form of formulas (65) and (67), that
all the necessary relationships (41) for the principal values of
the Maxwellian tensor are fulfilled.

The second principal value, which is determined in a
similar way, has the form

(69)
/{(1)}(3> = n; — (81 +é& +é3+ a)n22-|-
+ €16 + €263 + €163 *gz'

Finally, the third principal value is obtained under the
condition that « =0 and corresponds to the emission of
longitudinal medium eigenmodes considered at the end of
Section 4. As already indicated, to correctly describe the
generation of longitudinal modes requires the inclusion of
spatial dispersion. Only two quasitransverse modes can be
generated in the absence of spatial dispersion, as shown in
Section 4. Then, with the help of formulas (67) and (69),
taking into account the small imaginary parts of the

refractive indices n; and n, we find

1 22 ,0)
Im o TOAT 5(/(—%) ,
0 2acny(n} —n3) ¢ (70)
1 iV

wny
Im— =0 A (-2
m)b(z) 2acny (n? — n}) ( c)

We calculate the total radiation energy of the quasitrans-

verse modes from formula (58):

w?

WK(U =

4nla(w, k)c3(n} —n})

.2
x (a3, _ e ) = mA?59)|

(‘);51)*ju)|2> :
(71)

Expression (71) is consistent with the previously derived
formula (24) when the relation between the constants is
taken into account: C(V =A@ _ @ =008 _
Attention is drawn to the following fact: when the refractive
indices of the anisotropic medium are close to unity (the case
considered in book [31]), the factors

=ny

n=m

;L(2)1(3)| ;u<l>)~(3)|

n=n n=ny

F = B="""

aw—n?) a7 — 1)) 72
tend to unity. Similarly, these factors take the unit value in
empty space and in an isotropic medium. However, in the
general case of an anisotropic and gyrotropic medium these
factors may significantly depart from unity, with the effect
that the radiation intensity and polarization differ strongly
from those in an isotropic medium. In summary, we represent
the radiation intensity (71) in a more compact form, directly
in terms of the anisotropic factors (72) introduced above:

(e ). (73)

It is pertinent to note that, although in an isotropic
medium the anisotropic factors turn into unity and the
radiation intensities of two orthogonal eigenmodes of this
medium are accordingly defined by two terms in expression
(73) with equal refractive indices, this by no means implies
that the emitted radiation would turn out to be unpolarized.
Quite the opposite, the polarization of radiation emitted in a
given direction may be quite high (and even one hundred
percent, as in the case of Vavilov—Cherenkov radiation),
depending on the relative directions of the electric current
vector, the radiation wave vector, and other vectors of
significance in the problem involved.

WK @

2
w )
= 2 (Al P + s

7. Special cases

(1) Radiation in a uniaxial anisotropic (nongyrotropic)
medium at an angle 0 to the optical axis (¢ =& =¢,,
e3=¢|, g =0, a(w, k)= ¢| cos? 0+ ¢, sin> 0). From Eqns (16),
(67), and (69) we find

E1€&
nt=e >0, nf:a(w,”())>0’
a(w, 0) =¢ + (61 —SH)Sian, (74)
c = el (e —eL) sin® 0,
2
@ _ Ce1g(2er +g)  (erg))
¢ en(e) +e1) a(w, 0) a*(w,0) "
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Figure 1. Anisotropic factors (72) for the ordinary (solid curve) and
extraordinary (dashed curve) waves as functions of transverse permittiv-
ity. The values of longitudinal permittivity and emission angle are given in
the figure.

Figure 2. Anisotropic factors (72) for the ordinary (solid curve) and
extraordinary (dashed curve) waves as functions of longitudinal permit-
tivity. The values of transverse permittivity and emission angle are given in
the figure.

In what follows we consider real positive refractive indices.
When n? < 0, the corresponding mode cannot be radiated
and makes no contribution to the spectral radiation density.
The quantities C() and C® for 0 < 6 < m are nonzero, are
opposite in sign, and vanish at § = 0, . Therefore, the
spectral density (71) is, as it must be, positive for 0 < 0 < =,
irrespective of the relation between ¢; and ¢|. Figures 1 and 2
depict the ‘anisotropic factors’ Fj » entering into formulas
(72) for ordinary and extraordinary wave radiation at an
angle to the optical axis of a uniaxial crystal as functions of ¢ |
and ¢). One can see that the anisotropic factors differ
markedly from unity and from one another in the general
case, which may result in the generation of strongly polarized
radiation in the anisotropic medium. Interestingly, for
&1 > ¢ the anisotropic factor F| of the ordinary wave is
close to unity, while for ¢; < g| it is the anisotropic factor F
of the extraordinary wave which tends to unity. Of course,
both factors are close to unity when ¢, ~ ¢, which corre-
sponds to an isotropic medium.

In the radiation emission along the optical axis (0 = 0, )
we have nj = ny =n = /e, formula (71) yields a 0/0 type
indeterminant form. In this case, it is required to revert to
formula (11). Then we will find 4;; = A = ¢(eL— n?),
Ay = (gL — n2)2, and 4,,= 0 for u # v. Upon cancellation
of the common multiplier and integrating, we arrive at

wz,/si

Wiw =
KO An2e3

i (1) (75)

Again, this formula describes emission of radiations with two
possible polarizations transverse relative to the optical axis.
The radiation itself may be polarized — this depends on the
current which excites the radiation; in this case, the radiation
intensity of two mutually orthogonal modes is described by
the two terms in expression (73) if it is taken into account that
the anisotropic factors F; , become unity.

In the case of propagation transverse to the optical axis
(0 = /2) we obtain a spectral radiation density

2
[ s .
Wio = 23 (\/ &1 ‘6,51) Ju|2 + V¢ |€,£2) ];4|2) ; (76)

the polarization vector e is found from formula (52):

) _ &8 e

e = .
le) — el

However, for the polarization vector e formula (52)
gives a 0/0 type indeterminant form. In this case, advantage
should be taken of another equivalent representation (53) free
from indeterminacy, which yields, given A" = 0, the correct
result e(V) = +(e, sin ¢ — e, cos @), where cos ¢ and sin ¢ are
the projections of vector k onto the axes 1 and 2.

We consider what changes may be brought about by the
existence of spatial dispersion of the permittivity. By way of
illustration we analyze a simplified model wherein only the
transverse component of the permittivity tensor depends on
the wavenumber. Let

o(w)
(@) + plw)n?’
(77)

()

o) + (@) = o)t

&1 =g (w) +

where & (w), a(w), f(w), and g(w) are some functions of the
frequency. Although we do not set for ourselves the task of
modeling some specific situation, it should be noted that this
structure of the permittivity emerges, in particular, when the
contribution of excitons is taken into account [7, 32].
Furthermore, in terms of spatial dispersion it is equally
possible to describe the electromagnetic properties of mag-
netics, in which there also exist specific eigenmodes (mag-
nons, spin waves).

The equation for the refractive index of the first mode now
takes on the form

2

=& = &lw 70(((”)
nt == a0 e B

This equation has become biquadratic:
pn* + (8 — Peo)n® — (deg + ) =0,

and may generally possess two positive roots n?, n?, rather
than one. This signifies that the occurrence of spatial
dispersion gives rise to new quasitransverse medium eigen-
modes, and the extraneous current energy may be expended
for their emission.

(78)
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Figure 3. Anisotropic factors (72) for the oblique emission of ordinary
(solid curve) and extraordinary (dashed curve) waves as functions of
radiation frequency in magnetoactive plasma. The anisotropic factor for
the extraordinary wave rises sharply in the vicinity of the gyrofrequency,
which is five times the electron plasma frequency in this example.

(2) In the medium there is one preferred direction along
which the gyration vector g is oriented. This is precisely the
case realized in a uniform magnetoactive plasma. Expressions
for an arbitrary emission angle 0 are cumbersome, which is
why the radiation along and perpendicular to the direction of
vector g is considered in greater detail below. Figure 3 depicts
the frequency dependence of anisotropic factors in the general
case of emission at some angle to the direction of the external
magnetic field. These factors are close to unity almost
everywhere, with the exception of the neighborhoods of the
plasma frequency and the gyrofrequency, in which these
factors may quite substantially depart from unity, especially
for extraordinary waves. This should be taken into considera-
tion, in particular, in the calculation of the transition
radiation in magnetoactive plasma [31, 33].

(2a) The longitudinal case: 6 =0, n12 =¢e +g>0,
n=e —g>0, CH=-Cc0 = —2ge|, and a(w, k) = g.
With the help of formula (71) we find

w? s 2
Wio = 4n2c3 ( VeL T & ‘eé]) ju(, )]

+.e —g |e£2)* ju(o, K)‘Z) ) (79)

(1,2)

.~ are easily determined

The mode polarization vectors e
from formula (53):

(1,2) _ g8 (e .
=F—"—(exFie,)),
V2eygl ‘

which corresponds to circularly polarized waves. When one
or both of n? are negative, such a mode is not excited and the
corresponding term should be removed from formula (79).

(2b) The transverse case: the emitted waves propagate
along axis 1, 6 = /2. Then one has

2

(80)

2 2

nfp=¢ >0, ny=¢ —>=>0,
&1
cW :—8L(6“ —SJ_)_gz,
g’y g
C(z) :8L(3H —8l)+7+7
&1 &7

By calculating the algebraic adjuncts in formulas (52) and (53)
we find that the first (ordinary) wave is transverse and
polarized along axis 3, e(!) = +e.. The second (extraordin-
ary) wave is nontransverse and has the polarization vector

@ _ < g iSJ_ >
e =+ e, + e, . (81)
Velvgr  eltgr

The radiation energy, which is given by formula (71), is
positive for both modes when n? > 0. As in the previous
case, the eigenmodes for which n? < 0 are missing.

(3) Low-frequency magnetohydrodynamic waves in a
cold magnetoactive plasma (o < wj ., ¢s < va), where w; ¢
are the ion and electron cyclotron frequencies, respectively, ¢
and va are the sound and Alfvén velocities. Neglecting
damping, the permittivity tensor has components (see, for
instance, Ref. [19, p. 191])

c? 2
~ ~ pe
eLR =, R ——5, gl >eL,
VA w (82)
2w ) 47tne?
g ~ 2 < &1, wpe = .
VAO; me

We neglect the terms g2/e? < 1in Eqn (16) to find

A= (er —n?)[erey —n’(gjcos? 0 — e, sin*0)] =0,

from whence we obtain two values of the refractive index:

2 2. &L

ni=¢; ny, & > 0.
! ’ 27 cos20

(83)

The former corresponds to the fast magnetosonic mode, and
the latter to the Alfvén one. Formula (83) remain valid only
for angles t/2 — 0 > (SL/|8“|)1/2. For a transverse propaga-
tion (0 — m/2), the Alfvén wave is impossible.
The normalization constants have the values
C“):sHsLsin29<0, C(2>:—5H8Ltan26>0.
The spectral density (71) is positive and takes the following
form upon substitution of all the quantities obtained:

o’ (1) ; 2 =3 () ; 2
W;cw = m <|€H ]ﬂ(w7K)| + |COS 9| ’eu ]M(w7K)| ) ’
(84)
cos’0 > L .
|||

The polarization vectors for 6 > 0 are easily calculated from
algebraic adjuncts: e(!) = (0,1,0); ¢® = (1,0,0). The elec-
tric fields of the two modes are mutually orthogonal and non-
transverse relative to the propagation direction k. The
magnetic vectors of both modes are transverse relative to k,
but the magnetosonic wave field is nontransverse relative to
the uniform background field. When the waves travel strictly
along the field, the refractive indices in approximation (83)
degenerate, and to determine the wave polarization requires
including the terms with the gyration vector, as was done in
example 2. In this case, the polarization is circular, which
follows from formula (80).

8. Conclusions

In our paper we have applied the standard methods of linear
algebra to the solution of the inhomogeneous system of
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Maxwell equations in the problem of radiation emission and
energy losses by a given current in an arbitrary infinite
anisotropic and gyrotropic medium with the inclusion of
temporal and spatial dispersion. We emphasize that the
‘given’ current is not necessarily ‘extraneous’ relative to the
medium. On the contrary, these currents may be nonlinear
plasma currents responsible, in particular, for the generation
of transition radiation or polarization bremsstrahlung [31,
33-37]. An important point is that our approach enables a
consistent inclusion of the spatial dispersion of a medium
even when its effect is by no means weak. In particular, it
permits calculating the radiation intensity of those modes
which emerge only due to the spatial dispersion and vanish in
its absence.

An important constituent of this treatment is bringing the
Hermitian Maxwellian and its inverse tensors to the diagonal
real form on the orthonormal basis of the complex eigenvec-
tors of the Maxwellian tensor. The proposed analysis is a
generalization of the well-known eigenmode method [6, 19],
which enjoys wide use in different areas of physics, including
crystal optics [7] and plasma physics [6, 19, 25]. In particular,
the eigenmode method has proven to be highly fruitful in the
consideration of nonlinear phenomena in plasmas [25],
including the theory of turbulent plasma [6].

In the framework of our approach we make use of the
decomposition of the electromagnetic field not into the
propagating modes of a given medium (i.e., the solutions of
the homogeneous system of Maxwell equations), but into the
eigenvectors and principal values of the eigenvectors of the
Maxwellian tensor, which are the solutions of inhomoge-
neous Maxwell equations (34). The eigenmodes of this
medium are the special cases of these general solutions,
provided that the corresponding principal value A of the
Maxwellian tensor vanishes.

Our approach is more general and consistent, for it allows
for the existence of perturbations in the medium, whose
frequency and wave vector are not related by the dispersion
law of some of the eigenmodes of this medium. In particular,
this method makes it possible to easily elucidate the origina-
tion of the apparent contradiction between the orthogonality
of the eigenvectors of any Hermitian tensor for given w and k
and the nonorthogonality of the eigenmodes of an anisotropic
medium, which travel in the same direction and have the same
frequency o (see Section 5).

Furthermore, the method developed in our work has
enabled us to explicitly calculate the anisotropic factors Fj »
entering into formulas (72), whose availability is of signifi-
cance both from the methodical and practical viewpoints.
Indeed, when these factors are different from unity, some
mode with a given polarization and a refractive index n(w)
will be radiated with different intensity in anisotropic and
isotropic media. It is noteworthy that we can always select an
isotropic medium in such a way as to make its refractive index
coincide with one of the refractive indices of the anisotropic
medium. Of course, the second refractive index of the
anisotropic medium will be different. This signifies that the
radiation intensity of this eigenmode is generally defined not
only by its own refractive index and polarization vector, but
also by the properties of the anisotropic medium as a whole,
because the anisotropic factors of each of the modes depend
on the differences in the refractive indices squared of both
modes. From the practical standpoint, this effect may be
employed for the development of strongly polarized incoher-
ent radiation sources.

Therefore, the approach outlined permits describing from
a unified standpoint a broad range of phenomena in the
anisotropic media, many of which have been well and widely
known but some of which are described here for the first time.
Seemingly, the material set forth in our work may prove to be
helpful when lecturing on the subject of radiation emission to
students in physics specialties, because it contains, in a
beautifully elegant and compact form, the general solution
to the problem of electromagnetic energy radiation in a
medium. This enables one to easily obtain all results of
practical interest in the form of special cases of our general
expressions.
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