
Abstract. Expressions are given for the interference energy flux
(IEF) of the active and reactive components of co- and counter-
propagating waves with an arbitrary structure of their electro-
magnetic field. The formation conditions of the IEF and its role
in energy transfer processes are analyzed in the examples of
homogeneous plane waves in an absorbing medium, directed
planar-waveguide modes, and a system of radiating dipoles.
The possibility of using the IEF for controlling the radiation,
transfer, and dissipation of electromagnetic energy is discussed.
The IEF of the waves of two coherent sources is shown to
contain two interrelated components, which control different
energy processes.

1. Introduction

From an energy viewpoint, interference consists in the fact
that the resulting intensity of two coherent waves in the region
of their overlap differs from the sum of the intensities of the
initial waves. The average energy flux density vector of two
monochromatic coherent waves can be represented as

S � S1 � S2 � Sint ; Sj � tRe �ej � h �j � ;

Sint � tRe
��e1 � h �2 � � �e2 � h �1 �

�
; �1�

where Sj is the energy flux of each wave ( j � 1, 2), Sint is the
interference flux (IF), t � c=8p, c is the speed of light in the
vacuum, and ej and hj are the complex electric and magnetic
field strengths, respectively. The IF formation is a funda-
mental feature that unifies various manifestations of
interference. For example, two different phenomenaÐ

electromagnetic-energy tunneling through a thin substance
layer when a wave is incident at an angle higher than the
critical angle of total internal reflection and the nonradia-
tive energy transfer between atoms in a mediumÐare based
on the formation of the IF reactive components of an
electromagnetic field. The behavior of the IF can differ
strongly from the behavior of single-wave fluxes; in
particular, the IF can exist even when energy cannot be
transferred by a single wave (e.g., during electromagnetic-
wave tunneling [1 ± 3]).

The special role of the IF in energy transfer processes was
first noted in [4 ± 6], where the energy balance was studied for
light incident on the boundary of two semiinfinite media
when at least one of them is semiabsorbing. Experiments on
the interference of counterpropagating waves (ICWs) in the
optical and microwave regions in thin metallic films are
described in [7 ± 9]: it was found that an undamped IF of the
reactive components of wave fields appears when ICWs are
present in absorbing media and that the IF intensity oscillates
in the direction of damping of the initial waves. Such behavior
of an IF occurs not only in absorbing but also in amplifying
media [10]; in the general case, this behavior occurs in
dispersion media with a complex refractive index [10 ± 14]. A
further analysis showed that for directed inhomogeneous
waves in various waveguide structures, an oscillating IF can
be generated by not only the reactive components but also the
active components of wave fields for both counter- and
copropagating waves [15, 16].

The situation where the amplitude and phase of one of the
waves can be changed irrespective of the corresponding
characteristics of the second wave and the parameters of the
medium in which interference occurs is of particular interest.
When changing the phase difference of the initial waves at the
point of observation, one can control both the magnitude and
direction of interference and the total energy fluxes. The idea
of using the IF for controlling the electromagnetic radiation
energy transfer and dissipation was developed in [7 ± 14, 17 ±
20], where ICWs were studied for the incidence of two
coherent waves on opposite sides of a parallel-sided layer
(film) or a planar layered structure.

One of the most important and interesting manifestations
of the interference of electromagnetic waves consists in
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interference phenomena in the near-field radiation zone of the
radiators of these wave. The specific features of such
phenomena and the appearance of useful effects were
considered for a passive electric dipole in the field of an
incident plane wave [21, 22] and for a system of two or several
elementary dipole radiators [23 ± 25].

In this work, we use thesemanifestations of interference in
various physical situations as examples and consider the
problems related to the physical nature and conditions of IF
and its role in the transfer and dissipation of electromagnetic-
wave energy using the same approach.

2. Interference fluxes of the active
and reactive components of wave fields

In contrast to the active components of the electric and
magnetic field vectors of a single electromagnetic wave
(which have no phase shift between themselves), the reactive
components (separated by the phase shift p=2) do not
contribute to the wave intensity. However, when two or
more coherent waves are superimposed in space, the reactive
components of their fields can cause an IF in directions where
energy transfer is absent for a single wave. Below, we present
general expressions for the energy fluxes that occur during the
interference of the active and reactive components of the
fields of two coherent waves.

We consider two monochromatic electromagnetic waves
with a frequency o that interfere with each other. The field of
each wave always contains one or several pairs of interrelated
components of the magnetic and electric fields, which are
perpendicular to each other. We choose one such pair of
components of the first wave (h1; e1) and a similar pair of
collinear components of the second wave (h2; e2). These fields
can be written as

hj � aj exp
�
i�ot� wj�

�
;

ej � Zjaj exp
�
i�ot� wj � z�� ; �2�

where wj are coordinate-dependent phase terms ( j � 1, 2) and
z is the phase shift between the components of the electric and
magnetic fields. The amplitude coefficients aj are certain
functions of coordinates, and the impedances Zj represent
the ratios of the electric- and magnetic-field amplitudes.

According to (1), the chosen components of the wave field
generate a Poynting vector component in the direction that is
normal to both the electric and magnetic fields,

S � tRe
��e1 � e2��h1 � h2��

�
: �3�

With Eqn (2), we can rewrite Eqn (3) as

S � t
n�

Z1a
2
1 � Z2a

2
2 � �Z1 � Z2� a1a2 cosDw

�
cos z

� �Z1 ÿ Z2� a1a2 sinDw sin z
o
; �4�

where Dw � w2 ÿ w1. Apart from the terms related to each
wave, Eqn (4) contains interference terms that are propor-
tional to the amplitude product a1a2. In the particular case of
active components (z � 0), Eqn (4) takes the form

Sa � t
�
Z1a

2
1 � Z2a

2
2 � �Z1 � Z2� a1a2 cosDw

�
: �5�

The condition of the presence of an IF in this expression is
that the sum of the impedances is nonzero, Z1 6� ÿZ2. If the
components are reactive (z � �p=2), the average energy flux
is a purely interference flux,

Sr � �t �Z1 ÿ Z2� a1a2 sinDw ; �6�

and is nonzero if Z1 6� Z2. Equations (5) and (6) exhaust all
possible cases of phase relations between the fields of an
electromagnetic wave because at an arbitrary phase shift z,
the electric field in Eqn (2) can be decomposed into active and
reactive components (with respect to the magnetic field).

Thus, energy IFs can be generated by both active and
reactive components of wave fields. The equations given
above are convenient for energy fluxes during the interfer-
ence of co- and counterpropagating waves with an arbitrary
structure of the wave field to be analyzed by decomposing this
field into active and reactive components.

3. Interference fluxes of co-
and counterpropagating waves

Let two plane homogeneous and linearly polarized waves
propagate in an infinite dispersion-free medium with the
following complex material parameters: the magnetic perme-
ability m � m 0 ÿ im 00 and the permittivity e � e 0 ÿ ie 00. Waves
in this medium are characterized by a complex wavenumber
k � k0�em�1=2 � k 0 ÿ ik 00 (where k0 � o=c); a real propaga-
tion constant k 0 and a real damping coefficient k 00 are defined
by the relations

k 0 � k0���
2
p ÿjejjmj � e 0m 0 ÿ e 00m00

�1=2
;

k00 � k0���
2
p ÿjejjmj ÿ e0m 0 � e 00m 00

�1=2
: �7�

The impedance is also a complex quantity, Z � �m=e�1=2 �
Z 0 � iZ 00, where

Z 0 � 1

jej ���2p ÿjejjmj � e 0m 0 � e 00m 00
�1=2

;

Z 00 � 1

jej ���2p ÿjejjmj ÿ e 0m 0 ÿ e 00m 00
�1=2

: �8�

Equations (2) describe the field components hjy and ejx of
waves propagating along the z axis. In the z � 0 plane, the
waves are assumed to have amplitudes Aj and initial phases
jj. We write the impedance in the form Z � jZj exp �iz� and
see that the electric fields ejx can be decomposed into an active
component, which is proportional to Z 0 � jZj cos z, and a
reactive component, which is proportional to Z 00 � jZj sin z.

We first assume that both waves are unidirectional and
propagate in the positive direction of the z axis. Then, in
Eqn (2), we set aj � Aj exp �ÿk 00z�, Z1 � Z2 � jZj, and
wj � ÿk 0z� jj. For the total energy flux along the z axis, we
obtain

Sz � tZ 0 exp �ÿ2k 00z��A 2
1 � A 2

2 � 2A1A2 cos d� ; �9�

where d � j2 ÿ j1. In this case, the total energy flux is seen to
be induced by only the active components and to include an
IF that decays along the z axis identical to the flux of the
single wave.
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We now consider the case of ICWs. In Eqn (2), we set
aj � �Aj exp ��k 00z�, Z1 � ÿZ2 � jZj, and wj � �k 0z� jj

(the upper signs in � and � pertain to the direct wave, and
the lower signs, to the counterpropagating wave) and
represent the total flux in the form

Sz � t
�
Z 0
�
A 2

1 exp �ÿ2k 00z� ÿ A 2
2 exp �2k 00z��

ÿ 2Z 00A1A2 sin�2k 0z� d�	 : �10�

Apart from the `active' energy fluxes of the single waves, this
expression involves an undamped IF of the reactive compo-
nents, which oscillates along the z axis with the spatial period
p=k 0 � l=2 (where l is the wavelength).

To reveal the role of the IF in electromagnetic energy
transfer processes, we analyze its relation to other energy
wave characteristics. For counterpropagating waves, wewrite
the expression

w � e 0

16p

��e1 � e2
��2 � m 0

16p

��h1 � h2
��2

� 1

16p

�ÿ
e 0jZj2 � m 0

��
A 2

1 exp �ÿ2k 00z� � A 2
2 exp �2k00z��

� 2
ÿ
e 0jZj2 ÿ m 0�A1A2 cos�2k 0z� d�	 �11�

for the average electromagnetic-energy density w of two
waves, and the expression

P � ÿ dSz

dz
� o

8p

�ÿ
e 00jZj2 � m 00

�
� �A 2

1 exp �ÿ2k 00z� � A 2
2 exp �2k 00z��

� 2
ÿ
e 00jZj2 ÿ m 00

�
A1A2 cos�2k 0z� d�	 �12�

for the heat release P (which is the time-averaged power
density of heat loss). Comparing Eqns (11) and (12), we can
see that both expressions contain interference terms that vary
along the z axis in accordance with the same law. The
interference terms of the energy density of the electric and
magnetic fields oscillate in antiphase: the maxima of the
electric energy coincide with the minima of the magnetic
energy and vice versa. Therefore, the contributions of two
types of losses (electric and magnetic) enter the interference
component of heat release with opposite signs. As a result, the
interference maxima and minima of heat release are super-
imposed on the maxima and minima of either the electric or
the magnetic energy density, depending on the predominant
type of losses.When the condition e 00jZj2 � m 00 is satisfied, the
interference component of heat release is absent.

Based on Eqns (10) ± (12), we can reveal the role of the
`reactive' IF in the motion of counterpropagating waves in a
lossy medium. This flux transfers energy to regions of its high
consumption (i.e., to the maxima of heat release) and takes
energy away from regions with its low consumption (i.e., from
the minima of heat release). Thus, the IF plays a `redistribut-
ing' role via the control of energy distribution within a spatial
`cell' half-wavelength long; therefore, the IF is related to
spatial heat-release oscillations.

The following two limit cases of ICWs corresponding to
loss-free media (m00 � e 00 � 0) are of interest. The first case
corresponds to media with m 0, e 0 > 0. In these media,
according to Eqns (7) and (8), k 00 � 0 and Z 00 � 0, the field
components in Eqn (2) are purely active, and only single-wave

fluxes are retained in Eqn (10). In this case, these fluxes are
undamped,

Sz � tZ 0�A 2
1 ÿ A 2

2 � : �13�

AtA1 � A2, we have the well-known case of a standing wave,
which is characterized by the absence of energy transfer in a
medium.

The second case is realized in media with a negative value
of permeability or permittivity (e.g., e 0 < 0, m 0 > 0). As
follows from Eqns (7) and (8), k 0 � 0 and Z 0 � 0, and the
field components are purely reactive. In this case, only the IF
is nonzero in Eqn (10); it is then independent of the z
coordinate and is determined by the expression

Sz � ÿ2tZ 00A1A2 sin d : �14�

This flux appears upon the superposition of two electro-
magnetic oscillations that decay exponentially with the
damping coefficient k 00 � k0

ÿje 0j m 0�1=2 in opposite directions
and transfers energy even when this is impossible for a single
perturbation. The energy transfer direction and the magni-
tude of the IF are specified by the phase difference d. Flux (14)
is closely related to the interference component of the energy
density, which is given by

w int � ÿ 1

4p
m 0A1A2 cos d ; �15�

because the change in the IF caused by a possible change in d
is accompanied by the corresponding change in the electro-
magnetic energy `stored' in the medium.

The flux transferring energy during the tunneling of an
electromagnetic wave has a similar nature [1, 3]. We also note
that Eqn (14) is obviously analogous to the relation that is
well known for a tunneling superconducting current in the
Josephson effect [26].

We now consider the interference of inhomogeneous
waves using TM modes propagating in a planar waveguide
with ideally conducting boundary media as an example [16].
For simplicity, we suppose that the waveguide represents a
planar dielectric layer of thickness d with a permittivity e and
that the waveguide is bounded by ideal conductors (the planes
x � 0 and x � d ) from both sides. In this case, the fields of an
nth-order waveguide mode propagating along the z axis can
be represented as

hyn � A cos qn x exp
�
i�otÿ knz�

�
;

exn � kn
k0e

hyn ; ezn � i

k0e
qhyn
qx

;

�16�

where kn � �k 2
0 emÿ q 2

n �1=2 � k 0n ÿ ik 00n is the mode propaga-
tion constant and qn � pn=d is the transverse wavenumber.

Without going into the details of the structure of the
waveguide mode energy fluxes, we only indicate the differ-
ences between this structure and the structure considered in
the case of homogeneous waves. The energy flux induced by
fields of type (16) has two projections, one longitudinal (Sz)
and one transverse (Sx):

Sz � tRe �exh �y � ; Sx � ÿtRe �ezh �y � : �17�

For the interference of co- and counterpropagating modes,
the field components in Eqn (17) are the sum of the fields of
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the interfering waves, as in Eqn (3). For modes of the same
order (n1 � n2), the nature and properties of the long-
itudinal flux are identical to those of homogeneous waves
(only the dependence on the transverse coordinate x
appears). For modes of different orders (n1 6� n2), the
longitudinal IF also includes two terms, the `active' and
`reactive' ones. Apart from damping, these fluxes have the
same oscillating dependence on z: they change in accor-
dance with a cosine law with the period 2p=jk 01 ÿ k 02j for
copropagating modes and 2p=�k 01 � k 02� for counterpropa-
gating modes. Oscillations are absent only for k 01 � k 02 � 0,
i.e., for purely imaginary propagation constants (e.g., for
damped modes in the cutoff region). We note that IF
oscillations for modes of different indices also occur in the
absence of losses. The damping of an IF for copropagating
modes is determined by the sum of the imaginary parts of
the propagation constants, and that for counterpropagating
modes is determined by their difference.

As regards the transverse flux Sx, for a single mode it
appears only in the presence of losses. In the absence of losses
(for real e), the components ez and hy, which are responsible
for its formation, are purely reactive and do not generate the
flux. Similarly to the IF of counterpropagating waves in
Eqn (10), the transverse flux that appears in the presence of
dissipation is related to spatial heat-release oscillations (a
heat-release standing wave forms along the x axis even in the
case of propagation of a single waveguide mode).

If losses are absent, a transverse flux forms only upon
interference of different modes (co- or counterpropagating).
Longitudinal and transverse fluxes then appear simulta-
neously, and their oscillations are interrelated: the maxima
and minima of the transverse IF are located in the sections
where the longitudinal IF vanishes. As in an absorbing
medium, oscillating IFs are involved in the electromagnetic
field energy redistribution. An analysis demonstrates that
longitudinal-flux oscillations correspond to electromagnetic
energy density oscillations depending on z. A change in the
energy density along the z axis is related to the energy
redistribution across the waveguide structure that is caused
by the presence of a transverse IF component.

4. Interference of counterpropagating waves
in a parallel-sided layer

In practice, the model of a medium unbounded in the
propagation direction can be used to study ICWs only for
weak damping. Therefore, most theoretical works concern-
ing ICWs and virtually all related experimental works deal
with this phenomenon in the case of normal or oblique
incidence of two waves from the vacuum or any transparent
medium on a rather thin layer of the material under study.
ICW effects inside the layer manifest themselves only
indirectly, because the intensities of the waves traveling
from the layer to the surrounding transparent medium are
measured experimentally. This scheme was realized in [27 ±
29] with the Mach ±Zehnder interferometer, and it was used
to develop techniques for the determination of the optical
constants of thin films. The authors of [7 ± 20] studied ICWs
in planar layered structures and showed that the presence of
an IF in the total energy flux causes the appearance of a
number of specific practically important interference effects.

Let two plane homogeneous coherent waves with the same
linear s or p polarization, the amplitudes Aj, and the initial
phases jj be incident from the vacuum on the opposite

surfaces of a planar layered structure of thickness d (in the
simplest case, a single parallel-sided layer) at the same angle y
(Fig. 1). The incident-wave energy fluxes are S0 j � tA 2

j . The
layer surfaces emit energy fluxes Sj formed by two counter-
propagating waves, the wave reflected by the layer and the
wave passing through the layer,

S1�S11 � S12 � S1 int�t
�
RA 2

1 � TA 2
2 � IA1A2 cos�dÿ D��;

S2�S21 � S22 � S2 int�t
�
TA 2

1 � RA 2
2 � IA1A2 cos�d� D��:�18�

Here, R and T are the energy reflection and transmission
coefficients, which depend on the incidence angle and the
structure parameters [30], for waves of the corresponding
polarization; D � xR ÿ xT is the phase difference acquired by
the waves upon reflection (xR) and transmission (xT) through
the layer; and d � j2 ÿ j1 � k0d is the phase difference of the
incident waves at the layer surfaces.

The interference transmission factor I � 2�RT �1=2 deter-
mines the `amplitude' values of the IF Sj int entering fluxes
(18). I is maximal at R � T (i.e., for a semitransparent layer)
and reaches unity in the absence of absorption. The presence
of IF in the fluxes leaving the layer can be used, e.g., to realize
the flux Sj modulation due to the change in the phase
difference d caused by a change in the modulation depth m.
For the flux S1, this depth is

m � S1max ÿ S1min

S1max � S1min
� IA1A2

RA 2
1 � TA 2

2

: �19�

At A1 � A2, for a transparent structure, we have m � I, and
hence m can reach m � 1.

A signal can also be amplified when passing through the
layer, and the amplification factor for a wave with j � 1 is

K � S2

S01
� T� I

A2

A1
cos�d� D� : �20�

We note that when counterpropagating coherent `illumi-
nation' is supplied to the rear side of the layer, the transmitted
signal turns out to be amplified not only due to the addition of
the reflected signal of the second wave. At a certain difference
in the initial phases of twowaves, the transmitted flux, i.e., the
first-wave transmittance of the layer, can be increased. The
reflected signal of the first wave and the transmittance of the

S1 S2

S01 S02

y

d

y

Figure 1. Schematic diagram for energy fluxes during the interference of

counterpropagating waves in a parallel-sided layer.
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second wave decrease correspondingly. In particular, coun-
terpropagating coherent illumination with the amplitude
A2 � A1�R=T �1=2 turned on under the condition d � p� D
makes the reflected flux S1 vanish. Then, the total energy
leaves the layer in the direction of the flux S2, and it might be
said that the layer, as it were, becomes transparent for a wave
with j � 1.

To refine the role of the IF in the incident-wave energy
redistribution, we represent the corresponding terms in
Eqn (18) as

Sj int � f cos d� g sin d ; �21�

where f � tIA1A2 cosD and g � tIA1A2 sinD. At d � 0, p, the
fluxes Sj increase or decrease simultaneously as d changes.
This behavior is explained by the fact that the terms
proportional to cos d in Eqn (21) are related to a change in
the heat release in the layer (analysis demonstrates that
cosD 6� 0 only in the presence of losses). In turn, the terms
proportional to sin d are related to the interference energy
redistribution between the fluxes S1 and S2 without changing
their total magnitude.

To characterize the interference heat-release effect, we
introduce an absorption coefficient that is defined as the ratio
of the power absorbed by the layer to the total power of two
incident waves,

Q � 1ÿ S1 � S2

S01 � S02
� Q0 ÿQint ;

Q0 � 1ÿ Rÿ T ; Qint � 2IA1A2

A 2
1 � A 2

2

cosD cos d ;

�22�

where Q0 is the absorption coefficient for a single wave and
Qint is the additional interference component of heat release.
The interference maxima and minima of heat release
respectively correspond to d � 0 and p. An analysis
demonstrates that if only one type of loss (electric or
magnetic) is present in the layer, the minimum value of
heat release is several orders of magnitude lower than Q0;
that is, virtually nondissipative energy transfer through an
absorbing layer is possible. At the same time, the maximum
value of Q can approach Q � 1 (e.g., for microwave ferrites
with a high level of magnetic losses in the ferromagnetic-
resonance region). The phase difference d also substantially
affects the character of the heat release distribution across
the absorbing layer.

The normal incidence ofmicrowavewaves on the opposite
sides of a heated sample is widely used in the technologies of
heating and heat treatment of various materials [31, 32].
Interference heat-release effects are applied here to optimize
the operation of microwave devices for the elimination of
nonuniform heating of samples, for instance.

The interference effects considered above were compre-
hensively studied for transparent dielectric layers [17], thin
metallic films [7 ± 11] (including a two-layer structure consist-
ing of an absorbing film on a transparent substrate [20]), and
magnetic gyrotropic media (microwave ferrites) [13, 14, 18].
We note that the polarization of electromagnetic waves can
also be controlled in this case. For example, the resulting
waves with an arbitrary elliptical polarization can be
produced in a ferrite layer in the microwave region by means
of a specific superposition of themagnetooptical Faraday and
Kerr effects [19].

5. Interference effects
in a system of radiating dipoles

A source of electromagnetic waves in the presence of the
electromagnetic field of another coherent source emits or
absorbs additional energy. The interference effect of the
sources on each other is most substantial in the case where
they are located in the near-field regions of each other, where
the reactive components of the electromagnetic fields of the
emitted waves are predominant. Their interference results in
IFs that play a key role in the source energy redistribution. In
the most general formulation, the problem of the interference
of the electromagnetic waves of dipole radiators was solved in
[23, 25], where the radiation energy fluxes were analyzed for a
system consisting of several electric or magnetic dipoles
arbitrarily oriented in space.

We consider two electric dipoles that are located at a
distance l from each other in a vacuum and whose dipole
moments change in accordance with a harmonic law
pj � p0 j exp

�
i�ot� jj�

�
, j � 1, 2. Let c be the angle

between the dipole-moment directions and gj be the angles
the dipole-moment vectors make with the segment of the
straight line connecting these dipoles (Fig. 2). In the spherical
coordinates (rj; yj; aj), the components of the electric and
magnetic field vectors of the dipoles can be written as

Erj � 2p0 cos yj

�
1

r 3j
� ik

r 2j

�
exp

�
i�otÿ krj�

�
;

Eyj � p0 sin yj

�
1

r 3j
� ik

r 2j
ÿ k 2

rj

�
exp

�
i�otÿ krj�

�
;

�23�
Ha j � ikp0 sin yj

�
1

r 2
� ik

r

�
exp

�
i�otÿ krj�

�
;

Ea j � Hrj � Hyj � 0 ;

where k � o=c is the wavenumber.
The total energy flux density at an arbitrary point in space

is given by (1), where S j are the fluxes of single dipoles andSint

is the IF of the pair of dipoles. An expression for the IF
through an arbitrary closed surface sj inside which only the
dipole with index j is present was obtained in [25]:�

S int dsj � F cos d� G sin d ; �24�

where d � j2 ÿ j1 is the difference in the initial phases of
dipole-moment oscillations. The following notation is intro-

l

p1
p2

y1

r1 r2

y2

g1 g2

Figure 2. System of two dipole radiators arbitrarily oriented in space.
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duced here:

F � o
2l 3

p1p2�u sin kl� v cos kl � ;

G � o
2l 3

p1p2 �u cos klÿ v sin kl � ;

u � �k 2l 2 ÿ 1��cosc� cos g1 cos g2� ÿ 2 cos g1 cos g2 ;

v � kl �cosc� 3 cos g1 cos g2� :
The form of Eqn (24) coincides with that of Eqns (21) for

the IF of counterpropagating waves incident on a planar
layered structure; moreover, analogous terms in these
equations have a similar physical meaning. In Eqn (24), the
first term, which is proportional to cos d, controls the
interference-induced change in the radiation power of each
dipole depending on d, and the second term, which is
proportional to sin d, controls the interference-induced
power transfer from one dipole to the other. In the particular
case of parallel dipoles, the second effect was studied in [1],
where it was used to explain the nonradiative energy transfer
from an excited to an unexcited atom.

Both terms in the expression for the IF of the system of
two dipoles decrease with increasing l and are significant only
for l < l, when the dipoles are located in the near-field region
of each other. The IF can substantially exceed the radiation
fluxes of these dipoles [23]. If we consider a closed surface that
envelopes both dipoles and is located in the far-field radiation
region, the term of the flux through this surface that is
proportional to sin d becomes zero in contrast to the other
term, which controls the interference-induced change in the
total power radiated by the system of dipoles. This change
results from the source of energy exciting the radiators (in the
case of a transmitting antenna, for example, it results from a
change in the transmitter power).

The authors of [23, 24] experimentally and theoretically
substantiated the possibility of electromagnetic energy
transfer only with an IF. The transfer efficiency increases
with decreasing the frequency, which is important for
decreasing the energy losses for long-wave and very-long-
wave radio communication. Electromagnetic interference
converters were also proposed for the electromagnetic field
of radiating waves for mode conversion [24].

The authors of [21 ± 23] comprehensively discussed a
practically important particular case of the problem under
study, a dipole radiator in the field of an incident plane wave
(i.e., l!1). In this case, the incident plane wave interferes
with the spherical wave radiated (or scattered) by the dipole.
We now consider certain interference effects that are observed
in this situation and allow increasing the electromagnetic-
signal detection efficiency [23, 24].

The receiver is assumed to be a dipole antenna that
actively radiates at the signal frequency. The energy flux to
the dipole radiator then includes an additional IF of the total
field of the incident wave and the wave radiated by the dipole.
The signal power received by the antenna can increase, which
is characterized by the gain

K � 1� Z sin d ; �25�

where Z is the ratio of the dipole moments of the active and
passive antennas. The quantity d is the difference in the
initial oscillation phases of the dipole and external field at
the dipole location. The gain K is analogous to amplifica-
tion factor (20) for ICWs in a parallel-sided layer.

Moreover, as a result of interference, the effective
absorption cross section of the receiving antenna exceeds its
geometric cross section and is of the order of the squared
wavelength of the received radiation. The interference
component of the effective absorption cross section, which is
equal to the ratio of the IF absorbed by the dipole to the
incident wave intensity, is given by [23]

sint � kp0
E0

cosc sin d ; �26�

where E0 is the electric field amplitude of the incident wave
and c is the angle between the p and E0 vectors. In a certain
range of d, the absorption cross section of the antenna can be
negative (the dipole radiates additional energy due to
interference with the external field).

If a noise electromagnetic field with a chaotically chan-
ging initial phase exists in addition to the field of the received
signal, then, according to Eqn (25), the noise level of the
received power is lower by a factor ofK because of the absence
of interference of the antenna-radiated wave with the noise
field. Thus, compared to the case of a passive antenna, the
signal-to-noise ratio at the input of the receiver can be
substantially increased and the signal threshold sensitivity
can be decreased.

6. Conclusion

The interference components of fluxes and the character of
their coordinate dependences are determined by the proper-
ties of the medium, the structure of the wave field, and the
phase relations between electric and magnetic field compo-
nents. In the general case, an interference flux is an oscillating
function of a coordinate and provides local electromagnetic
field energy redistribution within a spatial oscillation period.

The interference of waves from two coherent sources
results in electromagnetic-energy IFs that contain two
interrelated components in the general case. One of them is
proportional to the sine of the difference in the source
oscillation phases and provides a spatial intensity redistribu-
tionwithout changing the total power radiated by the sources.
In a particular case, the interference-induced change in the
power can be related to a change in the (`reactive') electro-
magnetic energy of the wave fields stored in the medium. The
other component is proportional to the cosine of the phase
difference and provides an interference-induced change in the
total radiation power. This change requires a corresponding
change in the power of the external sources of energy or a
change in the internal energy of the medium (e.g., in the Joule
loss power).

Because the phenomenon of wave interference is uni-
versal, the dependences described here should manifest
themselves or, at least, should have appropriate counterparts
for waves of another (not electromagnetic) physical nature
(acoustic and spin waves, probability density waves in
quantum mechanics, waves of the Bose condensate of
Cooper pairs in superconductors, etc.).
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