
determine the synchronous contraction of various muscular
groups of the motor system.

(4) Based on the developed model of an inferior olive
neuron, a motion control and coordination system has been
proposed for autonomous robotic machines. The basic idea
here is to supply the control system with a discrete control
block with the function to correct errors arising due to the
operation of self-phase reset mechanisms (for motion along a
rough surface, for example).
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Modeling nonlinear oscillatory systems
and diagnostics of coupling between them
using chaotic time series analysis:
applications in neurophysiology

B P Bezruchko, V I Ponomarenko,
M D Prokhorov, D A Smirnov, P A Tass

1. Introduction

Using time series of experimental observables to identify and
estimate interaction parameters between sources of complex
(chaotic) oscillations [1 ± 3] is a task of relevance to many
disciplines, from physics and biology to geophysics, medicine,
and engineering. A vibration analysis of machine elements
can identify the source of the vibrations [4], whereas
identifying interactions between various brain regions based
on multichannel electroencephalogram analysis benefits
epilepsy patients by locating the sites of pathological activity
[5]. Particular attention in this area is paid to irregular signals
because it is a long-recognized fact that the chaotic behavior
of nonlinear systems is typical [3, 6, 7].

Reflecting the diversity of possible situations and the
factors of noise and nonstationarity, a wide variety of
approaches to identifying and assessing the `intensity' of a
coupling have been developed using mathematical statistics
and spectral analysis [1], information theory [8, 9], and
nonlinear dynamics [5, 10 ± 12]. Among the most widely-
used of these are the calculation of cross-correlation func-
tions and of coherence functions [1], event sequence analysis
with time series [13], the estimation of nearest neighbor
distribution in the space of states [5], and the determination
of characteristics of `information transfer' between signals [8].
Whereas the techniques listed above process a signal
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`directly', using appropriate working formulas and algo-
rithms, there also exists an `indirect' approach which
proceeds from the original time series to produce predictive
mathematical models and utilizes the properties of the series
to estimate the coupling.

Each of the approaches has its preferred area of applica-
tion [14 ± 16]. In this talk we will be concerned only with
employing mathematical models as a tool for estimating
couplings (Section 2). The characteristics so obtained are in
agreement with intuition regarding cause and effect relations
between processes (e.g., coupling coefficients in dynamics
equations). With an adequate model structure, this approach
also turns out to be the most sensitive one, especially where
nonlinearity and chaos are involved. Such a situation arises
when practically important problems of physiology, such as
pathology mechanisms of epilepsy and Parkinson's disease,
are considered (Section 4).

In view of the importance of developing amodel serving as
a tool for identifying couplings, a number of problems of
reconstructing equations are considered per se in Section 3.

2. Coupling diagnostics using predictive models

2.1 A priori known structure of the model
If the adequate mathematical model of the elements
(subsystems) of the system under study is known in terms of
its structure, and if the couplings whose parameters are being
sought come in a finite number of structural forms, a simple
item by item selection is a viable strategy. This strategy
chooses for each particular coupling structure those values
of model parameters (and coupling coefficients among them)
for which the observed dynamics (for example, predicting
next points from previous ones) are most accurately repre-
sentedÐultimately selecting themost adequatemodel and its
corresponding coupling characteristics. An example is esti-
mating the coupling of two self-oscillatory time-delay systems
[17] (see Fig. 1), each of which contains ring-connected
nonlinear amplifier f, a delay line t, and a filter e (inertial
element). The dashed lines represent different ways of
connecting coupling elements to points I, II, and III (with k
denoting the gains). Different types of coupling give rise to

mathematical models of different structures, as follows:

e1; 2
dx1; 2�t�

dt
� ÿx1; 2 � f1; 2

ÿ
x1; 2�tÿ t1; 2� � k2; 1x2; 1�tÿ t1; 2�

�
;

�1�
e1; 2

dx1; 2�t�
dt

� ÿx1; 2 � f1; 2
ÿ
x1; 2�tÿ t1; 2� � k2; 1x2; 1�t�

�
; �2�

e1; 2
dx1; 2�t�

dt
� ÿx1; 2 � f1; 2

ÿ
x1; 2�tÿ t1; 2�

�� k2; 1x2; 1�t� : �3�

Equation (1) describes the situation inwhich the first time-
delay system exerts an influence on the second system at point
1, whereas the second system influences the first one at point
I. We will denote this type of coupling as 1=I. Equations (2)
and (3) describe coupled systems for the coupling schemes
2=II and 3=III; respectively. If systems X1 and X2 influence
each other in different ways, they are described by different
equations. For example, for the coupling scheme I=II system
X1 is described by Eqn (2), and system X2 by Eqn (1).

Section 3 briefly describes a special technology for
reconstructing delayed differential equations, which enables
one to achieve the best result by choosing a model that
correctly reflects the way to introduce couplings between
self-excited oscillators in a physical experiment, and between
reference dynamical systems in a numerical experiment [17].

2.2 Granger causality
In the absence of a priori information on the structure of the
model equations, universal constructions can be utilized. A
useful practical approach is a method based on constructing
nonlinear prognostic models [18, 19], which extends the linear
approach proposed by Granger [20 ± 23] to identifying cause
and effect relations. The basic idea is to use the time series�
x1�t1�; . . . ; x1�tN�

	
and

�
x2�t1�; . . . ; x2�tN�

	
to construct

prognostic models Ð `individual' and `joint'. A considerable
improvement in the prognosis of the dynamics of the first
system due to taking into account the values of a variable
from the second system is an indication that the latter
influences the former (provided such an improvement
cannot be achieved by complicating the individual model).
The following is one possible way in which this approach can
be implemented (and which was used, for example, in
Ref. [24]).

To assess the influence of the second system on the first,
one starts by constructing an individual autoregressionmodel
in the form

x1�tn� � f1
ÿ
x1�tnÿ1�; x1�tnÿ2�; . . . ; x1�tnÿd1�; a0

�� xn ; �4�

where f1 is an algebraic polynomial of order K, d1 is the
dimensionality of the model, and xn is a zero-mean noise. The
coefficients a0 are estimated using the method of least
squares, i.e., by minimizing the mean square of the prognosis
error:

s 2
1 �

1

Nÿ n0

XN
n� n0�1

�
x1�tn� ÿ f1

ÿ
x1�tnÿ1�; . . . ; x1�tnÿd1�; a0

��2
;

�5�
where n0 � max �d1; d2�, and the quantity d2 is defined below.
As a next step, two series are taken to construct a joint model:

x1�tn�
� g1

ÿ
x1�tnÿ1�; . . . ; x1�tnÿd1�; x2�tnÿ1�; . . . ; x2�tnÿd2�; a

�� Zn ;

�6�

k1

k2

t1 f1

zx1�t�x1

e1
I II III

x2�t�x2

132
t2 f2 e2

Figure 1. Block diagram of coupled time-delay systems X1 and X2.

Elements t1 and t2, f1 and f2, e1 and e2 are responsible, respectively, for
the delay and the nonlinear and inertial transformation of oscillations;

elements k1 and k2 determine the amount of coupling between systems X1

and X2. At points 1 ± 3, system X1 acts on system X2. At points I ± III,

system X2 acts on system X1.
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where d2 indicates how many values of x2 were taken into
account, g1 is a polynomial of order K, and Zn is a zero-mean
noise. The minimum mean square of the prognosis error, as
determined by the method of least squares, is defined as

s 2
2!1�

1

Nÿ n0

XN
n� n0�1

�
x1�tn� ÿ g1

ÿ
x1�tnÿ1�; . . . ; x2�tnÿd2�; a

��2
:

�7�

The improvement in the prognosis of the series x1 due to
taking into account the series x2 is characterized by the
difference of errors squared: PI2!1 � s 2

1 ÿ s 2
2!1.

The difference from zero of the time series-based quantity
PI2!1 is often assessed in terms of statistical significance by
using an analytical formula based on the assumption that the
processes x1 and x2 are not coupled and that the (residual)
prognosis errors of models (4) and (6) are due to normal white
noise. Then, the normalized quantity

F2!1 � �Nÿ n0��s 2
1 ÿ s 2

2!1�
�P2 ÿ P1�s 2

2!1

;

where P1 and P2 are the respective numbers of coefficients in
the individual and joint models, follows Fisher's F distribu-
tion with �P2 ÿ P1;Nÿ n0 ÿ P2� degrees of freedom. The
significance of F2!1 being different from zero is checked using
the F test [9]. If this difference is significant at level p, then the
fact of x2 influencing x1 has confidence probability 1ÿ p. A
fully similar situation occurs for the characteristic of the
influence 1! 2.

An alternative way to assess the existence of the
discovered couplings for reliability is to use surrogate data,
an ensemble of artificially obtained pairs of signals which,
while mutually uncoupled, still retain some dynamical traits
of the processes under study. These can be, for example, the
initial time series biased relative to each other by a time
interval larger than the autocorrelation time of the processes
involved [13, 14].

When choosing the values of d1, d2, and K, the recom-
mended way is to first construct models (4) and (6) for
different values of these quantities (starting from unity) and
then to select those values for which the mean square errors in
the prognosis of the models [formulas (5) and (7)] get
stabilized, i.e., cease to grow significantly with increasing d1,
d2, andK. (Specifically, it makes sense to first select the values
of d1 andK by looking at the prognosis error of the individual
model and then, with known d1 and K, to select d2 from the
prognosis error of the joint model.) The functions f and g can
be of any kind, for example, locally constant functions [18] or
radial basis functions [19]. However, for short time series,
typically encountered in biological and geophysical applica-
tions, the multiparametric nonlinear functions mentioned
above are of limited use, as is increasing d1, d2, and K for
polynomials. Therefore, informative results can usually be
obtained (if at all) only for low dimensionalities and low-
order polynomials [24].

2.3 Phase dynamics modeling
Considering that a model should be structurally adequate for
the processes under study, the above-described necessitated
use of the simplest possible models for estimating Granger
causality limits considerably the effective application of the
method. As a way out, however, the same approach can be
profitably applied to the time series for the phases of the

processes observed, rather than to the observed quantities
themselves [25].

Such an approach is effective if there are very distinct
oscillation rhythms in the original time series (the power
spectrum shows a marked rise in a narrow frequency band).
In this case, the notion of the phases f1 and f2 of the
observed oscillatory processes x1 and x2 has a clear meaning
and they are most often calculated using the Hilbert
transform and the introduction of an analytical signal [26].
The reason for the effectiveness of this approach is twofold.
First, because the phases of the narrow-band processes
described above are the most responsive variables to
influences on a self-sustained oscillatory system, their use
promises to make the method highly sensitive to weak
coupling between the signal sources [3]. Second, a wide
range of oscillatory processes are adequately described by a
sufficiently simple system of stochastic difference equations
in the form [25, 27, 28]

f1; 2�t� t� ÿ f1; 2�t� � f1; 2
ÿ
f1; 2�t�;f2; 1�tÿ D1; 2�

�
; �8�

where f1; 2 are moderate-order trigonometric polynomials; t
is a fixed time interval usually equal to the shortest of the
characteristic oscillation periods, and D1; 2 are the trial values
of the influence delay time. The strengths of influence of the
systems on each other are calculated from the estimates of the
trigonometric polynomial coefficients, which are made on the
basis of a time series by the method of least squares. The
quantity c 22!1, the extent of influence of system 1 on system 2,
is determined by the steepness of the dependence f1�f2�, and
similarly for c 21!2, giving

c 22!1; 1!2 �
1

2p2

� 2p

0

� 2p

0

�
qf1; 2�f1; 2;f2; 1�

qf2; 1

�2

df1 df2 : �9�

Although simulation experiments [25] show themethod to
be very sensitive to weak coupling, the catch is that, for it to be
applicable to initial systems with considerable levels of
dynamical noise, the training series should be about
1000 times as long as the characteristic period at moderate
noise levels. In actual practice, the method runs into
difficulties when the time series under study are nonstation-
ary. For electroencephalograms, the quasistationarity inter-
val is not normally longer than 100 characteristic periods for
any physiological `rhythms' resolved, making it necessary to
divide time series into relatively short segments and to obtain
coupling estimates for each of these separately. If left
unmodified, the model will in this case produce biased
estimates [29]. For this reason, we have introduced [29] the
new estimates g1!2; 2!1 � c 21!2; 2!1 � r1; 2, where the correc-
tions r1; 2 depend on the noise level, oscillation frequencies,
and the length of the time series. In the same work,
approximate expressions for the 95% confidence intervals
were obtained, with which results obtained for an individual
time realization can be assessed for significance.

3. Model equation reconstruction from time series

Constructing empirical models of the type used for diag-
nostics of couplings in Section 2 is central to the broad field
of research known as system identification in mathematical
statistics [1, 30] and as dynamical system reconstruction in
nonlinear dynamics [7, 31 ± 33]. With the advent of the
concept of dynamic chaos it became clear that complex
chaotic behavior is exhibited by nonlinear equations of
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even low dimensionality, resulting, in recent years, in
empirical modeling often being performed based on non-
linear difference equations (discrete maps) xn�1 � F�xn; c� or
ordinary differential equations dx=dt � F�x; c�, where x is
the D-dimensional state vector, F is a vector function, c is a
P-dimensional parameter vector, n is a discrete time, and t is a
continuous time.

It was believed for some time that universal approaches
suitable for any system could be developed. Thus, the general
algorithm for constructing the nonlinear models mentioned
above is in many respect similar to the smooth-curve
approximation algorithm for points in a plane, albeit it
comprises additional steps. The initial stages of the recon-
struction procedure include a preliminary analysis of experi-
mental data and a choice of the structure of the model: the
type and number of equations, the form of the function F, and
how the dynamic variables x are linked with the observable
quantities. This done, model fitting is performed Ð by
selecting those values of the equation parameters c with
which the model reproduces the observed signal best. In
practice, various versions of the maximum likelihood
method and of the method of least squares are most often
used. (In one of the simplest approaches, the mean square of
the one-step-ahead error of the prognosis is minimized.)
Finally, the quality of the model is checked using a specially
distinguished test series.

In practice, however, hopes for a universally workable
method were dashed. Mathematical models often turn out to
be cumbersome and nonrobust, and in the sequence described
above each operation may run into difficulties. Note also that
the higher the degree of uncertainty, the more complex the
situation is. The most complex case is that of a `black box', in
which the structure of the possible adequate model is totally
unknown. The basic difficulty here, poignantly termed the
`curse of dimensionality', is that increasing the dimensionality
of the model sharply complicates the problem and requires
that stationary time series of greater length be used.

Success is more likely to be achieved by developing ad hoc
approaches for certain narrow classes of objects and utilizing
targetedmodeling techniques, as will be shown by an example
below. The uncertainty in choosing the structure of a model
can be reduced, for example, by using a priori information on
the properties of a certain chosen class of systems and by
preliminarily analyzing the series involved.

The broad class of complex dynamic processes is modelled
by the system described by a first-order differential equation
with a time-delay argument:

e
dx�t�
dt
� ÿx�t� � F

ÿ
x�tÿ t0�

�
: �10�

For such a system, the time realizations of oscillations of its
dynamic variable x have been shown [34] to characteristically
lack extrema time-spaced by t0, with t0 being the delay time
(Fig. 2). Knowing the position of the minimum in the t
dependence of the number of t-spaced extrema provides an
estimate for the delay time: t � t0 (Fig. 2b), from which it is
an easy matter to estimate the inertiality parameter e and to
approximate the nonlinear function F [34].

Figure 2 shows, as an example, the results of reconstruct-
ing equations of the form (10) by a chaotic time realization
(Fig. 2a) of the Ikeda equation

e0
dx�t�
dt
� ÿx�t� � m sin

ÿ
x�tÿ t0� ÿ x0

� �11�

describing the dynamics of a passive optical cavity. The
reader is referred to Ref. [35] for more details on the
technology of reconstructing time-delay systems.

Systems experiencing external action are another example
of specialized reconstruction technologies targeting to a
certain distinguished class of objects [36]. We will not here
describe in detail the existing modeling techniques and note
only that, importantly, along with the key stage of choosing
the most adequate model structure, technical problems arise
at various stages of the reconstruction procedure, as exempli-
fied by our studies on improving accuracy in estimating
parameters [37], including the case of hidden parameters
[38]; on optimizing the structure of a model [39], and on
choosing dynamic variables for modeling [40]. Works by a
number of groups (see, for example, review papers [41 ± 45])
provide vast information on the subject.

4. Coupling diagnostics
in neurophysiological applications

Many nervous system disorders, including epilepsy and
Parkinson's disease, are due to the pathological synchroniza-
tion of large groups of cerebral neurons. A sign of Parkinson's
disease is the neuron synchronization in the thalamus and
basal ganglia nuclei [46]. However, the functional role of this
synchronization in the generation of Parkinsonian tremor
(uncontrollable, regular 3-to-6-Hz limb oscillations) remains
a subject of discussion [47]. The hypothesis that neuron
synchronization causes tremors has not yet received convin-
cing empirical support [47]. If there is no effect from
medicines, the standard therapy consists in high-frequency
(above 100 Hz) continuous electric deep brain stimulation
(DBS) [48]. Discovered purely empirically, the standard DBS
is not yet understood in terms of how it works [49], nor is it
without its limitations Ð in particular, due to side effects [50,

15
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0.1

M

0

20

e 0
_ x
�t�
�
x
�t�

x�tÿ t0�

0

ÿ20
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1 2 3
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Figure 2.Example of reconstructing a time-delay system: (a) time realization of the Ikeda equation (11) for t0 � 2; (b) the numberM�t� of extremum pairs

normalized to the total number Mmin �M�2; 0� of extrema in the series; (c) reconstructed nonlinear function. Numerical experiments including

additional noise show that noise-to-signal ratios of up to 20% allow a reconstruction.
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51]. A more specific follow-up idea was to suppress tremors
by means of desynchronizing DBS [2], for instance, using
coordinated reset stimulation [50]. The confirmation that a
tremor is caused by the synchronized activities of the neurons

in thalamus and basal ganglia nuclei could presumably lead to
milder, low-side-effect therapies. In this connection, to
determine how various parts of the brain are linked to the
patient's muscles is becoming a topical task.
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Figure 3. Interval of spontaneous Parkinsonian tremor (total duration 80 s) [52]: (a, b) signal from an accelerometer and anLFP from one of the electrodes

in arbitrary units (only first 8 s are shown); (c, d) power spectrum estimates of the signals.
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Our study [52] investigated ensembles of intervals of
spontaneous Parkinsonian tremor in three patients. Limb
oscillations were identified by accelerometer signals recorded
with sampling frequencies of 200 Hz and 1 kHz, and
information on brain activity was represented by local field
potentials (LFPs) recorded from four in-depth electrodes
implanted in the thalamus or basal ganglia. The data were
obtained at the Department of Stereotaxical and Functional
Neurosurgery, University of Cologne, Cologne, and at the
Institute of Neuroscience and Biophysics-3 (Medicine),
Juelich Research Center, Juelich (both Germany).

Signals from the accelerometer and the LFP from one of
the electrodes, which were recorded in the course of violent
Parkinsonian tremor, are shown in Fig. 3, together with their
spectra. The accelerometer signal displays oscillations,
corresponding to which there is a distinct 5 Hz peak in the
power spectrum. A tremor frequency peak, although some-
what broader, is also seen in the LFP spectrum. Both the
signals allow a phase to be correctly introduced. Analysis
based on the phase dynamics modeling approach (see Section
2.3) reveals that a limb influences the brain in a statistically
significant way with a delay of no more than a few dozen
milliseconds. The influence of the brain on a limb, which is
also seen, is characterized by a delay time falling between 200
and 400 ms (of the order of 1 to 2 characteristic oscillation
periods). Results are reproduced qualitatively very well for all
three patients (Fig. 4).

That a limb influences the activities of the thalamus and
basal ganglia was established earlier using the linear estima-
tion of Granger causality [53]. With phase dynamics model-
ing, however, new results were obtained: the existence of
reciprocal influence was established, and the delay time
estimated. Because this delay is large compared to the time it
takes the signal to travel from the brain to a limb along nerve
fibers, it was interpreted [52] as an indication that thalamic
and basal ganglia activities exert indirect influence on limb
oscillations (via signal processing in the brain cortex). More-
over, this means that, rather than merely being passive signal
receivers, the thalamic and basal ganglia nuclei are links of a
`feedback ring' which determines the oscillations of the limb.
Therefore, the application of desynchronizing DBS to these
target structures [2, 50] appears to exert a more specific and
milder influence which, as theoretical studies predict, can
even make the stimulated neuron networks `unlearn' patho-
logical activity [51] and produce a long-term positive effect.
Another possible applications of the directed coupling
analysis include determining the target point for stimulation
(so as to enable a more effective arrangement of stimulating
electrodes).

Surrogate data tests [54] have confirmed the statistical
significance of the conclusions reached [54] and have shown in
addition that linear methods fail to reveal the influence of
thalamic and basal ganglia activities on limbs.

We refer the reader to Ref. [55] for similar preliminary
results demonstrating the potential of the method for
localizing the epileptic focus by recording local field poten-
tials.

5. Conclusions

The problem of modeling from time series, of much
importance in both applied and fundamental terms, is often
solved using ideas and methods from nonlinear dynamics.
Among the applications of this modeling the most known is

the prognosis of the behavior of a system (see, for example,
Ref. [56]). There are others, too, including the identification
of quasistationary sections in a nonstationary signal [44],
bifurcation prognosis for weakly nonautonomous systems
[57], and multichannel confidential transmission of informa-
tion [43]. In this talk it was shown that the approach can also
be applied to the practically important problem of diagnosing
interaction between oscillating systems.

Although mathematical modeling will always be, to a
large extent, an art, still some general principles and specific
recipes can be identified with which a `good' model is more
likely to be developed. Some such considerations were given
above. The corresponding techniques have been successful in
the study of real systems (see, for example, Refs [31 ± 33, 41 ±
45]), such as nonlinear electrical circuits, climate processes,
and functional systems of living organisms. In the present
talk, a new result illustrating the efficiency of the method as
applied to problems in neurophysiology (specifically, to the
study of mechanisms of a Parkinsonian tremor) was pre-
sented.
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