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1. Introduction

1.1 Nonlinear dynamic approach
The past decade has witnessed an increasing integration of the
methods of nonlinear dynamics into neuroscience Ð a
marriage of ideas that has produced a number of interesting
results on the dynamics of neuron systems and enabled many
forms of neuron activities to be adequately interpreted in
terms of dynamical systems theory. Concepts such as regular
and chaotic attractors, stability, the attraction region, and
bifurcation have come to be firmly incorporated into the

conceptual framework for the entire field of research on
various aspects of brain activity by the methods of nonlinear
dynamics. The emergence of this field is quite easy to explain.
First, significant advances in neuron activity detection
techniques (including optical neuroimaging, positron emis-
sion tomography, magnetic resonance imaging and some
others) have brought about a massive amount of experi-
mental data on how neurons, alone or in a system, operate.
These data formed the basis for launching a variety ofmodern
studies on the nonlinear dynamics of neuron systems. Second,
the theory of dynamical systems has also developed consider-
ably. By now, among other things, nonlinear waves and
localized states have been investigated for many types of
spatially distributed systems and the bifurcation theory of
multidimensional dynamical systems has by and large been
constructed (in particular, the transition fromdeterministic to
chaotic behavior has been studied rather thoroughly). And
third, finally, the operation regime features and the very
evolutionary nature of neuron systems stimulate neu-
roscience applications of nonlinear dynamics methods.
Indeed, the characteristic features of neuron systems are as
follows:

(a) dissipative dynamics;
(b) external sources arising from complex biochemical

processes and acting to compensate losses;
(c) neurons being active elements capable of generating a

variety of electric oscillations, from simple single pulses to
chaotic ones.

On the other hand, features (a) to (c) are characteristic of
so-called self-oscillatory (or autooscillatory) systems Ð a
major class of systems with which nonlinear physics is
concerned. The conceptual framework of the theory of self-
oscillatory systems was created by A A Andronov, who
indeed introduced the very notion of self-sustained oscilla-
tions and who showed that periodic oscillations are ade-
quately imaged by PoincareÂ limit cycles whose bifurcations
describe and explain nonlinear mechanisms by which various
forms of periodic oscillations and beats are created and
disappear in many physical systems. Although the modern
theory of self-oscillations shifted its focus to more compli-
cated, in particular, chaotic oscillations, its underlying
dynamical principles remain the same as stated by
A A Andronov [1 ± 3]. These are:

(1) the separation and study, first and foremost, of
structurally stable (robust) systems and phenomena, whose
behavior remains fundamentally unchanged by small varia-
tions in the system parameters (i.e., the study of general
situations);
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(2) the analysis of the way the phase space of the system
(or the space of its states) is partitioned into trajectories. This
is primarily the study of the attractors (equilibrium states,
limit cycles, invariant tori, chaotic limit sets), as well as of
homoclinic and heteroclinic orbits and invariant separatrix
manifolds with the aim of describing all the possible types of
behavior of the system;

(3) the study of how wave-oscillatory processes evolve
with control parameters and the identification of the bifurca-
tions that determine the fundamental rearrangement of these
processes.

In our view, neuron systems constitute a reasonable and
appealing application area for the principles listed above. The
biological implications of self-oscillations were already noted
by A A Andronov who, in his famous work ``PoincareÂ limit
cycles and the theory of self-sustained oscillations'', wrote the
following when citing examples of self-oscillatory systems:
``...in mechanics [this is] the Froude pendulum; in physics, the
electron-tube oscillator; in chemistry, periodic reactions, and
similar problems arise in biology''. However, the develop-
ment of the nonlinear dynamical approach for application to
neuron systems had its difficulties, due to the bizarre and
complex nature of such systems. The following are only a few
of the complexities faced [5 ± 8]: the large number of variables
and parameters needed to describe even a small ensemble of
neurons or indeed a single neuron; the large number of
complex and mostly nonlocal bonds between neurons; unlike
many physical systems, neuron systems are not amenable to
modeling from first principles, i.e., based on certain well-
known and commonly accepted fundamental equations, such
as Maxwell equations, and, in many cases, a poor under-
standing of the architecture of neuron systems and how they
interact between themselves. Nevertheless, despite these and
many other difficulties which we leave unnamed, the non-
linear dynamical approach already has been successfully used
and is continuing to be effectively developed at present (as
reviewed, for example, in Refs [8 ± 14]).

To conclude, the main task of the nonlinear dynamical
approach is to use neurophysiological data to develop
adequate dynamic images of the key phenomena occurring
in neuron systems and then using these images to develop Ð
and study the dynamics of Ð some basic models. With this
approach, it should be possible to describe, explain, and
predict spatio ± temporal processes that can occur in indivi-
dual neuron ensembles, as well as to establish the system-level
dynamic mechanisms that govern the operation of neuron
systems and are crucial for developing the next generation of
computing and information systems based on the principles
of neurodynamics.

1.2 Basic properties of neurons
A neuron, also known as a nerve cell, typically consists (see,
for example, Refs [5 ± 8]) of a cell body, branching fromwhich
are many relatively short thin tubular fibers (dendrites) and
one much longer fiber, the axon. Separating the neuron from
its environment is a biological membrane. In the state of rest,
the potential difference between the intracell medium and the
outer surface of the membrane (henceforth simply membrane
potential) has a negative value of orderÿ60 toÿ80 mV and is
called the rest potential. The function of dendrites is to receive
signals from other neurons, whereas the axon serves to
transmit to other neurons the signals generated by the given
neuron. The axon ends with numerous terminal fibers which
can contact the dendrites, axon, or body of another neuron.

The so-called synapses by which the contact is implemented
are a kind of device consisting of two (pre- and postsynaptic)
membranes of the contacting neurons and the so-called
synaptic slit Ð the gap between the membranes. Synapses
come in two forms, electrical and chemical. In an electrical
synapse, the pre- and postsynaptic membranes are in direct
contact, thus enabling direct ion exchange and thereby
making the membrane potentials of the contacting neurons
equal.

In chemical synapses, biochemical processes occur in the
synaptic slit and the contacting membranes. If the neuron
potential exceeds a certain critical value (the excitation
threshold) Ð whether due to the action of an outside
stimulus or intracell processes Ð then the neuron produces
what is called an action potential, an electric pulse with an
amplitude of about �50 mV and a time scale of several
milliseconds, and makes a transition into the so-called
refractory state which is insusceptible to outside influences.
The axon and the terminal fibers are the channels through
which the action potential goes to the synaptic terminal,
leading to a very special chemical substance, the neurome-
diator, being released into the synaptic slit. Having arrived at
the postsynaptic membrane, the neuromediator changes its
permeability to various ion species, which, in turn, causes the
postsynaptic membrane potential to change. Depending on
whether this moves the postsynaptic potential closer to or
farther away from the excitation threshold, one distinguishes
between excitatory and inhibitory (suppressing) synapses.
The response of a neuron to the action of input signals is an
integrated process: when the exciting and suppressing inputs
combined reach the threshold value, the neuron produces a
response which is transmitted to other neurons via the axon
and synapses. Chemical synapses transmit excitation with a
certain time delay due to processes occurring in the synaptic
gap.

1.3 Typical forms of neuron activity
The electrical activity of neurons comes in a variety of forms,
from a single action potential known as a spike (see Fig. 1a),
to burst oscillations, i.e., `volleys' of spikes occurring on the
depolarization wave (Fig. 1b), to periodic oscillations of
various kinds (Fig. 1c), to chaotic sequences of bursts
(Fig. 1d), and to some others. Collective neuron activities
are also widely diverse. The possible activities of neuron
systems include the propagation of nonlinear waves (Fig. 1e);
the formation of `activity clusters', i.e., neuron groups that
produce action potentials simultaneously while neighboring
neurons are relatively at rest (Fig. 1f), and the formation and
propagation of localized structures, to mention but a few.

1.4 Dynamic neuron models
There exist a quite large number of dynamic neuron models
differing in both their target phenomena and in how
completely their underlying neurophysiological data are
used. Several distinctive groups of models can be identified.

(1) Models based on equations describing ion transport
through the nerve cell membrane. First, these include, of
course, the classical Hodgkin ±Huxley model [20] and its
extensions incorporating additional ion currents in the
system, all the models being narrowly specific to the type of
neuron. Second, there are simplified phenomenological
models with a single variable describing the action of several
ion flows of a similar typical time scale. A model with two
variables, one for slow and the other for fast ion flows, is a
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frequent example typified by the Hindmarsh ±Rose system
[21] for describing burst oscillations. Moreover, in some
models, like those of FitzHugh ±Nagumo [22, 23], Morris ±
Lecar [24], etc., a single `recovery' variable is used to describe
the action of all the ion flows involved.

(2) Integrate-and-fire models (see, for example, Ref. [25])
primarily focused on the integral properties of neurons. A
model system accumulates input signals until, under their
combined action, the variable modeling membrane potential
reaches the threshold value, at which moment this variable is
given a certain fixed value which is treated as a spike. After
that the value of the membrane potential is returned to the
initial state of rest.

(3) Mean field models operating with variables averaged
over the neuron ensemble. The Wilson ±Cowan model [26],
for example, has two variables Ð one for the number of
excitatory neurons, and the other for the number of inhibitory
neurons at a given point in the medium.

(4) Phase models comprising first-order equations whose
variables are angular and treated as oscillation phases (phase
rotator [27, 28], `theta neuron' [29], etc.). These highly

simplified models are commonly used to study synchroniza-
tion regimes in large nonlocally linked neuron ensembles.

(5) Models in the form of nonlinear point maps have also
been utilized [30 ± 33]. Such models are time discrete but,
unlike cell automata, their state is continuous. These models
have a simpler structure than those described by a system of
differential equations. It is established that while point
mappings are capable of modeling many regimes of neuron
activity, their most appealing application is in studying
chaotic neuron oscillations.

While the above list is of course by no means exhaustive,
we believe it gives a sufficient idea of the basic objectives and
concepts of the dynamic approach to the study of neuron
activities.

Modeling neuron systems requires a dynamical descrip-
tion of synaptic bonds and of the general architecture of the
system, in addition to modeling individual neurons. The
simplest to model are electrical synapses (see, for example,
Ref. [7]), whose operation relies on the existence of so-called
gap junctions between neurons in contact. Due to this
junction, in a certain narrow region the cell membrane
becomes common to the two neurons, so that the current
through the synaptic bond is determined by the junction's
resistance and the potential difference between the neurons,
and is modelled by the ordinary Ohm law. Chemical synapses
are usually described (see, for example, Refs [14, 34]) by a
special kind of differential equations for their parameters, the
equations involving nonlinear threshold functions. The
architecture of dynamic models reflects the organization of
actual neuron systems and varies widely, from small ensem-
bles of neurons to multilayered neuron networks and
populations consisting of a large number of elements
coupled by numerous nonlocal bonds.

2. The oscillatory and wave dynamics
of FitzHugh ±Nagumo neuron ensembles
with nonlinear recovery

A key problem in the dynamics of neuron systems is the study
of the forms of activity and mechanisms of propagation of
activity arising locally in a certain part of the system.
Following Refs [35, 36], let us consider this problem for an
ensemble of FitzHugh ±Nagumo (FHN) neurons localized
on the sites of a one-dimensional spatial lattice (chain) and
connected by electrical synapses. The collective behavior of
such a neuron ensemble is described by a system of equations

_uj � f �uj� ÿ vj � d�ujÿ1 ÿ 2uj � uj�1� ; �1�
_vj � e

�
g�uj� ÿ vj ÿ I

�
;

j � 1; 2; . . . ;N ; u0�t� � u1�t� ; uN�1�t� � uN�t� ;

where j is the number of the element (neuron), N is the
number of elements in the ensemble, the variable uj describes
qualitatively the membrane potential dynamics of the jth
neuron, and vj is the combined action of all the ion flows
which pass through the membrane of this neuron and which
are responsible for the recovery of the state of rest of the
membrane. The parameter d models the action of the
electrical synapse and quantifies the interneuron interaction.
The parameter I controls the membrane's depolarization
level, and e �e > 0� is the rate of change of the ion currents.
The cubic function f �u� and the (monotonically increasing)
function g�u� are respectively specified as [37] f �u� � uÿ u 3=3
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Figure 1. (a) Spike generation by pyramidal neurons of the visual cortex of

a rat under in vitro conditions [15]. (b) Burst oscillations of a reticular

neuron [15]. (c) Three activity forms of inferior olive neurons: subthresh-

old oscillations, and low- and high-threshold pulses. Data were obtained

from the inferior olive neurons of a guinea pig, sliced in vitro [16]. (d)

Chaotic burst oscillations of a lateral pyloric neuron [17]. (e) `Discharge'

waves in the brain cortex [18]. (f) Clusters in an ensemble of inferior olive

neurons [19]. The color gradation is used to indicate membrane potential

distribution in the ensemble.
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and g�u� � au for u < 0, and g�u� � bu for u5 0, where a and
b �a; b > 0� describe the nonlinear dependence of the ion
flows on the cell membrane potential (nonlinear recovery).

We choose (see Refs [37, 38]) the parameters of an element
of system (1) such that the element possesses the property of
excitability (Fig. 2a). In this case, the phase plane �u; v� of an
individual element exhibits a stable equilibrium state A1

corresponding to the neuron's state of rest; a saddle A2

whose stable separatrix W s determines the neuron's excita-
tion threshold, and an unstable equilibrium state A3.
Applying (and subsequently removing) an above-threshold
external stimulus produces in the phase plane �u; v� a
trajectory which returns to A1 by enclosing the equilibrium
stateA3 (Fig. 2a). To this trajectory there corresponds a single
excitation pulse (or spike) of the neuron, whose shape is
controlled by the parameter e.

2.1 Chaotic excitation of an ensemble
Because the active elements of system (1) are located at the
sites of a one-dimensional spatial lattice, the index j can be
treated as the spatial coordinate, and the dynamics of system
(1) are spatio ± temporal. Let us consider the propagation of
activity in system (1) in the form of wave patterns whose
typical spatial scales are much larger than those of the system
itself Ð that is, a sufficiently large number of lattice elements
is present along the characteristic length of a pattern. In this
approximation, the dynamics of the wave patterns are
described by the system of equations

_u � y ;

_y � c 2

d

�
yÿ f �u� � v� ; �2�

_v � g�u� ÿ vÿ I ;

where the over-dot denotes differentiation with respect to the
`running coordinate' x � tÿ j=c.

Let us show that the complex wave patterns of ensemble
(1) are associated with the existence in system (2) of
heteroclinic contours formed by the separatrix manifolds of
the equilibrium states of system (2) [39]. For the parameter
values for which the elements of ensemble (1) exhibit the
dynamics shown in Fig. 2a, system (2) has three equilibrium
states of the saddle-focus type. Two of these states, O1 andO3,
have an unstable one-dimensional manifold and a stable two-
dimensional manifold, whereas the third one, O2, has a stable
one-dimensional manifold and an unstable two-dimensional
manifold (Fig. 3a, d).

The study of system (2) showed that the trajectories of
the invariant manifolds of these equilibrium states can form
homo- and heteroclinic orbits, when the parameters belong
to certain bifurcation sets. Furthermore, it was found that in
the parameter space of system (2) there exists the bifurcation
set C of codimension 2, to which there corresponds in the
phase space the heteroclinic contour depicted in Fig. 3a. In
the parameter plane �e; c�, this set is represented by point C
(Fig. 3b), which is asymptotically approached by two spiral-
shaped bifurcation curves G and H centered on it. To the
points of the curve G there correspond homoclinic trajec-
tories formed by the one-dimensional separatrix of the point
O1, which returns to O1 by `enclosing' the point O3. As the
separatrix moves along G to point C, it performs an ever
increasing number of oscillations in the vicinity of point O2.
To the points of set H there correspond heteroclinic
trajectories formed by the separatrix of the saddle-focus
O1, a separatrix which asymptotically approaches point O3.
Here, too, the separatrix oscillates in the vicinity of point O3

as the parameters of H are varied toward the spiral's center.
Because homoclinic trajectories are doubly asymptotic with
respect to one and the same equilibrium state, nonlinear
waves in the form of traveling pulses correspond to them in
ensemble (1) (see Ref. [39]). The wave fronts of the ensemble
correspond to the heteroclinic trajectories `linking' various
equilibrium states [39]. The shapes of the wave profiles
involved depend on the oscillatory properties of the appro-
priate trajectories. Moving along curves G and H to point C,
the wave motion profiles become more complicated, and for
parameter values close to the center of the spirals system (1)
has a denumerable set of various wave motions at the same
time. Because the branches of spirals G and H go close to
each other, the waves differ only slightly in velocity. The
existence of a large number of various wave motions in this
region of parameters leads to the formation of complex wave
structures in system (1).

It was established that only the lowest-velocity pulses (the
lowest branch of curve G in Fig. 3b) can be stable. All the
other traveling waves, including pulses with complex shapes
and all the wave fronts, turned out to be unstable. This might
well be expected because the spatially uniform states O2 and
O3 are unstable in the parameter range of interest. The
spatio ± temporal diagram in Fig. 3c displays a typical
activity propagation scenario for ensemble (1). The para-
meter e was chosen to have a value close to the first turning
point of curve G (Fig. 3b), and the initial activity of the
ensemble to have the form of the wave front. Because of the
instability this front decomposes into a series of excitation
pulses which, as time goes on, also lose stability and
decompose into a pair of wave fronts or a pair of pulses,
followed, as the instability develops, by decomposition into
another pair of pulses, etc. (Fig. 3b). These wave instabilities
lead to spatio ± temporal chaos, which develops due to the
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Figure 2. (a) Phase portrait of an element (neuron) in ensemble (1).

(b) Phase plane of system (4).
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existence of a countable number of unstable traveling waves.
In other words, the system passes from the vicinity of one
unstable wave to that of another, forming a spatio ± temporal
structure in doing so.

2.2 Self-replicated wave patterns
System (2) can exhibit other heteroclinic contours [40, 41],
to which there also correspond complex wave patterns in
ensemble (1). Figure 3d depicts a heteroclinic contour
formed by manifolds of only two (not three, as in Section
2.1) equilibrium states (O1 and O3). In the plane �e; c�, this
contour exists at the point H0 (Fig. 3e), the interlocking
point for the bifurcation curves H� and Hÿ that correspond
to heteroclinic trajectories formed by the separatrices
W u

1 �O1� and W u
2 �O3� (Fig. 3d) of the equilibrium states O1

and O3. Moreover, in the vicinity of point H0 bifurcation
curves G� and Gÿ (Fig. 3e) exist, to which there correspond
homoclinic trajectories formed by the respective separatrices

W u
1 �O1� and W u

2 �O3� of the saddle-foci O1 and O3. Note
that both at the moment of existence of these homoclinic
trajectories and at the moment when they are destroyed
there exists in the phase space of system (2) a nontrivial
hyperbolic set which includes an infinite number of periodic
trajectories and some others. Hence, for parameter values
from the vicinity of H0 the system (2) exhibits extremely
complex dynamics for traveling waves, suggesting that the
spatio ± temporal behavior of ensemble (1) should also be
nontrivial in this case. Numerical simulations have shown
that this is indeed the case. For values of e close to e � e 0

(Fig. 3e), wave pulses and wave fronts `pass' through one
another and are reflected from the boundary similar to the
way classical solitons are. As a result, complex wave
patterns having the property of `self-reproducibility' form
in ensemble (2). Figure 3f illustrates the formation and
propagation of such wave activity patterns emerging from
several regions of the ensemble local excitation.
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3. Activity clusters and self-phase reset

The information characteristic that is of crucial importance in
the study of neuron systems is the oscillation phase. It is the
oscillation phase which determines the instants of time when
action pulses, or spikes, are produced, which are believed to
be the basis of the `neuron code' and to perform various
functions of transmitting and transforming information. For
example, inferior olive neurons, which form the basis for the
olive-cerebellar system, display quasiperiodic membrane
potential oscillations below the excitation threshold (the left
panel of Fig. 1c), with a fixed amplitude of 5 to 10 mV and a
fixed frequency of 8 to 12 Hz [16]. Varying the level of
depolarization of an inferior olive neuron produces excita-
tion pulses at the peaks of subthreshold oscillations. There are
two different excitation thresholds involved. Reaching the
first (lowest) threshold at each peak of subthreshold oscilla-
tions causes the neuron to generate a broad pulse with a
relatively small (� 20 mV) amplitude (the central panel of
Fig. 1c). The appearance of such pulses is essentially
determined by the flows of Ca2� ions. Reaching the second
threshold, the neuron generates narrow high-power
(� 60ÿ120 mV) pulses (the right panel of Fig. 1c), whose
formation is predominantly controlled by the flows of
Na� ions. Because the excitation pulses for an inferior olive
neuron occur at the peaks of the subthreshold signal, the
instants of time they appear are uniquely determined by the
oscillation phase.

Thus, the collective activity structures of inferior olive
neurons can be classified as phase clusters [42]. Current
physiological thinking is that these phase clusters determine
motor patterns, which in turn set muscular contraction
patterns [43, 44]. For example, the in-phase oscillations of
neurons determine the simultaneous appearance of action
pulses, or spikes, and hence the synchronous contraction of
certain muscle groups. The oscillation phase of an inferior
olive neuron Ð and, hence, the configuration of phase
clusters Ð changes when a sensory or command stimulus
acts on the system.

Figure 4a illustrates a series of responses of an inferior
olive neuron to an action of the external stimulus. Each time
the stimulus acts it changes the phase of subthreshold
oscillations, but in such a way that the oscillations always
return to a same-phase state, with the value of the phase being
independent of the instant when the stimulus arrives (initial
phase) and being determined only by the amplitude and
duration of the stimulus. By analogy with self-sustained
oscillations, this effect was termed self-phase reset [45, 46].

3.1 Dynamic model and inferior olive neuron regimes
To explain the dynamic activity mechanisms of inferior olive
neurons, the following phenomenological model was intro-
duced [46]:

eNa
du

dt
� f �u� ÿ v ;

�3�
dv

dt
� vÿ d�zÿ ICa ÿ INa� ;

dz

d�kt� � f �z� ÿ w ;
�4�

dw

d�kt� � eCa
ÿ
zÿ ICa ÿ Ist�t�

�
:

The model consists of two interacting blocks, whose
respective dynamics are determined by the variables �z;w�
and �u;w�. The first block, system (4), describes relatively
slow processes in the neuron membrane, ones that are
determined by the calcium component of the ion currents
involved. This system forms quasisinusoidal subthreshold
membrane potential oscillations. The second block, system
(3), describes the generation of action potentials (or spikes),
where sodium and potassium components of ion flows play
a dominant role. The nonlinear function f has the form
f �x� � x�xÿ aCa;Na��1ÿ x�, 0 < aCa;Na < 1. The para-
meters ICa;Na characterize the depolarization levels and
control the excitation thresholds of the appropriate compo-
nents of the model. The parameter k determines the relative
time scales of the blocks. The interaction between the blocks is
controlled by the coupling parameter d, and the interblock
coupling itself is unidirectional. The parameters of system (3),
(4) are chosen such that system (4) generates quasistationary
self-oscillations corresponding to the limit cycle (Fig. 2b) in
the vicinity of the Andronov ±Hopf bifurcation. System (3)
abides in the excitable regime and on exceeding a certain
threshold generates short-duration excitation pulses. The
function Ist�t� serves to describe the action of external
stimulation.

In the absence of a stimulus �Ist � 0�, system (4), which
sets the basic oscillatory rhythm of the model, influences
system (3) via a periodic signal. Hence, the dynamics of (3) are
not autonomous and can be described by a PoincareÂ point
map generated by trajectories of the system (3). A numerical
study of the PoincareÂ map revealed the existence of parameter
values for which system (3) executes stable periodic motion in
the three-dimensional nonautonomous phase space. Because
eNa 5 1, the dynamics of system (3) turn to be relaxational:
the variable v varies much more slowly with time than the
variable u.

This behavior of the variables has the consequence that
the three-dimensional phase space of system (3) is parti-
tioned into regions of slow motion and those of fast motion.
Depending on the value of the coupling constant, the
periodic motion of system (3) is either fully localized in a
slow-motion region or consists of parts of slow- and fast-
motion regions. There exist two threshold values for the
coefficient d, which determine the respective numbers of
slow- and fast-motion regions contributing to the formation
of the periodic trajectory of system (3). Below the first of the
two thresholds, the periodic trajectory of system (3) is fully
localized in a slow-motion region, and corresponding to it
are nearly sinusoidal periodic oscillations that are in-phase
oscillations of the first block. In this case, the oscillations of
system (3) (see the left panel of Fig. 4b) model the
subthreshold oscillations of the inferior olive neurons.
Overcoming the first threshold results in the periodic
trajectory of the system (3) having, in addition to a part
from the slow-motion region, a part from the fast-motion
one. To this periodic trajectory there will correspond
oscillations which have short pulses at each peak of the
subthreshold oscillations (see the central panel of Fig. 4b)
and which can be treated as excitation pulses from the lower
threshold (Ca2�-pulses) of an inferior olive neuron. Above
the second threshold, the periodic trajectory of system (3)
has two slow-motion regions `linked' by a fast-motion one,
with the passage time through the second slow-motion
region being much shorter than that through the first region
forming the `subthreshold pedestal'. In this case, to the
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periodic trajectory of system (3) there correspond oscilla-
tions at whose peaks there occur pulses with several times the
amplitude of the pulses from the lower threshold (see the
right panel of Fig. 4b). These oscillations quite adequately
describe the two-threshold generation of (Na�-pulse of) an
inferior olive neuron.

To conclude, system (3), (4) enables one to model all basic
activity regimes of inferior olive neurons, yielding a good
qualitative agreement with available experimental data
(compare Figs 4b and 1c).

3.2 Self-phase reset
In addition to the activity regimes of an inferior olive neuron,
it turns out [45 ± 47] that system (3), (4) allows the effect of
self-phase reset to be modelled (Fig. 4a). Because the
subthreshold oscillations and instants of time of the pulse
generation are in phase with the oscillations of the first block,
the self-phase reset effect is in fact related to the dynamics of
system (4) experiencing an external stimulus.

Let stimulus Ist�t� be a single pulse of amplitude Ast and
duration t. Note first that after the pulse ceases, system (4) has
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Figure 4. (a) Self-phase reset effect in inferior olive neurons.Datawere obtained from rat brain stem slices [19]. (b) Oscillations of inferior olive neurons for

model (3), (4). (c) Self-phase reset in system (4). Waveforms of the oscillations for various initial conditions (synchronization with a stimulus pulse).

Parameters are as follows: Ast � 1:15, and tst � 0:4T, where T is the subthreshold oscillation period. (d) Dynamic mechanism of self-phase reset in the

phase plane �z;w�. Stimulus-driven transformation of the closed limit-cycle curve. Sequence of snapshots of a hundred initial conditions uniformly

distributed along the limit cycle prior to the stimulus action. Left: excitatory (Ast � 1:15, tst � 0:4T ) stimulus. Right: inhibitory (Ast � ÿ1, tst � 0:4T )

stimulus.
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the phase portrait shown in Fig. 2b, implying that the
amplitude and frequency of the system's oscillations
`recover', assuming the values determined by the limit cycle
of the system. However, the action of an external stimulus
results in the phase of the recovered oscillations changing
from its initial value j1 to j2.

Let the initial phasej1 be variedwithin the interval �0; 2p�.
Referring to Fig. 4c, which shows the waveforms of the
oscillations in system (4) for various initial phases, we see
that stationary oscillations have virtually the same phase for
any value of the initial phase. To characterize the distribution
of the resettled phases, the unity-normalized standard
deviation dj of the spread of these phases was plotted as a
function of the stimulus pulse amplitude [45, 47]. For one
hundred initial phases considered this function was found to
be bell-shaped with the tails falling off rapidly on either side.
For a sufficiently low-amplitude pulse, no phase reset occurs
and the phase variable remains distributed in the interval
�0; 2p�, with dj � 1. As the amplitudeAst becomes larger than
the threshold value, the resettled phases go through high
localization around a certain average value j ��Ast�, with dj
dropping off sharply and then decreasing monotonically to
zero (for example, dj � 0:02 for Ast � 3). Notice that the
phase reset occurs irrespective of whether the amplitude of the
pulse is positive, Ast > 0 (see Fig. 4c), or negative, Ast < 0. In
other words, phase reset occurs both in the case of an
excitatory stimulus and in the case of an inhibitory action on
the neuron. An exciting pulse provides a more `precise'
resetting, though.

Because j�Ast� can assume any value in the interval
�0; 2p�, it is possible by appropriately choosing the amplitude
of the pulsed action to preassign any value to the oscillation
phase of system (3), (4), no matter what its prestimulation
value was. Underlying the dynamic mechanism of self-phase
resetting is the strong compression of the phase volume of the
system (see Fig. 4d), due to the relaxation nature �eCa 5 1� of
system (4)Ðwith the result that the system in fact `forgets' its
initial conditions.

3.3 Phase clusters of prescribed configuration
Here, we follow Refs [46, 47] and consider an ensemble of
noninteracting inferior olive neurons, each of which is
described by the system of equations (3), (4). Due to the self-
phase reset effect it is possible to form phase clusters of any
preassigned spatial configuration in this ensemble. By
properly choosing the intensity of the stimulus, the phase of
each element can be set equal to the desired value, indepen-
dent of the current state.

Figure 5 illustrates how phase clusters are formed. The
application of a stimulus causes the phases of the elements to
group according to the `cell' configuration stimulus. Notice
that cluster formation does not require that the elements
interact directly. Such interaction can be introduced to
maintain the prescribed configuration during the time when
the stimulus is absent. This is the way in which, for example,
the olive-cerebellar system functions [16].

In the absence of a stimulus, inferior olive neurons
interact via the gap junction, which makes them mutually
synchronous. As a stimulus arrives, the inhibitory feedback
loop acts to suppress the gap junction, and under the action of
the sensor stimulus (Fig. 4a) the desired phase values of the
elements are established. Formed in this way, the motor
pattern of an arbitrarily complex spatial configuration
provides the required synchronism of muscular contrac-

tions. The groups of muscles corresponding to a phase
cluster contract simultaneously.

Thus, the effect of self-phase reset is in fact a sensomotoric
transformation in which the intensity of a sensor stimulus is
converted to the motion-controlled pattern of muscular
contractions.

4. Neurodynamics-based system of motor control
and coordination of motions

As already noted in Section 3, inferior olive neurons are the
key element of the olive-cerebellar system, the system which
controls and coordinates motions and specifies the universal
rhythm of muscular contractions. According to Refs [43, 48],
any motion, rather than being continuous, is in a certain
(kinematic) sense successive Ð that is, it has a characteristic
time scale determined by the frequency of subthreshold
oscillations, which is about 10 Hz. What the existence of this
scale implies is that the nervous system with the aid of the
olive-cerebellar system exercises its control over muscular
contractions not more often than once in 100 ms, thus
reducing the `computation resources' required for motor
control and imparting to the motion certain `elasticity' in
terms of precise tunability, adaptation to external conditions,
etc. One of the key dynamicmechanisms involved in the olive-
cerebellar system implementing the functions of control and
operation is using the phase reset effect to form preconfigured
phase clusters in an ensemble of inferior olive neurons. Based
on this mechanism and using dynamic model described by
equations (3), (4), a neurodynamic model for discretely
controlling and coordinating the motion of autonomous
robotic machines was proposed (Fig. 6a) [46, 49].

The control system of a walking robot (with six limbs, for
example) has as its primary task to ensure that the machine
moves stably along a rough surface. The idea of the control
system proposed is to introduce a discrete control block to
reflect the functions of inferior olive neurons. In this
particular case, the single-neuron model (3), (4) was used to
implement the block. The function of the control block is as
follows. The block generates control pulses at a fixed
frequency of 10 Hz, in the intervals between which the

0 p

t � 0 t � 30 t � 60

t � 90 t � 120 t � 150

Figure 5. Phase cluster formation by means of self-phase reset in the

ensemble of 20� 20 noninteracting inferior olive neurons (3), (4). At the

initial instant of time, a single stimulus pulse of duration tst � 0:4T
simultaneously acts on the random phase-distributed elements. A color

gradation is used to indicate oscillation phase distribution in the ensemble.
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limbs of the robot adapt to the surface conditions unaided,
due to various local self-tuning mechanisms which we leave
out of consideration here. When pulses arrive, the limbs'
positions are monitored and the phase relations (`motion
pattern') securing walking stability are recovered. In parti-
cular, for a six-limbed robot to be stable, three of its limbs
should be on the surface at any instant of time. Suppose that
each of the limbs is controlled by a certain quasiperiodic
signal whose phase uniquely determines the position of the
robot's leg at each instant of time. Then the task of the
control system reduces to mutually coordinating six phase
variables. For this purpose, let us introduce the following
dynamical system:

_ji � hF�t; tk;Dt��j �i ÿ ji� ÿ xi ; i � 1; 2; . . . ; 6 ; �5�

whereji is the phase of the given limb, andj �i is the `reference
phase' which is specified in accordance with the motion
pattern chosen. The function F modeling the operation of
the discrete control block has the form

F�t; tk;Dt� � 0 ; t < tk ;
1 ; tk < t < tk � Dt ;

�
�6�

where tk is the arrival time of the kth control pulse generated
by system (3), (4) at the peaks of subthreshold oscillations
with period Tc. The time period t during which the control

system operates after each pulse is sufficiently short,
t � 0:1Tc. The random uncorrelated quantities xi are uni-
formly distributed over a certain interval �ÿx0; x0� and model
limb phase detunings arising as the system adapts (via self-
tuning mechanisms) to local surface roughnesses. The whole
system operates in the following way. In the absence of a
control signal, the limb phases evolve in a randomway. Upon
the arrival of the signal, it takes the system time Dt to recover
(correct) the phase relations according to the motion pattern
(Fig. 6b). The parameter h determines how fast the correction
is introduced. It should be noted that the remaining blocks of
the motion control and coordination system, namely, motion
rhythm generator and self-tuning systems, can also be
implemented using various dynamical systems. For example,
various motion patterns (phase relations for limb motions)
can be specified utilizing bistable neurodynamical systems in
the form of stable spatial structures of bistable lattices [39].

5. Conclusion

Using the ideas and principles of nonlinear dynamics is, in our
view, one of the most important and effective approaches to
the study of neuron systems. Dynamic models based on
neurophysiological data and concepts open broad possibili-
ties for explaining, predicting, and understanding the
dynamic operation mechanisms both of individual neurons
and, very importantly, of neuron ensembles and networks of
complex architecture. Based on these mechanisms, artificial
pattern recognition systems, control systems, new generation
computing and information technologies, etc. can be devel-
oped. In particular, the principles of neurodynamics seem
promising for modeling associative memory processes and
spatio ± temporal selection, and developing systems for
controlling, monitoring, and coordinating motions of auton-
omous robotic machines.

The following key dynamic mechanisms presented in this
talk show the potential of the approach considered.

(1) The study, presented here, of a chain of electrically
linked elements (neurons) with nonlinear recovery showed
that such a system is capable of producing various spatio ±
temporal activity structures, including chaotic ones. These
structures comprise pulses and excitation fronts, whose
instability results in self-maintained oscillations with a
certain spatial configuration being established in the system,
each element generating a succession of excitation pulses with
an element-specific interpulse interval. On the one hand, these
structures demonstrate the possibility of oscillations occur-
ring in ensembles whose elements are not self-oscillating
(damped oscillations below the excitation threshold). On the
other hand, the oscillations performed by the elements of the
ensemble turn out to be `cophased' in a certain way according
to a spatio ± temporal pattern and in fact form certain
information-carrying pulse trains, with information being
encoded through variations in the interspike interval.

(2) Based on the self-phase reset effect it is possible to
synchronize the oscillations of neuron ensembles. This
stimulus-induced synchronization requires no direct contact,
or coupling, between the elements, implying that neurons
spaced a considerable distance apart can be effectively
synchronized by a common pulsed (sensor) stimulus.

(3) Stimuli of various intensities can be used to form
cluster structures of spike activity, which are associated, for
example, with motor patterns produced by the olive-cerebel-
lar neuron system. Elements of equal oscillation phase
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Figure 6. (a) Schematic of discrete motion control for a walking robot,

using the self-phase reset effect. (b) Upper panel: limb phase control for a

six-legged robot; phases are for two groups differing by p. Lower panel:
control signal.

March 2008 Conferences and symposia 303



determine the synchronous contraction of various muscular
groups of the motor system.

(4) Based on the developed model of an inferior olive
neuron, a motion control and coordination system has been
proposed for autonomous robotic machines. The basic idea
here is to supply the control system with a discrete control
block with the function to correct errors arising due to the
operation of self-phase reset mechanisms (for motion along a
rough surface, for example).
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Modeling nonlinear oscillatory systems
and diagnostics of coupling between them
using chaotic time series analysis:
applications in neurophysiology

B P Bezruchko, V I Ponomarenko,
M D Prokhorov, D A Smirnov, P A Tass

1. Introduction

Using time series of experimental observables to identify and
estimate interaction parameters between sources of complex
(chaotic) oscillations [1 ± 3] is a task of relevance to many
disciplines, from physics and biology to geophysics, medicine,
and engineering. A vibration analysis of machine elements
can identify the source of the vibrations [4], whereas
identifying interactions between various brain regions based
on multichannel electroencephalogram analysis benefits
epilepsy patients by locating the sites of pathological activity
[5]. Particular attention in this area is paid to irregular signals
because it is a long-recognized fact that the chaotic behavior
of nonlinear systems is typical [3, 6, 7].

Reflecting the diversity of possible situations and the
factors of noise and nonstationarity, a wide variety of
approaches to identifying and assessing the `intensity' of a
coupling have been developed using mathematical statistics
and spectral analysis [1], information theory [8, 9], and
nonlinear dynamics [5, 10 ± 12]. Among the most widely-
used of these are the calculation of cross-correlation func-
tions and of coherence functions [1], event sequence analysis
with time series [13], the estimation of nearest neighbor
distribution in the space of states [5], and the determination
of characteristics of `information transfer' between signals [8].
Whereas the techniques listed above process a signal
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`directly', using appropriate working formulas and algo-
rithms, there also exists an `indirect' approach which
proceeds from the original time series to produce predictive
mathematical models and utilizes the properties of the series
to estimate the coupling.

Each of the approaches has its preferred area of applica-
tion [14 ± 16]. In this talk we will be concerned only with
employing mathematical models as a tool for estimating
couplings (Section 2). The characteristics so obtained are in
agreement with intuition regarding cause and effect relations
between processes (e.g., coupling coefficients in dynamics
equations). With an adequate model structure, this approach
also turns out to be the most sensitive one, especially where
nonlinearity and chaos are involved. Such a situation arises
when practically important problems of physiology, such as
pathology mechanisms of epilepsy and Parkinson's disease,
are considered (Section 4).

In view of the importance of developing amodel serving as
a tool for identifying couplings, a number of problems of
reconstructing equations are considered per se in Section 3.

2. Coupling diagnostics using predictive models

2.1 A priori known structure of the model
If the adequate mathematical model of the elements
(subsystems) of the system under study is known in terms of
its structure, and if the couplings whose parameters are being
sought come in a finite number of structural forms, a simple
item by item selection is a viable strategy. This strategy
chooses for each particular coupling structure those values
of model parameters (and coupling coefficients among them)
for which the observed dynamics (for example, predicting
next points from previous ones) are most accurately repre-
sentedÐultimately selecting themost adequatemodel and its
corresponding coupling characteristics. An example is esti-
mating the coupling of two self-oscillatory time-delay systems
[17] (see Fig. 1), each of which contains ring-connected
nonlinear amplifier f, a delay line t, and a filter e (inertial
element). The dashed lines represent different ways of
connecting coupling elements to points I, II, and III (with k
denoting the gains). Different types of coupling give rise to

mathematical models of different structures, as follows:

e1; 2
dx1; 2�t�

dt
� ÿx1; 2 � f1; 2

ÿ
x1; 2�tÿ t1; 2� � k2; 1x2; 1�tÿ t1; 2�

�
;

�1�
e1; 2

dx1; 2�t�
dt

� ÿx1; 2 � f1; 2
ÿ
x1; 2�tÿ t1; 2� � k2; 1x2; 1�t�

�
; �2�

e1; 2
dx1; 2�t�

dt
� ÿx1; 2 � f1; 2

ÿ
x1; 2�tÿ t1; 2�

�� k2; 1x2; 1�t� : �3�

Equation (1) describes the situation inwhich the first time-
delay system exerts an influence on the second system at point
1, whereas the second system influences the first one at point
I. We will denote this type of coupling as 1=I. Equations (2)
and (3) describe coupled systems for the coupling schemes
2=II and 3=III; respectively. If systems X1 and X2 influence
each other in different ways, they are described by different
equations. For example, for the coupling scheme I=II system
X1 is described by Eqn (2), and system X2 by Eqn (1).

Section 3 briefly describes a special technology for
reconstructing delayed differential equations, which enables
one to achieve the best result by choosing a model that
correctly reflects the way to introduce couplings between
self-excited oscillators in a physical experiment, and between
reference dynamical systems in a numerical experiment [17].

2.2 Granger causality
In the absence of a priori information on the structure of the
model equations, universal constructions can be utilized. A
useful practical approach is a method based on constructing
nonlinear prognostic models [18, 19], which extends the linear
approach proposed by Granger [20 ± 23] to identifying cause
and effect relations. The basic idea is to use the time series�
x1�t1�; . . . ; x1�tN�

	
and

�
x2�t1�; . . . ; x2�tN�

	
to construct

prognostic models Ð `individual' and `joint'. A considerable
improvement in the prognosis of the dynamics of the first
system due to taking into account the values of a variable
from the second system is an indication that the latter
influences the former (provided such an improvement
cannot be achieved by complicating the individual model).
The following is one possible way in which this approach can
be implemented (and which was used, for example, in
Ref. [24]).

To assess the influence of the second system on the first,
one starts by constructing an individual autoregressionmodel
in the form

x1�tn� � f1
ÿ
x1�tnÿ1�; x1�tnÿ2�; . . . ; x1�tnÿd1�; a0

�� xn ; �4�

where f1 is an algebraic polynomial of order K, d1 is the
dimensionality of the model, and xn is a zero-mean noise. The
coefficients a0 are estimated using the method of least
squares, i.e., by minimizing the mean square of the prognosis
error:

s 2
1 �

1

Nÿ n0

XN
n� n0�1

�
x1�tn� ÿ f1

ÿ
x1�tnÿ1�; . . . ; x1�tnÿd1�; a0

��2
;

�5�
where n0 � max �d1; d2�, and the quantity d2 is defined below.
As a next step, two series are taken to construct a joint model:

x1�tn�
� g1

ÿ
x1�tnÿ1�; . . . ; x1�tnÿd1�; x2�tnÿ1�; . . . ; x2�tnÿd2�; a

�� Zn ;

�6�

k1

k2

t1 f1

zx1�t�x1

e1
I II III

x2�t�x2

132
t2 f2 e2

Figure 1. Block diagram of coupled time-delay systems X1 and X2.

Elements t1 and t2, f1 and f2, e1 and e2 are responsible, respectively, for
the delay and the nonlinear and inertial transformation of oscillations;

elements k1 and k2 determine the amount of coupling between systems X1

and X2. At points 1 ± 3, system X1 acts on system X2. At points I ± III,

system X2 acts on system X1.
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where d2 indicates how many values of x2 were taken into
account, g1 is a polynomial of order K, and Zn is a zero-mean
noise. The minimum mean square of the prognosis error, as
determined by the method of least squares, is defined as

s 2
2!1�

1

Nÿ n0

XN
n� n0�1

�
x1�tn� ÿ g1

ÿ
x1�tnÿ1�; . . . ; x2�tnÿd2�; a

��2
:

�7�

The improvement in the prognosis of the series x1 due to
taking into account the series x2 is characterized by the
difference of errors squared: PI2!1 � s 2

1 ÿ s 2
2!1.

The difference from zero of the time series-based quantity
PI2!1 is often assessed in terms of statistical significance by
using an analytical formula based on the assumption that the
processes x1 and x2 are not coupled and that the (residual)
prognosis errors of models (4) and (6) are due to normal white
noise. Then, the normalized quantity

F2!1 � �Nÿ n0��s 2
1 ÿ s 2

2!1�
�P2 ÿ P1�s 2

2!1

;

where P1 and P2 are the respective numbers of coefficients in
the individual and joint models, follows Fisher's F distribu-
tion with �P2 ÿ P1;Nÿ n0 ÿ P2� degrees of freedom. The
significance of F2!1 being different from zero is checked using
the F test [9]. If this difference is significant at level p, then the
fact of x2 influencing x1 has confidence probability 1ÿ p. A
fully similar situation occurs for the characteristic of the
influence 1! 2.

An alternative way to assess the existence of the
discovered couplings for reliability is to use surrogate data,
an ensemble of artificially obtained pairs of signals which,
while mutually uncoupled, still retain some dynamical traits
of the processes under study. These can be, for example, the
initial time series biased relative to each other by a time
interval larger than the autocorrelation time of the processes
involved [13, 14].

When choosing the values of d1, d2, and K, the recom-
mended way is to first construct models (4) and (6) for
different values of these quantities (starting from unity) and
then to select those values for which the mean square errors in
the prognosis of the models [formulas (5) and (7)] get
stabilized, i.e., cease to grow significantly with increasing d1,
d2, andK. (Specifically, it makes sense to first select the values
of d1 andK by looking at the prognosis error of the individual
model and then, with known d1 and K, to select d2 from the
prognosis error of the joint model.) The functions f and g can
be of any kind, for example, locally constant functions [18] or
radial basis functions [19]. However, for short time series,
typically encountered in biological and geophysical applica-
tions, the multiparametric nonlinear functions mentioned
above are of limited use, as is increasing d1, d2, and K for
polynomials. Therefore, informative results can usually be
obtained (if at all) only for low dimensionalities and low-
order polynomials [24].

2.3 Phase dynamics modeling
Considering that a model should be structurally adequate for
the processes under study, the above-described necessitated
use of the simplest possible models for estimating Granger
causality limits considerably the effective application of the
method. As a way out, however, the same approach can be
profitably applied to the time series for the phases of the

processes observed, rather than to the observed quantities
themselves [25].

Such an approach is effective if there are very distinct
oscillation rhythms in the original time series (the power
spectrum shows a marked rise in a narrow frequency band).
In this case, the notion of the phases f1 and f2 of the
observed oscillatory processes x1 and x2 has a clear meaning
and they are most often calculated using the Hilbert
transform and the introduction of an analytical signal [26].
The reason for the effectiveness of this approach is twofold.
First, because the phases of the narrow-band processes
described above are the most responsive variables to
influences on a self-sustained oscillatory system, their use
promises to make the method highly sensitive to weak
coupling between the signal sources [3]. Second, a wide
range of oscillatory processes are adequately described by a
sufficiently simple system of stochastic difference equations
in the form [25, 27, 28]

f1; 2�t� t� ÿ f1; 2�t� � f1; 2
ÿ
f1; 2�t�;f2; 1�tÿ D1; 2�

�
; �8�

where f1; 2 are moderate-order trigonometric polynomials; t
is a fixed time interval usually equal to the shortest of the
characteristic oscillation periods, and D1; 2 are the trial values
of the influence delay time. The strengths of influence of the
systems on each other are calculated from the estimates of the
trigonometric polynomial coefficients, which are made on the
basis of a time series by the method of least squares. The
quantity c 22!1, the extent of influence of system 1 on system 2,
is determined by the steepness of the dependence f1�f2�, and
similarly for c 21!2, giving

c 22!1; 1!2 �
1

2p2

� 2p

0

� 2p

0

�
qf1; 2�f1; 2;f2; 1�

qf2; 1

�2

df1 df2 : �9�

Although simulation experiments [25] show themethod to
be very sensitive to weak coupling, the catch is that, for it to be
applicable to initial systems with considerable levels of
dynamical noise, the training series should be about
1000 times as long as the characteristic period at moderate
noise levels. In actual practice, the method runs into
difficulties when the time series under study are nonstation-
ary. For electroencephalograms, the quasistationarity inter-
val is not normally longer than 100 characteristic periods for
any physiological `rhythms' resolved, making it necessary to
divide time series into relatively short segments and to obtain
coupling estimates for each of these separately. If left
unmodified, the model will in this case produce biased
estimates [29]. For this reason, we have introduced [29] the
new estimates g1!2; 2!1 � c 21!2; 2!1 � r1; 2, where the correc-
tions r1; 2 depend on the noise level, oscillation frequencies,
and the length of the time series. In the same work,
approximate expressions for the 95% confidence intervals
were obtained, with which results obtained for an individual
time realization can be assessed for significance.

3. Model equation reconstruction from time series

Constructing empirical models of the type used for diag-
nostics of couplings in Section 2 is central to the broad field
of research known as system identification in mathematical
statistics [1, 30] and as dynamical system reconstruction in
nonlinear dynamics [7, 31 ± 33]. With the advent of the
concept of dynamic chaos it became clear that complex
chaotic behavior is exhibited by nonlinear equations of
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even low dimensionality, resulting, in recent years, in
empirical modeling often being performed based on non-
linear difference equations (discrete maps) xn�1 � F�xn; c� or
ordinary differential equations dx=dt � F�x; c�, where x is
the D-dimensional state vector, F is a vector function, c is a
P-dimensional parameter vector, n is a discrete time, and t is a
continuous time.

It was believed for some time that universal approaches
suitable for any system could be developed. Thus, the general
algorithm for constructing the nonlinear models mentioned
above is in many respect similar to the smooth-curve
approximation algorithm for points in a plane, albeit it
comprises additional steps. The initial stages of the recon-
struction procedure include a preliminary analysis of experi-
mental data and a choice of the structure of the model: the
type and number of equations, the form of the function F, and
how the dynamic variables x are linked with the observable
quantities. This done, model fitting is performed Ð by
selecting those values of the equation parameters c with
which the model reproduces the observed signal best. In
practice, various versions of the maximum likelihood
method and of the method of least squares are most often
used. (In one of the simplest approaches, the mean square of
the one-step-ahead error of the prognosis is minimized.)
Finally, the quality of the model is checked using a specially
distinguished test series.

In practice, however, hopes for a universally workable
method were dashed. Mathematical models often turn out to
be cumbersome and nonrobust, and in the sequence described
above each operation may run into difficulties. Note also that
the higher the degree of uncertainty, the more complex the
situation is. The most complex case is that of a `black box', in
which the structure of the possible adequate model is totally
unknown. The basic difficulty here, poignantly termed the
`curse of dimensionality', is that increasing the dimensionality
of the model sharply complicates the problem and requires
that stationary time series of greater length be used.

Success is more likely to be achieved by developing ad hoc
approaches for certain narrow classes of objects and utilizing
targetedmodeling techniques, as will be shown by an example
below. The uncertainty in choosing the structure of a model
can be reduced, for example, by using a priori information on
the properties of a certain chosen class of systems and by
preliminarily analyzing the series involved.

The broad class of complex dynamic processes is modelled
by the system described by a first-order differential equation
with a time-delay argument:

e
dx�t�
dt
� ÿx�t� � F

ÿ
x�tÿ t0�

�
: �10�

For such a system, the time realizations of oscillations of its
dynamic variable x have been shown [34] to characteristically
lack extrema time-spaced by t0, with t0 being the delay time
(Fig. 2). Knowing the position of the minimum in the t
dependence of the number of t-spaced extrema provides an
estimate for the delay time: t � t0 (Fig. 2b), from which it is
an easy matter to estimate the inertiality parameter e and to
approximate the nonlinear function F [34].

Figure 2 shows, as an example, the results of reconstruct-
ing equations of the form (10) by a chaotic time realization
(Fig. 2a) of the Ikeda equation

e0
dx�t�
dt
� ÿx�t� � m sin

ÿ
x�tÿ t0� ÿ x0

� �11�

describing the dynamics of a passive optical cavity. The
reader is referred to Ref. [35] for more details on the
technology of reconstructing time-delay systems.

Systems experiencing external action are another example
of specialized reconstruction technologies targeting to a
certain distinguished class of objects [36]. We will not here
describe in detail the existing modeling techniques and note
only that, importantly, along with the key stage of choosing
the most adequate model structure, technical problems arise
at various stages of the reconstruction procedure, as exempli-
fied by our studies on improving accuracy in estimating
parameters [37], including the case of hidden parameters
[38]; on optimizing the structure of a model [39], and on
choosing dynamic variables for modeling [40]. Works by a
number of groups (see, for example, review papers [41 ± 45])
provide vast information on the subject.

4. Coupling diagnostics
in neurophysiological applications

Many nervous system disorders, including epilepsy and
Parkinson's disease, are due to the pathological synchroniza-
tion of large groups of cerebral neurons. A sign of Parkinson's
disease is the neuron synchronization in the thalamus and
basal ganglia nuclei [46]. However, the functional role of this
synchronization in the generation of Parkinsonian tremor
(uncontrollable, regular 3-to-6-Hz limb oscillations) remains
a subject of discussion [47]. The hypothesis that neuron
synchronization causes tremors has not yet received convin-
cing empirical support [47]. If there is no effect from
medicines, the standard therapy consists in high-frequency
(above 100 Hz) continuous electric deep brain stimulation
(DBS) [48]. Discovered purely empirically, the standard DBS
is not yet understood in terms of how it works [49], nor is it
without its limitations Ð in particular, due to side effects [50,
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Figure 2.Example of reconstructing a time-delay system: (a) time realization of the Ikeda equation (11) for t0 � 2; (b) the numberM�t� of extremum pairs

normalized to the total number Mmin �M�2; 0� of extrema in the series; (c) reconstructed nonlinear function. Numerical experiments including

additional noise show that noise-to-signal ratios of up to 20% allow a reconstruction.
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51]. A more specific follow-up idea was to suppress tremors
by means of desynchronizing DBS [2], for instance, using
coordinated reset stimulation [50]. The confirmation that a
tremor is caused by the synchronized activities of the neurons

in thalamus and basal ganglia nuclei could presumably lead to
milder, low-side-effect therapies. In this connection, to
determine how various parts of the brain are linked to the
patient's muscles is becoming a topical task.
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Figure 3. Interval of spontaneous Parkinsonian tremor (total duration 80 s) [52]: (a, b) signal from an accelerometer and anLFP from one of the electrodes

in arbitrary units (only first 8 s are shown); (c, d) power spectrum estimates of the signals.
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Our study [52] investigated ensembles of intervals of
spontaneous Parkinsonian tremor in three patients. Limb
oscillations were identified by accelerometer signals recorded
with sampling frequencies of 200 Hz and 1 kHz, and
information on brain activity was represented by local field
potentials (LFPs) recorded from four in-depth electrodes
implanted in the thalamus or basal ganglia. The data were
obtained at the Department of Stereotaxical and Functional
Neurosurgery, University of Cologne, Cologne, and at the
Institute of Neuroscience and Biophysics-3 (Medicine),
Juelich Research Center, Juelich (both Germany).

Signals from the accelerometer and the LFP from one of
the electrodes, which were recorded in the course of violent
Parkinsonian tremor, are shown in Fig. 3, together with their
spectra. The accelerometer signal displays oscillations,
corresponding to which there is a distinct 5 Hz peak in the
power spectrum. A tremor frequency peak, although some-
what broader, is also seen in the LFP spectrum. Both the
signals allow a phase to be correctly introduced. Analysis
based on the phase dynamics modeling approach (see Section
2.3) reveals that a limb influences the brain in a statistically
significant way with a delay of no more than a few dozen
milliseconds. The influence of the brain on a limb, which is
also seen, is characterized by a delay time falling between 200
and 400 ms (of the order of 1 to 2 characteristic oscillation
periods). Results are reproduced qualitatively very well for all
three patients (Fig. 4).

That a limb influences the activities of the thalamus and
basal ganglia was established earlier using the linear estima-
tion of Granger causality [53]. With phase dynamics model-
ing, however, new results were obtained: the existence of
reciprocal influence was established, and the delay time
estimated. Because this delay is large compared to the time it
takes the signal to travel from the brain to a limb along nerve
fibers, it was interpreted [52] as an indication that thalamic
and basal ganglia activities exert indirect influence on limb
oscillations (via signal processing in the brain cortex). More-
over, this means that, rather than merely being passive signal
receivers, the thalamic and basal ganglia nuclei are links of a
`feedback ring' which determines the oscillations of the limb.
Therefore, the application of desynchronizing DBS to these
target structures [2, 50] appears to exert a more specific and
milder influence which, as theoretical studies predict, can
even make the stimulated neuron networks `unlearn' patho-
logical activity [51] and produce a long-term positive effect.
Another possible applications of the directed coupling
analysis include determining the target point for stimulation
(so as to enable a more effective arrangement of stimulating
electrodes).

Surrogate data tests [54] have confirmed the statistical
significance of the conclusions reached [54] and have shown in
addition that linear methods fail to reveal the influence of
thalamic and basal ganglia activities on limbs.

We refer the reader to Ref. [55] for similar preliminary
results demonstrating the potential of the method for
localizing the epileptic focus by recording local field poten-
tials.

5. Conclusions

The problem of modeling from time series, of much
importance in both applied and fundamental terms, is often
solved using ideas and methods from nonlinear dynamics.
Among the applications of this modeling the most known is

the prognosis of the behavior of a system (see, for example,
Ref. [56]). There are others, too, including the identification
of quasistationary sections in a nonstationary signal [44],
bifurcation prognosis for weakly nonautonomous systems
[57], and multichannel confidential transmission of informa-
tion [43]. In this talk it was shown that the approach can also
be applied to the practically important problem of diagnosing
interaction between oscillating systems.

Although mathematical modeling will always be, to a
large extent, an art, still some general principles and specific
recipes can be identified with which a `good' model is more
likely to be developed. Some such considerations were given
above. The corresponding techniques have been successful in
the study of real systems (see, for example, Refs [31 ± 33, 41 ±
45]), such as nonlinear electrical circuits, climate processes,
and functional systems of living organisms. In the present
talk, a new result illustrating the efficiency of the method as
applied to problems in neurophysiology (specifically, to the
study of mechanisms of a Parkinsonian tremor) was pre-
sented.
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