
Abstract. The theory and experimental discovery of extremely
strong hydrodynamic instabilities are described, viz. the Kel-
vin ±Helmholtz, centrifugal, and superreflection instabilities.
The discovery of the last two instabilities was predicted and
the Kelvin ±Helmholtz instability in real systems was revised
by us.

1. The classical concept of hydrodynamic
instabilities in an incompressible fluid

Over the past century and a half, the class of instabilities
considered in monographs on fluid dynamics has been
restricted to the Kelvin ±Helmholtz and Rayleigh ±Taylor
instabilities [1±7]. Currently, a few dozen hydrodynamic-type
instabilities have been discovered in continuous media

(hydrodynamic and magnetohydrodynamic media, plasmas,
etc.) using either incompressible or compressible models, so
that classical monographs on the mechanics of continuous
media, giving such a limited description of the stability
problem, are simply following tradition. 1

According to this tradition (which, in turn, was evolved in
parallel with scientific discoveries), we will start here with a
physical description of the hydrodynamic instability that was
revealed first Ð the Kelvin ±Helmholtz instability [1, 2, 5, 7].

1.1 Kelvin ±Helmholtz instability
Let a fluid move along the x-axis.

Figure 1 displays the stationary structures first described
by Lord Kelvin in the case of an incompressible fluid [2]. The
straight arrows represent the velocity field that has a gradient
in the y direction. In a spatially narrow region of width
Dy � l, where l is small compared to the width L of the
unperturbed flow, i.e., when the inequality

l

L
5 1 �1�

is valid, Lord Kelvin discovered a stationary vortical pattern
Ð a street of vortices centered in the straight line y � y0
wherein the velocity vector changes its direction to the
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ever, they are addressed, as a rule, to particular specialists.



opposite one. Since the vortical pattern is, according to
Ref. [2], localized in a negligibly narrow spatial domain for
which l5L, the Kelvin ±Helmholtz instability came later to
be known as `the instability of a tangential discontinuity of
velocity', or simply `the instability of a tangential disconti-
nuity' (Fig. 2).

The elongated shape of such vortices, which are stretched
along the x-axis (see Fig. 1), was the reason for which
Lord Kelvin called them `cat's eyes'. Each vortex contains
a y-component of velocity, which, like the x-component,
changes its sign near the center of the vortex; therefore, the
y-component of velocity is excited in the region where the
vortices are localized, while no such component is present in
the remaining part of the flow.

Thus, the discovery of this vortical pattern by LordKelvin
was also a noteworthy discovery of the first instability in fluid
flows.

Under natural conditions, for example, in the Earth's
atmosphere, the velocity may vary not only along the
horizontal coordinate (denoted above as y) but also along
the vertical coordinate, normally designated as z. At
sufficiently large altitudes (usually above 10 km), a velocity
inversion occurs: the velocity grows with z, sometimes
reaching supersonic values.

In the region of velocity inversion, the vector Hjvj of the
velocity-magnitude gradient is collinear to the gravitational
vector g, i.e., g k Hjvj, these two vectors being opposite in their
directions. It should be noted that the velocity-inversion
region in the Earth's atmosphere occurs not only at large
altitudes but also near the ground surface. Indeed, the
boundary condition at the Earth's surface (at z � 0) requires
v�0� � 0, while the inequality

��v�z��� > 0 is possible at
arbitrarily small z 6� 0. Naturally, this does not rule out that
the full velocity vector can vanish, v�x; y; z� � 0, at various
points zi, i � 1; 2; . . . ; n, not only in the Earth's atmosphere
but also in the ionosphere and magnetosphere.

1.2 Rayleigh ±Taylor instability
In the dynamics of different continuous media, the Rayleigh±
Taylor instability is known under different names related to
the history of discovering this instability in each particular
medium. In fluid dynamics, it is known as the instability of a
heavy fluid superposed over a lighter fluid; in plasma physics,
as the flute instability, etc. The development of such an
instability can easily be observed if a small amount of water
is poured into a glass with liquid oil. Many water flutes
descending to the bottom can be seen (accordingly, the
phenomenon is called the flute instability). It is obvious that
the final stage of this process will be water, the heavier fluid,
finding its way to the bottom of the glass, and expelling the oil
upward.

Both density inversion (as in the above-considered
example) and inversion in the distribution of other important
parameters of the medium result in developing a similar
instability. Let A be a function increasing with the density r,
and/or temperature T, and/or pressure p, namely

A � A
ÿ
r�z�; p�z�;T�z�� ; �2�

where z is the vertical coordinate which increases in the
direction opposite to the direction of the gravitational vector
g. Then the condition of development of the Rayleigh±Taylor
instability can be written as (Fig. 3)

qA
qz

> 0 : �3�

The Kelvin ±Helmholtz and Rayleigh ±Taylor instabil-
ities discussed above have proven to be the strongest among
several dozen diverse instabilities discovered later in various
continuous media. It is for this reason that only these two
instabilities are considered both in old (classical) and in the
most recent monographs on the mechanics of continuous
media (fluid mechanics) in the chapter devoted to the physics
of instabilities in these media.

x

l

y0

y

L

Figure 1. Velocity field in the form of stationary structures of two types.

The first type is a rectilinear stream of width L with a tangential

discontinuity about y � y0. The second type is represented by vortices,

first discovered by Lord Kelvin in 1887 and called `cat's eyes' by him. The

vortices are localized in a narrow layer of width l5L and are centered in

the straight line y � y0 wherein the velocity is discontinuous and which is

parallel to the x-axis.
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Figure 2. One-dimensional coordinate dependence of the velocity vector

v � v�y� at which the instability of the tangential discontinuity of velocity

develops.

z0

A

qA
qz

> 0

Figure 3. A dependence A�z� at which the Rayleigh ±Taylor instability is

excited.
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Although the two above-described instabilities of a
continuous (hydrodynamic) medium are distinguished
among several dozen others, they are not equally important
from the physicist's point of view. Indeed, the excitation
condition for the Rayleigh ±Taylor instability requires the
presence of an inverse height distribution of at least one
parameter of the medium. On the other hand, the Kelvin ±
Helmholtz instability requires only the presence of any, even
if arbitrarily small, velocity gradient which is, as a rule,
present in the atmosphere or ocean. It becomes clear from
the aforesaid that the Kelvin ±Helmholtz instability is much
more frequent in nature than the Rayleigh ±Taylor instabil-
ity. Therefore, we give here our preference to the Kelvin ±
Helmholtz instability Ð first of all, to its simplest form
relevant to the instability of a tangential discontinuity of
velocity. In Section 1.3, we will formulate the classical
problem of the physics of this instability in a compressible
fluid and will present the modern explanation of its excitation
and stabilization mechanisms.

1.3 Formulation of the classical instability problem
for a tangential discontinuity of velocity in a compressible
fluid [8, 9] and a modern explanation of the excitation
and stabilization mechanisms of this instability [10, 11].
Syrovatskii's criticism [9] of the study by Landau [8]
and a modified stabilization criterion for the instability
of the tangential discontinuity [10, 11]
For adiabatic perturbations �S � const� considered inRefs [8,
9] the relationship between the enthalpy W, pressure p, and
density r can be obtained from the equation dW � dp=r; for
p � Arg, where A and g are the constants (g is the adiabatic
exponent, g � cp=cV, where cp and cV are heat capacities at
constant pressure and volume, respectively), we arrive at

W � g
gÿ 1

A1=gp �gÿ1�=g � Bp a ; �4�

where

B � g
gÿ 1

A1=g ; a � gÿ 1

g
: �5�

Thus, for any g > 1 �a > 0�, the pressure p increases with the
growth ofW.

It was shown in paper [8] that the amplitude of perturba-
tions decreases exponentially �� exp

ÿÿjzj=z0�� with the
distance from the plane z � 0 of the tangential discontinuity
of velocity, i.e., with increasing jzj. Therefore, it is sufficient to
restrict our consideration to the region jzj < z0 (Fig. 4).

1.3.1 The physics of the subsonic-flow instability. Region I
(over the `hump' of the disturbance) in Fig. 4a can be regarded
as the neighborhood of the critical section of a subsonic
nozzle, where the flow velocity is known [12] to be maximum.
Then, it follows from the Bernoulli equation for the isentropic
flow

v 2

2
� Bp a � const ; �6�

that the pressure over the hump should be minimum. This
results in a further growth of the disturbance amplitude, i.e.,
in instability.

1.3.2 Landau's stabilization effect for a supersonic flow.
Region I (over the hump) in Fig. 4b can be interpreted as the

narrowing channel in a supersonic diffuser �M4 1�, where,
as is known [12], a shock front forms, at which the rate of the
supersonic flow drops to its minimum value, i.e., to the sound
speed, v � c0. In this case, it follows from the general form of
the Bernoulli equation

v 2

2
�W � const �7�

that the enthalpy W grows over the hump; therefore, the
pressure also grows. As a result, the hump is `pressed' back to
region II. This is precisely the stabilization effect for the
instability of the tangential discontinuity of velocity in a
supersonic flow, discovered for the first time by Landau [8]. 2

If so, what is the basis for Syrovatskii's critical remark on
the absence of such a stabilization effect?

1.3.3 Syrovatskii's criticism [9] of the original study by Landau
[8]. In contrast to the two-dimensional flow assumed by
Landau [8], we consider a three-dimensional flow, still
directed along the x axis, with a tangential velocity disconti-
nuity (Fig. 5): v0 � vxY�z�, whereY is theHeaviside function.

ÿz0

xII

I I

II

z
z0

a

ÿz0

xII
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II

z
z0

b

Figure 4. Perturbation of the tangential discontinuity of velocity v directed

along the x-axis in two opposite limiting cases: (a) small Mach number

M � v=c5 1, or subsonic flow (c being the sound speed), and (b)M4 1,

or supersonic flow.

2 It should be noted that neither the original paper by Landau [8] nor his

books coauthored by E M Lifshitz, Mekhanika Sploshnykh Sred

(Mechanics of Continuous Media), 1953, 1954; and Gidrodinamika (Fluid

Mechanics), 1986, give any qualitative explanation of the stabilization of

the tangential-discontinuity instability for supersonic flows.

z

I

II

x

y

Figure 5. Three-dimensional flow directed along the x axis, with a

tangential velocity discontinuity. Region I corresponds to z �z > 0� and
Region II to z �z < 0�.
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We choose three-dimensional perturbations of density,
r1, and velocity, v1, in the form

r1�x; y; z; t� � ~r1 exp
�
i�kxx� kyy� ÿ ljzj � gt

�
; �8�

v1�x; y; z; t� � ~v1 exp
�
i�kxx� kyy� ÿ ljzj � gt

�
;

where g is the growth rate.
Landau [8] considered the stability of the tangential

discontinuity relative to two-dimensional perturbations
assuming k � kx, i.e., in the particular case of ky � 0. He
showed that, if v0 > vcr, no instability exists for this particular
class of two-dimensional perturbations. Assume that the
unperturbed values of the density, r0, and speed of sound,
c0, are the same on both sides of this discontinuity, i.e.,
r0; I � r0; II � r0 and c0; I � c0; II � c0. Then, for this very
simple case, one finds

vcr � 2
���
2
p

c0 : �9�

Ten years later, Syrovatskii [9] solved a similar problem for
the general class of perturbations (8) assuming k � fkx; kyg �
fk cos y; k sin yg (where y is the angle between the vector k and
its projection onto the x-axis) and revealed an instability at
any v0.

Once equalities (8) are satisfied, the problem of stability of
the tangential discontinuity of the compressible-fluid velocity
relative to arbitrary (but small) perturbations can be reduced
to the following dispersion relation [here, the time depen-
dence is chosen in the form � exp �ÿiot�]:

k 2c 20

�
1

�oÿ kv0 cos y�4
ÿ 1

o 4

�
� 1

�oÿ kv0 cos y�2
ÿ 1

o2
: �10�

Canceling out the common factor, which has only a real root
o � kv0 cos y=2, leads to the equation

f �x� � 1

�xÿM cos y�2 �
1

x 2
� 1 ; �11�

where x � o=�kc0� and M � v0=c0, which differs from the
dispersion relation derived by Landau [8] by the presence of
cos y [9]. Equation (11) has four roots. They are all real if the
function f �x� is similar to that shown by the solid curve in
Fig. 6. If it resembles the function represented by the dashed
curve in Fig. 6, Eqn (11) has two real roots. Therefore, the
other two roots are complex conjugate, and one of them
describes the instability. The majorant curve is dot-and-dash
in Fig. 6. It corresponds to the case where all four roots are
real, x 01, x

0
4, and x 02 � x 03 � �1=2�M cos y, and two of them are

multiple.

As can be seen from Fig. 6, the critical Mach numberMcr

is obtained from the equation

f

�
1

2
Mcr cos y

�
� 1 ; �12�

which determines the point of tangency between the majorant
curve and the straight line f �x� � 1. This number proves to be

Mcr � 2
���
2
p

cos y
: �13�

We use the expression for cos y � kx=k?, where k? �
�k 2

x � k 2
y �1=2, to arrive at

M 2
cr � 8

�
1� k 2

y

k 2
x

�
: �14�

In quasi-two-dimensional systems, such as the gas disks of
galaxies, the rings of giant planets [13, 14], and rotating
shallow water [15], only longitudinal waves considered by
Landau, with ky=kx 5 1, are possible. In this case, Mcr

specified by Eqn (14) changes into Landau's Mcr [8].
According to the critical remark by Syrovatskii, arbitrary
perturbations allow consideration of the opposite limiting
case of transverse waves with ky=kx 4 1. It is apparent, for
example, that if

ky

kx
!1 �15�

stabilization is impossible in principle, since, as follows from
Eqn (14),Mcr !1. 3

1.3.4 Modified stabilization criterion for the instability of the
tangential discontinuity of velocity in a compressible fluid [10,
11]. Condition (15) can be satisfied in the idealized formula-
tion of the problem [9], which refers to a tangential
discontinuity of velocity in three-dimensional infinite space.
However, real situations introduce two important correc-
tions: (1) the system has a finite spatial size in each of the three
dimensions, and (2) the tangential discontinuity of velocity
turns out to be smeared over a certain characteristic width a.
These two conditions imply the existence of the relationship
�ky=kx�max � �ky�max=�kx�min. Indeed, �kx�min � Lÿ1, whereL
is the characteristic size of the system in the x direction; the
estimate �ky�max � aÿ1 follows from the necessary condition
of the existence of an unstable flow with a nonuniform
velocity profile, kya < 1 [17].

Thus, under real conditions, the instability of the
tangential `discontinuity' of velocity turns out to be
quenched provided that the inequality

M > �Mcr�mod � 2

�
2

�
1� L2

a 2

��1=2
; �16�

holds, where �Mcr�mod is the modified critical Mach number;
if it is exceeded, no instability of the tangential discontinuity is
present in a compressible fluid.

0

1

f�x�

1
2
M cos y M cos y

x1 x2 x3 x4

x

Figure 6. The function f �x�.

3 It should be noted, however, that, as ky=kx !1, the growth rate

vanishes, g! 0 [16]. It can be shown that taking into account the growth

of perturbations in advective flows has virtually no effect on the

stabilization criterion based on formula (14).
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Usually, in practice, L2=a 2 4 1; in this case, �Mcr�mod

given by Eqn (16) exceeds �Mcr�L (Landau [8]) by a factor of
L=a:

�Mcr�mod �
L

a
�Mcr�L �

L

a
2
���
2
p

: �17�

We now write out the condition of advection of perturba-
tions:

1

gmax

4
L

v0
; �18�

where g � Imo is the growth rate for the tangential
discontinuity of velocity. The meaning of criterion (18) lies
is in the fact that perturbations have no time to grow during
the transit of the gas through any region of length L at the
speed v0 along the system. Indeed, the characteristic instabil-
ity time described by the left-hand side of Eqn (18) far exceeds
the time of gas transit through any segment of length L in the
system. Thus, as condition (18) is satisfied, we can assume
that no instability of tangential discontinuity is present.
According to paper [16], gmax � 0:5�ky�max c0 � 0:5�c0=a�,
which, upon substitution into inequality (18), yields

M4 0:18�Mcr�mod :

Thus, the inequality

v0 > vcr � 0:4
���
2
p L

a
c0 �19�

determines the stabilization criterion for the tangential
discontinuity of velocity in a real, three-dimensional compres-
sible gas.

2. Modern theory of tangential discontinuity
and centrifugal instabilities

Since an experimental verification of the theoretical results
substantially enhances their reliability, we start our presenta-
tion with a description of the experimental setups suggested
by us, constructed at the Russian Research Center `Kur-
chatov Institute', and used in our investigations [18 ± 20].

2.1 The negligibly weak effect of molecular viscosity
on the development mechanism of shallow-water gradient
instabilities in the Spiral' setups
Our experiments were carried out using two modifications of
the Spiral' setup (the second modification is shown in Fig. 7).
As the working fluid, we used a green aqueous solution of
NiSO4, which makes it possible to obtain high-contrast
photographs of spirals in red light transilluminating the
solution and reflected from the white bottom of the vessel.
The second modification of the setup was twice as large as the
first one and consisted of two paraboloids whose shape
corresponded to a shallow-water layer of a constant thick-
nessH0 � 1:5ÿ3:5 mm, both in the core (at O1 � 13 sÿ1) and
at the periphery (at O2 � 2:6 sÿ1).

Glycerol was added to the NiSO4 solution to increase the
viscosity of the solution by a factor of two to three (for all
experiments in which the effect of viscosity was not intention-
ally studied, the total viscosity of the solution exceeded the
viscosity of water by no more than 5 ± 10 times); this addition
considerably facilitated obtaining a spiral±vortex pattern at
its initial formation stage. For both modifications of the
setup, a rotation regime was chosen so that the radial size of

the periphery, D=2, was much larger than the Rossby ±
Obukhov scale rR (which is analogous to the characteristic
Larmor radius of ions in a plasma):

rR � �gH0�1=2
2O2

; �20�

where g is the gravitational acceleration. Such a choice of the
regime made it possible to check whether or not the generated
spirals were stable against the breakdown into vortices of size
� rR. (Notice that the chosen ratios O2=O1 and rR=�D=2�
approach those actually measured in spiral galaxies.)

In rotating shallow water experiments, there are several
numerical parameters whose magnitudes (compared to unity)
determine the relative role of viscosity. First and foremost,
this is the Ekman number [21]

En � n
O0H 2

; �21�

where n is the kinematic molecular viscosity coefficient [7],O0

is the angular rotational velocity of the bottom of the vessel,
andH is the depth of the fluid layer. The depthH varied in the
Spiral' setups from 0.2 to 0.4 cm; since n � 0:01 cm2 sÿ1 for
water [18 ± 20], we had �En�max � 1=4�O0�r��min. In experi-
ments with a `rotating periphery', �O0�r��min � 2 sÿ1; there-
fore, �En�max � 1=8, and the viscosity effects are weak.

By definition [21], the Ekman number is En � d 2=H 2,
where d � �n=O0�1=2 is the depth of the Ekman layer.
Although this layer is relatively thin �d 2 5H 2� in our
experiment, it can efficiently alter the momentum of the
entire fluid layer of depth H in a certain characteristic time
tsp. This is the characteristic viscous-damping time (spin

cb d

H0

D

2R

22

11

33

4

55

6

a

Figure 7. (a) Schematic of the Spiral' setup: 1, core; 2, periphery;

3, shallow-water layer; 4, incandescent lamps; 5, red light filter;

6, camera. First modification: D � 28 cm, the `discontinuity' radius is

R � 4 cm; a truncated cone whose generatrix makes an angle of 65� with
the horizontal was used as the core. Second modification: D � 60 cm,

R � 8 cm. The core rotates clockwise as viewed from above. (b ± d) Spiral

density waves generated in the shallow-water layer in the Spiral' setups by

the centrifugal instability due to the velocity jump q � O2=O1. The number

of spiral arms decreases with an increase in the velocity-jump magnitude

(with the decrease in the parameter q). The parameter q decreases from left

to right.
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down time), or the characteristic viscous-settling time (spin up
time). In our experiments [18 ± 20], changes in the mode
number were observed as the rotational velocity O1 was
changed abruptly, i.e., the m1-armed spiral transformed into
an m2-armed spiral corresponding to the new rotational
regime. The settling time of the new stationary regime was
precisely the time tsp. Let us estimate it. To an order of
magnitude, we find from the equation of motion that

qvr
qt
� n

q
qz

�
qvr
qz

�
: �22�

Since vr is z-dependent only within the characteristic interval
�0; d�, we can approximately write out

qvr
qz
� qvr

qz
Y�dÿ z� ;

where z > 0, and Y�dÿ z� is the Heaviside function. The
integration of Eqn (22) with respect to z from 0 to H yields

q
qt
vrH � n

qvr
qz

����d
0

� n
vr
d
:

Themultiplication of the last equality by the density r and the
bottom area S leads us to an equation describing the variation
in the radial momentum Pr � rSHvr:

qPr

qt
� Pr

tsp
; tsp � Hd

n
� H

�nO0�1=2
: �23�

Now we estimate the settling times, e.g., for the mode
m � 2 and for the change in the number of arms due to an
abrupt change in the angular velocity at the periphery by DO.
In the first case �m � 2�, this time will obviously be longer
than �tsp�min � 0:47 s: t � tmin at O � O1 � 18 sÿ1 and
H � 0:2 cm (in the central region of the setup, H > 0:2 cm).
In the second case, for DO � 2 sÿ1, we have tsp � 1:4 s. The
time tin of developing instability proves to be considerably
shorter than these times tsp: tin 5 tsp. The instability time
depends on the velocity spreading in the discontinuity. If this
spreading is determined by the molecular viscosity (a laminar
Ekman layer), then dlam � �n=O1�1=2 � 2:4� 10ÿ2 cm, i.e.,
dlam 5 l, where l is the radial wavelength (l � 6 cm for
m � 2) and g � O1 (O1 � 18 sÿ1 for m � 2), while tin �
1=g � 5� 10ÿ2 s.

The above-presented arguments for a negligibly weak
effect of viscous friction on the excitation of the shear-flow
instability in the Spiral' setups are based on experiments with
colored water, for which n � 0:01 cm2 sÿ1. It is noted in
Ref. [22] that a tenfold increase in the viscosity of the working
solution does not qualitatively modify the spiral pattern. The
spiral pattern disappears only if the increase in the viscosity is
even larger.

A negative answer to the question of the influence of eddy
viscosity on pattern formation in the Spiral' setups was given
in Ref. [23], where the `viscous lifetime' of the structures was
shown to be completely determined by laminar viscosity.

2.2 A proof of the equivalence
between the systems of linearized dynamical equations
for a gaseous galactic disk and for rotating shallow water
in the Spiral' setups [11]
Since ~C depends mainly on ~sg [11], we write down the system
of linearized equations of motion for the gaseous disk of the

Galaxy as follows:

qvr
qt
� O0

qvr
qj
ÿ 2O0vj � ÿ q

qr
�c 2g0 Z� ; �24�

qvj
qt
� O0

qvj
qj
� K 2

2O0
vr � ÿ 1

r

q
qj
�c 2g0 Z� ; �25�

qZ
qt
� O0

qZ
qj
� qvr

qr
� �1� r ln 0 s0� vr

r
� 1

r

qvj
qj
� 0 : �26�

Here, the following notation was introduced:

c 2g0 � c 2s0 ÿ
2pGs0
jkjRg

; c 2s0 �
dp0
ds0

; Z � s
s0
;

�27�

K 2 � 4O 2
0

�
1� r

2

O 00
O0

�
; Rg �

�
1� jkjh

2

�ÿ1
;

the prime denotes the differentiation with respect to r; s is the
surface density; k is the wavevector; h is the half-thickness of
the gaseous disk, and the stationary quantities are marked
with the subscript 0; here, we drop the tildes over the symbols
of the perturbed quantities, retaining them from here on only
for the amplitudes of the perturbed quantities. When writing
down Eqns (24), (25), we used the linearized equation of state

p

s0
� c 2s0 Z : �28�

If we make the substitution

c 2g0 � c 2w0 � gH0 ; Z � H

H0
�29�

in Eqns (24) ± (26), we arrive at the system of linearized
equations of motion of the rotating shallow water [21]. It is
such a system that is used to describe small perturbations in
shallow water for the Spiral' setups.

The above-presented proof indicates that the setup with
rotating shallow water can be used to demonstrate the
dynamical structures typical of gaseous galactic disks. Such
structures are displayed in Figs 7b ± d. The spiral arms rotate
clockwise (their ends being directed backward), i.e., the
spirals are trailing. Nearly all observed spiral arms of
galaxies appear in such a way. The spirals result from a new
hydrodynamic instability that we called centrifugal [18]. It
was discovered for the first time in the Spiral' setups. The
centrifugal instability, like the Kelvin ±Helmholtz instability,
develops provided a velocity jump is present. However, as
shown above, in the case of a supersonic velocity jump, which
is present in galactic disks and in the Spiral' setups, the
Kelvin ±Helmholtz instability is stabilized, and only the
new, centrifugal, instability develops. It emerges if a centrifu-
gal force directed outward arises. In this sense, the physics of
centrifugal instability is similar to the physics of Rayleigh ±
Taylor instability which requires the presence of a gravita-
tional force.

2.3 Analytical solution to the system of Eqns (24) ± (26)
for the case of a tangential discontinuity of the rotational
velocity, the sound speed, and surface density [11]
Since the coefficients of the original system of equations
(24) ± (26) are independent of j and t, we seek the solution
in the form

A�r;j; t� � ~A�r� exp �i�mjÿ ot�� : �30�
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Then we can reduce equations of motion (24), (25) to a single
equation

d

dr
�c 2g0~Z� �

2mO0

rô
c 2g0~Z� �ô2 ÿ K 2�~x ; �31�

and rewrite equation of continuity (26) as

d

dr
�rs0~x� � ÿrs0

�
2
mO0

ô

~x
r
�
�
1ÿm 2

r 2
c 2g0
ô2

�
~Z
�
: �32�

The following notation was used in Eqns (31), (32):

vr � dx
dt
�
�
q
qt
� v0j

r

q
qj

�
x � ÿiôx ; ô � oÿmO0 : �33�

According to observations of the gaseous disk of the Galaxy
(see, e.g., Ref. [24] and references cited therein), an abrupt
decline of the rotational curve of the gaseous component
occurs near a radius of R � 0:7 kpc (or, more accurately, at
the distances of R� 0:4 kpc). The distance R � 0:7 kpc from
the center is remarkable in that it is precisely the location of
the edge of the central gaseous disk whose surface density sg1
is two orders of magnitude larger than the surface density sg2
of the gas for r > R. With further increases in the distance
from the center, the surface density of the gas remains
virtually constant.

In view of the aforesaid, we will assume that the angular
rotational velocity O0�r�, the sound speed cg0�r�, and the
surface density s0�r� of the gas change jumpwise at the
distance r � R:

O0�r� � O1 � const ; s0�r� � s1 � const ;

cg0�r� � cg1 � const at r < R ; �34�
O0�r� � O2 � const ; s0�r� � s2 � const ;

cg0�r� � cg2 � const at r > R :

Integrating Eqns (31) and (32) over the radial layer
�Rÿ e; R� e� and letting then e! 0 yield the following
matching conditions at the discontinuity:

�~Zc 2g0 � RO 2
0
~x�R�0Rÿ0 � 0 ; �~xs0�R�0Rÿ0 � 0 : �35�

Now we reduce the system of two first-order ordinary
differential equations (31) and (32) to a single second-order
ordinary differential equation. The solution of the latter will
contain two arbitrary constants that we will determine from
two matching rules (35). The equation being sought will have
constant coefficients on both sides of the discontinuity, for
r < R and r > R. We will employ the latter fact in obtaining
this equation.

From Eqn (31), we find that

~x � c 2g0
~o2 ÿ K 2

�
d~Z
dr
ÿ 2mO0

rô
~Z
�
: �36�

Next, we substitute the obtained expression for ~x (and the
equation for ~x 0, which can straightforwardly be derived) into
Eqn (32). After simple manipulations, we arrive at the
differential equation for cylindrical functions of the imagin-
ary argument:

~Z 00 � 1

r
~Z 0 ÿ

�
k 2 �m 2

r 2

�
~Z � 0 ; k 2 � 4O 2

0 ÿ ô2

c 2g0
: �37�

The general solution of Eqn (37) can be written down in the
form [25]

~Z � Zm�ikr� � C1Im�kr� � C2Km�kr� :

Since Im�x� ! 1 as x!1, and Km�x� ! 1 as x! 0, we
have the following solutions on the two sides of the
discontinuity:

~Z1 � C1Im�k1r� ; r < R ; �38�
~Z2 � C2Km�k2r� ; r > R ;

where

k 2
1; 2 �

4O 2
1; 2 ÿ �oÿmO1; 2�2

c 2g1; 2
:

We apply the two matching rules (35) [i.e., we match
solutions (38) at r � R] to obtain the set of two homogeneous
transcendental equations in which the two coefficients of
solutions (38) are unknown. The requirement for the solution
of this system of homogeneous equations being nontrivial is
equivalent to the requirement for the determinant of this
system vanishing. As a result, we obtain the following
dispersion equation (see the Appendix):

k 2
1 a2 ÿ k 2

2 a1Qm 2 �M 2

R 2
a1a2�1ÿ q 2� � 0 : �39�

Here, we employed the following notation (with the primes
designating the differentiationwith respect to the argument of
the cylindrical function):

a1 � 2m

xÿm
ÿ k1R

I 0m�k1R�
Im�k1R� ;

a2 � 2mq

xÿmq
ÿ k2R

K 0m�k2R�
Km�k2R� ; �40�

M � RO1

cg1
; q � O2

O1
; Q � s1

s2
; m � cg2

cg1
; x � o

O1
:

In terms of the new notation, it follows that

k1 �M

R

�
4ÿ �xÿm�2�1=2 ;

�41�
k2 � M

mR

�
4q 2 ÿ �xÿmq�2�1=2 :

The parameter M has the meaning of the Mach number in
the neighborhood of the discontinuity (based on the `inner'
velocity, in the region with r � Rÿ 0), while q, Qÿ1, and m
characterize the ratios of the angular velocities, surface
densities, and dispersions of the gas velocity in the outer
region �r > R� to the corresponding values in the inner
region �r < R�. Dispersion relation (39) goes over into the
dispersion relation of Ref. [26] at Q � m � 1, because the
surface density s0 and the dispersion of velocities cg0 were
assumed in Ref. [26] to be constant over the entire disk
radius and the self-gravitation effects were neglected. As we
will show below (see also Ref. [27]), taking into account the
jumps in the surface density and in the gas velocity
dispersion, along with the jump in the angular velocity,
results in finding new physical effects.
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2.4 Gradient instabilities
at small Mach numbers, M5 1 [11]
It can be seen from formulas (40) that k1R �M5 1 and
k2R �Mq=m. However, for sufficiently small Mach numbers
M5 m=q and for k2R5 1, the expansion of the cylindrical
functions Im�k1R� and Km�k2R� in terms of the small
argument:

I 0m�k1R�
Im�k1R� �

m

k1R
;

K 0m�k2R�
Km�k2R� � ÿ

m

k2R
;

yields

a1 � ÿm
�
1ÿ 2O1

ô1

�
; a2 � m

�
1� 2O2

ô2

�
;

ô1; 2 � oÿmO1; 2 :

Upon substitution of a1 and a2 into dispersion relation (39),
the latter assumes the form

�1�Q�x 2 ÿ 2
��mÿ 1� � �m� 1�qQ�x

�m
��mÿ 1� � q 2Q�m� 1�� � 0 ; �42�

with a solution

x1; 2 � �1�Q�ÿ1
n
m�1� qQ� � �qQÿ 1��

� i
�
m 2Q�1ÿ q�2 ÿ �1ÿ qQ�2 ÿm�Qÿ 1��1� q 2Q��1=2o :

�43�

It is clear why the parameter m does not appear in dispersion
equation (42), where we restricted ourselves to the zeroth
order in the expansion in terms of the parameter M. The
approximationM5 1 corresponds to cg !1, irrespective of
the factor by which one `infinity' `exceeds' the other. The
inclusion of the next terms of the expansion inM gives rise to
the appearance of m 2 in the equation; this, however, goes
beyond the considered approximation.

Naturally, at Q � 1, formula (43) yields the solution
obtained in Ref. [26]:

x1; 2 � 1

2

n
m�1� q� � �qÿ 1� � i

��m 2 ÿ 1��1ÿ q�2�1=2o ;
Q � 1 :

�44�

As can be seen from formula (44), the instability takes place at
any q 6� 1. This is the Kelvin ±Helmholtz instability (KHI); it
develops irrespective of which region Ð outer or inner Ð
rotates more rapidly.

Now consider the case of a solid body rotation of the
whole system �q � 1� with an arbitrary density gradient
Q 6� 1. According to Eqn (43), one finds

x1; 2 � �1�Q�ÿ1
n
m�1�Q� � �Qÿ 1�

� i
�ÿ�1ÿQ�2 �m�1ÿQ 2��1=2o ; q � 1 : �45�

It follows from Eqn (45) that, if

Q < 1 ; �46�
the flute instability (FI) develops, since the outer (denser)
layer exerts pressure on the inner (less dense) layer.

Thus, the solution (43) for q 6� 1 andQ < 1 describes two
branches of instability, the KHI and FI. One instability or

another can be heightened or weakened by varying the
parameters q and Q. For example, the FI can be quenched if
the centrifugal force counteracts the gravitational force, i.e., a
system with q < 1 is prepared. In a similar manner, the KHI
can be quenched by the negative density gradient, i.e., by
preparing the system with Q > 1. An example of such
quenching is given below.

Strictly speaking, the KHI and FI cannot be considered
separately in the general case. Solution (43) describes the
excitation of the shear ± flute instability (SFI) or the gradient
instability (GI) forM5 1.

The case ofQ4 1, q5 1.Let us consider the quenching of
the KHI �q 6� 1� in the presence of a negative density gradient
(i.e., the jump) for Q > 1. To see considerable changes, we
assume thatQ4 1. To be specific, we choose the parameters q
andQ to be typical of our Galaxy: q � 0:1, andQ � 100. The
results obtained will obviously apply neither to the Galaxy,
whereM4 1, nor to other analogous spiral galaxies (I am not
aware of the existence of such galaxies withM5 1).

Thus, we set

q5 1 ; Q4 1 ; qQ4 1 ; q 2Q � 1 : �47�

From Eqn (43), in view of the assumptions made in Eqn (47),
we find

x1; 2 � q�m� 1� � iQÿ1=2
�
m 2�1ÿ q�2 ÿ �mÿ 1�q 2Qÿm

�1=2
;

�48�

so that the instability condition is written down as

m 2�1ÿ q�2 > �m� 1�q 2Q�m �49�

or, for q5 1, as

q 2Q <
mÿ 1

m� 1
m : �50�

According to inequality (50), instability is not possible at
m � 0; 1; instability with m � 2 develops on condition that
q 2Q < 2=3, and so forth.

Thus, a large negative density gradient stabilizes the
system. From formula (48), we find the azimuthal phase
velocity of the disturbance wave:

Oph � o
m
� m� 1

m
O2 ; Q4 1 ; Qq4 1 : �51�

For comparison, we write out the same quantity atQ � 1 [26]:

Oph � O1 � O2

2
ÿ O1 ÿ O2

2m
; Q � 1 : �52�

The difference in the phase velocities is not significant at
small m (and q5 1); for example, at m � 2, one has

�Oph�Q4 1

�Oph�Q�1
� aph � 6q ;

which amounts to aph � 0:6 at q � 0:1.
However, as known from theoretical [26] and experimen-

tal [18 ± 20] studies, if M5 1, modes with large m4 1 are
generated. For m4 1, the difference in the phase velocities is
more significant:

�Oph�Q4 1

�Oph�Q�1
� aph � 2q :
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If q � 0:1, the difference in the phase velocities reaches 5, i.e.,
aph � 0:2. Thus, the density wave with Q4 1 (and q5 1)
rotates with a smaller azimuthal velocity than does the same
wave with Q � 1 (and q5 1). Accordingly, the corotation
radius in the case of Q4 1 is larger than that at Q � 1.

2.5 Gradient instabilities
at large Mach numbers, M4 1 [11]
We represent x as x1 � iMx2 to obtain from Eqn (41):

k1 �M 2x2
R
ÿ i

M

R
�x1 ÿm� ; �53�

k2 �M 2x2
mR

ÿ i
M

mR
�x1 ÿmq� : �54�

Substituting k1 and k2 into the dispersion equation (39),
we obtain

x1 � m�1�Qmq�
1�Qm

; x2 � 1ÿ q 2

1�Qm
; �55�

or

x � �1�Qm�ÿ1�m�1�Qmq� � iM�1ÿ q 2�� : �56�

In the particular case ofQ � m � 1, expression (56) goes over
into solution [26]

x � 1

2

�
m�1� q� � iM�1ÿ q 2�� ; Q � m � 1 ; �57�

which differs substantially from solution (44) in that it
indicates the instability only for q < 1, while the latter
describes the instability at any q 6� 1. Therefore, for M4 1,
the instability develops only if the inner part of the system,
r < R, rotates with a higher angular velocity than does the
outer part. We designated this instability as the centrifugal
instability (CI) [18 ± 20]. The physics of this instability is
similar to the mechanism of developing flute instability and
substantially differs from the physics of the KHI. The
stabilization of the KHI for two-dimensional disturbances
with the proviso thatM > 2

���
2
p

was proved in Ref. [8].
In the particular case of the solid body rotation of the

whole system �q � 1�, we find from formula (56) that

x � �1�Qm�ÿ1 m�1�Qm� ; q � 1 : �58�

Now let us determine the azimuthal phase velocity of the
disturbances in the general case described by the solution

Oph � Reo
m
� 1�Qmq

1�Qm
O1 : �59�

Note that in the particular case of Q � m � 1 [26] one has

Oph � Reo
m
� 1� q

2
O1 : �60�

In the Galaxy, it is believed that q � 0:1, Q � 100, and
m � 0:1, 4 i.e., we obtain from formula (59) the following

result:

�Oph�Gal �
0:36O1

2
: �61�

This means that the corotation radius is considerably larger
than that predicted by the theory for Q � 1 [26],

�Oph�Gal �
O1

2
; Q � 1 : �62�

The velocities Oph given by formulas (61) and (62) differ
by a factor of about three. The value of Oph measured in the
experiments [18 ± 20] was several times smaller thanOph given
by formula (60) [26]. Estimates show that the Oph values
calculated according to formula (59) are similar to those
measured in the experiments [18 ± 20]. TheOph value obtained
from formula (61) for the Galaxy agrees better with modern
estimates [28] of the quantity Oph than the value taken from
formula (62).

Now we determine the shape of the spiral pattern
generated by the CI beyond the discontinuity radius (in the
region with r > R). For the perturbed density s in the region
with r > R, we find from formulas (38), taking into account
formula (54), that

s / Km�k2r� exp �imj�

/ r 1=2 exp

�
ÿO 2

1Rr

cg1cg2

1ÿ q 2

1�Qm
� im

�
j� O1r

cg2

1ÿ q

1�Qm

��
:

�63�

Two conclusions can be extracted from solution (63):
(1) the necessary condition for the finiteness of the

solution coincides with the condition of development of the
CI forM4 1;

(2) the density waves appear as trailing spirals only in the
systemwith the angular rotational velocity decreasingwith an
increase in radius, i.e., for q < 1. The last condition is
necessary for the development of the CI in the system.

The radial wavelength can easily be determined from
relationship (63) to be

lr � 2p
kr
� 2p

cg2
O1m

1�Qm
1ÿ q

: �64�

3. Appendix

The substitution of ~Z from formulas (38) into Eqn (36) with
the use of the notation introduced in formulas (40) yields the
following expressions for ~x1 and ~x2 that refer to the regions
with r < R and r > R, respectively:

~x1 � C1
a1Im
k 2
1R

; r < R ; ~x2 � C2
a2Km

k 2
2R

; r > R : �65�

Based on the second matching rule (35), we write down the
relationship

C1
s1a1
k 2
1

Im � C2
s2a2
k 2
2

Km : �66�

From the first matching rule (35), we find

~Z1 �
M 2

R
~x1 � m 2~Z2 �

M 2q 2

R
~x2 �67�

4 In theGalaxy, at r � R (i.e., at r � 0:7 kpc), the quantities c 2g0 � c 2s0 and m
are completely determined by the equation of state. For a polytropic

model with � p=sgpl � � const m � Q �1ÿgpl�=2 and at gpl � 2, we have

m � Qÿ1=2. This means that m � 0:1 (at Q � 100); in the molecular disk,

this corresponds to a turbulent velocity of cs; turb � 80 km sÿ1. If, however,
we substitute the non-self-consistent value of �cs; turb�min � 20 km sÿ1 into
formula (59), we will obtain in formula (61) that Oph � 0:26O1=2 instead

of 0:36O1=2. The difference is obviously insignificant.
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or, using relationships (38) and (65), we arrive at�
1�M 2 a1

k 2
1R

2

�
ImC1 �

�
m 2 �M 2q 2 a2

k 2
2R

2

�
KmC2 : �68�

The system of homogeneous transcendental equations (66)
and (68) has a nontrivial solution for the unknown functions
C1 and C2 determined from the condition of the zero
determinant of this system. The last condition comes to be
equivalent to the dispersion equation (39) that is being
sought.

4. Theoretical prediction and experimental
confirmation of superreflection instability
in the rotating shallow water setup

4.1 Historical background
Theoretical studies of the problem of reflection of a mono-
chromatic acoustic wave from a plane±parallel tangential
discontinuity of velocity, accompanied by wave amplifica-
tion, were pioneered by Miles [29] and Ribner [30]. It was
found that, if the velocity of themovingmedium is sufficiently
high, the wave incident normally upon the discontinuity from
themotionless medium can be reflected with amplification. In
this process, the amplitude of the reflected wave becomes
larger than the amplitude of the incident wave. This is due to
the fact that a negative-energy wave (or, more precisely, a
quasienergy wave [31]) goes to the moving medium, while a
positive-energy wave goes to the motionless medium. This
wave, emitted to the motionless medium, replenishes its
energy from the moving medium [32]. For the development
of the instability, an acoustic feedback must be added Ð for
example, a wall forcing the wave reflected from the tangential
discontinuity of velocity to return to the discontinuity, being
amplified again.

Another amplification mechanism for the reflected wave
is the resonant amplification of the acoustic wave that occurs
if the tangential discontinuity of velocity is slightly smoothed
out to a thin, finite-width shear layer [33]. In this case, a thin
critical layer appears within the shear region, and the energy
of the acoustic wave grows in this layer. Therefore, an
additional branch of unstable oscillations can arise due to
the interaction with resonance particles [32].

Thus, if a reflecting wall is present, a superreflection
instability can develop. However, the Kelvin ±Helmholtz
instability (of the tangential discontinuity) can simulta-
neously be excited in the same system with a plane ± parallel
tangential discontinuity of velocity; similarly, a centrifugal
instability can also occur in a system with a cylindrical
tangential discontinuity of velocity (in a two-dimensional
axisymmetric flow). As a rule, the last two hydrodynamic
instability mechanisms are more powerful than the super-
reflection instability. Therefore, the superreflection instabil-
ity can be revealed only in the absence of these stronger
instabilities.

The hydrodynamic medium in which the superreflection
instability was investigated constitutes a layer of rotating
shallow water with a free surface. It is known [7] that the
dynamics of such a medium can be described by two-
dimensional equations equivalent to the corresponding
equations of motion of a two-dimensional compressible
medium. In this case, wave perturbations of the layer depth
(surface gravity waves) in shallow water correspond to wave

perturbations of the surface density in a two-dimensional
compressible medium, and the role of the speed of sound in
the shallow-water case is played by the propagation velocity
of the gravity waves. 5

A theoretical stabilization criterion for the Kelvin ±
Helmholtz instability of a moving two-dimensional compres-
sible fluid with plane ± parallel tangential discontinuity of
velocity was obtained for the first time by Landau [8].
According to this criterion, if only a velocity jump is
present, there is no tangential-discontinuity instability,
provided the Mach number obeys the inequality

M5 2
���
2
p

: �69�

Here, M � jDV j=cs, jDV j is the magnitude of the velocity
jump in the flow, and cs is the sound speed in the gas. This
criterion was experimentally verified (to within the experi-
mental errors) for layers of rotating shallow water [34].

Another hydrodynamic instability should be excited in a
moving two-dimensional compressible fluid with cylindrical
tangential discontinuity of velocity, with the inner part of
fluid rotating more rapidly than the outer one at a sufficiently
high Mach number [with condition (69) satisfied]. This
instability, which came to be known as centrifugal instability
[18], was experimentally investigated using the Spiral' setup
with rotating shallow water [15, 18].

In an opposite case, namely

O1 < O2 ; �70�

where O1 and O2 are the angular rotational velocities of the
inner and outer parts of the shallow water, respectively, and if
condition (69) is satisfied, both instabilities (i.e., the tangen-
tial discontinuity instability and the centrifugal instability)
are quenched.

Some remarks are in order here. On the one hand,
theoretical and numerical analyses are limited in this case to
the linear approximation. On the other hand, wewould like to
apply our results to the nonlinear structures actually
generated in the experimental setup. In which cases is this
admissible? In general, the amplitude of the structures [wave
patterns formed by the perturbations of the shallow-water-
layer depth h�r;j; t� 6] that we predict for the experiment is
not small: jhj � O�H0�, whereH0 is the unperturbed depth of
the layer; however, the horizontal size of these structures is
large, i.e., jk?hj5 1 (where jk?hj � jH?hj), and the variations
in the surface height are assumed to be fairly smooth. For the
applicability of the linearized model, the condition jk?hj5 1
is not sufficient, and we assume in addition that jhj5H0. For
this reason, we conjecture that, if a linear unstable perturba-
tion mode is detected (corresponding, at a given set of
unperturbed parameters, to axisymmetric, steadily rotating
shallow water) and its growth rate is considerably larger than
that of other possible unstable modes, it is precisely this mode
that will be generated in the experimental setup at the given

5 Two-dimensional compressible media should be distinguished from

three-dimensional compressible media. Shallow water belongs to the first

class. As is known, water is not compressible in the three-dimensional case,

and its continuity equation reduces to div v � 0. At the same time, shallow

water is described by the two-dimensional continuity equation for a

compressible fluid: qs=qt� div �sv� � 0.
6 We use a cylindrical coordinate system r;j; z, which is natural in this

case; the unperturbed flow is assumed to be axisymmetric.
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parameters. The results of previous theoretical considerations
and laboratory experiments concerning the Kelvin ±Helm-
holtz and the centrifugal instabilities in the system at hand
confirmed that, for sufficiently unstable modes, the spiral ±
vortex structures calculated using a linear model agree well
with the nonlinear stationary structures observed at the
experimental setup [18 ± 20, 15].

The centrifugal instability develops at any large Mach
number provided that the angular rotational velocity O1 of
the central (inner with respect to the velocity jump) part
exceeds the angular rotational velocity O2 at the periphery,
i.e., O1=O2 > 1.

Such velocity jumps (Fig. 8a) are observed in the disks of
half the spiral galaxies [35 ± 38].

The physics of centrifugal instability is similar to that of
Rayleigh ±Taylor instability typical of the situation where a
denser fluid overlies another fluid in a gravitational field. In
the case of centrifugal instability, the centrifugal force in the
central part of the rotating system is larger than at the
periphery; similarly, in Rayleigh ±Taylor instability, the
gravitational force acting on the denser fluid is larger than
that acting on the less dense fluid.

The centrifugal instability generates trailing spiral waves
rotating so that the spiral ends are directed backward [18 ±
20]. Therefore, these waves have a good `aerodynamic' shape
(Fig. 9a). The larger the velocity jumpDO, the less the number
m of trailing spiral waves generated by the centrifugal
instability [18 ± 20].

4.2 Theoretical prediction of superreflection instability
in rotating shallow water. A schematic of the setup [39, 40]
The shear layer is a source of hydrodynamic instabilities.
Among them, the Kelvin ±Helmholtz and the centrifugal
instability are the strongest ones. However, they can be
quenched if the parameters of the setup are properly chosen.

For simplicity, we will mainly consider a flow with only
one discontinuity in the rotation curve O0�r�, assuming

O0�r� � O1 for r < R, and O0�r� � O2 for r > R (Fig. 8b).
Let us set

04 �q � O1

O2
< 1 : �71�

In this case, the centrifugal instability will be quenched.
In a real experiment, because of viscous spreading, a

transition layer with a characteristic width � 2H0, where H0

is the layer depth, forms near the velocity jump. This depth is
assumed to be small compared to all characteristic scales of
the problem. Thus, to comprehend the situation on a
qualitative level, it is sufficient to analyze the sharp disconti-
nuity in the rotation curve (we will discuss the effects of the
finite width of the velocity jump in the next section).

The velocity jump at the discontinuity is characterized by
the Mach number

M � R
O2 ÿ O1

cs0
; �72�

where cs0 is the sound speed. By analogy with a plane velocity
jump, the Kelvin ±Helmholtz instability in rotating shallow
water is quenched for M5Mcr. Our numerical analysis
shows that, in contrast to the plane shear layer where
Mcr � 2

���
2
p

, we have 2 <Mcr < 2
���
2
p

for a cylindrical tangen-
tial discontinuity. In this case, the exact stability boundary
varies slightly with a number m of the azimuthal mode. In
what follows, we assume that the Mach number is large
enough to quench the Kelvin ±Helmholtz instability.

The dispersion relation for the instability analysis of the
shear layer in shallow water with a free surface can be
obtained from the linearized hydrodynamic equations
describing an inviscid medium [11]:

qvr
qt
� O0

q
qj

vr ÿ 2O0vj � ÿ q
qr
�c 2s0Z� ;

qvj
qt
� O0

q
qj

vj � K 2

2O0
vr � ÿ 1

r

q
qj
�c 2s0Z� ; �73�

qZ
qt
� 1

rH0

q
qr
�rH0vr� � 1

r

q
qj
�ZO0r� vj� � 0 ;

where vr and vj are the radial and azimuthal velocities,
respectively; H0 is the depth of the shallow water (assumed
to be constant); Z � h=H0 is the normalized perturbation of
the depth;O0�r� is the angular rotational velocity, and K is the
epicyclic frequency: K�r� � �4O 2

0 � r dO 2
0 =dr�1=2. The role of

the sound speed cs0 is played by the propagation velocity of
long gravitational waves: cs0 � �gH0�1=2, where g is the
gravitational acceleration. We will seek the general solution
in the form

f �r;j; t� � Re

�X
m

�
f �r� exp �i�mjÿ ot�� do� ; �74�

where o � Reo� i Imo. In the framework of the linear
approximation (since we are interested in studying `linear'
instability), we can use the superposition principle, consider-
ing separately an mth �m5 1� harmonic.

In the case of an arbitrary, continuous rotation curve and
an arbitrary profile of the sound speed, the system of
differential equations (73) can be reduced to the following

O
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O2

R r0

O

O2

O1

R r0

a b

Figure 8. The rotation curve in the cases with (a) and without (b) a

centrifugal instability.

b
OO

a

Figure 9. Schematic of trailing (a) and leading (b) spiral waves. The arrows

indicate the directions of rotation of the shallow water.
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equations [11]

d

dr
�c 2s0Z� �

2mO
rô

c 2s0Zÿ �K 2 ÿ ô2�x ;
�75�

d

dr
�rH0x� � ÿrH0

��
1ÿm 2c 2s0

r 2ô2

�
Z� 2mO0

rô
x
�

with corresponding boundary conditions. Here, x�r� is the
perturbed radial Lagrangian displacement defined according
to the equality vr � ÿiô�r�x�r�, with ô � oÿmO0.

In the case of a sharp discontinuity in the rotation curve
(Fig. 8b), the relative perturbations of the shallow water
depth on both sides of the discontinuity can be represented
by Bessel functions:

Z�r� � C1H
�1�
m �kr� � C2H

�2�
m �kr� ; �76�

where H
�1; 2�
m are the Hankel functions of the first and second

kinds. The analog of the radial wavenumber k depends on the
perturbation frequency o:

k 2 � ô 2 ÿ 4O 2
0

c 2s0
: �77�

Since the rotation curve represents a piecewise constant
function, the wavenumbers on both sides of the jump are
also constant (we denote them as k1 and k2 for the inner and
the outer regions, respectively). For simplicity, we assume
that the inner wall is located at Ra � 0, and the outer wall is
directed to infinity: Rb !1.

From the boundary conditions and the matching condi-
tions at the tangential discontinuity, we can obtain the
dispersion equation [11]

a1

�
�xÿ 1�2 ÿ 4

m 2

�
ÿ a2

�
�xÿ �q�2 ÿ 4�q 2

m 2

�
� a1a2

�q 2 ÿ 1

m 2
� 0 ;

�78�
where

a1 � 2�q

xÿ �q
ÿ k1R

J 0m�k1R�
Jm�k1R� ; a2 � 2

xÿ 1
ÿ k2R

H
0 �1�
m �k2R�

H
�1�
m �k2R�

:

Here, J 0m�z� and H
0 �1�
m �z� are the derivatives of the functions

Jm�z� and H
�1�
m �z� with respect to r, and the dimensionless

eigenfrequency x � o=�mO2� was introduced.
The eigenfrequencies of interest are solutions of this

dispersion relation, and the wavenumbers k1 and k2 can be
found from these solutions.

If the real part of the wavenumber is much larger than the
imaginary part, eigenfunction (76) describes a solution in the
form of a wave. In the opposite case, the eigenfunction
increases or decreases exponentially.

It can be found from Eqn (77) that k1 is real provided that

Re x > �q

�
1� 2

m

�
; �79�

while k2 is real provided that

Re x < 1ÿ 2

m
: �80�

These considerations suggest a qualitative classification of
modes according to their behavior in the inner and outer (with

respect to the velocity jump) regions.Wewill distinguish three
different cases depending on whether k1 and k2 are real or
imaginary.

(1) Type I modes: k1 and k2 are real. In this case, the
solutions on both sides of theO0 jump are of awave character.
This is possible for azimuthal wavenumbers

m >
2

1ÿRe x
: �81�

In view of the fact that �q < Re x < 1 for unstable modes,
inequality (81) implies that the minimum number of arms in
unstable wave patterns of this type is m � 3.

Consider the case of �q � 0. The wave in the inner part
propagates between the left-hand wall (placed at the origin
where r � 0) and the O0 jump. Under certain conditions, this
wave reflects from the discontinuity with an amplitude larger
than the amplitude of the incident wave (superreflection), in
complete analogy with the Miles ±Ribner effect (Fig. 10).

If feedback is applied, this gives rise to the unstable
solutions reported by Kolykhalov [41] for a planar geome-
try. The number of unstable modes can be large. The real
parts of the eigenfrequencies can be determined from the
equation

J 0m�k1R� � 0 : �82�

Since k1R has an order of magnitude of the large parameter
Mm, the number ofmodes of this type is of an order ofMm=p.

If x
�0�
n are the roots of equation (82), the eigenfrequencies

can be described by the approximate formula

xn

x
�0�
n

� 1ÿ 1

M 2
� i

m

M 3

�ÿ
1ÿ x �0�n

�2 ÿ 4

m 2

�1=2
: �83�

(2) Type II modes: k1 is real, and k2 is imaginary. A wave-
type solution exists in the inner region, and an exponential
solution in the outer region. This occurs if Re x > 1ÿ 2=m.
For these frequencies, however, the inner wave cannot be
amplified at the discontinuity, as follows from Fig. 10.

Nevertheless, numerical computations indicate that one
mode of this type exists for anym5 1. As theMach number is
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Figure 10. Logarithm of the magnitude of the reflection coefficient,

ln jA�x�j, as a function of Rex at m � 8, �q � 0, and various Mach

numbers M. If M � 4:2, the maxima of the curves decrease with M at

any azimuthal mode number m. Note that in the case of a cylindrical

tangential discontinuity the amplification is already possible for M > 1

(while for a plane±parallel discontinuity, only forM > 2).
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varied gradually, this mode becomes alternately neutral and
unstable.

The real part of the frequency for M4m4 1 is approxi-
mately equal to

x0 � 1ÿ 1

M
� 2;25

M 2
� . . . : �84�

Themaximumof the imaginary frequency is of an order of
the following magnitude:

max Im x � 1ÿ x0
M

�������
2x0

p
� 1

M 2

�������
2x0

p
: �85�

(3) Type III modes: k1 is imaginary, and k2 is real. An
exponential solution exists in the inner region, and a wave-
type solution in the outer region. This situation is possible
only if �q > 0 and Re x < �q�1� 2=m�.

It can be shown analytically that one mode of this type
exists for azimuthal numbers m5 3. The approximate
equations for the real and the imaginary parts of x are fairly
awkward, and we do not present them here in an explicit
form. The real part is close to the limit placed at x0 �
�q�1� 2=m�. The imaginary part in the limiting case of
M4m4 1 is of order

Im x � �q
2

M 3

���������������
m 2 ÿ 4
p

: �86�

Unstable modes of this type are of an emissive nature, i.e.,
they grow due to the emission of negative energy to infinity.

Analytical and numerical calculations for moderate M
and m values

2:2 <M < 6 ; m < 10 ; �87�

indicate that the growth rates of the type-I and type-II modes
are comparable, while the growth rates of the type-III modes
are much smaller. For this reason, type-III modes could
hardly be revealed in experiments. As for the first two types,
their growth rates will bemaximum if jO2 ÿ O1j is at the most,
i.e., if �q � O1=O2 � 0. Thus, from here on, we will consider
the case of O1 � 0.

Taking into account the presence of the outer boundary of
the system at r � Rb modifies the dispersion equation (78),
and its numerical solution indicates that, at sufficiently large
Mach numbers, unstable solutions (corresponding to the
superreflection instability) can emerge for any azimuthal
mode with m5 1. At any given m, these solutions corre-
spond to either type I or type II.

A typical behavior of the unstable roots that refer to the
superreflection instability with varying Mach number, at a
given m, is shown in Fig. 11. The letter A labels the solutions
corresponding to type-II modes, and the letter B labels the
most unstable solutions corresponding to type-I modes (with
a nearly exponential damping of the amplitude in the inner
region, from the O0 jump to the center). The subscripts on A
and B specify the number of maxima of the radial function
Z�r� in the wave zone (forA, in the inner part, and for B in the
outer part). This means, in particular, that the unstable
solution A2 is a type-II mode with two nodes along the spiral
arm in the inner part.

The dependence shown in Fig. 11 reveals a resonant
behavior of unstable eigenfrequencies corresponding to the
superreflection instability. For this reason, variousmodes can
be observed in an experiment as the Mach number is varied.

4.3 A scheme of experiment on the laboratory modeling
of superreflection instability
Consider a realistic model of the rotating shear layer. The
parameters of this model should be carefully adjusted so as to
satisfy certain physical requirements and maximize the
growth rate of the superreflection instability, which should
dominate over viscous damping and dispersive spreading. In
this case, the optimal parameters could be used in designing
the experimental setup for studies of the superreflection
instability.

We suggest the geometry of the experimental setup shown
in Fig. 12. It consists of two parts, one being placed inside the
other. The inner part is a motionless horizontal disk of radius
Rin. The outer part is a conical surface of inner radiusRin and
outer radiusRout. In the experiment considered, the lengths of
the waves generated on the shallow-water surface should
exceed by several times the capillary wavelength for water
(1.73 cm) in order for surface tension effects to be negligible.

While the outer part is rotating, a small amount of water is
poured into the container so that the fluid forms a thin layer
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Figure 11. The Mach-number dependence of the dimensionless eigenfre-

quencies at m � 5 as obtained from the numerical solution of Eqn (78)

modified for the case where inner and outer rigid walls at radii of 0:04R
and 1:7R are introduced into the system: (a) normalized real part of the

frequency, i.e., the angular phase velocity of the generated spiral structure,
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disturbances: Aj, type-II unstable mode; j, the number of nodes in the
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Figure 12. The geometry of the experiment.
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covering the surfaces of both parts of the bottom. The depth
of the water layer is a fewmillimeters. It must be several times
larger than the depth of the Ekman layer [21] but sufficiently
small to keep the shallow water approximation applicable [7].

The bottom profile of the outer part should be chosen so
that the shallow water depth is as close to uniformity as
possible. In reality, the undisturbed free surface for r > R is
nearly paraboloidal. However, the shape of the paraboloid
depends on the angular velocity of the outer part. Therefore,
the constancy condition can be strictly satisfied for the
shallow water depth only at a certain value of the angular
velocity. If the velocity jump is fixed, theMach number can be
changed only by varying the shallow water depth. However,
this technique is less convenient than alteration of the
rotational velocity. Therefore, we suggest a constant inclina-
tion of the outer part of the bottom �a0 � 15�� at which the
water depth can be considered nearly constant in the Mach
number range 2:2 <M < 6:0.

The velocity shear layer in the proposed experimental
setup is not infinitely narrow. Therefore, the effect of the
velocity jump smoothing out on the generation mechanism of
unstable modes must be considered. Thus, in addition to the
sharp discontinuity, we analyzed a small viscous spreading of
the jump:

O�r� � O
2

�
1� tanh

rÿ R

L

�
; �88�

where L is the width of the tangential discontinuity smooth-
ing, L4H0.

Such a dynamical system can be analyzed numerically.
Instead of solving the dispersion relation, an eigenvalue
problem should be solved for system (75) with corresponding
boundary conditions.

The basic result of these computations lies in the fact that
the weak smoothing of the above-considered tangential
discontinuity reduces the growth rates of the unstable
solutions, i.e., the superreflection instability weakens. How-
ever, the growth rates still remain large enough for the
superreflection instability being manifest in the experiment.
Given the Mach number, modes differing in their type and
azimuthal number can have closely spaced growth rates.
Nevertheless, as the Mach number is increased, a monotonic

decrease in the number m of arms of the most unstable mode
can be observed (if the increase in the Mach number is
achieved by increasing the angular rotational velocity O at
the periphery).

The wave patterns obtained in our numerical simulations
for the rotation curve given by formula (88) are demonstrated
in Figs 13 ± 15. In all cases, we put L � H0=2. The rotational
direction of the patterns and the periphery is counterclock-
wise.

Figure 13 displays two patterns with five arms that can
form as superreflection instability develops at a Mach
number ofM � 2:7.

The three- and four-armed patterns of unstable modes
that can develop due to superreflection instability atM � 2:8
are shown in Fig. 14.

For comparison, the patterns of three-armed unstable
Kelvin ±Helmholtz and superreflection modes are presented
in Fig. 15.

Thus, our investigation revealed that the superreflection
instability generates structures with wave patterns of the types
illustrated in Figs 13b, 14b, and 15b. These large-scale
structures are leading spirals (Fig. 9b) generated by the
region of the smoothed rotational velocity jump.

For a fixed azimuthal harmonic number m, the Mach
number dependences of the growth rates of two basic (type-I
and type-II) families of unstable superreflection roots are of a
resonant nature (see Fig. 11).

Since the growth rate maxima sharply decrease with an
increase in theMach number, the range recommended for the
experimental investigation of the superreflection instability is
2:2 <M < 4:5. In view of the velocity jump smoothing out to
halfwidths of L � H0=2, the small scale structures �m0 8�
turn out to be stabilized. As the Mach number is increased in
this range, mode restructuring (according to their maximum
increments) from m � 6; 7 via �mÿ 1�; �mÿ 2�; . . . ; up to
m � 3; 4 can be observed.

The wave patterns formed with the development of the
superreflection instability differ from those generated by the
Kelvin ±Helmholtz instability (Fig. 15a). The latter are
virtually radial structures that damp monotonically on both
sides of the velocity discontinuity.

In addition, the wave patterns excited by the super-
reflection instability differ from those patterns that are set
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Figure 13. Unstable five-armed type-I modes B1 (a) and type-II modes A1 (b) obtained by numerically solving the eigenvalue problem (75). The Mach

number isM � 2:7.
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by centrifugal instability. The latter generates trailing
(Fig. 9a), tightly twisted spirals localized near the velocity
jump. The centrifugal mechanism can be triggered only if the
radial decrease in the angular velocity of rotation is
sufficiently rapid (more rapid than by the � rÿ2 law near the
jump).

4.4 Experimental discovery of superreflection instability
in the rotating shallow water setup [42]
As described above, a smooth layer with a free surface
overlies a differentially rotating bottom. The original equa-
tions of two-dimensional hydrodynamics, describing the
evolution of the surface layer of the fluid, are presented in a
monograph by Pedlosky [21]. The sound speed in these
equations corresponds to the quantity �gH�1=2, where g is
the free fall acceleration, andH is the depth of the fluid layer.
The angular velocity of rotation increases as the radius
increases, thus quenching the strong centrifugal instability
[18]. Another mechanism that could prevent carrying out the
experiment is the instability of the tangential discontinuity of
velocity. Virtually, the latter cannot develop in a supersonic
regime, where precisely the superreflection instability is

possible. If the condition O2 > O1 (where O1 and O2 are the
angular velocities of rotation in the central and peripheral
parts, respectively) is satisfied for the setup, the competing
centrifugal instability cannot develop either [18]. At the same
time, this condition does not prevent the development of the
superreflection instability.

Our experiments were carried out using the setup shown in
Fig. 16. A thin layer of fluid covered the bottomof a container
that resembled a frying pan. The outer part of the bottom
rotating at the angular velocity O0 was conical (the angle
being 15�). The inner part of the bottom was motionless, so
that O0 � 0. The mechanical interaction of the fluid with the
bottom was ensured by the rotational forces with a sharp
velocity jump in the zone between the corresponding parts of
the layer Ð the outer `periphery' with an outer diameter of
D � 41 cm, and the inner `core'.

The setup was equipped with a black-and-white video
camera. To record the field of the layer depth perturbations,
we used the optical densitometry method which works well if
the bottom is white [15, 43]. The fluid was simply green-
colored water, so that the thickening of the layer, as viewed
through a red light filter, appeared darker than the regions of
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Figure 15.Unstable three-armed Kelvin ±Helmholtz modes for a Mach numberM � 2:0 (a) and superreflection �A2� type-II modes for a Mach number
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smaller surface densities. The relative perturbations in the
experiments were less than 20%.

The experiment was started with a stationary regime in
which the fluid layer completely covered the bottom and was
made as thin as possible. The core remainedmotionless, while
the periphery rotated as a solid body.We decreased theMach
number M � O0R0=�gH�1=2 very slowly, reducing the rota-
tional velocity O0 or adding fresh fluid to the container and
thus increasing the layer thickness H. (The quantity H was
measured near the center of the core.) At a certain
M0 �M�R0�, the layer thickness became perturbed in the
circular zone in the core, which is adjacent to the rotating
periphery. The perturbations emerged at the periphery in the

form of nearly radial `spokes' varying in their length and
width along the azimuth, depending on the rotational
velocity. Some time later, even if M0 remained unchanged,
disorder emerged in the previously stable single structure
(wave pattern) rotating in the same direction at the constant
angular velocity Oph. This structure, having an m-order
rotational symmetry, definitely exhibited the development of
a hydrodynamic instability with the azimuthal number m (a
typical structure with m � 6 is shown in Fig. 17a; structures
with different numbers m are also developing). As M0 was
further decreased, the system came again to order, and
kindred structures with progressively larger m appeared
again. As the number M0 increased, we observed reverse
transitions to structures with progressively smaller m. Both
transitionsÐwith decreasing and increasingM0 Ð exhibited
signs of a hysteresis, obviously attesting that the nonlinearity
of the observed structures showed its worth. The wavenum-
bers of the observed modes varied from 3 to 10. The modes
emerging at their stability ± instability thresholds could be
successfully controlled. The number of modes depended on
many factors, such as the prehistory, the law of time
variations in M0, the way in which the fluid was added, the
viscosity, etc. Notice thatmodes 5 and 6 proved to be themost
stable in the face of variations in the conditions. Other
characteristics varied similarly to the variations in centrifu-
gal instability [18], Oph decreased with decreasing O0 and
increasing m. At sufficiently small M0, the system was
brought into the zone where a predominant role was played
by the tangential-discontinuity (Kelvin ±Helmholtz) instabil-
ity characterized by the development of azimuthal modes
with m � 1 and 2.

To identify the observed instability, let us try to compare
the structure shown in Fig. 17b with the theoretically
evaluated eigenfunction of the superreflection instability [39,
40] for physical conditions close to those of the experiment
(Fig. 17a). The eigenfunction appears as a superposition of
two coherent systems. In turn, each system consists of six
leading spiral waves moving outward, toward the velocity
shear. At a certain distance from the shear, the waves moving

1

Depth
pertu

rbati
on,

rel. u
nits

0
ÿ1

ÿ12ÿ12 ÿ8

ÿ8
ÿ4

ÿ4

0

0

Y
coordinate, cm

X coor
dina

te, cm

4

4

8

8

12

12

Gray
scale

255

ÿ12

ÿ8

ÿ4

Y
coordinate, cm

X coor
dina

te, cm

0

0

4

8

ÿ12
ÿ8

ÿ4
0

4
8

12

a b

Figure 17. Typical structures relevant to the mode m � 6 generated by the superreflection instability. (a) Theoretically evaluated eigenfunction in the
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and theoretical results can be noted.
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inward prove to be more intense than those moving outward.
This agrees exactly with the theoretical predictions [39, 40].
The similarity between the graphs is remarkable, especially in
view of the fact that the a priori results for nonlinear
structures affected by viscosity as they are generated were
compared with the de facto results of the linear inviscid
theory.
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