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With cuprate luggage to room-temperature
superconductivity

Yu V Kopaev, V I Belyavsky, V V Kapaev

1. Problems and progress in the physics of cuprates
The high-temperature superconductivity (HTSC) of cuprates
was discovered in 1986 [1], when the highest superconducting
transition temperature characteristic of conventional super-
conductors (Tc � 23:2 K in Nb3Ge) was substantially
exceeded and a superconducting (SC) transition temperature
Tc � 30 K was achieved in the ceramic La2ÿxBaxCuO4�d.
Within a year after this discovery, the record value of Tc

exceeded 90 K (YBa2Cu3O6�d ceramic). The further search
for and creation of new SC materials led to Tc � 138 K
(Tl-doped HgBa2Ca2Cu3O8�d compound) in 1994 and raised
the question of room-temperature superconductivity.

Studies over the last two decades have not brought
researchers to agreement concerning the superconductivity
mechanism in cuprate compounds and have not resulted in a
theory similar to the Bardeen ±Cooper ± Schrieffer (BCS)
theory of conventional superconductors [2]. Nevertheless,
we must acknowledge significant progress in understanding
the nature of cuprate superconductivity that has been
achieved in these years.

The key structural element of layered quasi-two-dimen-
sional (2D) cuprates is a (CuO2) plane (one or several in a unit
cell); they differ from conventional superconductors not only
in high values ofTc but also in a set of physical properties that
cannot be described by the BCS scheme. In cuprates, charge
carriers appear due to the doping of the CuO2 planes of a
parent antiferromagnetic (AF) insulator upon nonisovalent
atomic substitution or the creation of oxygen vacancies in
charge reservoirs outside the conducting planes. The distance
between equivalent CuO2 planes in neighboring unit cells is
large compared to the in-plane distance between neighboring
copper atoms, which results in a strong conductivity aniso-
tropy at temperatures above Tc and the 2D coherence of the
SC state at temperatures below Tc.

In the absence of an external magnetic field, the thermo-
dynamic state of a doped cuprate compound can be described
by the temperature T and the carrier concentration in the
CuO2 plane (doping level) x. In the phase diagram (Fig. 1),
the SC state field corresponds to a certain doping range
x� < x < x� inside which the SC transition temperature
reaches its maximum value at the optimum doping xopt.
Concentrations x9xopt correspond to underdoped cuprates,
and concentrations x0xopt to overdoped cuprates.

At x0xopt and T > Tc, cuprates are `bad' Fermi liquids,
and at x9xopt, over a wide temperature range Tc < T < T �,
they exhibit the pseudogap state, whose nature is still
unknown [3]. The gap spectrum of quasiparticles at T > Tc

demonstrates that the SC phase appears from a certain
insulating state rather than from a Fermi liquid, such that
the ground states of an insulator and a superconductor, with
similar structures and energies, converge near the SC
transition line. This behavior corresponds to the concept of
strong correlations in cuprates, which result in the competing
singlet states of a d-wave superconductor and a flux
insulating phase [4].

The pseudogap state is divided into a strong pseudogap
that is adjacent toTc and exists over a wide temperature range
Tc < T9T �s , and a weak pseudogap between T �s and T �. The
strong pseudogap has a high nonlinear diamagnetic response
[5, 6] and a giant Nernst effect [7] and can be related to a
fluctuating SC order in the form of noncoherent long-lived
quasi-stationary states of SC pairs [8]. T �s corresponds to the
breaking of a pair, and Tc corresponds to the appearance of
phase coherence in the system of pairs. A consistent theory of
cuprate superconductivity should be able to explain both the
high values of Tc and the physical properties of these
compounds in a large neighborhood of the SC state that
includes the strong and weak pseudogaps in the phase
diagram.

Strong electron correlations and the unusual symmetry of
the pseudogap and the SC order parameter in cuprates are
arguments for a purely electron superconductivity mechan-
ism (rather than a phonon mechanism, as in the BCS theory).
The studies of this mechanism for strong intracenter
Coulomb repulsion in terms of the Hubbard model and the
related tÿJ model are described in a number of reviews [9].
The 2D Hubbard problem has not been exactly solved, and
approximate solutions obtained by numerical methods are
often in conflict, which leads to reasonable doubts about the
usefulness of this approach [10], especially because the
unusual isotopic effect in cuprates [11 ± 13] indicates a
nontrivial role of phonons in pairing-interaction formation.

For pairing repulsion, the singlet SC order parameter
D�k� is a scalar function of the momentum k, and this
function should be alternating in its domain after the
separation of the phase factor corresponding to the center-
of-mass motion of the pair. An analysis of experiments
sensitive to the momentum dependence of the order para-
meter [14, 15] demonstrates that D�k� vanishes at several
points in the Fermi contour (FC) that can correspond to an
extended s or s+g symmetry (D�k� does not change its sign
under rotation through the angle p=2) or a d symmetry (four
zeros as a result of the change in the sign of D�k� upon
rotation through the angle p=2).
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Figure 1. Typical phase diagram of hole-doped cuprates. The NeÂ el (TN)

and SC transition (Tc) temperatures respectively bound the long-range AF

and SC order regions. Strong pseudogap (sPG) and weak pseudogap

(wPG) regions are separated by a crossover temperature T �s . The

temperature T � separates the weak pseudogap from the normal Fermi

liquid (FL). The regions in which the bound states (BSs) and quasi-

stationary states (QSSs) of K pairs appear are shown, and the region of

coexisting BS and QSS is also depicted.
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Order-parameter zeros open a channel for scattering by
nonmagnetic impurities, which is ineffective for the s
symmetry and corresponds to the BCS phonon mechanism.
This should break the SC state, whose resistance to scattering
by nonmagnetic impurities is one of the key tests for a cuprate
superconductivity theory.

This theory should explain a number of specific features of
cuprates that distinguish them from conventional super-
conductors. For example, the optical-conductivity measure-
ments in [16] demonstrate that upon SC condensation, the
spectral weight is redistributed over a wide energy range
0 100D rather than in an energy range � D, as follows from
the BCS theory (the high-energy problem [17]).Moreover, the
real part of the optical conductivity exhibits the Drude
behavior s1 � oÿ2 for T < Tc; that is, the particle density in
the SC condensate is comparable to the density of off-
condensate particles. The same conclusion follows from the
temperature dependence of the heat capacity [18], which
corresponds to a gap-free spectrum of elementary excitations
at T < Tc, cV � T. The key problems of the physics of
cuprates also involve the origin and role of the self-organiza-
tion of an electron system in the form of stripes [19] or the
staggered spatial ordering of the system atT < Tc (in the form
of an SC-pair density wave [20]).

Although modern approaches to the problem of cuprate
superconductivity are often based on different physical
concepts (such as the traditional phonon mechanism [21],
the resonating valence bond (RVB) scheme [22, 23], the SU(2)
charge ± spin separation scheme [4], the concept of high-
momentum SC pairing [8], the theory of an algebraic Fermi
liquid [24], the concept of a quantum critical point [25], and
the SO(5) phenomenology [26] or the SU(4) phenomenology
[27]), their consequences have many common features [28].
The usefulness of a certain approach is determined by its
ability to explain the properties of HTSC compounds and to
suggest ways to increase their critical parameters [17].

2. Superconducting pairing with a high momentum
The concept of SC pairing with a high momentum for a
screened Coulomb repulsion [8] qualitatively corresponds to
experimental data. In contrast to the models adjusted to
describe low-energy excitations, it is based on a standard
Hamiltonian that involves screening, the effect of the
electron ± phonon interaction, and the universality of the FC
intrinsic in cuprates.

The shape of the FC of doped cuprates that agrees with
the angle-resolved photoemission spectroscopy (ARPES)
data in [29, 30] is described by the dispersion law

e�k� � ÿ 2t�cos kx � cos ky� � 2t 0 cos kx cos ky

� t 00�cos 2kx � cos 2ky� : �1�

Here, the integrals of hopping between the nearest Cu atoms
along the diagonal (t 0) and between the next-to-nearest Cu
atoms in the direction of the Cu ±O bond (t 00) account for the
fundamental asymmetry of the excitation spectrum (elec-
tron ± hole asymmetry), which manifests itself, for example,
in tunneling spectra [31].

The FC inFig. 2 corresponds to the casewhere t 0=t �ÿ0:3
and t 00=t � 0:2; these ratios correspond to the conditions that
are optimal for superconductivity [4]. At a zero pair
momentum, a logarithmic singularity occurs in the SC-
pairing channel for any dispersion law, because e�k� �
e�ÿk�; therefore, the sensitivity of the SC state to the

dispersion-law parameters indicates the specific features of
the pairing kinetics in cuprates.

The almost rectilinear FC segments in an extended
neighborhood of the saddle point symmetrically split with
respect to the points 0;�p and �p; 0 (see Fig. 2) and lead to
nesting e�k�Q� � ÿe�k� for a certain incommensurate
momentum Q that is not equal to the momentum (p; p) of
the spin AF structure of the parent compound, and to a
logarithmic singularity in the static generalized susceptibility
w�q� at q � Q, allowing instabilities in the insulating pairing
channels. Apart from a spin density wave (SDW) with the
AF vector Q, a charge density wave (CDW), a charge
current density wave (CCDW), and a spin current density
wave (SCDW) can also appear. The insulating gap Di�k�
appears in a certain part of the FC, and dispersion law (1)
transforms into the law

e�k� � e1;2�k� � e��k;Q� �
�����������������������������������
e2ÿ�k;Q� � D2

i �k�
q

; �2�

where e��k;Q� � e�k� � e�k�Q�.
In the final portion (pair Fermi contour), the universal FC

of cuprates satisfies the mirror nesting condition e�k�� �
e�kÿ� for a pair of particles (K pair) with momenta k� �
K=2� k at a certain total momentum K (k is the momentum
of the relativemotion of the pair). This results in a logarithmic
singularity in the SC pairing channel with the momentum K
and the appearance of the following nontrivial solution of the
self-consistency equation:

D�k� � ÿ 1

2

X
k 0

U�k; k 0�D�k 0�������������������������������
x 2�k0� � D2�k 0

q
�
: �3�

For pairing repulsion, the interaction energy is U�k; k 0� > 0
at any momenta k and k 0 before and after scattering,
respectively. The nontrivial solution D�k� forms in the
vicinity of the pair Fermi contour (PFC), in which the kinetic
energy of a K pair 2x�k� � e�k�� � e�kÿ� becomes zero or

(p; p)
K

Q

(0,0)

Figure 2. Fermi contour characteristic of underdoped cuprates (thin line).

Heavy segments represent the parts of the FC in which mirror nesting

occurs for pairs with the total momentum K and nesting occurs for pairs

with the total momentum Q. Bright semiovals indicate the regions of the

extended neighborhoods of saddle points, and dark semiovals correspond

to the insulating pairing upon K pairing. The dashed line indicates the

boundary of the magnetic Brillouin zone.
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almost zero owing to the competition of scattering inside
regions of the same sign ofD�k� and between these regions. As
a result, we have to reverse the sign of the sum in Eqn (3). The
coefficient of the logarithm in Eqn (3) is determined by the
difference of the integrals over the momentum space regions
where D�k� has different signs. In the absence of an electron ±
hole asymmetry, the pairing in the case of repulsion turns out
to be substantially suppressed, whereas in the case of pairing
attraction, the mirror nesting of the FC is sufficient for the
appearance of an SC state in the weak-coupling limit. For the
mirror nesting of the FC, the sufficient condition for the
existence of a nontrivial solution of the self-consistency
equation with pairing repulsion is the presence of at least
one negative eigenvalue of the linear operator with the kernel
U�k; k 0�.

For SC pairing with a nonzero pair momentum (K
pairing), a kinematic restriction is imposed on the region of
the momentum space where the particle momenta k� and kÿ
can lie. The fact that the arguments k and k 0 of the pairing
interaction kernel belong to the kinematically restricted
region with a characteristic energy scale e0 means the
elimination of the contributions of many scattering pro-
cesses, especially those with large momentum transfers
k 0 ÿ k � j , to the formation of the SC order parameter.

At small momentum transfers, the number of correspond-
ing transitions inside the regions of the same sign of D�k� is
approximately proportional to the areas of these regions, and
the number of transitions changing the sign of the right-hand
side of Eqn (3) is proportional to the area of a strip of the
width K and the length equal to the zero line length. Therefore,
scattering with small momentum transfers strongly sup-
presses the amplitude of the solution of Eqn (3).

Particle scattering in an SC channel competes with
phonon scattering, which is characterized by predominant
transitions with relatively small momentum transfers. Pho-
non scattering decreases the contribution of scattering at
small momentum transfers to the SC pairing interaction,
which mainly occurs inside the momentum space region
where D�k� has the same sign. This decrease in the scattering
at small momentum transfers with repulsion favors an
increase in Tc by weakening the effect of the thermal-
excitation-induced breaking of pairs. The contribution of
phonons to the pairing interaction due to the suppression of
small momentum transfers under scattering is effective at
energies lower than the characteristic phonon energy oD and
disappears at higher energies. This behavior can cause a kink
in the photoemission spectrum [32].

Nesting is accompanied by a scattering limitation at large
momentum transfers, which is associated with the appear-
ance of an insulating gap in almost rectilinear FC segments
and the related redistribution of the spectral weight between
the intersecting branches of the elementary-excitation spec-
trum [33]. When hole doping shifts the chemical potential
toward the region below the lower edge of the insulating gap
2Di, the spectral weight of the hole part (which is present in a
small neighborhood of the lower-subband top) of the SC
branchof the excitation spectrumdecreases rapidly andpasses
from the SC branch to the insulating branch of the spectrum.
This results in a suppression of the electron and hole
momentum transfers that are significantly higher than Q
during scattering. This insulating limitation of momentum
transfer leads to an SC state with a small spectral weight.

A deviation from the mirror nesting can be taken into
account by replacing almost rectilinear FC segments with

straight-line segments at a given average deviation (on the
energy scale d) from the FC, i.e., by cutting off the logarithm
from below: d4x4e0. The order parameter takes the form

D�k� � sgnD0�k�
�����������������������������������������������������
D0�k��D0�k� ÿ d sgnD0�k��q

; �4�

where D0�k� is the solution of Eqn (3) at d � 0. The solution
exists if d < jD0j. As d decreases, the order-parameter
amplitude D formally increases, which is accompanied by a
decrease in the PFC length and, hence, the amplitude D0.
Thus, the amplitudeD as a function of d reaches its maximum,
which corresponds to a certain pair momentum K.

The singularity of the susceptibility w�q� at q � Q leads to
the occurrence of a soft mode in the boson-excitation
spectrum and the effective electron ± electron interaction

V�q� � g 2 w�q� ; �5�
where g has the meaning of a coupling constant that
characterizes the interaction of electrons with the correspond-
ing boson excitations. If w�q� is the magnetic susceptibility,
Eqn (5) describes the spin-fluctuation electron ± electron
interaction [34] for the appearance of an SDW with a
momentumQ. The singularity in the insulating susceptibility
w�q� corresponds to the Peierls instability [35]. During the
nesting of the FC, the CCDW and SCDW related to the
charge and spin current degrees of freedom lead to a
singularity in the corresponding susceptibilities at q � Q
and to the electron ± electron interaction of type (5). The
coupling of a wave with an incommensurate period 2p=Q to
the crystal lattice forms a commensurate structure with a
similar period.

3. Superconducting order parameter
The restrictions on scattering at small and large momentum
transfers can be taken into account by cutting off the
screened pairing Coulomb interaction from below and
from above: ql 4K4 qr. The numerical solution of Eqn (3)
with such a model potential [36] demonstrates that the
softening of the small momentum transfer limitation
weakly affects the topological properties of the order
parameter. For chosen dispersion law parameters, the
amplitude D decreases sharply at a certain value of ql,
when the degree of the electron ± hole asymmetry becomes
insufficient to overcome the deviation of the FC from
mirror nesting at a chosen coupling constant.

There exist two classes of solutions, which differ in
symmetry with respect to a change in the sign of the
projection of the relative motion momentum onto the
nesting vector Q (i.e., symmetric and antisymmetric solu-
tions). An antisymmetric solution with one node at the center
of the kinematic limitation region corresponds to the
maximum order-parameter amplitude. A symmetric solution
with two nodes in the kinematic limitation region has a
significantly lower amplitude. The antisymmetric solution
with the next order-parameter amplitude has three nodes. A
gradual decrease in the order-parameter amplitude corre-
sponds to the alternation of the antisymmetric and symmetric
solutions with a sequential increase in the number of nodes by
unity. This resembles the node distribution of the wave
function of a particle in a potential well in accordance with
the oscillation theorem [37]; it should be noted that a node-
free solution is absent in the case of repulsion. The degree of
division of the kinematic limitation region depends on the
pair momentum K, which specifies the shape and size of this
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region. As the kinematic limitation region extends along the
axis normal to the nesting vectorQ, the number of regions in
which D�k� has a constant sign increases, the region size
decreases, the order parameter is distributed between these
regions, and its amplitude decreases. The amplitude D, which
depends exponentially on the coupling constant and the
kinematic limitation region parameters, is very sensitive to
the choice of the dispersion law parameters and the level of
doping.

At K � 0, an antisymmetric solution cannot be realized
for singlet pairing, because it corresponds to the orbital p
symmetry of the order parameter. A symmetric solution with
two nodes and a significantly lower amplitude compared to
the amplitude of the main solution leads to an order
parameter with an extended s or d symmetry.

For the K pairing, an antisymmetric solution with the
maximum order-parameter amplitude can be realized for
each crystallographically equivalent pair momentum K j.
The order parameter is small inside the intersection of
different kinematic limitation regions and can be determined
over the entire Brillouin zone as a linear combination of the
solutions Dj�k� of Eqn (3) in each region,

D�R; k� �
X
j

gj exp�iKjR�Dj�k� ; �6�

where R is the center-of-mass radius vector of the K pair and
the coefficients gj are determined by the irreducible represen-
tation used to transform order parameter (6). The irreducible
representation A1g results in the g symmetry of the order
parameter with two families of zero lines, namely, along the
coordinate axes and along the diagonals of the Brillouin zone.
The representation B1g corresponds to a d symmetry with
zero lines along the coordinate axes. The symmetric solution
with two nodes upon K pairing leads to an extended s
symmetry in the case of the representation A1g and to a d
symmetry in the case of B1g.

4. Biordered superconducting state and a strong
pseudogap
The effective pairing potentialU�r� oscillates in real space due
to the limitation of the domain of definition of the screened
Coulomb repulsion U�k; k 0� in the momentum space upon K
pairing (Fig. 3). Strong repulsion at small distances corre-
sponds to incomplete limitation of the double occupation
[10]. Outside this region, damped oscillations naturally lead to
an effective attraction, which is required for the appearance of
a bound state in a K pair. Apart from the bound state with a
negative energy Ei of the relative motion of a K pair, the
oscillating pairing interaction allows long-lived QSSs of pairs
with momenta close to K, which are similar to the states of
radioactive isotopes exhibiting a decay. The wave functions
of the relative motion of a K pair that correspond to the
bound state and QSS are orthogonal to each other and are
mainly localized in a wide real-space region outside the strong
intracenter repulsion region (see Fig. 3). The presence of a
tunneling barrier Eb ÿ Eq and orthogonal wave functions
results in a pronounced asymmetry between the spectral
weights of filled and vacant QSSs, which is reflected in the
asymmetry of the tunneling current ± voltage characteristics
detected in [38, 39].

K pairs can exist as long-livedQSSs at temperatures above
Tc owing to a significant increase in the density of states in a
narrow range near the QSS energy Eq. To overcome a
potential barrier before the tunneling decomposition of a

noncoherent pair, this pair should accumulate an energy
higher than the barrier Eb. Thus, the energy Eq ÿ Ei is
insufficient to destroy the SC coherence, and the pair
breaking energy should exceed Eb ÿ Ei. The range between
the SC transition temperatureTc � Eq ÿ Ei and the crossover
temperature T �s � Eb ÿ Ei can be interpreted as the strong
pseudogap that is observed in underdoped cuprates at
T > Tc. If the peak of the density of states at Eq is smoothed
due to an increase in the QSS damping G, the strong
pseudogap becomes undetectable. In this case, the SC
transition from a coherent to a noncoherent state is accom-
panied by the breaking of pairs at energies about Eb ÿ Ei, as
in the BCS theory.

By analogy with the relation between the problem of two
Cooper particles [40] and the BCS theory [2], the pair
breaking energy Eb ÿ Ei for direct excitation from a bound
state to a continuous spectrum corresponds to a momentum-
dependent energy gapD�k� in the quasiparticle spectrum. For
the strong-pseudogap state, this gap can be represented as
D � �D2

c � D2
p�1=2 due to the noncoherence of the QSS. Here,

Dc � Eq ÿ Ei corresponds to a transition into a noncoherent
QSS state and Dp � Eb ÿ Eq corresponds to a transition
between two noncoherent states.

On the microscopic level of describing SC, the gap Dc and
the strong pseudogap Dp appear with random phases. Taking
the average in the mean-field approximation leads to the
vanishing mean value of Dp at any temperature, whereas the
mean value of Dc is nonzero for T < Tc because of the Bose
condensation of K pairs from a QSS into a bound state. The
root-mean-square value of a strong pseudogap jD2

pj 6� 0 that
corresponds to the decay of the QSS of K pairs can manifest
itself at temperatures well above Tc.

We note that noncoherent SC pairs existing as a QSS for
T > Tc exhibit their SC properties (Fig. 4) in microwave
superconductivity (at frequencies up to 600 GHz [41]) and
magnetic properties (Fig. 5), i.e., an enhancement of the
diamagnetic response and a giant Nernst effect [5 ± 7].

In the mean-field approximation, the diagonal Gor'kov
function phenomenologically introduced as [42]

G�o; k� � zk

�
u 2
��k�

oÿ E�k� � iG
� u 2

ÿ�k�
o� E�k� ÿ iG

�
�7�

U

Eb

Eq

Ei

r

jCj2

0

Figure 3. The oscillating pairing interaction U�r� in real space and the

squared modulus of the wave function of aK pair vs. the distance between

the particles forming the pair. The BS and QSS energies of the pair are

respectively denoted by Ei and Eq; Eb is the K-pair dissociation energy.

194 Conferences and symposia Physics ±Uspekhi 51 (2)



describes a nonsuperconducting state with an off-diagonal
short-range order (ODSRO) and corresponds to the presence
of noncoherent pairs at T > Tc. Here, the quasiparticle
energy is

E�k� �
��������������������������������������������������������
x 2
K�k� � jDc�k�j2 � jDp�k�j2

q
; �8�

where 2u 2
� � 1� xK=E are coherence factors and zk is the

momentum-dependent spectral weight of the quasiparticle.
The terms in Eqn (7) pertain to pairs above and below the FC.
At temperatures below Tc, an ODSRO transforms into an
off-diagonal long-range order (ODLRO).

The excitation-induced transitions from a bound state to
the QSS of the relativeK-pair motion correspond to small but

nonzero damping G, whereas the transitions to the stationary
states of the continuous spectrum at energies higher than the
barrier energy Eb should correspond to the infinitely small
damping G! �0. This leads to the usual Fermi-liquid
behavior of diagonal Gor'kov function (7) for T > T �s at
Dp � 0. Thus, as a result of the appearance of a QSS, the
behavior of function (7) differs from the Fermi-liquid
behavior over a rather wide temperature range of a strong
pseudogap at T < T �s . This range corresponds to transitions
between the bound and quasi-stationary states of K pairs and
is intermediate between the two limiting approaches to the
problem of superconductivity, the BCS scheme and the
Bose ± Einstein condensation of localized pairs. Because
jD2

pj 6� 0 in the strong pseudogap state, the coherence factors
in diagonal Gor'kov function (7) can overlap in the
momentum space even at T > Tc, in contrast to the BCS
factors (which have a Fermi shape).

The SC state appearing at T < Tc should be described
by both the diagonal and off-diagonal (anomalous)
Gor'kov functions. We take into account that the strong
pseudogap Dp averaged over random phases (i.e., corre-
sponding to the mean-field approximation) vanishes (but
jD2

pj 6� 0) and that Dc 6� 0 at T < Tc, and phenomenologi-
cally introduce the anomalous Gor'kov function similarly
to diagonal function (7),

F��o; k� � ÿ zkD �cÿ
oÿ E�k� � iG

�ÿ
o� E�k� ÿ iG

� : �9�

This function becomes zero at T > Tc and describes the
ODLRO state at T < Tc.

In particular, superposition (6) mixes the states of two K
pairs with opposite total momenta K and ÿK. The particles
making up these pairs can also form pairs with a nonzero total
momentum, which relate the K pairing to the conventional
Cooper pairing channel (at K � 0). In this case, the order
parameters Dc and D0 in the K-pairing and Cooper-pairing
channels that correspond to the mean-field approximation
are solutions of a set of self-consistency equations. This set
decomposes into two independent equations if we neglect the
relation between the channels, and determines two tempera-
tures (Tc, T

0
c) of transitions to states with the respective order

parameters Dc and D0. It is natural to assume that T 0c < Tc,
because an antisymmetric solution with the maximum order
parameter is allowable upon singlet K pairing and because
only a symmetric solution is realized in the Cooper channel.
Then, the SC transition temperature Tc can be directly
obtained from Eqn (3).

Both order parameters Dc and D0 that describe a
`biordered' SC state [42, 43] are respectively determined in
the neighborhoods of PFC and FC. At T 0c9T < Tc, the
Cooper order parameter is small compared to D0, since it is
induced by the Dc pairing. In this temperature range, the
superfluid density rs is proportional to the PFC length.
Opening the Cooper channel at T � T 0c results in a substan-
tial increase in D0 and rs, because superfluid density is
proportional to the FC length at T9T 0c.

In the neighborhood of PFC, two branches (m � 1; 2) of
the strongly anisotropic quasiparticle spectrum of a biordered
superconductor take the form

Em�k� �
�������������������������������������������������������������������������
x2K�k� � jDp�k�j2 � jDc�k� � D0�k�j2

q
: �10�

The observation of a two-gap spectrum with D1 and D2 near
10 and 50 meV, respectively, in Bi-2212 in a tunneling

Ty
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Figure 4. Temperature dependence of the phase rigidity (schematic

diagram from the results of optical conductivity measurements [41]).
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Figure 5.Diamagnetic response (magnetization M) and the Nernst signal

eN in an underdoped Bi-2212 compound (schematic diagram according

to [5]).
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experiment (in particular, the suppression of the smaller gap
in a strongmagnetic field at temperatures 30 ± 50mK) [44] can
be considered an argument for a biordered structure of the SC
state.

The SC state of cuprates is biordered due to the specific
features of their band structure that are associated with the
CuO2 plane and lead to the nesting and mirror nesting of the
FC. The specific features of the phase diagram of cuprates
(Fig. 1) can be related to the doping-induced evolution of the
FC and pairing interaction. TheU�r� pairing potential, which
oscillates in real space (see Fig. 3), is assumed to change with
increasing x such that only a noncoherent QSS of the relative
motion of a K pair appears in this potential at the weakest
doping, which corresponds to a strong pseudogap penetrating
into the insulating state at x < x�. In the underdoped region
(x� < x9xopt), a bound state of the pair appears along with
the QSS, and the state energy Ei and the damping of the QSS
G increase as x increases until, at xopt, the pair breaking
energy becomes approximately equal to the energy corre-
sponding to the loss of phase coherence. Then, in the
overdoped region (xopt9x < x �), the pairing interaction
only causes a bound state, and superconductivity in this
region of the phase diagram corresponds to the BCS
scheme. As the degree of doping increases, the K-pairing
channel gradually makes way for the Cooper channel, and,
when x exceeds xopt, the decrease inTc with increasing x up to
the vanishing of Tc at x

� can also be related to the doping
dependence of the pairing interaction. Specifically, the
enhancement of repulsion at x > xopt increases because the
FC leaves the extended neighborhood of the saddle point.

The experimental data that are obtained for cuprates are
unusual for the BCS scheme, and the phonon pairing
mechanism can be naturally described using the concept of
K pairing [8].

5. Superconductivity of multilayer cuprates
In the homologous series of cuprates, the SC transition
temperature exhibits a universal dependence on the number
n of CuO2 planes in a unit cell. As n increases, the Tc�n�
function first increases and reaches a maximum at n � 3, and
then decreases monotonically. Explaining the Tc�n� depen-
dence is a challenging problem of the physics of cuprates [17].
Figure 6 shows the Tc�n� dependences of a number of
mercury-containing cuprates [45].

The charge distribution introduced upon doping of
multilayer compounds is nonuniform: the inner layers have
a lower hole concentration compared to the outer layers,
which corresponds to a minimum in the electrostatic energy
[46]. The optimum doping of a multilayer compound consists
in underdoped inner and overdoped outer planes, as
compared to the optimum doping of a compound with a
single CuO2 plane in the unit cell.

Coherent tunneling of pairs between neighboring layers
qualitatively (not quantitatively) explains the initial increase
in the Tc�n� function and its subsequent saturation (at n > 3)
[47]. The decrease in Tc�n� at n > 3 is explained by a
nonuniform carrier distribution in unit-cell layers and the
competition of an SC ordered state and an insulating (in the
form of an orbital current density d wave) ordered state. The
significant increase in the superconducting transition tem-
perature with an increase in the number of unit-cell layers can
be related to the fact that the effective radius of the screened
Coulomb pairing interaction exceeds the distance between
neighboring layers.

The Fermi surface is open along the kz axis because of the
smallness of the hopping integrals between layers. The section
of this surface by the kxky planes corresponding to different
layers represents a set of n layers, which are different due to
different doping levels. SC pairing with momentum K can
occur not only for the particle momenta k� and k 0� (before
and after scattering) in one plane but also in the case where
these momenta correspond to different (nearest) planes.
Another possibility is associated with pair tunneling between
neighboring cuprate planes: particle momenta belong to one
plane before scattering and to another plane after scattering.

With the K-pairing channel, we can easily explain the
universalTc�n� dependence detected in the homologous series
of cuprates.

The limitation related to taking the interaction into
account only in the nearest neighbor layers reduces the
increase rate of the effective coupling constant as n
increases, since the inner layer has two nearest neighbors
and the outer layers have only one nearest neighbor. If the FC
were the same for all layers, the effective coupling constant
would saturate as n increases. Nonuniform doping of cuprate
layers within one unit cell violates the mirror nesting
condition in the interlayer interaction mechanism, since the
FCs of neighboring cuprate layers are different because of
different degrees of their filling.

The difference in the carrier concentrations in neighbor-
ing layers plays the role of an exchange field in weakly
ferromagnetic superconductors. The violation of the inter-
layer mirror nesting smooths the logarithmic singularity in
the self-consistency equation and results in an order para-
meter of type (6), as in the case of the intralayer mirror
nesting. The deviations from mirror nesting and the doping
optimal for a monolayer increase with n because of an
increase in the role of electrostatic effects, which reduce the
condensation energy and are the main causes of the decrease
in the Tc�n� dependence after reaching its maximum.

Cuprates are strongly anisotropic quasi-two-dimensional
systems of weakly coupled CuO2 planes; therefore, cuprate
superconductivity theories are constructed as theories
describing one such plane. In crystals with several weakly
tunneling-coupled CuO2 planes, the Coulomb pairing inter-
action only couples pairs of the nearest-neighbor planes
because of the specific features of 2D screening [50]. There-
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Figure 6. The SC transition temperature vs. the number of CuO2 planes in

a unit cell for the HgBa2Canÿ1CunO2n�2�d homologous series (schematic

diagram according to [45]).
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fore, an increase in the number of layers in a unit cell results in
a noticeable increase in the effective coupling constant only at
small n; for n > 3, this increase slows down and the coupling
constant saturates. The presence of charge reservoirs between
conducting planes in multilayer cuprates, which favors
superconductivity in the CuO2 plane in the sense that doping
does not cause structural defects in it, leads to a nonuniform
carrier distribution in unit-cell planes, which is required for
the minimization of the electrostatic energy. In the case of K
pairing (where an antisymmetric solution corresponding to
the maximum possible SC order parameter amplitude), the
role of this nonuniform distribution, which violates the
mirror nesting of the FC upon pairing in neighboring layers,
is analogous to the role of magnetization, which changes the
pairing conditions and decreases Tc.

6. Increasing the superconducting transition temperature:
the 3D path
The search for or creation of structures with SC transition
temperatures higher than the reached record value can be
related to the variation in the chemical compositions and
structures of cuprate superconductors. The estimates made
in terms of the tÿJ model suggest that layered 2D cuprate-
like compounds in which Cu atoms in conducting planes are
replaced by any other elements that can supply carriers to
these planes can hardly exhibit the Tc characteristics of
cuprates [28]. This means that the path of a significant
increase in Tc due to a change in the chemical composition
of conducting planes in such 2D crystals is most likely to be a
traveled path. Nevertheless, the substantial increase in Tc in
multilayer cuprates (compared to Tc in the corresponding
one-layer cuprates) at 1 < n93 indicates the possibility of
enhancing the effective coupling constant in passing from a
2D to a 3D (three-dimensional) system and another,
apparently more promising, way of searching for high-Tc

compounds.
The realization of theK-pairing conditions in a 3D system

is mainly restricted by how close the Fermi surface (FS) can
approach the mirror nesting condition in a sufficiently wide
3D kinematic limitation region. If we start with the dispersion
law characteristic of strongly coupled cuprates, it is obvious
that mirror nesting for such a structure can be provided if
certain relations between the dispersion-law parameters are
satisfied. Therefore, the main problem is to control these
parameters such that they fall in relatively narrow ranges
corresponding to mirror nesting.

When atoms form a simple cubic lattice, the dispersion
law that takes hopping only between the nearest, next-to-
nearest, and next-next-to-nearest neighbor atoms into
account is

e�kx; ky; kz� � ÿ2t�cos kx � cos ky � cos kz�
� 2t 0�cos kx cos ky � cos ky cos kz � cos kz cos kx�
� t 00�cos 2kx � cos 2ky � cos 2kz� : �11�

It leads to a large variety of FS shapes, depending on the
chemical potential. In particular, the FS can have the shape of
a cube with rounded corners and weakly bent faces parallel to
the boundaries of the 3D Brillouin zone. At the hopping-
integral ratios t 0=t � ÿ0:3 and t 00=t � �0:3 [which differ from
the ratios characteristic of 2D cuprates (t 0=t � ÿ0:3,
t 00=t � �0:2)], this FS provides nesting at momenta Q
connecting the faces and mirror nesting at pair momenta K
parallel and not equal toQ. As in the case of large-momentum

pairing in a 2D system, the 3D kinematically restricted
regions that appear in the case of K pairing result in a
screened pairing Coulomb potential that oscillates in real
space and extends outside the region of strong intracenter
repulsion. This potential, one of whose eigenvalues is
negative, allows the existence of bound states of both the
relative motion of a pair and the QSS.

The conditions for the occurrence of a bound state in an
asymmetric 3D potential well differ from those for low-
dimensional systems [37]: generally speaking, a 3D potential
well couples a pair of particles weakly compared to a 2D well
with the same depth and width. However, uponK pairing in a
3D system with the mirror nesting of the FS, a logarithmic
singularity forms in the self-consistency equation in the
neighborhood of the part of the Fermi surface where the
mirror nesting condition is satisfied rather than in the
neighborhood of a line in the Fermi surface, as in a 2D
system (where this line is represented by the PFC). For a pair
momentum directed along a Brillouin zone edge, this part
(pair Fermi surface, PFS) includes two pairs of mutually
perpendicular planar FC sections connected by rounded
portions of the PFS (Fig. 7) rather than one pair of parallel
planar FS sections, as in the case of K pairing in a 2D system
(where the PFC consists of two parallel FC segments). This
corresponds to an increase in the density of states of the
relative motion of a K pair on the FS, which is tantamount to
an increase in the effective coupling constant. Thus, upon K
pairing, any section of the FS by a plane normal to the pair
momentum inside the kinematic limitation region satisfies the
mirror nesting condition (e.g., for a section by the (kx; ky)
plane, pairing with a momentum K � �0; 0;K � is similar to
the Cooper pairing that corresponds to the zero projection of
the pair momentum onto this plane), and the role of almost
planar FS faces is to ensure as large a PFS area as possible.

The nesting condition that favors insulating pairing at
nestingmomentumQ that is normal to only one pair of the FS
face pairs is also satisfied at almost planar FS faces, although
both pairs of faces promote SC pairing. In this sense, the
efficiency of insulating pairing with respect to SC pairing in a
3D system decreases compared to that in a 2D system; that is,
the appearing SC order is suppressed more weakly by a
competing insulating order.

The repulsion-induced pairing in a 3D system leads to the
SC order parameter D�K� with zeros distributed over the zero
surface that has lines of intersection with the FS and
corresponds to the symmetry or antisymmetry of D�K� with
respect to the inversion of the momentum of the relative
motion of a pair. The coefficient of the logarithm in the self-
consistency equation is specified by the neighborhood of the
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Figure 7. Nesting (at momentum Q) and mirror nesting (at total pair

momentum K) for a Fermi surface with almost planar sections (shaded).
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line of intersection of the FS and the order parameter zero line
inwhich both intersecting surfaces are close to each other. For
a d-wave order parameter in a 2D system, these neighbor-
hoods of the points of intersection of the FC and the zero line
along the diagonals of the Brillouin zone are definitely small,
which strongly restricts the SC gap amplitude, e.g., in the
scheme of spin-fluctuation pairing [34]. Therefore, the more
complex topology of the SC order parameter, which results
fromK pairing uponCoulomb repulsion and is determined by
the distribution of zero lines or surfaces in a 2D or 3D system,
can lead to a substantially larger gap.

The complex topology of the momentum-dependent SC
order parameter that is inherent in repulsion-induced pairing
significantly complicates the numerical solution of a 2D self-
consistency equation [36], e.g., compared to the correspond-
ing procedure in the Eliashberg theory [21], where the order
parameter depends on a single energy variable.

Of course, the ideology of the physics of cuprates cannot
be used to search for or to create high-Tc 3D systems. If
superconductivity in such a system is assumed to be realized
upon doping of a certain parent insulator (as in the case of
cuprates), the problem of a charge reservoir for a 3D atomic
lattice supplying carriers to the conduction band appears. If
superconductivity in a 3D crystal occurs in the absence of
doping for a not-half-filled conduction band, the problem of
controlling the dispersion-law parameters in a given crystal
structure in order to ensure the mirror nesting of the FS is still
an open question.

Because the superfluid density in underdoped cuprates is
low, the phase transition into an SC state, i.e., the appearance
of phase coherence, is specified not by the SC pair binding
energy but by phase fluctuations [51]. Therefore, an SC
transition in a 2D system inevitably acquires the features of
the Berezinskii ±Kosterlitz ± Thouless transition [52, 53],
which describes the thermal birth and disappearance of
vortex ± antivortex pairs. In a 3D system, the SC transition
temperature ismuch less sensitive to phase fluctuations,which
should broaden the SC state regiondue to the narrowingof the
strong-pseudogap region, whose size increases with decreas-
ing the vortex core energy [4].
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