
Abstract. The standard interpretation of the energy conserva-
tion law accepted in the theory of electromagnetism maintains
that a change in the field energy occurring in a volume is the sum
of the energy increment in the volume due to the Poynting vector
flow and the energy dissipated as heat in the interaction of
charge carriers with the medium in which these carriers move.
We show that the work done by an external electric field on a
moving point charge is due to two sources: the energy arriving at
the charge with the Poynting vector flow and a specific channel
of energy supply to the charge originating from the interaction
of the charge's field with the external field. Interestingly, at
nonrelativistic charge velocities (vv5 c), 2=3 of the energy is
supplied by the Poynting vector flow and 1=3 by the second
channel. In the ultrarelativistic case (vv9 c), all of the energy
comes with the Poynting vector flow.

1. Introductory remarks

Physics abounds with startling patterns reflecting the amaz-
ing harmony of the world around us. As a revealing example,
we recall the interference quenching of secondary side waves,
a process that accounts for the propagation of light rays. A
simpler illustration is provided by the slow charging of a
capacitor, in which, practically always, exactly one half of the
total work done by the power supply is converted to the
energy of the capacitor electric field, while the other half is
released in the form of heat. An apparently unexpected point
is here that this result is independent of the circuit resistance
(if this resistance tends to zero, the oscillations and emission
of radiation must be taken into account). The pattern to be
discussed below is also unexpected, in our opinion.

The energy conservation law for an electromagnetic field,
which is a consequence of the Maxwell equations [1], can be
written as

qw
qt
� ÿjEÿ HS ; �1�

where

w � ee0E 2

2
� mm0H

2

2
; S � �E;H� �2�

are the field energy density and the energy flow density vector
(the Poynting vector), and j is the current density vector. In an
integral form, this law can be written as

qW
qt
� ÿQÿ

�
F

S dF ; �3�

whereW � �V w dV is the field energy in a volume V, Q is the
heat power released in this volume, and

�
F S dF is the flow of

the Poynting vector S through the surface F confining this
volume. There are situations where the interpretation of
Eqn (1) is fairly obvious. For instance, in the case of the
slow charging of a plane capacitor, where Q is zero in the
capacitor gap, the Poynting vector flow through the side
surface of the gap is exactly equal to the increment of the
electric field energy in this gap. Onemore example is provided
by the following well-known problem: prove that the energy
dissipated per unit time in a straight cylindrical current-
carrying conductor �Q � IU� is supplied through the side
surface of the conductor by the Poynting vector flow. In the
steady state, the left-hand side of Eqn (1) is zero. Assuming
the field E in the conductor to be constant and equal to the
external field E0 � U=l, and the magnetic field strength at the
conductor side surface H � I=2pr, where l and r are the
conductor length and radius, we obtain the flow of the
Poynting vector S through the side surface of the conductor
as F � 2prl S � IU. At the same time, the power IU can be
written as

IU � jpr 2E0l � eunpr 2E0l � NeuE0 � NQ1 � ÿ
�
F

S dF ;

�4�
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where N � npr 2l is the total number of mobile carriers
(electrons with charge e), Q1 � A1 � euE0 is the power
dissipated by one charge, which is numerically equal to the
work done by the field on an electron per unit time, and n and
u are the concentration and the drift velocity of electrons,
respectively.

Relation (4) raises the following legitimate question: if the
quantity IU is additive with respect to the number of charges,
is the sum of Poynting vector energy flows absorbed by
individual charges equal to the integral in the right-hand
side of Eqn (4), or is relation (4) satisfied due to some
contributing `interference' effects? It turns out that this
second situation is actually realized, and that it occurs in a
peculiar way, indeed.

2. Field-based interpretation of the work done
by an electric field on a moving charge

We consider the following model problem. A point charge q
moves with a velocity v along a line of an external uniform
electric field E0. The field does the work A1 � qE0v on the
charge per unit time. We write Eqn (3) in the case of interest
here as

qE0v � ÿ qW
qt
ÿ
�
F

SdF : �5�

We now calculate the terms in the right-hand side of
Eqn (5) separately. The volume is taken to be a sphere of
radius R centered at the point O at which the charge q is
located at a given instant.We start with the second term in the
right-hand side of Eqn (5), which actually represents the flow
of the vector S through the spherical surface within which this
sphere is confined. We introduce a spherical coordinate
system r; #;j such that the charge is at the origin and # is
the angle between the z axis aligned with v k E0 and the radius
vector r. Then,

E � E0 � Eq ; dF � dF
r

r
; �6�

where

Eq � q

4pe0g 2�1ÿ b 2 sin2 #�3=2
r

r 3
�7�

is the electric field of the moving charge. Accordingly,

H � Hq � e0�v;Eq� �8�

is the magnetic field strength of the moving charge, b � v=c,
and g � �1ÿ b 2�ÿ1=2.

Substituting Eqns (6) and (8) in the relation under
consideration, we obtain�

F

S dF �
�
F

�E;H� dF

� e0

�
F

�
E0�v;Eq�

�
dF� e0

�
F

�
Eq�v;Eq�

�
dF :

The second term in the right-hand side of this equation is
zero; expanding the double vector product in the first term
with the use of Eqns (6) and (7), and rearranging, we

obtain�
F

�E;H� dF � J1 � J2 ; �9�

J1 � e0

�
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�E0;Eq��v; dF� � qvE0

2g 2

� p

0

cos2 # sin# d#

�1ÿ b 2 sin2 #�3=2
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�
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J2 � ÿe0vE0

�
F
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� ÿ qvE0
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0
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�1ÿ b 2 sin2 #�3=2
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Thus, we finally arrive at�
F

S dF � ÿ qvE0

b 2

�
1ÿ 1ÿ b 2

2b
ln

�
1� b
1ÿ b

��
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Substituting Eqns (9) and (11) in Eqn (5) yields

qW
qt
� ÿJ1 : �13�

Straightforward calculation of the integral

qW
qt
� q

qt

��
V

�
e0E 2

2
� m0H

2

2

�
dV

�
�14�

confirms the validity of relation (13). Indeed, substituting
Eqns (6) and (8) in Eqn (14), we have

W � 1

2

�
e0

�
E 2
q dV� m0

�
H 2

q dV

� e0

�
E 2
0 dV� 2e0

�
�EqE0� dV

�
: �15�

The integrals in the right-hand side of Eqn (15) can be best
analyzed by invoking some considerations that allow elim-
inating the divergences related to the infinite energy of the
field generated by a point charge. The time derivative of the
first three terms in the right-hand side of Eqn (15) is zero. For
the third term, this is obvious. As regards the first two terms,
we recall that as a charge approaches the center of the sphere
under consideration, the self-energy of the charge inside this
sphere increases, but as the charge moves away from the
center, this energy decreases. This implies that at the instant
of the charge passing through the center of the sphere, this
energy reaches a maximum. It remains to consider the
expression

qW
qt
� e0

qI
qt
; I �

�
�EqE0� dV : �16�

We are interested in the value of the derivative in the above
relation at t � 0, when the charge passes through the center of
the sphere (point O in Fig. 1). The quantity qI=qt can then be
represented as

qI
qt
� I 00 ÿ I 0

dt
; �17�

where I 0 and I 00 are the values of the integral I at the instants
t 0 � ÿdt=2 and t 00 � �dt=2.
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Figure 1 displays spheres of radius R centered at a point
O, as well as spheres with the same radius but centered at
points O 0 (Fig. 1a) and O 00 (Fig. 1b) at which the charge was
located at the instants t 0 and t 00. Evidently, the field Eq

defined by Eqn (7) and entering the integrals I 0 and I 00

describes the electric field of a moving charge at these
instants only if the coordinates r; # are referenced to the
spherical coordinate frames with the origins at the respective
points O 0 and O 00. On the other hand, the integration is
performed in I 0 and I 00 over the volume of the sphere centered
at O. As can be seen from Figs 1a, b, this volume consists of
volumes V0 and V 0 in Fig. 1a and of volumes V0 and V 00 in
Fig. 1b. Because integration over V0 is performed in both
integrals, I 0 and I 00, the integrals over this region cancel in
subtraction in Eqn (17). Therefore,

I 00 ÿ I 0 � I�V 00� ÿ I�V 0� : �18�
Because the charge passes the O 0O 00 distance in an infinitely
short time dt, the V 0 and V 00 regions are infinitely thin. The
volume elements in the integrals I 0 and I 00 can be written as

dV � 2pR 2 sin# d# v
dt

2
cos#

and

dV � ÿ2pR 2 sin# d# v
dt

2
cos#

(the second expression involves the minus sign because
cos# < 0 in the V 00 volume). Integration over the angle # in
the I 0 and I 00 integrals is performed from 0 to p=2 and from
p=2 to p, respectively. Equation (7) can be used to rewrite the
scalar product �EqE0� as

�EqE0� � qE0 cos#

4pe0g 2R 2�1ÿ b 2 sin2 #�3=2
: �19�

Substitution of the expressions for dV and �EqE0� in Eqn (18),
followed by substitution of the relation thus obtained for the
I 00 ÿ I 0 difference in Eqn (17) and, subsequently, in Eqn (16),
does indeed prove that qW=qt � ÿJ1.

Our analysis suggests that the energy flow derived from
the Poynting vector flow is less than the total work done by
the field on the charge. The moving charge acquires part of
the energy as a result of a change in the energy of the
interaction of the charge's field with the external field. As
can be seen from Fig. 1, the `interference' term �EqE0�
describing the energy of this interaction has opposite signs
in the V 0 and V 00 volumes, and this precisely accounts for the
result qW=qt � ÿJ1 we have obtained.

3. Limit cases

It is interesting to consider the following limit cases:
(a) nonrelativistic velocity of charge motion �v5 c� and

(b) the ultrarelativistic case �v9 c�. In case (a), the above
relations yield�

F

S dF ' ÿ 2

3
qvE0 ;

qW
qt
' ÿ 1

3
qvE0 : �20�

In case (b), we have�
F

S dF ' ÿqvE0 ;
qW
qt
' 0 : �21�

Figure 2 plots the ratios

X�b� � 1

qvE0

���� �
F

SdF

���� ; Y�b� � 1

qvE0

���� qWqt
����

vs. the dimensionless velocity of charge motion b � v=c,
which were calculated using Eqns (10), (12), and (13) derived
above.

It can be seen from Fig. 2 that as b increases, passing from
the nonrelativistic to the ultrarelativistic case, the progres-
sively increasing fraction of the energy required for the field to
dowork on the charge is supplied by the Poynting vector flow.
In the ultrarelativistic case, this fraction becomes equal to
unity. By contrast, the fraction of the energy acquired by the
moving charge in the interaction of its proper field with the
external field decreases to zero with increasing b in the
ultrarelativistic case. This result can be explained by a
deformation of the electric field line pattern of the moving
charge in passing from the nonrelativistic to the ultrarelati-
vistic case. Indeed, as v! c, it follows from Eqn (7) that
Eq ! 0 everywhere except for the plane passing through the
charge and perpendicular to the velocity vector v of its
motion. Therefore, the scalar product �EqE0� ! 0 in
Eqn (16), and hence the quantity qW=qt also tends to zero.

4. Concluding comments

Returning to the question bearing on the supply of energy to a
current-carrying conductor, the following comments may be
in order. The proper field of the electrons generating the
current in a conductor is canceled by the fields produced by
positive ions. As a result, only the external field applied to the
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conductor remains uncompensated. Therefore, the mechan-
ism by which the carrier proper fields interact with the
external field is suppressed in the case of a conductor, while
superposition of the magnetic fields created by a macroscopic
ensemble of moving charges creates the characteristic pattern
of field lines of the resultant magnetic field that ensure the
equality

Q � ÿ
�
F

SdF �22�

for the current in a conductor.
Our previous consideration (Section 2) ignored the effects

related to the acceleration acquired by the charge on which
the external field does work. It can be shown that in most
cases of practical significance, the radiation emitted by a
charge moving with acceleration produces very small effects.
Besides, in the particular case of a charge moving with
acceleration, a term � 1=r must be added to the electric field
defined by Eqn (7); this term dominates over the term � 1=r 2

in the wave zone, i.e., for large r. As is evident from our
previous analysis, the results in Eqns (9) ± (12) are indepen-
dent of the radius of the spherical surface that contained a
moving charge at the center. Therefore, by choosing this
radius small enough, we can entirely neglect the acceleration-
induced term � 1=r in the expressions for E andH.
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