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Figure 4. (a) The ratio of the amplitudes of global maximums S™** to the
average levels of the envelopes S(7) as a function of the irradiation angle o
in response to irradiation by a reference signal: 7, S™* /S as a function of
o 2, S"““/gl/g as a function of a. (b) The ratio of the amplitudes of global
maximums S™* to the average levels of the envelopes S(7) as a function of
the irradiation angle « in response to irradiation by a train of seven
equidistant pulses.

formed). Figure 4a gives an example of this dependence on
the irradiation angle for a body in the horizontal plane,
o = 5—15°; the reference signal was formed in the irradiation
of the body at ¢y = 10°. Figure 4b gives an example of these
curves for irradiation of the same body with seven equidistant
pulses [the number of maximums in Sx(7) is also roughly
equal to 7]. These curves were plotted for probe pulses of
equal length and for equal ranges of the body irradiation
angle. On average, the ratios S™* /Ss, ,, were greater than
Smax /Sy, but the difference was insignificant. A comparison
of the plots shown in Figs 4a and b demonstrates that the
ratios S™*/Sy and S™*/Sy, ,, obtained for irradiation by
reference signals at all angles were greater than the values in
the case of equidistant pulses, which corresponds to irradiat-
ing a body with an extraneous reference signal. In this case,
correct identification was faultless at all irradiation angles.

With this approach, the problem of identification is
greatly simplified and in fact reduces to the problem of
locating the global maximum. The price paid for increasing
the noise immunity under multialternative identification is
the need to send several reference signals whose number
equals that of the bodies to be recognized. If reference signals
are sent, the total information on the distribution of reference
values {t;}, incorporated in the conditional probability
densities f( U 1), is not used. However, identification can
be achieved lHy using the optimal criterion.

The suggested method is most convenient for identifica-
tion of a known body against a background of noise and
reverberation interference and in identifying complex-shape
bodies in a multipath environment. Multipath propagation of
signals in marine environments produces not one but several

maxima Sy on Sy(7) (depending on the hydrological

environment). However, the procedure for identifying com-
plex-shape bodies does not change in this case.
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Quantum electrodynamics of heavy ions
and atoms: current status and prospects

V M Shabaev

1. Introduction

Quantum electrodynamics (QED), whose underlying princi-
ples were formulated by Dirac, Heisenberg, Born, Fock,
Pauli, Wigner, Jordan, Fermi, and others by the early 1930s,
has been quite successful in describing the emission (absorp-
tion) of a photon by an atom and the creation (annihilation)
of electron—positron pairs, but second-order perturbative
QED calculations yielded infinite results for some effects.
This problem remained unsolved until about the late 1940s,
when experiments by Lamb and Rutherford revealed what is
now known as the Lamb shift, the splitting of the 2s and
2py; energy levels in the hydrogen atom. Because there was
virtually no doubt about the quantum-electrodynamic origin
of the Lamb shift, this discovery paved the way to the solution
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to the problem of singularities. The Lamb shift was first
estimated by Bethe, and the modern theory of quantum
electrodynamics, which solved the problem of infinities via
the renormalization procedure, was developed by Dyson,
Feynman, Tomonaga, and Schwinger. Because of the pre-
sence of a small parameter (the fine structure constant
o~ 1/137), QED calculations rely on the perturbation
theory, in which the Feynman diagram representation of
each term enables formulating simple rules for writing
formal mathematical expressions.

Until about the early 1980s, the only atoms that allowed
testing QED were light ones such as hydrogen, positronium,
helium, and muonium. For these, in addition to «, there is a
small parameter oZ, where Z is the nucleus charge. For this
reason, QED calculations for light atoms were limited to the
few lowest orders in o and «Z, and comparison of theory and
experiment only allowed testing the QED in the lowest orders
in these parameters. This being a rather narrow testing range,
the question naturally arises as to how to extend it. The
immediate answer seems to be to go to higher orders in «Z to
investigate QED effects for inner electrons in heavy neutral
atoms (for example, the uranium atom), which are known to
be in a strong (nonscreened) Coulomb field of the nucleus and
for which the parameter o7 is not small. But the uncertainty
in correlation effects, which usually is at or even exceeds the
level of QED contributions, places strong accuracy con-
straints on the theoretical calculation of such systems. For
this reason, heavy neutral atoms are usually treated only by
means of the Breit equation, in which relativistic correlation
effects are taken into account only approximately. The
unique possibility of testing QED to all orders in terms of
oZ has occurred with the advent of high-precision experi-
ments on heavy multiply charged ions (such as hydrogen-like
[1] or lithium-like [2—4] uranium ions) in which, on the one
hand, o7 is not small (in uranium, «Z = 0.7) and, on the other
hand, because of the small number of electrons, correlation
effects (i.e., electron—electron interaction effects) can be
calculated to a high accuracy. It is the theory of such systems
that occupies the bulk of this talk. As regards heavy neutral
atoms, our discussion is brief and limited to recent advances
in calculating QED corrections to spatial parity violation
effects in neutral cesium (these corrections are very important
for testing the Standard Model (SM) at low energies).

Relativistic units i = ¢ = 1 are used throughout the talk.

2. Binding energies of heavy ions

Because the number of electrons in a multiply charged ion is
much smaller than the nucleus charge Z and because,
therefore, the electrons interact much more strongly with the
nucleus than with one another, a reasonable first approxima-
tion is that they do not interact at all and obey the one-
electron Dirac equation in the Coulomb field V¢(r) of the
nucleus,

(ap + B+ Ve(r)(r) = Ey(r). (1)

For a point-like nucleus, the Dirac equation is solved
analytically. For a finite-size nucleus, both numerical and
analytic solutions can be obtained [5].

QED corrections and those for the electron—electron
interaction are included perturbatively. The corrections for
the electron—electron interaction are suppressed by the
parameter 1/Z, which for heavy ions is comparable to the
QED correction parameter o. Therefore, in the case of heavy
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Figure 1. First-order one-clectron diagrams: self-energy and vacuum
polarization.
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Figure 2. Two-photon exchange diagrams.
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Figure 3. Screened-self-energy and vacuum polarization diagrams.

ions, all the contributions are more conveniently character-
ized by the single parameter «. We note that unlike for light
atoms, calculations for heavy atoms should be carried out
without expanding in oZ.

Because the electron mass is much smaller than the mass
of the nucleus, most contributions can be calculated in the
approximation of an infinitely heavy nucleus, when the
nucleus simply serves as a source of an external Coulomb
field and we are dealing with quantum electrodynamics in the
Furry picture. First-order calculations in o should be done for
contributions from the self-energy (Fig. la) and vacuum
polarization (Fig. 1b) diagrams. For ions with two or more
electrons, the one-phonon exchange diagram should of
course also be included, and is rather easy to calculate. The
main technical problem with calculating the self-energy and
vacuum polarization diagrams is working without expanding
in oZ. The first such calculations were performed in Ref. [6]
for the self-energy diagram and in Refs [7, 8] for the vacuum
polarization diagram.

The next stage in performing calculations in the Furry
picture is to evaluate the contributions from second-order
two- and three-electron diagrams, which include two-photon
exchange diagrams (Fig. 2), as well as screened self-energy
and vacuum polarization diagrams (Fig. 3). For this, the first
thing to do is to derive the necessary calculation formulas.
This problem mainly refers to the so-called reducible
diagrams, i.e., those in which the total energy of an
intermediate state of the atom equals the unperturbed energy
of the reference state; for the remaining (irreducible) dia-
grams, the derivation poses no difficulty. In the late 1980s,
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Figure 4. Second-order one-electron diagrams.
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when the calculation of these diagrams was of particular
topical interest, it was found that the adiabatic S-matrix
formalism of Gell-Mann and Low, the most common
approach at the time, has a number of drawbacks that make
it computationally impractical. These include, among others,
prohibitive technical difficulties in treating reducible dia-
grams, the lack of the renormalizability proof, the impossi-
bility to calculate the energies of quasidegenerate states, and
the unavailability of any analogous method capable of
calculating transition amplitudes. All of these problems were
overcome by using the method of two-time Green’s functions
developed for this purpose in Ref. [9] (see Ref. [10] for a
detailed description). In particular, this method has been used
to solve, for the first time, the computationally most
challenging problem of deriving an expression for two-
electron two-photon exchange diagrams [9]. In Ref. [11], this
expression was calculated numerically for the ground state of
helium-like atoms without expanding in «Z. Screened self-
energy and vacuum polarization diagrams were calculated in
Refs [12—14], followed by calculations for lithium-like ions
[15] and for the excited states of helium-like atoms [16].
Recently, the full set of diagrams shown in Figs 2 and 3 were
finally calculated for the 2p3;—2p;), transition for the
boron-like argon ion [17].

Referring to the second-order one-electron diagrams in
Fig. 4, calculations for some of these reduce to calculating
first-order diagrams. An example is given by the diagrams
shown in the second row of the figure, where the calculation
reduces to the ordinary one-loop self-energy calculation for
an effective potential composed of the Coulomb potential of
the nucleus plus the vacuum polarization potential. At the
same time, two-loop self-energy diagrams (seen in the first
row of Fig. 4) pose challenging technical difficulties for
calculation, as also do the last two diagrams in the figure.
Considerable progress in this area was made in the relatively
recent study in Refs [18, 19], where the full set of two-loop
self-energy diagrams was calculated.

In these calculations, the nucleus is treated as an infinitely
massive source of an external Coulomb field. Going beyond
this approximation requires taking the finite mass of the
nucleus, that is, the recoil effect, into account. In the
nonrelativistic theory of a hydrogen-like atom, it is known
that the recoil effect of the nucleus is readily taken into
account by introducing the reduced electron mass u =
mM/(m+ M). But this is not the case in the relativistic
theory, which can only be formulated in the QED frame-
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Figure 5. Typical diagram for the electron —nucleus interaction.

work. A fully relativistic theory accounts for the nuclear
recoil effect by considering all the diagrams for the electron —
nucleus interaction via photon exchange. A typical example
of such a diagram is shown in Fig. 5. The fact that each
photon line in this diagram contributes a factor oZ explains
the fundamental difference in how the theory accounts for the
recoil effect in light and heavy atoms. For light (small-z2)
atoms, a calculation with only a few lowest-order diagrams is
a sufficient approximation, but for heavy ions, in which the
parameter «Z is not small, no finite number of diagrams
suffice and, instead, the infinite sequence of such diagrams
must be summed (at least in the first order in m/M). Because
the standard QCD formalism offers no recipes for doing this,
we are faced with a serious conceptual problem here.
Reference [20] was the first to set out to derive a closed
expression accurate to all orders in aZ for the nuclear recoil
effect. The next important development in this area was the
demonstration in Ref. [21] of the summability of the infinite
sequences of diagrams of interest here. Full closed formulas
for recoil corrections, accurate in the first order in m/M and
exact in «Z, were obtained by the quasipotential method in
Ref. [22]. According to these formulas, the recoil correction to
the energy of the bound state a of a hydrogen-like atom is the
sum of the lower and higher (in «Z) contributions,

1

AEL :m@’[pz - (D(O)P+PD(0))]|‘1>7 (2)
R [p, V]
AEy = ZTCMJ,OO do <a (D(w) a)+i0) Glo+ E,)
p, Vcl
X<D(w)+w+i0 ay. (3)
Here, p is the momentum operator, G(w) is the relativistic
Coulomb Green’s function, D,,(w) = —4naZu;Djy,(w), and

Djr(w, r) is the transverse part of the Coulomb gauge photon
propagator. We note that the scalar product is understood in
Eqn (3). Reference [23], also relying on the quasipotential
method, extended these formulas to atoms with several
electrons. In later studies [24], other methods were used to
derive formulas (2) and (3). The first numerical calculations
with these formulas were performed in Ref. [25].

It is necessary, finally, to account for the polarization of
the nucleus by the electron. This effect is represented by the
diagrams of the two-photon exchange between the nucleus
and an electron in which intermediate (virtual) states of the
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Table 1. Energy of the 2p; , —2s transition in the Li-like uranium ion.

Energy, eV
Breit approximation 322.13(7)
QED contributions of the first order in o —42.93
QED contributions of the second order in o 1.55(7)
Nuclear recoil —0.07
Nuclear polarization 0.03(1)
Full theoretical value 280.71(10)
Experimental value [4] 280.645(15)

nucleus are excited. Given that the internucleon interaction is
understood only phenomenologically, calculating nuclear
polarization is a serious physical problem, and it is in fact
the errors from this calculation that determine the upper-
bound accuracy of the full theoretical values needed.
Calculations of this effect for heavy hydrogen-like ions were
carried out in Refs [26, 27].

To date, the highest level of precision has been achieved in
experiments to measure transition energies in lithium-like
ions [2—4]. Table 1 shows the values of different contributions
to the 2p;;—2s transition energy and compares the full
theoretical value with the experimental result. The contribu-
tion due to the finite size of the nucleus is calculated for a
Fermi nuclear charge distribution with account for the
nuclear deformation [28]. It is seen that as far as lithium-like
uranium is concerned, the current theory and experiment
provide about a 0.2% test of QED in a strong Coulomb field.

3. Hyperfine structure

A number of high-precision measurements are available for
determining the hyperfine ground state splitting of heavy
hydrogen-like ions [29 —32]. The primary motivation behind
these measurements was the fact that in a heavy ion with
nonzero nuclear spin, each electron experiences, in addition
to the strong Coulomb field, a very strong magnetic field
created by the magnetic moment of the nucleus; this a
situation provides a unique opportunity for testing QED in
the combination of the highest currently achievable electric
and magnetic fields. The first such experiment was carried out
on bismuth [29] and yielded the value 5.0840(8) eV for the
hyperfine ground state splitting of the H-like ion 2°Bi***. The
theoretical value of the hyperfine splitting is conveniently
written as

AE = AEDirac(l — 8) —+ AEQED s (4)

where the Dirac value includes relativistic effects and the
nuclear charge distribution correction, ¢ is the (Bohr-—
Weisskopf) correction for the nuclear magnetic moment
distribution, and AEqgp is the QED correction. Calculating
AEpi. 1s straightforward. The QED correction has also been
calculated by several groups, leading to reasonably consistent
results. The main problem consists in calculating the Bohr —
Weisskopf correction, which, because of its high sensitivity to
the nuclear model, almost entirely determines the full
theoretical uncertainty. For the H-like ion of bismuth, a
calculation within a one-particle model of the nucleus yields
the hyperfine splitting 5.101(27) eV [33], a value that agrees
with experiment but contains a large error. A more accurate
calculation for a many-particle nuclear model [34] yields
5.111(—3,420) eV, which is in disagreement with experi-
ment. Finally, a semiempirical calculation using an experi-
mental value of hyperfine splitting in muonic bismuth yielded

5.098(7) eV [35], about two standard deviations from the
experimental value. The QED contribution to the given
hyperfine splitting is about —0.030 eV and is in fact
comparable to the error in the Bohr— Weisskopf correction.
Although this fact prevents the tests of QED by directly
comparing theoretical and experimental results for the
hyperfine structure of hydrogen-like ions, it has been shown
[36] that QED effects can be experimentally identified by
using a certain particular difference between the hyperfine
splitting of H- and Li-like ions of the same isotope,

NE=AE® — ¢AEMS) (5)
where ¢ is chosen so as to cancel the Bohr — Weisskopf effect.
It turns out that both the parameter ¢ and the difference A'E
itself are weakly sensitive to variations in the nuclear model
and can therefore be calculated to high precision. With this
approach, it will be possible to test QED at the level of a few
percent if the hyperfine splittings are measured to an accuracy
~ 107%. Such experiments are currently underway in Ger-
many and the UK in the framework of the HITRAP (Heavy
Ion Trap) project. The first experimental data on the
hyperfine splitting in Li-like bismuth were obtained at the
Livermore National Laboratory in the USA.

4. g-factor of multicharged ions

Precision g-factor measurements of the H-like carbon ion in a
Penning trap [37] have generated considerable interest in the
calculation of this quantity. The measurements were so
accurate that their total precision was mainly determined by
uncertainties in the electron mass m, which enters the formula
for the g-factor along with the experimentally measured
cyclotron and Larmor frequencies. This implies that know-
ing the theoretical value of the g-factor to within the desired
accuracy would enable the electron mass to be determined
with an accuracy exceeding that of the then-accepted value of
m by several times. At the time, the two factors that
determined the error in the theoretical value were the non-
calculated higher-order nuclear recoil contributions and the
error from the numerical calculation of the one-loop self-
energy. Efforts to reduce the former resulted in a closed
relativistic formula for the nuclear recoil correction to the
atomic g-factor. Specifically, the following formula was
derived, in the first order in m/M and in all orders in «Z, for
the contribution from the nuclear recoil effect to the g-factor
of an H-like ion [38]:

1 i
Ag =
£ UHomg 2TM

[ " o [%@Hp—mw +eAd]

—00

X G(w+ Ey)[p— D(w) + eAq] |a>] . (6)

Here, p, is the Bohr magneton, m, is the projection of the
moment on the z axis, e = —|e| is the electron charge, and
A = [B xr]/2 is the vector potential of the homogeneous
magnetic field B directed along the z axis. It is assumed that all
quantities are calculated in the presence of a magnetic field. A
numerical calculation using expression (6) was carried out in
Ref. [39], and a calculation of the one-loop self-energy to the
required accuracy was performed in Ref. [40]. All in all, the
comparison of the theoretical and experimental values of the
g-factor of H-like carbon reduced the error in the value of the
electron mass by a factor of four. These results, along with
relevant studies on H-like oxygen [41], formed the basis for a
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new value of m as given in the most recent compilation of
fundamental constants [42].

It is expected that the g-factors of multicharged ions up to
Z =92 can be experimentally determined in the very near
future in the framework of the HITRAP project. For ions
with nonzero spin, such experiments can be used to determine
nuclear magnetic moments to within ~ 107°. As shown in
Ref. [43], the fine structure constant can also be indepen-
dently measured in this way.

5. QED corrections to the parity-violating
6s—7s amplitude in neutral Cs
The study of parity violation remains one of the major tools
for testing the Standard Model electroweak sector at low
energies [44]. The measurement of the parity-violating 6s—7s
amplitude in neutral Cs to within 0.3% [45] required for both
calculating new corrections to this amplitude and revising
those contributions already calculated. As a result, more
accurately accounting for correlation effects [46], combined
with the Breit interaction [47, 48] and vacuum polarization
[49] corrections, has led to a weak charge of the cesium ion,
differing by 2¢ from the SM prediction. It became clear that
testing the SM requires a consistent QED calculation of self-
energy corrections. The first estimates of this effect were made
for the so-called ‘mixing coefficients’ of the s and p states, the
coefficients being rather artificial entities in the QED context.
Although both references gave similar results for the total
(minus —o/2n) binding QED correction [—0.5(1)% in
Ref. [50] and —0.43(4)% in Ref. [51]), only a calculation of
the total gauge-invariant set of self-energy corrections to the
P-violating amplitude could answer the question of agree-
ment or disagreement with the Standard Model. Such a
calculation was carried out is Ref. [52], where it was assumed
that a valence electron moves in an effective local potential
constructed from the nonlocal Dirac—Fock potential. The
result for the total binding QED correction was —0.27(3) %,
differing by a factor of two from previous estimates. Later, a
similar result was obtained in Ref. [53], where a revision of the
previous calculations in Refs [50, 51] was performed.
Combining the QED contribution with other contribu-
tions and comparing the resulting total amplitude with the
averaged experimental value of the vector polarizability
B =26.99(5)aj (see Ref. [46] and the references therein), the
weak charge of '33Cs is found to be

Ow = —72.65(29)6)(10(36)”17 (7)
which is 1.1¢ from the SM prediction —73.19(13) [54].

6. Conclusion

In this paper, theoretical results of the quantum electro-
dynamics of multicharged ions are presented and compared
with experimental data, identifying the study of transition
energies in heavy multicharged ions as the area where the
QED in strong electric fields has by now been most
thoroughly tested. A study of how QED affects the
hyperfine structure of heavy ions, which would mean testing
QED in the simultaneous presence of strong electric and
magnetic fields, is greatly complicated by large uncertainties
in corrections due to the nuclear magnetic moment distribu-
tion. The considerable reduction in these uncertainties for a
certain particular difference of hyperfine splittings in H- and
Li-like ions raises hope that such testing will become possible
when necessary experiments, both underway and planned,

are completed. The high-precision measurements of the
g-factors of multicharged ions and a corresponding theory
that has been developed have already resulted in a more
accurate value of the electron mass and are expected to be
used in the very near future to test QED in an external
magnetic field and to obtain high-precision values of nuclear
magnetic moments. It can be expected that these studies will
also enable an independent, high-precision determination of
the fine structure constant in the near future.

Large errors in calculating correlation effects in heavy
neutral atoms make these systems impractical for verifying
QED. However, when particularly precise calculations are to
be made (for example, in estimating parity violation in a
neutral Cs atom), QED corrections should be included.
Computational QED techniques that have been developed
for multicharged ions with a few electrons proved to apply to
such systems as well. From a theoretical standpoint, what
currently limits the tests of the Standard Model in neutral
atoms is errors in correlation effects. In this connection, the
study of parity violation in multicharged ions [55], where the
accuracy of calculation is not subject to such limitations,
holds considerable promise.

This work was supported in part by the RFBR grant
No. 07-02-00125 and by the INTAS-GSI grant No. 06-
10000012-8881.
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High-precision laser spectroscopy
of cold atoms and the search for the drift
of the fine structure constant

N N Kolachevsky

1. Introduction

This review presents the main scientific results obtained over
the last several years at the Laboratory of Active Media
Optics of the Optical department of the Lebedev Physical
Institute. The work was aimed at the search for and the
investigation of high-finesse optical resonances in atomic
ensembles. This allows carrying out sensitive tests of funda-
mental physical theories and opens the possibility of creating
prospective frequency references in the optical range. A new
laboratory method has been presented to search for the drift
of the fine structure constant by using a frequency comb of a
femtosecond laser, and sensitive experiments are being
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Figure 1. Uncertainty evolution for microwave (thombs, dash-dotted line)
and optical (circles, dashed line) frequency references. Noticeable progress
in the development of optical standards is related to the evolution of new
ultrastable laser systems, methods for measuring and comparing optical
frequencies by means of an optical comb, and the development of new
spectroscopic objects based on captured and cooled atoms and ions.

performed on testing the quantum electrodynamic theory.
Work has started on laser cooling of the thulium atom, which
experiences a narrow transition near 1.14 um. The possibility
of cooling was analyzed experimentally and theoretically, and
the transitions most promising for the cooling were deter-
mined. A new generation of ultrastable optical cavities was
developed for stabilizing the frequency of laser systems, which
allows detecting optical resonances with a sub-Hertz resolu-
tion. A compact magneto-optical trap for rubidium atoms
was created, and the interaction of femtosecond-laser radia-
tion with a laser-cooled ensemble of atoms was investigated.

High-precision laser spectroscopy and laser cooling of
atomic ensembles are rapidly developing fields of modern
physics. In the last decade, the most impressive achievements
have been awarded Nobel prizes for physics, specifically, the
development of methods for cooling and trapping atoms by
laser radiation (1997), the experimental discovery of Bose—
Einstein condensation in dilute gases of alkali metals (2001),
and the contribution to the development of methods for high-
precision spectroscopy and the creation of a frequency comb
on the basis of a femtosecond laser (2005) [1]. Intense
investigations in the field of high-precision spectroscopy and
metrology started about 30 years ago [2, 3]; however, it took a
long time to approach the measurement uncertainty of
10~17—-10~'3, envisaged in pioneering works by A L Shavlov,
V P Chebotaev, V S Letokhov, T W Hénsch, J L Hall, and
other classics of nonlinear laser spectroscopy. As the result of
long-term work, scientists from metrological and laser centers
in the USA, Germany, Russia, France, England, and other
countries succeeded in reducing the relative error of optical
frequency references to 2 x 107 [4], which is by an order of
magnitude better than the accuracy of the best primary
standards, namely, cesium fountains [5]. In Fig. la, the
relative errors of microwave and optical standards are
compared.

Rapid progress in optical standards is mainly related to
the development of simple-to-use laser systems with superior
characteristics, which satisfy the most stringent requirements
of experimenters. Laser systems are used for cooling and
capturing atoms and ions in traps, for preparing their internal
states, and in the spectroscopy of ultra-narrow ‘clock’
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