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Abstract. The Rayleigh criterion and the Airy radius r¢ are not
adequate for characterizing spatial resolution in phase and
some other functional images. An essential feature of phase
images is a possible formation of wavefront dislocations which
depend on the position in space of the so-called singular lines
[1(x,y,z) = 0], in the neighborhood of which the phase gradient
grad ¢ ~ I~/ increases and the intensity tends to zero. Based
on this gradient phase behavior, the minimal length L dependent
on the signal-to-noise ratio (S//N) is proposed as the phase
resolution criterion, and a formula for the energy-dependent
super-resolution, = = ro/L = 2(S/ N)l/ 2 is devised. Measure-
ments on a 100-nm-diameter latex sphere using the Airyscan
coherent phase microscope confirmed that a marked (= =~ 5)
superresolution can be achieved.

1. Introduction

The problem of resolution in optics has a long history and
comes to our attention again with the advent of new methods
in the microscopy of biological objects, taking advantage of
the properties of functional images [1]. The Rayleigh
resolution criterion based on intensity distribution in a point
source image is actually a characteristic of the numerical
aperture of an optical system [2] and cannot be applied to
functional images such as fluorescent and spectral [3—9],
holographic[10], interference [11—17], polarization and some
other images.

Publications reporting superresolution on the order of
dozens of nanometers in biological images [3—9] evoked a
wide response. The possibility of detecting single macromo-
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lecules [4] and measuring their coordinates with nanometer
accuracy [6] was demonstrated. These outstanding results
were obtained containing devices with ordinary optics using
nanocrystal quantum dots [3], fluorescent markers with
different spectra [6], and photoactivatable proteins [4] to tag
biological objects, taking into account substrate effects on
fluorescence [7] and the suppression of protein fluorescence in
structured illumination conditions [§]. One of these methods
(termed as a stimulated emission depletion, STED) is based
on the effect of reversible saturation of radiative transition.
The minimal lateral dimension of the region in which the
‘response’ is recorded is on the order of Ax = /1(5)71/2/75,
where & > 1 is the saturation parameter of transition related
to photoinduced fluorescence. The use of optical astigmatism
permitted determining the coordinates of individual fluor-
ophores in three dimensions with a nanometer accuracy [9].

It follows from the cited studies [3 —9] that the application
of fluorescence methods in the microscopy of biological
specimens yields data of great scientific and practical
importance, on the one hand, and leads to the erosion of
boundaries between general notions of spatial resolution and
the accuracy of coordinate measurement, on the other hand.

The same studies showed that spatial resolution (includ-
ing superresolution) depends not only on the numerical
aperture but also on the properties of an object, algorithms
of measurement and treatment of functional images, time of
measurement, and signal-to-noise ratio. Hence, the natural
question: Is it possible to exactly define the notion of super-
resolution in functional images generally, and in fluorescence
and phase ones specifically? This question involves funda-
mental notions of physics; therefore, we believe it warrants a
special discussion.

Interference methods are also extensively used in micro-
scopy [11-17] by virtue of their low-invasive nature and
feasibility of being employed to examine unstained natural
objects. Their application to the microscopy of biological
specimens makes it possible to obtain digital phase images,
measure indices of refraction [13, 16], and record dynamic
processes in real time and with a high responsivity [14—16].
However, algorithms for generating phase images, based on
phase retrieval from interference patterns [11-17], did not
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Figure 1. Spatial resolution in amplitude images and in the vicinity of a singular point. (a) Classical Rayleigh criterion — the distance between maxima in
the images of two incoherent point sources — is Ry = 3.83, where R = 2nDr/.F = Kr is a dimensionless coordinate in the image plane. (b) Instrument
function of the pupil of the optical system with the normalized Airy disk radius Ry = 3.83. (c¢) Limited maximum intensity gradient in the vicinity of a
point source. (d) Zero intensity at the singular point x = 0; n-jump of the phase occurs upon its intersection. (¢) Quadratic change in intensity and a finite
value of the phase gradient in the singular point neighborhood; distance L = 2Ax between the points ¢(+Ax) = +n/4 is used below as the resolution
parameter in phase images. (f) Analogy with the phase-frequency characteristic ¢(w) of the oscillatory circuit; frequency band Aw can be found from both

the amplitude-frequency [4(w)] and phase-frequency [¢(w)] characteristics.

permit achieving superresolution registered in fluorescence
images.

This paper focuses on the problem of superresolution in
phase images, which is related to their unique properties
usually interpreted in terms of so-called singular optics [18 —
26]. The notions of wavefront dislocations (WFDs) and
singular lines at which the intensity goes to zero were
introduced into optics in a fundamental work by J F Nye
and M V Berry [18] dated 1974. Later other researchers
defined such unusual notions as the birth and annihilation
of singular points, the nature of screw dislocations, and
topological charge value [19, 24]. Singular points are
apparent only in interference images after phase retrieval (in
phase images). Experimental and theoretical studies [19—26]
in this relatively new branch of optics have provided a deeper
insight into the structure of the optical field. Of fundamental
importance is the inference [18, 22, 23] that an assembly of
singular lines makes up a sort of ‘skeleton’ of an electro-
magnetic field and that an object image can be regarded as a
projection of the ‘skeleton’.

Wavefront dislocations inside the Airy disk were first
observed [25, 26] in phase images obtained by coherent phase
microscopy. However, dislocations were not discussed in later
works on interference microscopy [10—17], in which other
algorithms (e.g., multistep ones [17]) were utilized to obtain
phase images.

The paramount importance of the algorithm and method
for the production of phase images became evident after the
first reports on superresolution [27, 28] had been published in
1989. Indeed, the absence of superresolution in phase images
obtained by optical tomography [11], multistep interferome-
try [17], and holographic [13] and Hilbert phase [14—16]
microscopies could be due to nothing more than the employ-
ment of algorithms based on recording intensity distribution.
In these methods, interference images stored in computer
memory were used to calculate the argument (phase) of the
complex amplitude of a wave scattered by an object and to
represent subsequently the phase (or the optical path

difference) on the monitor in the form of a two-dimensional
distribution. The intensity distributions in interference
images being limited by diffraction by the objective aper-
ture, we believe it to have excluded the possibility of super-
resolution in phase images.

A radically different algorithm was employed in the
Airyscan coherent phase microscope developed in our
laboratory [29, 30]. The optical path difference between the
object and reference waves was measured in each pixel of the
raster by a compensation method during sequential scanning
of interference images. In this approach, the two-dimensional
distribution of the optical path difference normalized to the
wavelength was interpreted as the object’s phase image
¢@(x,y). Images of test-objects were found to exhibit super-
resolution [27-30]. At that time, we thought this super-
resolution to be an inherent property of phase images and
did not care to seek a more adequate physical explanation of
this phenomenon.

In what follows, it will be shown that the possibility of
occurring superresolution in phase images follows from the
well-known findings in classical [2] and singular [18—26]
optics. We shall utilize the known intensity distribution in a
point source image, which is limited by diffraction on the
aperture of the optical system. This distribution may be
represented by the function I(R) = [(2J;(R)/R)?, where
R =2nDr/AF = Kr, K=2nD/AF = Ry/ro = 3.82/ry, where
ro = 0.611F/ D is the Airy disk radius, D, F, A are the aperture
diameter, focal distance, and wavelength, respectively, and
r= (x2+ »?)"/? is the distance in the image plane.

A physical model of the Rayleigh criterion comprises two
identical incoherent point sources whose image is constrained
by diffraction on the aperture of the optical system (Fig. 1a)
or by the normalized Airy disk radius Ry = 3.82 (Fig. 1b).

The normalized distance Ry = 3.82 between extrema in
the intensity distribution function 7 (R) = [2J;(R)/R]* of two
identical point sources (Fig. la) serves as the Rayleigh
resolution criterion [2] and is numerically equal to the
argument (Ry = 3.82) for the second zero, J;(Ry) = 0, of the
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Bessel function of the first kind. The Rayleigh criterion is an
equivalent of numerical aperture NA =D/F up to a
wavelength 4. It is independent of energy and may be
correctly applied only to two identical incoherent sources.

The model of two point sources shown in Fig. la can be
converted into a simple model of a functional image with
‘superresolution’. The latter proves to be energy-dependent
and limited by the accuracy with which coordinates of the
sources can be determined. To this end, suffice it to assume
that the point sources with coordinates R; and R, in Fig. la
differ, say, by spectral characteristics, their intensity distribu-
tions /;(R) and I(R) are measured independently, and
matched optical filters are used in the photodetector. The
coordinates of either source can be determined under these
conditions. Statistical error R in the determination of the
coordinates of each source depends on a matching between
the spectra of the sources and the optical filters, the sensitivity
of the photodetector, the number of independent realizations,
and other factors formally characterized by the signal-to-
noise ratio (S/N). The source images having been matched,
the statistically significant distance (AR ~ 28 R) between the
centers of their Airy disks depends on the accuracy of
measurements; in other words, it is energy-dependent in the
above sense. In this functional image, the notion of super-
resolution can be formally defined as the Ry/AR =~ S/ N ratio,
but its meaning is far from obvious and the possibility of its
application to other models remains to be elucidated. Even
this example illustrates the necessity of a clearer definition of
spatial resolution because the notions of resolution and
accuracy of coordinate measurement are indistinguishable in
certain functional images.

One more fundamental difference between the ‘ampli-
tude’ image of a point source and its ‘phase’ analog needs to
be emphasized. It follows from the definition of normalized
intensity I(R) = [2J,(R)/R]* in the image of a point source
that the intensity gradient at its outskirts cannot surpass a
certain (dI(R)/dR < 0.4) value (Fig. 1b). At the same time,
in the case of a singular source with amplitude J;(R), the
field at the point R = 0 changes its sign and the phase in the
vicinity of I(R) = 0 undergoes a n-jump. This means that in
phase images ¢(R) the phase gradient de/dR at the
intersection point between the singular line and the image
plane is unlimited. Such phase m-jumps were regularly
observed in the form of apparent A/2-discontinuities
(dislocations) of the surface in the images of different
specimens [31—34] measured with the Airyscan microscope
(see Section 6, Fig. 4).

The above example poses natural questions: “To what
extent are functional (in particular, phase) images adequate to
real objects?”, and ““What is the value of the information they
contain?”’ Discussion of this nontrivial problem is beyond the
scope of the present paper; suffice it to note here that
numerous publications give positive answers to these ques-
tions and suggest a high informative value of functional
images [3—16] obtained by new optical methods. This note
is equally relevant with respect to images obtained by
coherent phase microscopy [29, 31, 34, 35]. Also, very
realistic phase images were produced in studies of subwave-
length test-structures (slits and spheres) [27 —29].

The primary objective of this paper is to attract attention
to the problem of superresolution in phase images and to
consider its relation to singular optics.

1163
2. Phase object model
The electric field induced by a singular source, viz.
E(x,y) ~ Ji(R)exp (i0), (1)

where Ji(R) is the Bessel function of the first kind, can be
represented by a complex amplitude

E(x,y) = E(x,y)exp [ip(x, )],

0 = @(x,y) = arctan o (2)
y

At the point x = y = 0, where singular line [I (x,y,2) = O]
intersects the image plane X (see Section 4), the intensity is
zero: I(x,y) = |E(x,y)]* = 0. Phase ¢ changes by 2m as it
moves counterclockwise around the singular point.

Figure 1d shows quadratic growth of intensity /(x) along
the line y = 0 with distance from the singular pointx = y = 0,
and a m-jump of phase ¢(x) upon its intersection. The phase
gradient is finite at points in the line y # 0 that does not pass
through the singular point (Fig. 1e). Singular source model (2)
and phase change ¢(x) in the neighborhood of the source will
be used to substantiate the resolution criterion and the
superresolution parameter constrained by the signal-to-
noise ratio. Specifically, the linear size characterizing spatial
resolution in a phase image (Section 3) will be taken as an
interval L = 2Ax between points with fixed phase values

@(£Ax) = i% . (3)

In connection with this definition of interval L, it is worth
mentioning an interesting analogy between the processes in
time and space. In radio engineering, the spectral resolution
of temporal signals is evaluated from characteristics of the
oscillatory LCR-circuit. The slope of its phase-frequency
characteristic ¢(w) = arctan[2(w — wy)/Aw] grows in the
vicinity of the resonance frequency (w = wy) (see Fig 1f). At
Aw = 0, phase ¢(w) at the point = @y undergoes a T-jump.
The frequency band Aw characterizing spectral resolution can
be defined at a level of [4(Aw)]* = 1/2[A(wq)]” at the points
o — wy = £Aw/2 of the amplitude-frequency characteristic
A(w) or from the points ¢, = £n/4 of the phase-frequency
characteristic ¢ (o).

We shall use the above analogy and assume interval
L =2Ax (Fig. le) between points with fixed values of
¢@(xAx) = +n/4 to determine spatial resolution in the phase
image ¢(x,y) of a singular source. This interval, L = 2Ax, is
in a sense analogous to the frequency band Aw in Fig. 1f. We
shall demonstrate that the new criterion is energy-dependent
unlike the classical Rayleigh criterion [2] that depends on
optical system parameters alone.

3. Singularities and the resolution criterion

in phase images

Suppose that two conjugate singular points A, A~ lie in the
plane X(x,y) of the object’s image ¢(x,y) (Fig. 2), and the
complex amplitude in the vicinity of one of them (A7) is
represented by expression (1) in the form

E(R) = J1(R) exp (ip) (4)
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Figure 2. Model of a singular source in the image plane and definition of
the spatial resolution criterion in a phase image. (a) A" and A~ are two
conjugate singular points in the object’s image plane (x, y). Singular point
source A~ (x; =y = 0) with a unit topological charge induces a field with
the complex amplitude E(x,y) = |E(x,y)|exp [ip(x, )], where E(x,y) ~
Ji(R)exp [ip(x,»)], Ji(R) is the Bessel function, and the phase changes
by 27 in detouring around the singular point. Intensity /(x) = |E(x7y)\2
and phase ¢(x) of the field have finite values in the line (x,y =v). At
points x = =+v, the phases differ by /2. (b) Distance L = 2v between
the points x = v with phase values of +m/4 serves as the resolution
criterion in the phase images. Minimal field intensity equaling the noise
level Iyin(0,v) = N limits the distance L =2v. Maximum intensity
Imax (0.5r9) = 0.36 occurs at the remote point x = 2/K = 0.5r¢ > v.

with the first zero at R = 0, the second zero at Ry = 3.82, and
the intermediate maximum at R; = 2. The phase in the
neighborhood of the singular point R = 0 increases by 27 as
it goes counterclockwise around the singular point [18 —20].
At an arbitrary point with the coordinate x in line y = v
orthogonal to the segment AT A~ the intensity and the phase
of the field created by the source A~ are represented by
functions Iy (x, v) and ¢(x, v), respectively. The phase

¢(x,v) = arctan % (5)

monotonically varies along the x-axis, and the intensity in the
vicinity of the singular point (R < 1) changes with the square
of the distance:

2 )2 2032 1 y2
Iw(x,v):[Jl(R)}zg (g) :(K4) :K( 4+V)

- (6)

The resolution criterion in phase images (Fig. le) is
defined as a minimally discernible distance L = 2v between
the points x = v, where the phase ¢, = £n/4 (Fig. 2b). In
this case, it is important that intensity 7, (0, v) in formula (6)
decreases as one approaches the singular point. This suggests
that a minimal distance vy, at which a signal is still possible
to measure at the points x = 4vp,;, can occur. In real systems,
this distance is limited by noise in the form of random
intensity fluctuations caused by sources of different natures.

The greater the signal versus noise, the smaller the values of
interval L = 2v,;, that can be measured.

Suppose further that the phase is measured at the point
X = Vmin at a certain minimal field intensity

s K%yZ

Ilj/ (Vmin) = [Jl (Kvmin)] ~ % y (7)
limited by the noise level, with the nature of the noise being
immaterial. Then, the highest field intensity I, =2 0.36
occurs in an intermediate maximum (R; = 2) with the
coordinate
2 F
r22x2:}2520.5r0>vmm. (8)

The noise level (Syin = N) is normally taken as a minimal
signal level Spin. In our notations at S = In,x and N =
Smin = Iy (vmin), this corresponds to the condition

0.36
B Iy (Vmin) B Iw(Vmin) ' )

IITIaX

2|0

With account of relationship (7), it follows from Eqn (9) that

E 0.72
N (I<‘)min)2 '

1%

(10)

or the final formula for the parameter = of energy-dependent
superresolution is given by

oo 19 (S s\
L 2w (0722 AN/ AN

This means that superresolution parameter = in the model
adopted is sufficiently “universal’ since it does not depend on
phase object characteristics. In Sections 4 and 6 below, we
shall consider the relation of resolution to singular lines and
real phase images. Here, it is worth noting that the choice of
the model is not a decisive factor. Indeed, formula (11) agrees
up to a coefficient with the expression w/L = (S/N)l/2
obtained earlier [25, 33] for the Gaussian beam model on the
assumption of the equality between Airy and waist radii
(ro = w).

89

4. Singularities and wavefront dislocations
in phase images

A structured reflecting surface or a thin transparent optically
weakly inhomogeneous object causes slight distortion (mod-
ulation) of the incident wavefront in coherent light and
produces intensity /(x,y) and phase ¢(x,y) distributions in
the image plane of the optical system. By phase image is
usually meant a two-dimensional distribution of the optical
path difference (OPD) k(x,y) = ¢(x,y) /2 obtained with
the help of an interference microscope. Let us suppose that a
structured reflecting surface is represented by a geometric
profile of height Z(X, Y'), where X, Y are the coordinates in
the plane of an object. Then, the equality Z(X, Y) = h(x,y) is
satisfied up to a coordinate scale in the image plane xy of the
object and with a limited accuracy in the profile reproduction
[31]. In another case, for thin transparent objects, one finds in
the approximation of geometric optics that

Z(X,Y) = Jn(X, Y,Z)dZ = h(x,y), (12)
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where n(X, Y,Z) is the refractive index distribution. The
limited accuracy of the resemblance between the phase
image represented by the OPD and the object
Z(X,Y) =~ h(x,y) is due to both fundamental (diffraction on
the aperture, aberration) and technical (noise, limited
responsivity, number of discretization levels, etc.) factors,
detailed discussion of which is omitted here.

Of informative value in a phase image, as in other images,
are structural elements and the position of their boundaries at
which the phase gradient grows. As shown by theoretical and
experimental studies in singular optics [19—26], the position
of the boundaries depends on the structure of singular lines
I(x,y,z) =0 in the wave scattered by an object. Lines
I(x,y,z) =0 form a kind of field ‘skeleton’; they are
associated with the boundary conditions at the object’s
surface. Where the lines intersect the image plane X, the
phase is not defined and undergoes a m-jump. If a singular line
I(x,y,z) = 0 does not cross the plane 2, then the intensity
minimum and the enhanced phase gradient are observed at
the points close to its projection. In this sense, amplitude
I(x,y) and phase ¢(x,y) images in the plane X can be
regarded as a ‘projection’ of singular lines onto the image
plane.

To illustrate such a dependence, Fig. 3a depicts projection
AA of a singular line nn positioned at a distance of v; <0
below the plane X. In the absence of intersections (v; < 0)
between the singular line nn and the plane X, intensity /(x, y)

at all points of the plane becomes finite. The phase gradient
grows at the point of intersection between the x-axis and
projection line AA. It should be noted that changes in
intensity /(x) and phase ¢(x) = arctan(x/v;) shown earlier
in Fig. le correspond just to this case. As optical inhomo-
geneity of the specimen increases, or due to other causes, the
singular line I(x,y,z) approaches the plane X. The phase
gradient grows and intensity falls at the points close to
projection AA. Finally, as the singular line intersects the
image plane X, it acquires a pair of conjugate singular points
(BB in Fig. 3b) and ‘catastrophic’ (in the mathematical sense)
changes develop at the wavefront surface. As the singular
points BB are detoured around in the direction shown by the
arrows, the phase changes by 2n. The phase is continuous
over the entire surface except for the segment BB, but the
phase gradient grows unrestrictedly with approaching the
singular points. In the image represented as surface ¢(x,y)
there occurs a m-jump (‘dislocation’) at the BB segment
(Fig. 4). It accounts for the disturbed conformity between
the phase image ¢(x, y) and morphological parameters of the
object, for example, structure of its surface Z(X, Y). The
number of singular points and the distance between them
increase with increasing optical inhomogeneity of the object
(Fig. 3c). When the number of singular points is large enough,
there is no longer unambiguous correspondence between
¢(x,y) and the object in the so-called speckle images, and
the informative value of the phase image is lost.

—_———————>

— — - — — >

By

-

Figure 3. Dependence of the field structure in the image plane on singular line position v. (a) When singular line nn does not intersect image plane
2 (v; < 0), the local growth of the phase gradient ¢(x) occurs at points in line AA (‘projections’ of line nn). (b) At positive heights (v, > 0), the singular
line nn intersects the image plane 2 at points BB. The phase gradient increases as one approaches the points BB, and the phase undergoes a n-jump as the
points are intersected. Rings around singular points in the image plane 2 show the direction in which the phase grows. (c) The distance between singular
points CC increases with height (v3 > v,). In phase images, the wavefront undergoes a 4/2-jump (dislocation) on the CC interval. A great number of
singular points results in the loss of conformity between the image ¢(x, y) and the object.

Figure 4. Dislocations cause distortion in phase images of objects. (a) 3D image of the nucleolus in an HCT116 cell with apparent surface discontinuity.
(b) Interpretation of a A/2-jump in the 3D image of the nucleolus caused by dislocation on the AA interval between singular points.
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Figure 5. Phase image of a latex sphere 100 nm in diameter illustrates the possibility of attaining superresolution. Measurements were made with the
Airyscan microscope having a 100/0.95 objective for which the Airy disk radius was ry = 400 nm. (a) Pseudocolor topogram /(x, y). (b) 3D image of a
sphere with shape distortions characteristic of diffraction. (c) Profile of diametral section through the topogram in which the phase thickness

(Ah = 48 nm) and half-height diameter (d = 83 nm) were measured.

A rigorous phase image theory remains to be developed;
hence, the importance of experimental and theoretical studies
on singular optics that may explain the relationship between
the skeleton and the field structure. Numerous works
concerned with phase microscopy showed that in many
cases (Fig. 5) the above factors do not interfere with
obtaining quite plausible images of objects [10— 16], realizing
superresolution [27—30, 34, 35], or recording local dynamic
processes [31, 34, 36].

5. Spatial resolution in dynamic phase images

It was mentioned in the Introduction that the accuracy of
coordinate measurement in functional images is in some
instances synonymous to spatial resolution. This remark
equally holds for some dynamic phase objects. A simple
example of a dynamic object is the moving boundary of a
structural element. In such a case, the purpose of measure-
ment may be to determine a minimal displacement of the
boundary in the object’s phase image plane.

It should be emphasized that natural factors limiting the
possibility of registering minor displacements in the ampli-
tude images of dynamic objects include small intensity
gradient d//dR (Fig. lc) at the boundary of a structural
element and, as a rule, insufficiently large signal-to-noise
ratio. Therefore, the minimal boundary displacement
recorded from intensity variation is not normally at great
variance with the Airy disk radius ry = 0.61AF/D.

However, gradient d¢/dR can be large in phase images,
which facilitates recording small displacements. A dynamic
object is exemplified by the model presented in Fig. 2a in
which the singular source described by formula (2) moves
along the xj-axis. Its migration x;(¢) at a fixed point with
coordinate x in line y = v causes changes in the field intensity
and phase. These changes may be described by the following

formulas, respectively:

(Kr)® v2+ (x4 xi (1)
4 =K 4 r
x+x(2)

Iy(t,x,v) =

(13)

o(t,x,v) = arctan

At small displacement amplitudes (Ax; < v), the formulas
for phase and intensity alterations assume the form

21 -1
N X0
Iw(x,v)g@:KZ# (14)

Responsivity to source displacements will be highest at
point x = 0 with maximum phase gradient dg/dx = 1/v and
minimal intensity 7, (v) = K*v?/4.

Let us suppose further that the source executes slow
periodic motions with the amplitude Ax;, which are accom-
panied by recording phase changes A¢(z,x,v). Then, the
minimal measured amplitude Ax; will be limited by two
factors, namely, the responsivity

0=(T)..

of the measuring device to phase changes (e.g., the number of
discretization levels or phase noises), and the amplitude noise
level at point x = 0:

(15)

(16)

To recall, it follows from formula (9) that S/N=
I'max /Ty (Vmin) = 0.36/I) (vmin). Then, formulas (9) and (16)
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give the expression for the minimal distance toward the
singular point:

S/N) 2 s\ 12
Vinin = 0.72 % =0.19r¢ (ﬁ) .

Taking into consideration the definition of responsivity
(15), it is possible to derive from expression (17) a formula for
the minimum displacement amplitude normalized to rg:

- Ax; s\ 12
El=— ~0.19(p) [ = .
< ro )min <q}> N

As the distance from the point of registration (|x| # 0) to the
source increases, the minimal measured amplitude grows with
the distance squared:

== (Al—:l) =~ 0.19(¢) [1 + (%ﬂ (%)I/z. (19)

It can be seen from a comparison of formulas (11) and (18)
that the responsivity to singular point movements in phase
images may be very high. The results of measurements
presented in Section 6 illustrate the possibility of recording
very small amplitudes of the motion of a structural element
boundary.

(17)

(18)

6. Singularities and superresolution
in phase images

A comprehensive analysis of works and the current state of
‘singular optics’ is presented in Refs [18—26]. Notice that
ordinary images have no singularities. Characteristic indica-
tions of singular points and dislocations are ‘forks’ or shifts in
interference fringes, which are normally observed in inter-
ference images of phase transparents, either synthesized or
natural, registered in coherent light. However, the depen-
dence of the position of singular points (or WFDs) on the
structure of microspecimens in the general case remains
unknown. As mentioned earlier, dislocations regularly
observed in images of relatively thick cells with the Airyscan
coherent phase microscope used to be regarded as undesirable
distortions hampering object identification.

Dislocation in the form of a 1/2-jump in phase thickness
h(x, y) characteristic of biological microobjects is shown for a
human cell nucleolus in Fig. 4a. Apparent surface disconti-
nuity of the nucleolus can be seen on the segment bounded by
singular points. It should be noted that the character of
dislocation and the distance between the singular points
depend not only on object properties but also on the
objective numerical aperture, focusing accuracy, and some
other factors. Figure 4b offers an interpretation of the
dislocation line as the projection of the singular line
intersecting the image plane at the points AA.

Another example is presented to illustrate a completely
adequate image of a subwave object and the possibility of
attaining superresolution [29]. A characteristic topogram and
3D image of a latex sphere 100 nm in diameter are
demonstrated in Fig. 5a,b. A profile of a diametral section
through the topogram depicted in Fig. 5c evidences a
distortion (presumably due to diffraction) and dimensions
(half-height diameter, d= 83 nm, and maximum phase
thickness, Ah = 48 nm). The lateral dimension, d = 83 nm,
proves to be twice as small as the distance (= 140 nm)
between the minimum and maximum values in the phase
thickness profile and can be regarded (in the present case) as a

characteristic of spatial resolution. Formally, this result can
be interpreted as an illustration of five-fold superresolution
E =ry/d = 5 in a phase image of a concrete test-object [29].
Measurements using an objective with NA=0.95 at
A =633 nm give the Airy disk radius ry = 400 nm. Notice
also that if refractivity An = n — 1 = Ah/d =2 0.6 is defined as
the ratio of phase thickness to diameter [31], latex index of
refraction n = 1.6 is very close to the real value of n = 1.55.
Interpretation of the measurement data for dynamic
objects poses a much more complicated problem and cannot
be totally unambiguous, inasmuch as there is no generally
accepted terminology for them or resolution criterion. On the
one hand, interference methods are known to be highly
responsive (up to small fractions of a nanometer) to OPD
variations in the axial direction. On the other hand, there are
very few reports on the measurement of small tangential
displacements and on the factors influencing its precision. It
may be supposed based on general considerations that
responsivity to tangential displacements is much lower
because their minimal amplitudes are restricted not only by
the signal-to-noise ratio but also by the degree of contrast at
the boundary of a structural element in a moving object.
Measurement results from Ref. [32] are cited here to
illustrate the possibility of attaining spatial ‘superresolution’
in a dynamic object image, bearing in mind the aforemen-
tioned conditionality of this notion. The test-object used in
work [32] is the surface of a compact disk with a known
microrelief structure. The phase height profile (Fig. 6a)

h, nm a
100
| |
0 100 200  x,nm
dh/dx b
4 Ax =23 nm

0 100 200 X, nm

1000
I, nm
500

| |
0 100 200

X, nm

Figure 6. Local phase height fluctuations at the boundary of a structural
element. (a) Fragment of the compact disk profile with a phase height
difference of about 150 nm. (b) Determination of the exact (Ax = 23 nm)
slope width by the /(x)-profile differentiation. (c) Illustration of the
possibility of attaining ‘superresolution’ in phase images of dynamic
objects. In the present case, the local (Ax = 20 nm) rise in the intensity
I(x) of phase height fluctuations at the profile slope is due to technical
factors.
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measured using an objective with NA =0.95 shows a part of
the protrusion with Az =2 150 nm and a 20— 30-nm wide slope
atits boundary. The slope width was determined more exactly
(Ax = 23 nm) by the /i(x)-profile differentiation (see Fig. 6b).
Measurements of a large (=~ 300) series of phase height
profiles were made by dynamic phase microscopy [31]. It
was revealed that the height of profile /(x) fluctuated within
small fractions of a second, the main sources of fluctuations
being various technical factors (unstable scanning, vibrations
of the measuring device, and acoustic noises). The steep
portion of the slope proved to be especially responsive to the
fluctuations; this observation was confirmed by the position
of their maximum intensity (/ [nm?]) (Fig. 6c). Phase height
fluctuations were localized at a 20-nm-long steep part of the
profile, close to the slope width Ax = 23 nm.

In this case, the boundary of the protrusion may be
regarded as a ‘dynamic’ object undergoing weak chaotic
movements, and the regions of local fluctuations in the
phase image of the boundary in Fig. 6¢ as its fluctuation
‘portrait’. Bearing in mind what was said about the con-
ditionality of the terminology, this result can be interpreted as
an illustration of achieving 20-fold (£ = ry/Ax = 17.5) super-
resolution in the image of a dynamic object.

Moreover, it has concrete practical implications despite
controversy around the definition of ‘superresolution’
because it explains causes for the rise in fluctuation intensity
encountered in measurements of live biological objects [31].
Enhanced fluctuation intensity and the presence of contrast
components in the spectra were regularly observed in the
vicinity of steep portions of the phase thickness profile. The
dependences of fluctuation spectra and intensities on inhibi-
tors and stimulators suggested their relation to metabolic
processes [31 —35]. In certain cases, the region where fluctua-
tions were localized (= 50— 100 nm) turned out to be almost
as wide as the profile, i.e., equal to a small fraction of the Airy
radius. The local character of phase thickness fluctuations of
the same order (Ax = 50— 100 nm) was verified in biological
specimens by the raster scanning technique [35]. Our
measurements of dynamic objects [29—35] have led to an
application-important conclusion about the possibility of
recording very weak (a few angstroms) fluctuations of
different natures at steep portions of the phase profile.

With regard to the results of measurements of a conven-
tional dynamic object, presented in Fig. 6, metrologically
more grounded measurements of an object undergoing
controlled tangential displacements are of interest. In order
to verify the method and to estimate limiting resolution,
measurements were made on a dynamic object in the form
of a narrow (= 200 nm) notch at the surface of a translator,
periodic movements of which were controlled by an external
voltage source [36]. The piezoeffect on a lithium niobate
crystal was used for controlled tangential displacements in
the Nanotester translator.

Figure 7 portrays two phase height profiles of notch with
the maximum image profile steepness S = d/i/dx = 0.5,
offset by Ax = 20 nm in the plane by voltage applied to the
crystal. Successive voltage reduction in time was accompa-
nied by a decrease in the displacement amplitude. Voltage
dependence of the displacement amplitude on a log-log scale
is shown in Fig. 8. The minimal amplitude of periodic
tangential movement at a frequency of 1 Hz in measuring
for ~200s amounted to 0.06 nm [36]. The value of
(@) ~ 0.01 rad obtained from formula (18) for ry = 400 nm
agrees with that for S/N ~ 100.

50
X
h, nm fs(x0) - 0 S— 05
X = U.
25 | 0
A-’C(Uact)
1 1 1 1
0 50 100 150 200 X, nm
1 I
0 50 100 150 200 X, nm

Figure 7. Measurements of the amplitude of controlled nanometer lateral
displacements. Translational displacement (Ax = 20 nm) of a notch over
the surface of a Nanotester piezotranslator [36] was brought about by
applied voltage. Successive voltage reduction at the piezotranslator in time
was accompanied by a decrease in the amplitude of the displacement of the
structural element boundary.
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Figure 8. Measurements in a wide dynamic range showed the linear
dependence of the displacement amplitude on the applied voltage [36].
Minimal measured amplitude reached 0.06 nm.

7. Conclusion

Extension of the notion of spatial resolution to functional
images necessitated revision of the classical criterion and
interpretation of the term ‘superresolution’. We largely



November 2008

Superresolution and singularities in phase images

1169

confined ourselves to the discussion of methodical aspects in
application to phase images. Their unique properties can be
explained in terms of singular optics. Due to the lack of a
rigorous phase image theory, we tentatively consider the
model interpreting structures in a phase image as a ‘trace’ of
‘hidden’ singular lines (Fig. 3a) to be fairly demonstrative at
the qualitative level.

The main result of this work consists in substantiation of
the energy-dependent resolution criterion and measurements
illustrating the possibility of attaining superresolution in
phase images. In recent years, there has been growing interest
in the phenomenon of superresolution in optics as related to
biophysics, nanoengineering, and molecular medicine. To our
knowledge, this important problem has been given surpris-
ingly little attention in publications on interference micro-
scopy [10—17]. One of the causes for this paradox appears to
be the differences in phase measurement algorithms. The
compensation method used in the Airyscan coherent phase
microscope [29, 30] permitted realizing superresolution in
phase images that was absent when measurements were made
by other methods [10—17].

To conclude, a fundamental result of a general character
for wave fields should be mentioned. It follows from formulas
(14) and (16) for the phase gradient dep/dx = 1/v and
intensity 1,(v) =K?v?/4 that the relationship d¢/dx =
|gradp| = KI~'/2/2 is valid. This result can be generalized
over the entire space and formulated as the ‘uncertainty
relation’ for intensity and phase, meaning that phase
uncertainty increases indefinitely with approaching lines
with a zero field intensity.
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