
Abstract. Two fundamental mechanisms Ð the Cherenkov
effect and anomalous Doppler effect Ð underlying the emis-
sion by an electron during its superluminal motion in medium
are considered. Cherenkov emission induced by a single electron
and a small electron bunch is spontaneous. In the course of
spontaneous Cherenkov emission, the translational motion of
an electron is slowed down and the radiation energy grows
linearly with time. As the number of radiating electrons in-
creases, Cherenkov emission becomes stimulated. Stimulated
Cherenkov emission represents a resonance beam instability.
This emission process is accompanied by longitudinal electron
bunching in the beam or by the breaking of an electron bunch
into smaller bunches, in which case the radiation energy grows
exponentially with time. In terms of the longitudinal size Le of
the electron bunch there is a transition region k < Le < kdÿ10

between the spontaneous and stimulated Cherenkov effects,

where k is the average radiation wavelength, and d0 is the
dimensionless (in units of the radiation frequency) growth rate
of the Cherenkov beam instability. The range to the left of this
region is dominated by spontaneous emission, whereas the range
to the right of this region is dominated by stimulated emission.
In contrast to the Vavilov ±Cherenkov effect, the anomalous
Doppler effect should always (even for a single electron) be
considered as stimulated, because it can only be explained by
accounting for the reverse action of the radiation field on the
moving electron. During stimulated emission in conditions
where anomalous Doppler effect shows itself, an electron is
slowed down and spins up; in this case, the radiation energy
grows exponentially with time.

1. Introduction

In classical electrodynamics, the effect of spontaneous
emission by an electron executing a preset motion depends
on the work done by the radiation field on the electron, i.e., on
the quantity

e


u0�t�E

ÿ
t; r0�t�

��
; �1:1�

where e is the electron charge, E�t; r� is the strength of the
electric radiation field, r0�t� is the electron's radius vector
unperturbed by emission, u0 � _r0, and averaging in formula
(1.1) is taken over a time interval greater than the
characteristic period of emitted waves. Quantity (1.1) is
equal to instantaneous radiation power. Because the field E
is determined by unperturbed electron motion, quantity
(1.1) is a constant. Therefore, the main energy relation for
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spontaneous emission is written down as

dW

dt
� Asp � const : �1:2�

Here, Asp depends on e 2, the characteristics of unperturbed
electron motion, and the medium properties. By way of
example, for spontaneous Vavilov ±Cherenkov emission one
finds Asp � e 2uo2=c 2, where u is the electron velocity, and o
is a certain characteristic frequency determined by the
medium (see below). According to equation (1.2), the energy
of spontaneous emission grows linearly with time.

When calculating (1.1), it is possible, in principle, to take
into account the reverse action of the radiation field on the
electron Ð that is, to substitute true electron radius re�t� for
unperturbed radius vector r0. Then, the right-hand side of
equation (1.2) will be a time function. Nevertheless, the
radiation should be regarded as spontaneous, as before.

Stimulated radiation develops in the case of passage from
a single electron to an electron beam or a bunch. Calculation
of (1.1) values for each electron in the beam and summation
over all electrons give zero, namely

e
X
j



u0 j�t�E

ÿ
t; r0 j�t�

�� � 0 ; �1:3�

where j is the electron number in the beam (in the calculation
of formula (1.3), the beam is assumed to be unmodulated).
Therefore, in order to describe stimulated emission induced
by the beam, it is necessary to replace r0 j in formula (1.3) by
rej � r0 j � ~rj, where ~rj is the perturbation of the electron
trajectory. Perturbation ~rj being proportional to E, quantity
(1.3) is proportional to E 2 �W. Hence, the basic energy
relation for spontaneous emission induced by an electron
beam has the form

dW

dt
� BstW ; �1:4�

where Bst is a constant. It follows from equation (1.4) that the
spontaneous emission energy grows exponentially with time,
giving evidence that stimulated emission represents an
instability and Bst coincides with the double increment of
this instability.

The effects of spontaneous and stimulated emission by
relativistic electron beams propagating in dispersive media
were considered in our reviews [1, 2] in the context of formulas
(1.1) ± (1.4). Spontaneous emission was dealt with very
fragmentarily for the sole purpose of classifying elementary
emission events. In contrast, various effects of stimulated
emission (and stimulated scattering) by dense relativistic
electron beams in plasma and other media were examined in
those reviews in great detail, both in the linear and in the
nonlinear regimes. Spontaneous and stimulated effects were
interpreted therein as certain independent processes even
though there is no doubt that they represent limiting cases of
a united group of phenomena occurring during the interac-
tion of electric charges with an electromagnetic field. The
recent monograph [3] (see also [4]) emphasizes the topical
problem of transition from spontaneous to stimulated
emission with an increasing number of emitting electrons
and of determining the conditions of such a transition. In
order to address this issue, we turned back again to the
problem of emission of electromagnetic waves by fast plasma
electrons and examined (with reference to Cherenkov emis-
sion by uniformly moving electrons) the transition from

spontaneous emission by one electron to stimulated emission
by an electron bunch and an electron beam with increasing
electron `density' (or the number of electrons per radiation
wavelength). Naturally, we had to reproduce some results
reported in reviews [1, 2] but treating them in the new context
expounded in monograph [5], in line with the problem of
transition from spontaneous to stimulated emission as viewed
in the present paper whose outline is as follows.

Section 2 considers the model problem of potential wave
emission in a one-dimensional plasma based on the Hamilto-
nian approach that has been developing in recent years [5, 6]
in application to the problems of electrodynamics of radia-
tion. Nonlinear self-consistent field equations and equations
of field source motion are written in the framework of this
approach. Spontaneous Cherenkov emission of a longitudi-
nal wave by a plasma electron is considered in the zero-order
approximation in the field strength, i.e., at a given source
motion, while stimulated Cherenkov emission of a long-
itudinal wave by a uniform electron beam is treated in the
next field approximation. In addition, this section deals with
emission by an electron bunch in a one-dimensional model;
here, application of the energy method analogous to the one
used in reviews [1, 2] proves to be more convenient for the
purpose. Also considered is transformation of spontaneous to
stimulated emission upon passage from emission by a single
electron to that by two, three, or more electrons. Finally,
selected aspects of the quantum-mechanical interpretation of
spontaneous and stimulated Cherenkov emission of long-
itudinal waves by fast electrons in a plasma are discussed.

In Section 3, theHamiltonian approach is applied to a real
three-dimensional case of emission of longitudinal and
transverse waves both in isotropic and anisotropic media.
The applicability of this approach to emission problems
taking into account spatial dispersion of the medium is
illustrated by the example of emission of ion-sound waves
by a stream of fast particles in an anisothermic plasma. In
addition, the Hamiltonian method in the theory of stimulated
emission of electromagnetic waves is compared with the
dispersion equation method developed in plasma electrody-
namics and plasma electronics. Also, this section studies
Cherenkov emission of sound waves by a supersonic gas
flow in a gas. Cherenkov emission by supersonic gas flows in
gas dynamics is shown to be analogous to Cherenkov
emission by electron beams in electrodynamics.

Finally, Section 4 is devoted to the anomalous Doppler
effect and its analogy with the collective stimulated Cher-
enkov effect. In circumstances where the collective Cheren-
kov effect shows itself, the emitter's eigenfrequency is the
frequency of beam Langmuir oscillations, whereas for the
anomalous Doppler effect the frequency of electron Larmor
gyration in an external magnetic field plays the same role. The
anomalousDoppler effect is shown to be a stimulated process
regardless of the number of emitting electrons involved.

2. Cherenkov emission
in a one-dimensional plasma: the model problem

2.1 Description of a one-dimensional system
and derivation of nonlinear equations
Let us consider a one-dimensional model of perturbation
(emission) of longitudinal Langmuir waves by a `flat' electron
bunch (inhomogeneous flat electron layer) propagating in a
boundless cold electron plasma. Let us proceed from the
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following system of equations for electric field strength
Ez�t; z� and current density jpz�t; z� in the plasma [7, 8]:

qEz

qt
� 4p jpz � ÿ4p jez�t; z� ;

�2:1:1�
q jpz
qt
ÿ o2

p

4p
Ez � 0 ;

where op is the Langmuir frequency of plasma electrons
(described in a linear approximation [7]), jez�t; z� is the
electron current density in a bunch, and z is the direction of
electron motion. If Ez � qA=qt, Eqn (2.1.1.) yields the
equation for auxiliary function A�t; z�:

q2A
qt 2
� o2

pA � ÿ4p jez : �2:1:2�

Plasma oscillation energy density is described by the formulas
[8]

w � E 2
z

8p
� 2p
o2

p

j 2pz �
1

8p

��
qA
qt

�2

� o2
pA

2

�
: �2:1:3�

Current density in the bunch is calculated using theVlasov
kinetic equation with a self-consistent field [8, 9] and
integration over the initial data [10, 11]. It leads to the
following expression for the current density:

jez�t; z� � e

�
ne�z0� vez�t; z0� d

ÿ
zÿ ze�t; z0�

�
dz0 ; �2:1:4�

where ne�z� is the unperturbed electron density in the bunch.
Coordinate ze�t; z0� and velocity vez�t; z0� of the bunch
electron located at point z0 at the initial instant of time are
found (relativistic effects being as yet disregarded) from the
equations of motion

dze
dt
� vez ; dvez

dt
� e

m
Ez�t; ze� ; �2:1:5�

supplemented by the initial conditions

ze�0; z0� � z0 ; vez�t; z0� � u : �2:1:6�
Integration over initial condition z0 in formula (2.1.4) is
performed along the entire length of the number axis Ð in
fact, over the region where unperturbed density ne�z0� differs
from zero. The establishment of the second initial condition in
Eqn (2.1.6) means that all electrons of the beam have the same
velocity u at t � 0.

Assuming that

S1ne�z0� �
XNe

j� 1

d�z0 ÿ z0 j� ; �2:1:7�

where S1 is the unit area, and Ne is the total number of
electrons, it is possible to put formula (2.1.4), Eqns (2.1.5),
and initial conditions (2.1.6) in a form

jez�t; z� � eSÿ11

XNe

j� 1

vez j�t� d
ÿ
zÿ ze j�t�

�
; �2:1:8�

dze j
dt
� vez j ; dvez j

dt
� e

m
Ez�t; ze j� ;

�2:1:9�
ze j�0� � z0 j ; vez j�0� � u :

Here, ze j�t� � ze�t; z0 j�, and vez j�t� � vez�t; z0 j�. Formula
(2.1.4) and Eqns (2.1.5) are effective when the electron
bunch is described as a continuous medium. Formula (2.1.8)
and Eqns (2.1.9) are convenient for considering emission
induced by a group of Ne free electrons, where Ne may be as
small as Ne � 1.

2.2 Hamiltonian method
Let us rearrange Eqn (2.1.2) using the Hamiltonian method
[6, 12]. To this effect, we shall assume that the field is enclosed
in region �z; z� L�, whereL is its spatial period, and write out
the following expansion:

A�t; z� � 1

2

X
n>0

�
An�t� exp �ink0z� � A�n�t� exp �ÿink0z�

�
;

�2:2:1�
where k0 � 2p=L. Substituting expansion (2.2.1) into equa-
tion (2.1.2), multiplying the latter by exp �ink0z�, and
integrating over periodicity region L yield the following
equations describing excitation of plasma oscillations An�t�
�n � 1; 2; . . .�:

d2An

dt 2
� o2

pAn

� ÿ4pe 2

L

�
ne�z0� vez�t; z0� exp

ÿÿink0ze�t; z0�� dz0 ;
Sÿ11

XNe

j� 1

vez j�t� exp
ÿÿink0ze j�t�� :

8>>><>>>:
�2:2:2�

The right-hand side of equation (2.2.2) is given in two forms
corresponding to two possible expressions (2.1.4) and (2.1.8)
for electron current density in the bunch. Equations of
electron motion corresponding to system (2.1.9) have the
form

dze j
dt
� vez j ;

dvez j
dt
� 1

2

e

m

X
n

ÿ
_An�t� exp �ink0ze j� � _A�n�t� exp �ÿink0ze j�

�
;

ze j�0� � z0 j ; vez j�0� � u : �2:2:3�

Similar equations (but without subscript j ) ensue from the
system of equations (2.1.5).

Substitution of expansion (2.2.1) into formula (2.1.3) and
integration over periodicity region L yield an expression for
the total plasma oscillation energy (in volume LS1):

W � wLS1 ; �2:2:4�
w � 1

16p

X
n

� _An
_A�n � o2

pAnA
�
n� :

The law of conservation of bunch electron kinetic energy and
plasma oscillation energy is given by

W�
XNe

j� 1

mv 2ez j
2
� const �2:2:5�

and follows from Eqns (2.2.2) and (2.2.3). Formula (2.2.5) is
derived multiplying equation (2.2.2) by _A�n, combining it with
the complex-conjugate equation, and summing over all n.
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Similarly, equation (2.2.3) is multiplied by vez j and summed
up over all j; thereafter, the right-hand sides of the resulting
expressions are compared.

When assuming that plasma field (2.2.1) has spatial
period L, we actually postulated an identical period in the
spatial distribution of electrons inducing this field. In other
words, Eqns (2.2.2) describe the field of a sequence of
similar electron bunches in plasma, which are spaced a
distance L apart, with Ne being the number of electrons in
one bunch. One may speak of a solitary electron bunch only
with reference to the passage to the limit L!1 or k0 ! 0.
This limiting case is implied throughout the rest of this
review, except in Section 2.8.

2.3 Linear approximation equations
Equations (2.2.2) and (2.2.3) are exact in the framework of
the proposed one-dimensional model; they will be numeri-
cally analyzed in Section 2.7. In themeantime, we shall derive
and consider equations of the zero- and first-order approx-
imations in the perturbations of bunch electron trajectories.
Let us write

vez j � u� ~vj ; ze j � z0 j � ut� ~zj �2:3:1�
and linearize Eqns (2.2.2), (2.2.3) with respect to perturba-
tions ~vj and ~zj. As a consequence, we arrive at the following
equations

d2An

dt 2
� o2

pAn � ÿ 8pe
LS1

u�Qn � ~Vn ÿ in ~Zn� exp �ÿink0ut� ;

n � 1; 2; . . . ;

d ~Vn

dt
� 1

2

e

mu

X
n 0>0

�
_An 0Qnÿn 0 exp �in 0k0ut�

� _A�n 0Qn�n 0 exp �ÿin 0k0ut�
�
;

d ~Zn

dt
� k0u ~Vn : �2:3:2�

Here, the notation was used:

Qn �
XNe

j� 1

exp �ÿink0z0 j� ;

~Vn �
XNe

j� 1

~vj
u
exp �ÿink0z0 j� ; �2:3:3�

~Zn �
XNe

j� 1

k0~zj exp �ÿink0z0 j� :

The right-hand side of the first equation in system (2.3.2)
contains three terms. One, the zero approximation term
proportional to uQn, is determined by unperturbed electron
motion in the bunch. This term describes the spontaneous
radiation effect. In other words, spontaneous radiation in
classical electrodynamics represents the excitation of medium
eigenwaves by a given external source, i.e., an unperturbed
electron bunch (or a single electron executing a preset
motion). Two other, first approximation terms proportional
to �u ~Vn ÿ iun ~Zn�, take into account reverse action of the field
on bunch electrons. It is precisely these terms that describe the
stimulated emission effect as a process of self-consistent
interaction between the emitters and the field. Notice that
corrections for the first- and higher-order approximations
arise in spontaneous emission, too. It is essential that

spontaneous emission manifest itself even in the zeroth
approximation, i.e., regardless of the reverse action of
radiation on the source, whereas stimulated emission devel-
ops only in the next approximation in the perturbation of
emitter motion. Stimulated emission in classical electrody-
namics is usually associated with phasing of a group of
emitters by the radiation field, for which at least two
electrons are necessary (even if not sufficient).

It is easy to show that the following equation appears
instead of the first equation in Eqn (2.3.2) in the description of
the electron bunch as a continuous medium [see formula
(2.1.4)]:

d2An

dt 2
� o2

pAn � ÿ 8pe
L

u�Qn � ~Vn ÿ in ~Zn� exp �ÿink0ut� ;
�2:3:4�

where

Qn �
�
ne�z0� exp �ÿink0z0� dz0 ;

~Vn �
�
ne�z0� ~v�t; z0�

u
exp �ÿink0z0� dz0 ; �2:3:5�

~Zn �
�
ne�z0�k0 ~z�t; z0� exp �ÿink0z0� dz0 ;

whereas the third and the second equations in the (2.3.2)
system are preserved [the dimensions of quantities (2.3.3) and
(2.3.5), and of quantities An in Eqns (2.3.2) and (2.3.4) differ
by S1].

The systems of equations (2.3.2) and (2.3.4) are easy to
analyze in certain special cases of importance (see Sections 2.4
and 2.5 below).

2.4 The theory of spontaneous Cherenkov emission
by a free electron in a plasma
We shall begin from a single-electron case, i.e., consider the
classical problem of Cherenkov emission of longitudinal
waves by a free plasma electron [5, 8, 13] (by classical
problem is meant the problem of emission of transverse
waves in an isotropic dielectric [14]; see Section 3.2). At
Ne � 1, it may be assumed, without loss of generality, that
z01 � 0. Then,Qn � 1 for all n and the system (2.3.2) is put in
a form

d2An

dt 2
� o2

pAn � ÿ 8peu
LS1

exp �ÿink0ut�

� 4pe 2

mLS1
� ~Vÿ in ~Z� exp �ÿink0ut� ;

d ~V

dt
�
X
n

�
_An exp �ink0ut� � _A�n exp �ÿink0ut�

�
; �2:4:1�

d ~Z

dt
� k0u ~V :

In writing equations (2.4.1), substitution � ~Vn; ~Zn� !
�e=2mu�� ~V; ~Z� was made and account taken of the fact that
~Vn and ~Zn do not depend on n, as follows from expressions
(2.3.3) at z01 � 0.

In order to describe the effect of Cherenkov emission of
plasma waves, one may confine oneself to the zero-order
approximation, i.e., neglect the second term on the right-hand
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side of the first equation in Eqn (2.4.1). In this case, the
solution of the first equation in Eqn (2.4.1), meeting zero
initial conditions An�0� � 0 and _An�0� � 0, is written out as

An � ÿ 8peu�LS1�ÿ1
o2

p ÿ �knu�2

�
�
exp �ÿiknut� ÿ 1

2

�
1ÿ knu

op

�
exp �iopt�

ÿ 1

2

�
1� knu

op

�
exp �ÿiopt�

�
� ÿ 1

2

8peu�LS1�ÿ1
op�opÿ knu�

�
exp �ÿiknut� ÿ exp �ÿiopt�

�
; �2:4:2�

where kn � nk0 is the wave number of the nth spatial field
harmonic. In order to simplify the solution (2.4.2), we used
inequality jop ÿ knuj5op determining the numbers of the
largest resonant spatial field harmonics.

Substituting formula (2.4.2) into the expression for the
plasma oscillation energy (2.2.4) gives

W � 4p
e 2u 2

LS1

X
n

1ÿ cos
��op ÿ knu�t

�
�op ÿ knu�2

: �2:4:3�

Using further the rule of passage from summation over n to
integration over k [5] (corresponding to the passage to the
limit L!1 or k0 ! 0, n � kn=k0 !1, Dn � Dk=k0), viz.X

n

. . .!
�1
0

. . . dn � L

2p

�1
0

. . . dk ; �2:4:4�

we reduce formula (2.4.3) to the form

dW

dt
� 2

e 2u 2

S1

�1
0

sin
��op ÿ ku�t�
op ÿ ku

dk

ÿ!
t!1 2p

e 2u 2

S1

�1
0

d�op ÿ ku� dk : �2:4:5�

The final expression for the total power of one-dimensional
longitudinal plasma waves emitted by an electron moving
rectilinearly has the form

dW

dt
�W

t
� 2p

e 2u

S1
: �2:4:6�

To recall, S1 in formula (2.4.6) stands for a unit quantity with
the dimensions of area that appears because in a one-
dimensional case emission is not induced by a single electron
but by an `electron plane' containing one electron at each site
of area S1. Formula (2.4.3) is an analog of the well-known
classical Tamm±Frank formula for the power of Cherenkov
emission of transverse electromagnetic waves by an electron
in an isotropic medium [6, 14, 15] (see Section 3.2).

Now, we take into consideration corrections of the first-
order approximation by substituting solution (2.4.2) into the
second equation of system (2.4.1). This gives, using formulas
(2.4.4) and (2.4.6), the following relationships

d ~V

dt
� ÿ 8peu

LS1

X
n

sin
��op ÿ knu�t

�
op ÿ knu

ÿ!
t!1 ÿ4p

eu

S1

�1
0

d�op ÿ ku� dk � ÿ 2

eu

dW

dt
: �2:4:7�

Bearing in mind the above substitution [see the explanatory
text after equations (2.4.1)], relation (2.4.7) also follows from
the energy conservation law (2.2.5). According to formulas
(2.4.7), the electron is slowed down by radiation and its
velocity linearly decreases with time:

vez�t� � uÿ 2pe 2

mS1
t : �2:4:8�

Based on formula (2.4.8), one may speculate that local
Cherenkov resonance op ÿ knvez�t� � 0 shifts with time into
the region of large n. As a result, the spectrum of excited
oscillations broadens. This assumption, based on the linear
model (2.4.1), is fully confirmed by the solution of the exact
nonlinear problem (see Section 2.7).

2.5 Stimulated Cherenkov emission
by a uniform electron beam in a plasma
(single-particle effect)
The second special case to be considered based on equations
(2.3.2) covers Cherenkov emission by a uniform electron
beam. In such a beam, electrons are uniformly distributed in
space, which accounts for the uniform localization of their
initial coordinates z0 j on a number axis. Then, it follows from
the first formula in Eqn (2.3.3) that Qnÿn 0 � dn; n 0Ne,
Qn�n 0 � 0, and Qn>0 � 0 (where dn; n 0 is the Kronecker
symbol), and the system of equations (2.3.2) is significantly
simplified:

d2An

dt 2
� o2

pAn � ÿo2
e� ~Vn ÿ in ~Zn� exp �ÿink0ut� ;

d ~Vn

dt
� dAn

dt
exp �ink0ut� ; �2:5:1�

d ~Zn

dt
� k0u ~Vn :

Here,o 2
e � �4pe 2=m��Ne=LS1� is the square of the Langmuir

frequency of beam electrons. Equations (2.5.1) are written out
using the substitution � ~Vn; ~Zn� ! �eNe=2mu�� ~V; ~Z�.

The right-hand side of the first equation in Eqn (2.5.1)
lacks the free term responsible for spontaneous emission. This
means that equations (2.5.1) describe only the stimulated
radiation effect. Since equations (2.5.1) with different n are
independent, one may speak about independent stimulated
emission of different spatial harmonics of plasma waves by
the beam. This inference holds only in the linear approxima-
tion.

Representing the solution of the system of equations
(2.5.1) in the form

An�t� � A exp �ÿiot� exp �ÿiknut� ; �2:5:2�
~Vn�t� � V exp �ÿiot� ; ~Zn�t� � Z exp �ÿiot� ;

where A, V, and Z are the constants, results in the following
dispersion equation for determining complex frequency o of
a plasma-beam system [where each spatial harmonic has an
eigenfrequency o � o�n�, which is taken into account in the
forthcoming formulas (2.5.4), (2.5.6) and in Section 2.6]:

o2 ÿ o2
p � o2

e

o2

�oÿ knu�2
: �2:5:3�

Equation (2.5.3) coincides with the known dispersion equa-
tion of beam instability in plasma [16, 17].Wheno2

e 5o2
p and

Cherenkov resonance condition op � knu is satisfied, solu-
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tions of the dispersion equation take the form

o � ons � knu� exp

�
i
2p
3
�sÿ 1�

��
o2

e

2o2
p

�1=3

op ; �2:5:4�
s � 1; 2; 3 ; on 4 � ÿop :

The positive imaginary part of the complex frequency on2

defines the growth rate of instability referred to as the single-
particle stimulated Cherenkov effect in the plasma theory [1,
2, 7]. This means that, in the one-dimensional case, stimulated
Cherenkov emission induced by an electron beam (or flat
layers of electrons, to be precise) in a plasma is a form of
resonance beam instability.

The width of the spatial spectrum of stimulated emission
depends on solutions (2.5.4) of the dispersion equation (2.5.3)
existing only in the following range of wave numbers:

jDkju
op
� jDnj

n
<

�
o2

e

2o2
p

�1=3

� d0 : �2:5:5�

Plasma oscillations are not excited outside the range (2.5.5)
because the corresponding frequencies on have their imagin-
ary part close to zero.

The general solution of system (2.5.1) is written out in the
form

An�t� �
X4
s� 1

Cns exp �ÿionst� ; A�t� �
X
n

An�t� ; �2:5:6�

where constantsCns are calculated from the initial conditions,
and ons �s � 1; 2; 3; 4� is defined in formula (2.5.4). Let us
assume that an electron beam is unexcited at t � 0, and
plasma has a certain noise background of Langmuir waves.
Such a case is described by the following initial conditions for
equations (2.5.1):

An�0� � A0n ; _An�0� � 0 ; ~Vn�0� � 0 ; ~Zn�0� � 0 ;

�2:5:7�

where A0n are the complex constants. Using conditions
(2.5.7), it is easy to show that formulas Cn 1; 2; 3 � A0n=3,
Cn 4 � 0 are valid in the range (2.5.5) [7]. Thus, stimulated
emission is induced by initial perturbations.

2.6 Energy approach in the theory of Cherenkov emission
by an electron bunch in a plasma
At arbitraryNe, i.e., in the most interesting case of an electron
bunch (rather than a single electron and boundless beam), a
strict analysis of the system of equations (2.3.2) encounters
difficulty. It is more convenient to utilize qualitative energy
relations. Let us derive the equation for the energy of one-
dimensional plasma oscillations exited by an electron bunch.
To this end, we shall differentiate relation (2.2.5) with respect
to time and substitute into it the second expression from
Eqn (2.2.3). Then, using representation (2.3.1), we obtain the
following relation to within second-order quantities in An,
inclusive:

dW

dt
� ÿ 1

2
eu
X
n

�
_AnU

�
n exp �iknut� � _A�nUn exp �ÿiknut�

�
;

�2:6:1�

where the quantity Un � Qn � ~Vn ÿ in ~Zn is found from the
second and third equations of system (2.3.2).

The first equation in system (2.3.2) can be formally
considered as an inhomogeneous linear second-order differ-
ential equation (term� Qn is defined by the unperturbed state
of the electron bunch and does not depend on An; term
� � ~Vn ÿ in ~Zn� is self-consistent and is linearly dependent on
An and An 0 ). The general solution of an inhomogeneous
equation is the sum of its particular solution and the general
solution of the corresponding homogeneous equation. There-
fore, the following representation is applied for function
An�t�:

An�t� � A�0�n �t� � ~An�t� ;

A�0�n �t� � ÿ
4peu�LS1�ÿ1Qn

op�op ÿ knu�
�
exp �ÿiknut� ÿ exp �ÿiopt�

�
;

~An�t� � A0n exp �ÿiont� : �2:6:2�

Here, A
�0�
n �t� is the solution of the inhomogeneous equation

[which describes the spontaneous field and differs from
solution (2.4.2) only by factor Qn], ~An�t� is the solution of
the homogeneous equation (stimulated field), A0n are the
constants [see conditions (2.5.7)], and on are the complex
frequencies found from Eqn (2.5.3). Quantities ~An�t� describe
plasma waves being excited; therefore, we take
o 0n � Reon � op, and o 00n � Imon > 0.

Substituting formulas (2.6.2) into the second and the third
equations of system (2.3.2) gives ~Vn and ~Zn. Substituting
further An � A

�0�
n � ~An, ~Vn and ~Zn into relation (2.6.1) brings

it to the form

dW

dt
� 4pe 2u 2

LS1

X
n

jQnj2
sin
��op ÿ knu�t

�
op ÿ knu

� i
e 2

4m

X
n; n 0

�
ono�n 0

�
o�n 0 ÿ �kn 0 ÿ kn�u

�
�o�n 0 ÿ kn 0u�2

Q �nÿn 0A0nA
�
0n 0

� exp
�
ÿi��on ÿ o�n 0 � ÿ �kn ÿ kn 0 �u

�
t
�
ÿ c:c:

�
: �2:6:3�

Relation (2.6.3) was obtained with the same accuracy as
formula (2.4.6), i.e., without taking account of the reverse
action of the spontaneous field A

�0�
n �t� on bunch electrons

[without considering the effect of radiative deceleration
defined by formula (2.4.8)].

Nondiagonal terms with n 6� n 0 in the double sum
entering into relationship (2.6.3) describe the inter-
ference of different spatial harmonics of the stimu-
lated field. The harmonics have different frequencies,
which accounts for the appearance of an oscillating
multiplier exp

�ÿi��on ÿ o�n 0 � ÿ �kn ÿ kn 0 �u
�
t
	
in the double

sum. Moreover, the initial phases of the harmonics may be
regarded as random, namelyX

n

A0n � 0 ;
X
n; n 0

A0n A
�
0n 0 �

X
n

jA0nj2 : �2:6:4�

For this reason, interference terms in the double sum in
formula (2.6.3) make on average a zero contribution. For
the same reason, relation (2.6.3) was written down without
cumbersome terms arising from interference between sponta-
neous and stimulated fields.

Thus, discarding interference terms in formula (2.6.3)
leads to the following equation for the energy of one-
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dimensional plasma oscillations excited by an electron bunch:

dW�t�
dt

� 4p2e 2u 2

LS1

X
n

jQnj2d�op ÿ knu�

ÿ e 2Ne

2m

X
n

jonj2
o 00n
��o 0n ÿ knu��o 0n � knu� � o 00 2n

���o 0n ÿ knu�2 � o 00 2n

�2 �� ~An�t�
��2 :

�2:6:5�

Derivation of Eqn (2.6.5), just like Eqn (2.4.7), required a
passage to the delta-function. The first term on the right-hand
side of equation (2.6.5) describes spontaneous emission, while
the second one is responsible for stimulated emission. Let us
compare the roles of spontaneous and stimulated effects.

Neglecting the term describing stimulated emission and
moving from summation over n to integration over k [see rule
(2.4.4) and formula (2.4.7)] bring equation (2.6.5) to the form

dW

dt
� 2p

e 2u

S1

"XNe

j� 1

exp

�
ÿi op

u
z0 j

�#"XNe

j� 1

exp

�
i
op

u
z0 j

�#
:

�2:6:6�
At Ne � 1, formula (2.6.6) turns into formula (2.4.6). It
should be noted that the product of the sums entering into
formula (2.6.6) varies from 0 to N 2

e . In other words, the
spontaneous emission intensity depends on the mutual
position of electrons in the bunch, evidently due to inter-
ference of coherent waves emitted by individual electrons. If
the positions of electrons in the bunch are such that the sum in
formula (2.6.6) goes to zero, no spontaneous emission occurs.
In the case of uniform continuous distribution of electrons in
the bunch, one has�����XNe

j� 1

exp

�
ÿi op

u
z0 j

������! Ne

���� sin �pLe=l�
pLe=l

���� ; �2:6:7�

where Le is the bunch length, and l � 2pu=op is the average
emission wavelength. Thus, spontaneous emission falls with
increasing bunch length. The condition under which sponta-
neous emission induced by a uniform electron bunch may be
regarded as essential is given by the inequality Le < l.
Spontaneous emission is insignificant for Le > l, and
altogether absent as Le 4 l. Hence, one may speak of a
boundless electron beam rather than of an electron bunch.

Let us discard the term describing spontaneous emission
in formula (2.6.6), take o 0n � knu � op and o 00n 5op, and
bring expression (2.6.6) to the form [1, 2]

dW�t�
dt

� ÿ e 2Ne

m
o3

p

X
n

o 00n �o 0n ÿ knu���o 0n ÿ knu�2 � o 00 2n

�2 �� ~An�t�
��2 :
�2:6:8�

The right-hand side of formula (2.6.8) describes the ponder-
omotive force acting on an electron bunch from the side of
radiation. Spectral density of the ponderomotive force is
determined by the function

f �kn� � o 00n �o 0n ÿ knu���o 0n ÿ knu�2 � o 00 2n

�2 �2:6:9�

and for o 00n 5o 0n � op exhibits a well-defined resonant
character. If o 0n ÿ knu < 0 and o 00n > 0, then dW=dt > 0
(i.e., the electrons radiate and the ponderomotive force
slows down the bunch. Thus, stimulated emission is asso-

ciated with excitation of waves having phase velocities o 0n=kn
smaller than unperturbed electron velocity u.

When computing the sum in equation (2.6.8), it is
necessary to distinguish between cases of wide and narrow
radiation spectra. In the former case, quantities j ~An�t�j2 on
the right-hand side of Eqn (2.6.8) can be taken outside the
summation sign. However, since

P
f �kn� � 0, so does

dW=dt � 0, suggesting the lack of stimulated emission. In
the latter case, factor f �kn� is taken outside the summation
sign. Then, using formula (2.2.4), Eqn (2.6.8) can be brought
to

dW

dt
� ÿ2o2

eopo 00n f �kn�W : �2:6:10�

Setting the condition for theminimum of function (2.6.9), viz.

o 0n ÿ knu � ÿ 1���
3
p o 00n ; �2:6:11�

it is possible to derive from Eqn (2.6.10) the following law of
maximum time-dependent growth of the energy of a plasma
wave being emitted:

dW

dt
�
� ���

3
p

2

�3 o2
eop

o 00 2n

W : �2:6:12�

On the other hand, it can be seen from the third expression in
Eqn (2.6.2) that the equation dW=dt � 2o 00nW must be valid.
Its comparison with formula (2.6.12) leads to the expression
for the imaginary part of the frequency, coinciding with the
expression for the imaginary part of frequency (2.5.4). Thus,
the width of the radiation spectrum and the type of emission
are interrelated: the spectrum is wide when emission is
spontaneous, and narrow when it is stimulated.

The width of the radiation spectrum is given either by
inequality (2.5.5) or by the estimate

jDkju
op
� 2pu

Leop
� l

Le
�2:6:13�

based on the relation DkLe � 2p and solution (2.4.2): the
maximum quantity from Eqn (2.5.5) or Eqn (2.6.13) is taken.
For Le < l, the spectrum is wide and stimulated emission is
absent, while spontaneous emission prevails in accordance
with formulas (2.6.6) and (2.6.7). If l < Le < ldÿ10 , sponta-
neous emission is low and the effect of stimulated emission
induced by the electron bunch predominates. However,
spectrum width and resonance width (2.6.9) are comparable
in this intermediate case, which makes analysis of Eqn (2.6.8)
difficult. Finally, as Le > ldÿ10 , the waves are excited from a
narrow (even if single-mode) range of wave numbers (2.5.5)
because modes with different n are independent. Then,
spectral function (2.6.9) can be taken outside the sign of
summation over n and Eqn (2.6.8) transformed into (2.6.10).
Thus, there is stimulated emission by an electron beam for
Le > ldÿ10 , i.e., resonance beam instability in the plasma due
to the single-particle Cherenkov effect.

It may be concluded from the above analysis and the
structure of the general equation (2.6.5) that radiation energy
satisfies an equation of the form [see formulas (1.2) and (1.4)]

dW

dt
� P�Ne� � 2d�Le�W ; �2:6:14�

where P�Ne� is the spontaneous radiation power defined by
formula (2.6.6), and d�Le� is the growth rate of beam
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instability. The increment is calculated in limiting cases, such
as Le � 0, in which it vanishes, and Le !1, in which it is
given by formula (2.5.4). The general case lends itself to
numerical analysis only.

2.7 Nonlinear dynamics of Cherenkov emission
by an electron bunch in a plasma
Cherenkov emission induced by an electron bunch can be
numerically investigated in full using general nonlinear
equations (2.2.2) and (2.2.3). In dimensionless variables

t � opt ; x � k0z ; xj � k0ze j ; Zj �
vez j
u

; �2:7:1�

equations (2.2.2), (2.2.3) are written out in the form

d2an
dt 2
� an � ÿn 2

Ne

XNe

j� 1

Zj exp �ÿinxj� ;

dxj
dt
� aZj ; �2:7:2�

dZj
dt
� 1

2

XNg

n� 1

�
dan
dt

exp �inxj� � c:c:

�
;

where an is the dimensionless amplitude proportional to
dimensional amplitude An (in what follows, we shall not
need its explicit form), and

a � k0u

op
; n � 4pe 2Ne

o2
pS1L

� o2
e

o2
p

: �2:7:3�

Quantity Ng in system (2.72) specifies the maximum number
of spatial harmonics of plasma oscillations. Let us assume
thatNg � 200, a � 10ÿ2, and n � 10ÿ5. Cherenkov resonance
corresponds to a harmonic with n � 100. According to
estimate (2.5.5), about four harmonics fall into the resonance
band in the case of occurring the single-particle stimulated
Cherenkov effect. It is sufficient to simulate even a contin-
uous spectrum.

We shall vary the number Ne of emitters in a bunch. The
right-hand side of the first equation in system (2.7.2) is built

up so that a change inNe at constant parameter n leads to the
spread of one and the same emitting charge over spatial
regions of different sizes. Equations (2.7.2) are supplemented
by the following initial conditions

an�0� � 0 ; _an�0� � 0 ;
�2:7:4�

xj�0� � h� jÿ 1� ; Zj�0� � 1 ; j � 1; 2; . . . ;Ne :

Here, h is the distance between electrons in the bunch
(assumed equal to one-tenth of the resonant wavelength in
the calculations). The electron bunch has the size
Le � h�Ne ÿ 1�. Notice that the choice of parameters for the
numerical solution of the model problem (2.7.2) ± (2.7.4) was
determined only by considerations of the maximum demon-
strativeness of the results obtained.

Figure 1a presents, in relative units, energies W�t�
calculated from formula (2.2.4) for the number of electrons
Ne � 1, 2, 5, 10, 20, and 100 (Ne values are indicated alongside
the respective curves). Figure 1b shows an enlarged fragment
framed in Fig. 1a. Dependences W�t� vary qualitatively with
an increasing number of emitting particles. For example, the
radiation energy at Ne � 1 grows almost linearly up to
saturation, which is reached rather quickly. In the initial
stage, the case of Ne � 1 is clearly described by formula
(2.4.6). In contrast, for Ne 5 10, the radiation energy grows
faster (exponentially) in the early stage. Thus, a rise in the
number Ne of emitting particles causes transition of sponta-
neous emission by an electron (and thereafter by the bunch) to
stimulated emission by the bunch, i.e., to Cherenkov beam
instability. This observation is confirmed by the fact that
Le � l at Ne � 10, while the bunch length Le at Ne � 100
compares with ldÿ10 . This means that at the parameter values
chosen for computation, Ne � 10 determines the borderline
between spontaneous and stimulated effects, in full agree-
ment with qualitative considerations used in writing equa-
tion (2.6.14).

Figure 2 depicts the amplitudes
��an�t��� of harmonics; the

harmonic number n is indicated alongside the respective
curve. For Ne � 1 (Fig. 2a), there is successive excitation of
progressively higher spatial harmonics and simultaneous
saturation of the amplitudes of harmonics with lower n. A
similar picture is observed at Ne � 2 (Fig. 2b). The case of
Ne � 10 is quite different because only resonant harmonic
with n � 100 grows, while the rest remain at the background
level (harmonics closest to the hundredth harmonic and
residing within the range of �2ÿ3 also increase).

Figure 3 presents phase trajectories of electrons in a time
interval t from 0 to 600. Dimensionless electron velocities Zj
are plotted on the vertical axis, and coordinates xj on the
horizontal one. The phase trajectory for Ne � 1 is shown in
Fig. 3a under the dashed straight line. In the initial stage, the
electron velocity decreases almost linearly, in excellent
agreement with formula (2.4.8). Thereafter, the velocity
becomes practically constant, with radiation energy satura-
tion occurring simultaneously (Fig. 1a, curve 1). Saturation is
associated with radiative deceleration of electrons. The
electron velocity diminishes to the minimally possible phase
velocity of the wave. The instant of saturation is found from
the equation

vez�t� � uÿ 2pe 2

mS1
t �

�
o�kn�
kn

�
min

� Vmin ; �2:7:5�
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Figure 1.Cherenkov emission energy at different numbers of electrons in a

bunch: (a) general view, and (b) enlarged portion.
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where o�kn� is the dispersion law for emitted waves. The
energy passing into emission equals

Wmax � m

2
�uÿ Vmin�2 : �2:7:6�

Formulas (2.7.5) and (2.7.6) are in excellent agreement with
the results presented in Fig. 3.

Two phase trajectories for Ne � 2 electrons are shown
under the dashed straight line in Fig. 3b. Since distance h
between electrons is small compared with the wavelength,
virtually the same dynamics as at Ne � 1 are observed.

The picture is quite different at Ne � 10 (portion of
Fig. 3a above the dashed straight line) and at Ne � 20
(portion of Fig. 3b above the dashed straight line).
Specifically, the phase trajectories get intermixed, while all
electrons are slowed down, suggesting phasing of bunch
electrons by radiation. This phenomenon is characteristic
of resonance beam instabilities stabilized by beam electron
capture [7, 18, 19].

Figure 4 displays spatial spectra of plasma oscillation
amplitudes janj at different instants of time t indicated in the
figure. In the case of Ne � 1 (Fig. 4a), the spectrum broadens
with time due to electron deceleration and a shift of local
Cherenkov resonance toward greater wave numbers. No
spectrum broadening occurs at Ne � 10; moreover, the
radiation spectrum is narrower than for Ne � 1.

Let us consider the spatio-temporal structure of plasma
oscillations excited by a single electron. In a three-dimen-
sional case, such a structure is traditionally characterized by a
radiation pattern which is usually computed analytically [6,
15] (see Section 3.1). In a one-dimensional case, the spatial
distribution of plasma oscillations can be described in full by
electric field strengthEz�t; z� or, in the dimensionless form, by
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Figure 3. Phase trajectories of bunch electrons involved in Cherenkov

emission.
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the function

ex�t; x� � 1

2

XNg

n� 1

ÿ
_an�t� exp �inx� � _a �n �t� exp �ÿinx�

�
: �2:7:7�

Figure 5a illustrates spatial distribution ofwave packet (2.7.7)
for successive instants of time t. The position of an emitting
electron at each instant is shown by a black circle. It can be
seen that the electron occupies the forefront of the wave
packet, whereas its rear front remains motionless. Such a
situation can be attributed to the lack of dispersion in the
waves being excited in plasma, which accounts for the
vanishing of their group velocity [the left-hand side of the
first equation in Eqn (2.3.2) contains constant o2

p instead of
function o2

p�n�]. By about the time t � 200, the electron is
slowed down so much that the Cherenkov resonance
condition is no longer satisfied. The packet of plasma
oscillations is detached from the electron which continues to
move without radiating, accompanied by a weak entrained
field.

Figure 5b depicts plasma oscillations at point x � 1,
where no oscillations occurred until the electron reached it.
After the electron passed this point, oscillations originated
with a dimensionless period 2p, i.e., with a frequency equal to
the plasma frequency.

2.8 Cherenkov emission in a rarefied spectrum;
emission induced by a modulated electron beam
in a plasma
For L4 l � 2pu=op, i.e., when the passage to the limit
L!1 is possible, bunch electron emission (2.2.1) belongs
to the continuous spectrum. Indeed, the intermode distance
Dk � k0 � 2p=L in spectrum is small compared with the
resonant wave number kn � op=u; therefore, it may be
assumed that Dk=kn ! 0. This limiting process is the basis
for the transformation (2.4.4) of the sum over n to the integral

over wave numbers k. We acted accordingly in Sections 2.4 ±
2.6 when analyzing Eqns (2.3.2). In Section 2.7, the nonlinear
system of equations (2.2.2), (2.2.3) was solved for the case of
Dk=kn � 10ÿ2 as well. The case opposing to that considered in
the preceding paragraphs is emission in a line or rarefied
spectrum. The case of a rarefied spectrum is realized at length
L comparable with the wavelength l � 2pu=op (e.g., during
emission in a short resonator); this case is of interest for
microwave electronics [19]. Emission induced by amodulated
beam also reduces to the case of small L.

Let k0u � op (orL � l), i.e., Cherenkov resonance occurs
on mode n � 1. Then Dk=kn � 1, and the spectrum is so
rarefied that resonance on the second- and higher-order
modes is impossible (for o2

e 5o2
p and Dk=kn � 1, inequality

(2.5.5) cannot be fulfilled). This necessitates taking into
consideration the wave A1 alone (putting An>1 � 0) in
equations (2.3.2). Introducing the slow amplitude of a
resonant plasma wave, A1�t� � A�t� exp �ÿiopt�, and taking
account of the resonance condition lead to a system of
equations derived from Eqn (2.3.2):

dA

dt
� ÿi 4peu

opLS1
�Q1 � ~Vÿ i ~Z� ;

d ~V

dt
� ÿi eop

2mu
�Q0AÿQ2A

�� ; �2:8:1�

d ~Z

dt
� op

~V :

Here, Q0; 1; 2 are defined by the first formula in Eqn (2.3.3),
and, in particular, Q0 � Ne. System of equations (2.8.1)
differs from system (2.3.2) mainly by the absence of summa-
tion over the harmonics, which accounts for the possibility of
new solutions to equations (2.8.1). It should be noted that
taking into account only onewave in system (2.3.2) [e.g., asA1

in system (2.8.1)] we pass from electron interaction with a
wave packet to its interaction with a spatially monochromatic
wave. This constitutes the main difference between radiation
emission in continuous and rarefied (line) spectra.

Let us answer [based on the system of equations (2.8.1)] a
methodically important question of how many electrons a
uniform beam should contain per wavelength l � 2pu=op to
enable stimulated emission to develop. Let us begin from the
case with only one electron per wavelength, i.e., Ne � 1 (this
number cannot be smaller since l is the spatial period of the
field). Then, Q0 � Q1 � Q2 � 1 and equations (2.8.1) are
written out as

dA

dt
� ÿi 4peu

opLS1
�1� ~Vÿ i ~Z� ;

d ~V

dt
� ÿi eop

2mu
�Aÿ A�� ;

�2:8:2�
d ~Z

dt
� op

~V :

The main feature of system (2.8.2) is its inhomogeneity, i.e.,
the presence of a free term on the right-hand side of the first
equation. In the zero approximation in perturbations ~V and
~Z, the first equation of system (2.8.2) yields

A�t� � ÿi 2e
S1

opt ; W�t� � e 2u

S1
opt

2 : �2:8:3�

In the next approximation, we find the following expression
from the second equation of system (2.8.2) for the electron

t � 10

t � 50

t � 100

t � 200

t � 300

t � 400
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x � 1 b

t � 500

xÿ0.5 0 0.5 1.0 1.5 2.0 2.5 3.0

20 60 80 100400 t

Figure 5. The structure of a one-dimensional plasma wave packet during

Cherenkov emission by an electron.
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velocity:

vez�t� � uÿ e 2

mS1
opt

2 : �2:8:4�

Formula (2.8.3) for W was obtained with the use of
expressions (2.2.4). Certainly, formulas (2.8.3) and (2.8.4)
agree with the law of conservation (2.2.5).

Formula (2.8.3) describes spontaneous emission induced
by a uniform beam with a minimally possible number of
electrons (one per wavelength), and formula (2.8.4) takes into
consideration the reverse action of the field on each electron.
It appears from the comparison of expressions (2.8.3) and
(2.8.4) with formulas (2.4.6) and (2.4.8) that the dynamics of
spontaneous Cherenkov emission by a sparse �Ne � 1�
electron sequence in a rarefied spectrum differ from those of
spontaneous Cherenkov emission by a single electron in a
continuous spectrum. Nonlinear emission dynamics given by
formulas (2.8.3) and (2.8.4) are described by the system of
equations (2.7.2), the numerical solutions of which at a � 1,
n � 10ÿ3 are presented in Fig. 6, namely, the modulus of
dimensionless plasma wave amplitude jaj � ��a1�t��� in Fig. 6a,
and the electron's phase trajectory in Fig. 6b. The initial
segments �t; x < 15ÿ20� of the curves presented are
described by formulas (2.8.3) and (2.8.4).

Consider now a situation with two electrons per wave-
length l � 2pu=op, i.e., Ne � 2. In this case, Q0 � Q2 � 2,
Q1 � 0, and equations (2.8.1) take the form

dA

dt
� ÿi 4peu

opLS1
� ~Vÿ i ~Z� ;

d ~V

dt
� ÿi eop

mu
�Aÿ A�� ; �2:8:5�

d ~Z

dt
� op

~V :

System of equations (2.8.5) being homogeneous, it cannot
describe spontaneous effects. Consequently, spontaneous
emission at Ne � 2 is absent.

In order to solve the system of equations (2.8.5), we shall
set the following initial conditions: ~V�0� � 0, ~Z�0� � 0, and
A�0� � A0, where A0 is the complex constant, meaning that
the electron beam is not perturbed at t � 0 and that plasma
initially possesses a certain background of Langmuir oscilla-
tions. System (2.8.5) with these initial conditions is readily
integrated to give

ImA�t� � ImA0 cos �o2et� ; �2:8:6�
ReA�t� � ReA0 � opt ImA0

�
1ÿ sin �o2et�

o2et

�
;

where o2e �
������������������������������
4pe 22=�mLS1�

p
is the `Langmuir frequency'

for two electrons. According to expressions (2.8.6), the
amplitude of plasma oscillations grows linearly, and their
energy grows as � t 2. This distinguishes radiation (2.8.6)
from ordinary stimulated radiation that grows exponentially.
Hence, the case of a uniform beam with two electrons per
length of a spatially monochromatic resonant wave relates to
a special one. Moreover, there is no emission whatever at
ImA0 � 0. For this reason, the two-electron system is
virtually stable.

Stability of the two-electron system with respect to
resonant excitation of the spatially monochromatic wave is
understandable. Indeed, the distance between any two
neighboring electrons being l=2, one of them resides in the
decelerating and the other in the accelerating phase of the
field; on the average, there is no energy exchange between
electrons and the wave. However, such a situation holds true
only in the linear approximation. As a result of nonlinear
displacement of the electrons in the wave field, both
eventually find themselves in the decelerating phase of the
field, with a consequent emission of induced radiation. At
Ne � 2, stimulated emission is described by the general
nonlinear system of equations (2.7.2), whose numerical
solutions at a � 1, n � 10ÿ3 are presented in Fig. 7. The
system was integrated under the same initial conditions as in
obtaining solutions (2.8.6). In Fig. 7a showing a plasma wave

0

Z b
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Figure 6. Nonlinear dynamics of spontaneous Cherenkov emission by an

electron sequence comprising one electron per wavelength: (a) amplitude,

and (b) phase trajectory.
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Figure 7. Dynamics of Cherenkov emission by a beam comprising two

electrons per wavelength: (a) amplitude, and (b) phase trajectory.
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amplitude, the thick curve corresponds to the numerical
solution, and the thin curve to the analytical one. The initial
segments of both curves coincide, but the numerical solution
then grows almost exponentially up to reaching saturation.
Saturation and further lowering of the amplitude are due to
the shift of both electrons to the accelerating phases of the
wave, as appears from the phase trajectories displayed in
Fig. 7b.

Consider finally the case of Ne 5 3, where Q0 � Ne,
Q1 � Q2 � 0, and the system of equations (2.8.1) is trans-
formed into the following system

dA

dt
� ÿi 4peu

opLS1
� ~Vÿ i ~Z� ;

d ~V

dt
� ÿi eopNe

2mu
A ; �2:8:7�

d ~Z

dt
� op

~V :

The introduction of the frequency of a slow amplitudeA�t� �
exp �ÿi~ot� into equations (2.8.7) leads to a dispersion
equation

~o3 � 1

2
o2

e�op � ~o� � 1

2
o2

eop ; �2:8:8�

which also follows from the dispersion equation (2.5.3),
provided the inequality j~oj5op is fulfilled. Thus, stimu-
lated emission effect, i.e., ordinary beam instability, occurs
instead of a spontaneous one even with three beam electrons
per wavelength. Such instability for Ne 4 1 was comprehen-
sively investigated in plasma physics and plasma microwave
electronics [7, 18, 19]. By way of example, it is known that
nonlinear saturation of single-mode Cherenkov instability of
a uniform beam in plasma is due to the capture of beam
electrons by a plasma wave. Cases of small Ne � 3, 4, etc. are
not discussed here because they do not practically differ from
that of Ne 4 1.

Thus, the following statements are valid for Cherenkov
emission in the rarefied spectrum of a uniform electron beam
with Ne electrons per wavelength: emission is spontaneous at
Ne � 1; stimulated emission arises at Ne � 2, being not
associated with the development of instability, and, finally,
stimulated emission for Ne 5 3 appears due to the usual
Cherenkov beam instability in plasma.

Let us consider now emission by a modulated electron
beam. Such a beam comprises an infinite sequence of
electron bunches, one per wavelength l � 2pu=op. It
radiates in the rarefied (line) spectrum, which distinguishes
it from a solitary electron bunch (see Sections 2.4 ± 2.7)
having a continuous radiation spectrum. Emission by a
modulated electron beam is described in the linear approx-
imation by a system of equations (2.8.1) in which all three
quantities, Q0, Q1, and Q3, differ from zero, being deter-
mined by the character of modulation. Due to this, system
(2.8.1) takes into consideration both single-electron sponta-
neous effects and the stimulated effects inherent in a uniform
beam. The relationship between Q0, Q1, and Q3 determines
which effect prevails.

Let, for instance, each bunch have length Le and electron
density in the bunch be constant. Then, using the continuous
medium model for the electron bunch gives us the following

relationships

Qn � Ne exp �ÿinDe�sn ; sn � sin �nDe�
nDe

;
�2:8:9�

De � 1

2
k0Le � opLe

2u
4 p ; n � 0; 1; 2 :

The equality De � p can be reached in the case of an
unmodulated beam. Substituting expressions (2.8.9) into
equations (2.8.1) leads to

dA

dt
� ÿi 1

2
o2

e�s1 � ~Vÿ i ~Z� ;

d ~V

dt
� ÿi�Aÿ s2A�� ; �2:8:10�

d ~Z

dt
� op

~V :

When moving from the system of equation (2.8.1) to
equations (2.8.10), quantities A, ~V, ~Z were redefined accord-
ingly. This circumstance being unessential for the subsequent
discussion, we omit the details. At Le � 0, equality
s1 � s2 � 1 is fulfilled and system (2.8.10) turns into system
(2.8.2) except for notations, i.e., the small-sized electron
bunch is equivalent to the single electron. Conversely, at
Le � l, system (2.8.10) gives equations (2.8.7) describing a
uniform electron beam.

Having no opportunity to analyze here the system of
linear equations (2.8.10), we shall discuss certain character-
istic cases. Not to be limited to consideration in a linear
approximation, we shall make use of solutions to general
equations (2.7.2), obtained at a � 1 and n � 10ÿ3. Figure 8
depicts plasma wave amplitudes jaj � ��a1�t��� for electron
bunches of different sizes Le: curve 1 Ð Le � 0:2l, 2 Ð
Le � 0:4l, 3 Ð Le � 0:6l, 4 Ð Le � 0:8l, and 5 Ð
Le � 0:98l. It can be seen that the growth character of
amplitudes changes from linear to exponential as the bunch
size increases. Specifically, curve 5 for 20 < t < 80 is fairly
well described by the theoretical dependence ln jaj �
dt� const, where d is calculated by formula (2.5.4).

To conclude, we shall formulate selected necessary
conditions and characteristics of stimulated Cherenkov
emission in classical electrodynamics. First, growth of
radiation energy elapses faster than proportional to t or t 2,
and usually it is exponential. Second, there is phasing of
electrons by the radiation field. Third, longitudinal size of the
electron bunch is comparable with the mean radiation
wavelength. Finally, the necessity of initial (priming) pertur-
bation that may develop spontaneously as well.

0 20 40 60 80 100

1

2

3 4
5

t

jaj

Figure 8. Plasma wave amplitudes in Cherenkov emission induced by

electron bunches of different lengths.
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2.9 Quantum theory of Cherenkov emission in a plasma
Quantum consideration of the Vavilov ±Cherenkov effect
was first reported by V L Ginzburg based on the laws of
conservation of energy and momentum during electron
interaction with a light quantum in a medium [20]. The
electron was described classically, while the relationship
between photon momentum and energy was established
taking into account the effect of the medium. Because the
optical wavelength is significantly greater than interatomic
distances, the influence of the medium is described by its
refraction index m, and photon momentum is defined as
p � �k=k�m�ho=c, where k is the wave vector. The result of
quantum consideration is the following condition for Che-
renkov emission of transverse electromagnetic waves in a
medium [15]:

o � kuÿ �h

2m
k 2 e? ÿ 1

e?

��������������
1ÿ u 2

c 2

r
; �2:9:1�

where u is the electron velocity, and e? � m 2 is the transverse
permittivity of the medium.

In application to Cherenkov emission of longitudinal
waves in plasma, formula (2.9.1) and the method of its
derivation need refinement. Indeed, a longitudinal field
cannot be quantized, and the relationship between energy w
and plasmon momentum p � wk=o has a classical nature. In
order to take account of quantum effects, we confine
ourselves to a one-dimensional model system described by
classical equations for plasma electrons (Poisson equations
and equations of cold hydrodynamics [8]) and by the
SchroÈ dinger equation for bunch electrons (neglecting relati-
vistic effects for simplicity):

q2j
qz 2
� ÿ4prp ÿ 4pejcj2 ;

q2rp
qt 2
� o2

p

4p
q2j
qz 2

; �2:9:2�

i�h
qc
qt
� �h 2

2m

q2c
qz 2
� ejc :

Here, j�t; z� is the scalar potential, rp�t; z� is the perturbation
of plasma electron charge density, and c�t; z� is the electron
bunch wave function. Representing c as the sum of
unperturbed wave function c0 and perturbation ~c caused by
interaction with plasma oscillations, namely

c � c0 � ~c ; �2:9:3�

and discarding nonlinear terms j ~cj2 and j ~c in Poisson and
SchroÈ dinger equations, we bring the first and the third
equations of system (2.9.2) to a form

i�h
q ~c
qt
� �h 2

2m

q2 ~c
qz 2
� ejc0 ;

�2:9:4�
q2j
qz 2
� 4prp � ÿ4pejc0j2 ÿ 4pe�c �0 ~c� c0

~c �� :

The first term on the right-hand side of the second equation in
Eqn (2.9.4), corresponding to the unperturbed state of the
electron bunch, describes spontaneous emission, and the
second term describes the effect of stimulated Cherenkov
emission.

Let us define the unperturbed state of emitting electrons
by the formula

c0 � H exp �ÿio�ht� ik�hz� ; �2:9:5�
o�h � mu 2

2�h
; k�h � mu

�h
;

to which obviously corresponds a uniform boundless mono-
speed electron beam rather than a bunch (here, H is the
normalization constant). The constant term � jc0j2 in
equations (2.9.4) is unrelated to emission and can be
discarded. Then writing out the potential as

j � 1

2

�
~j exp �ÿiot� ikz� � ~j � exp �io�tÿ ikz�� ; �2:9:6�

we will find from the first equation in Eqn (2.9.4) the
expression for perturbation of the wave function:

~c � 1

2
eA

�
~j exp

�ÿi�o�h � o�t� i�k�h � k�z�
�h�o�h � o� ÿ �h 2�k�h � k�2=2m

� ~j � exp
�ÿi�o�h ÿ o��t� i�k�h ÿ k�z�

�h�o�h ÿ o�� ÿ �h 2�k�h ÿ k�2=2m

�
: �2:9:7�

Finally, we substitute expressions (2.9.6) and (2.9.7) into the
second equations of systems (2.9.2) and (2.9.4) and obtain the
following dispersion equation for determining the complex
frequency o in solution (2.9.6):

1ÿ o2
p

o2
ÿ o2

e

�oÿ ku�2 ÿ ��h 2=4m 2�k 4
� 0 : �2:9:8�

When writing out equation (2.9.8), we defined normalization
in Eqn (2.9.5) by the formula H � ����������������

Ne=LS1

p
. Evidently,

equation (2.9.8) is different from the classical dispersion
equation (2.5.3) in that it contains a quantum term. Thus, as
oe ! 0 we have from equation (2.9.8) the following quantum
condition for stimulated Cherenkov emission of longitudinal
waves by a low-density beam in isotropic plasma:

o � ku� �h

2m
k 2 ; �2:9:9�

and also other longitudinal waves in plasma-like media.
Condition (2.9.9) exhibits an analog of the quantum condi-
tion (2.9.1) for the emission of transverse waves in isotropic
media.

Describing an electron in terms of wave function (2.9.5),
we automatically come to the case of stimulated radiation
induced by an electron beam. For the purpose of quantum
description of the spontaneous Vavilov ±Cherenkov effect, it
is necessary to consider a wave function packet, such that
jc0j2 � f �zÿ ut�, where the function f is nonzero in a region
equal in size to the bunch length Le. In this case, the packet
spreading time depending on electron de Broglie wave
dispersion must be significantly greater than the plasma
oscillation period in accordance with the inequality

mu 2

�hop
4

l2

L2
e

; �2:9:10�

where l � 2pu=op is the mean radiation wavelength. The
results presented in Section 2.4 are valid given inequality
(2.9.10) is fulfilled.
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3. The theory of Vavilov ±Cherenkov emission

3.1 Emission of longitudinal waves in an isotropic plasma
Now, we shall apply the methods and results presented in
Section 2 to the theory of Cherenkov emission of three-
dimensional waves by a bunch of relativistic electrons. Let
us start from the emission of longitudinal waves in isotropic
plasma. We proceed from the following equations for the
auxiliary function A�t; r�:

q2A
qt 2
� o2

pA � ÿ4pe
XNe

j� 1

ve j�t; z0 j� d
ÿ
rÿ re j�t; z0 j�

�
;
�3:1:1�

dre j
dt
� ve j ;

dpe j
dt
� eE�t; re j� ; E � qA

qt
;

where pe j � mve j�1ÿ v 2e j=c 2�ÿ1=2 is the relativistic momen-
tum of a bunch electron. The plasma oscillation energy
density is given by the formula

wk � 1

8p

��
qA
qt

�2

� o2
pA

2

�
: �3:1:2�

Equations of bunch electron motion are supplemented by the
following initial conditions

re j�0� � f0; 0; z0 jg ; ve j � f0; 0; ug : �3:1:3�
Then, the bunch residing in the unperturbed state is a linear
�x0 j � y0 j � 0� chain of electrons aligned along the z-axis
parallel to the direction of unperturbed motion. A potential
approximation is used to describe plasma waves, in accor-
dance with equations (3.1.1). It is possible because waves in
the isotropic plasma split into purely longitudinal and purely
transverse ones [8, 13, 17], and Cherenkov excitation of
transverse waves in such plasma does not occur [5, 6] (see
Section 3.2).

Next we expand the function A�t; r� into plane waves
using the Hamiltonian method:

A�t; r� � 1

2

X
fng

efng
�
Afng�t� exp �ikfngr�

� A�fng�t� exp �ÿikfngr�
�
: �3:1:4�

Here, kfng � k0n is the wave vector, n � fnx; ny; nzg � fng is
the vector with integer-valued components, k0 � 2p=L is the
elementary wave number, L3 is the cavity volume in which
the field is enclosed, and efng � kfng=jkfngj is the unit
polarization vector for longitudinal plasma waves. Summa-
tion in formula (3.1.4) is taken over semispace
ÿ1 < nx <1, ÿ1 < ny <1, nz > 1 [see Eqn (2.2.1)].
Substituting expansion (3.1.4) into equations (3.1.1) gives us

d2Afng
dt 2

� o2
pAfng

� ÿ 8pe
L3

XNe

j� 1

ÿ
efngve j�t; z0 j�

�
exp

ÿÿikfngre j�t; z0 j�� ;
�3:1:5�

dre j
dt
� ve j ;

dpe j
dt
� 1

2
e
X
fng

efng
�

_Afng�t� exp �ikfngre j�

� _A�fng�t� exp �ÿikfngre j�
�
:

Substitution of expansion (3.1.4) into formula (3.1.2) leads to
the expression for plasma wave energy in volume L3:

Wk � wkL3 ; wk � 1

16p

X
fng

ÿ
_Afng _A�fng � o2

pAfngA
�
fng� :
�3:1:6�

Relationships of importance for further discussion follow
from the system symmetry with respect to the z-axis:X

fng
nxAfng �

X
fng

nyAfng � 0 ; �3:1:7�

meaning that components Ex and Ey of the electric field
vanish on the symmetry axis.

Radius vectors and electron velocities can be represented
in the form

re j�t� � f~xj; ~yj; z0 j � ut� ~zjg ; �3:1:8�
ve j�t� � f~vx j; ~vy j; u� ~vz jg :

Substituting formulas (3.1.8) into equations (3.1.5), lineariz-
ing them over perturbations ~xj; ~yj; . . ., and taking into
account relations (3.1.7) lead to the following equations in
linear approximation:

d2Afng
dt 2

� o2
pAfng

� ÿ 8pe
L3

u
nz
jnj �Qnz � ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

d ~Vnz

dt
� egÿ3

2mu

X
fn 0g

n 0z
jn 0j

�
_Afn 0gQnzÿn 0z exp �in 0zk0ut�

� _A�fn 0gQnz�n 0z exp �ÿin 0zk0ut�
�
; �3:1:9�

d ~Znz

dt
� k0u ~Vnz :

Here, quantities Qnz ,
~Vnz , and

~Znz are expressed through z0 j
and perturbations ~vz j and ~zj by formulas of the form (2.3.3). It
is essential for further calculations that Qnz ,

~Vnz , and
~Znz are

explicitly dependent on index nz alone. Equations (3.1.5) and
(3.1.9) are three-dimensional analogs of nonlinear equations
(2.2.2), (2.2.3) and linear equations (2.3.2), respectively. Here,
we confine ourselves to considering only linear equations
(3.1.9).

For spontaneous emission by a single electron, when
Ne � 1, it may be assumed that Qnz � 1 in equations (3.1.9)
for all nz. Then, neglecting perturbations Vnz and Znz in the
first equation of system (3.1.9) and substituting its solution
into formula (3.1.6) give the expression for the total plasma
wave energy:

dWk
dt
� 4pe 2u 2

L3

X
fng

n 2
z

n 2

sin
��op ÿ nzk0u�t

�
op ÿ nzk0u

: �3:1:10�

In conformity with the rule [5, 6] [see formula (2.4.4)]X
fng

. . .!
���

. . . dnx dny dnz � L3

�2p�3
���

. . . k 2 dk do ;

�3:1:11�
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expression (3.1.10) is brought to a form

dWk
dt
� e 2u 2

��
k 2 cos2 y d�op ÿ ku cos y� dk sin y dy :

�3:1:12�

Expressions (3.1.11) and (3.1.12) were written out in the
spherical system of coordinates �k; y;j�, where y is the angle
between wave vector and the z-axis, j is the azimuthal angle,
and do � sin y dy dj is the element of the solid angle;
integration in formula (3.1.12) is taken over the azimuthal
angle. In addition, passage to the delta-function was
performed in Eqn (3.1.12), as in Eqn (2.4.5).

Integration over y in equation (3.1.12) gives the final
expression for the power of spontaneous Cherenkov emission
of longitudinal waves by an electron in isotropic plasma:

dWk
dt
� e 2o2

p

u

� kmax

kmin

dk

k
: �3:1:13�

The lower limit of integration in formula (3.1.13) is deter-
mined from the condition of vanishing the delta-function
argument in formula (3.1.12)Ð kmin � op=u. The upper limit
is set based on the kinetic properties of Langmuir waves
propagating in plasma [8, 13], such as strong collisionless
damping (Landau damping) in the short-wave region for
k > rÿ1De � op=vTe, where rDe is the electron Debye radius,
and vTe is the thermal velocity of plasma electrons. It is
usually assumed that kmax � rÿ1De . Then, the following well-
known expression ensues from formula (3.1.13) [8, 13]:

dWk
dt
� e 2o2

p

u
ln

u

vTe
: �3:1:14�

Formula (3.1.14) is analogous to formula (2.4.6) for sponta-
neous emission of one-dimensional waves in plasma.

An emitting electron loses energy. Electron energy losses
in plasma, described by formula (3.1.14), are referred to as
polarization or Bohr losses [13, 15, 21]. Formulas (3.1.14) of
polarization losses are easy to generalize for the case of an
electron bunch. Indeed, the first term on the right-hand side
of the first equation in system (3.1.9) contains factor Qnz

substituted by unity in derivation of relationship (3.1.12).
This factor may be taken into account by putting

Qnz �
XNe

j� 1

exp �ÿinzk0z0 j� �
XNe

j� 1

exp �ÿik cos y z0 j�

!
���

ne�r� exp �ÿik cos y z� dr ; �3:1:15�

where ne�r� � ne�x; y; z� is the electron concentration in the
bunch [in formulas (3.1.15), we moved to the general case of a
three-dimensional electron bunch]. Substituting the quantity
QnzQ

�
nz
into the integrand of equation (3.1.12) [energy (3.1.6)

contains products AfngA�fng, but Afng � Qnz ] and literally
repeating the derivation of formula (3.1.14), we obtain the
expression for polarization losses by an electron bunch in
plasma:

dWk
dt
� e 2o2

p

u

������� ne�r� exp�ÿ izop

u

�
dr

����2 ln u

vTe
:�3:1:16�

Let us consider further stimulated emission by a homo-
geneous beam in which all Ne electrons are uniformly

distributed over length L, making relationships Qnz>0 � 0,
Qnzÿn 0z � dnz; n 0zNe, Qnz�n 0z � 0 valid. Then, the system of
equations (3.1.9) yields the following equations

d2Afng
dt 2

� o2
pAfng

� ÿ 8pe
L3

u
nz
jnj �

~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ; �3:1:17�
d ~Vnz

dt
� egÿ3Ne

2mu

X
fnx; nyg

nz
jnj

_Afng exp �inzk0ut� ; d ~Znz

dt
� k0u ~Vnz :

Because there is no summation over nz in equations (3.1.17),
their solutions can be sought in the form

Afng � ~Afn?g exp �ÿiot� exp �ÿinzk0ut� ; �3:1:18�
~Vnz � V exp �ÿiot� ; ~Znz � Z exp �ÿiot� ;

where fn?g � fnx; nyg. Substituting expressions (3.1.18) into
system (3.1.17) and dropping the quantities V, Z give

�o2 ÿ o2
p� ~Afn?g �

4pe 2Ne

mL3

o2gÿ3

�oÿ nzk0u�2

�
X
fn 0?g

n 2
z

~Afn 0?g�����������������������������������������
�n 2
? � n 2

z ��n 0 2? � n 2
z �

p ; �3:1:19�

from which a dispersion equation for determining frequency
o explicitly follows:

o2 ÿ o2
p �

4pe 2Ne

mL3

o2gÿ3

�oÿ nzk0u�2
X
fn?g

n 2
z

n 2
? � n 2

z

: �3:1:20�

Let us move in formulas (3.1.19) and (3.1.20) from
summation over transverse indices nx, ny to integration over
transverse wave numbers k? � k0n?. Using the ruleX

nx ; ny

. . .!
��

. . . dnx dny � L2

�2p�2
��

. . . dkx dky

� L2

�2p�2
��

. . . k? dk? dj ; �3:1:21�

where k?;j are the cylindrical coordinates, it follows from
Eqn (3.1.19) that

~Afn?g ! ~A�k?; kz� � const �k 2
? � k 2

z �ÿ1=2 ; �3:1:22�

and the dispersion equation (3.1.20) is brought to a form

o2 ÿ o2
p �

e 2Ne

mL

o2gÿ3

�oÿ kzu�2
k 2
z ln

k 2
?max � k 2

z

k 2
z

; �3:1:23�

where k?max is the upper limit of integration over variable k?.
If k?max !1, equation (3.1.23) contains a divergence

arising from the fact that the cylindrical wave field turns to
infinity at the points on the z-axis on which the electron chain
is located. In order to regularize the dispersion equation, it
should be borne in mind that a real electron beam has a finite
cross section of area Se. Then, the minimal distance from the
z-axis, at which plasma oscillations occur, is r?min �

�����
Se

p
.

Because k?max � 1=r?min, one can put k
2
?max � �gSe�ÿ1 (where

g is a constant) in a logarithm of formula (3.1.23); hence, we
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arrive at the dispersion equation

o2 ÿ o2
p � o2

eg
ÿ3 o2

�oÿ kzu�2
Ge�kz� ;

�3:1:24�
Ge�kz� � k 2

z Se

4p
ln

1� gk 2
z Se

gk 2
z Se

;

having the structure of model dispersion equation (2.5.3).
When writing out Eqn (3.1.24), beam electron density
ne � Ne=LSe and Langmuir frequency oe �

��������������������
4pe 2ne=m

p
were introduced. The solution of equation (3.1.24) is given
by formula (2.5.4) containing o2

eg
ÿ3Ge instead of o2

e .
Evidently, factor k 2

z Se should be turned to infinity,
k 2
z Se !1, to move to the one-dimensional case, and the

dispersion equation (3.1.24) must go over into equation
(2.5.3). This means that g � �4p�ÿ1. The structural similarity
of equations (3.1.24) and (2.5.3) reflects the fact that
stimulated Cherenkov emission of longitudinal waves in an
isotropic plasma is a form of beam-plasma instability in terms
of physical nature.

Notice that we estimated k?max in equation (3.1.23) on the
assumption that r?min � S

1=2
e 4 rDe. However, fulfillment of

the reverse inequality implies r?min � rDe and it should be
assumed that k?max � rÿ1De . Then, geometric extent Ge in
equation (3.1.24) is substituted by

Ge�kz� � k 2
z Se

4p
ln

1� k 2
z r

2
De

k 2
z r

2
De

� o2
pSe

4pu 2
ln

u

vTe
; �3:1:25�

where account was taken that, under Cherenkov emission in a
plasma, kz � op=u and u4 vTe.

In order to elucidate the spatial structure of the plasma
oscillation field, expression (3.1.22) needs to be introduced
into expansion (3.1.4) and summation over fn?g performed;
the latter is superseded by integration over dk? (integration
over dkz is infeasible in view of the independence of waves
with different nz). Simple computations yield the expression
for the plasma oscillation field:

Ez�t; r� � const
exp �ÿkzr?�

r?
exp

�ÿio�kz�t� ikzz
�� c:c:;

�3:1:26�

where o�kz� is the solution of dispersion equation (3.2.24),
and r 2? � x 2 � y 2. At large times, the main contribution
comes from perturbations with the maximum growth
increment. Therefore, stimulated Cherenkov emission by
an extended �Le 4 2pu=op� electron bunch in homoge-
neous isotropic plasma is defined by function (3.1.26) at
kz � op=u.

In the model under consideration, it is easy to take into
account the dispersion of plasma waves (e.g., due to thermal
motion). To this end, it is sufficient to substitute a function
o2

p�n� � o2
pn for the constant o2

p in equations (3.1.17) and
relationship (3.1.19). The result is the following dispersion
equation instead of Eqn (3.1.20):

1 � o2
eg
ÿ3

�oÿ nzk0u�2
Se

L2

X
fn?g

o2n 2
z

�n 2
? � n 2

z ��o2 ÿ o2
pn�

: �3:1:27�

In what follows, equation (3.1.27) will be generalized to the
case of stimulated emission of longitudinal waves in an
arbitrary isotropic medium.

3.2 Emission of transverse electromagnetic waves
in an isotropic dielectric
Let us consider now the emission of transverse electromag-
netic waves in an isotropic dielectric. We shall describe the
electromagnetic field using vector A�t; r� and scalar c�t; r�
potentials that satisfy, in the Coulomb gauge HHA � 0, the
equations [21, 22]

DAÿ e
c 2

q2A
qt 2

� ÿ 4p
c

e
XNe

j� 1

ve j�t; z0 j� d
ÿ
rÿ re j�t; z0 j�

�� e
c
HH

qc
qt

;

Dc � ÿ 4p
e

e
XNe

j� 1

d
ÿ
rÿ re j�t; z0 j�

�
;

�3:2:1�

and relationships

E � ÿ 1

c

qA
qt
ÿ HHc ; B � rotA ;

�3:2:2�
Ek � ÿHHc ; w? � eE 2

? � B 2

8p
;

where e is the permittivity (assuming the form of an operator
e�ô�, ô � i q=qt, when time-dependent dispersion is taken
into account), and w? is the energy density of the transverse
electromagnetic field. Equations ofmotion of bunch electrons
can be written out as

dre j
dt
� ve j ;

dpe j
dt
� eE�t; re j� � e

c

�
ve jB�t; re j�

�
: �3:2:3�

Initial values of radius vectors and electron velocities are
given by formulas (3.1.3).

Applying the Hamiltonian method, we make use of the
expansions

A�t; r� � 1

2

X
fng

�
Afng�t� exp �ikfngr� � A�fng�t� exp �ÿikfngr�

�
;

c�t; r� � 1

2

X
fng

�
cfng�t� exp �ikfngr� � c �fng�t� exp �ÿikfngr�

�
:

�3:2:4�

Suppose that radiation constitutes a superposition of only
those waves that have a nonzero component of the electric
field in the direction of unperturbed electron motion, and
waves with Ez � 0 are not emitted. Moreover, suppose a
symmetric spatial distribution of the electromagnetic field
with respect to the z-axis. As is known, cylindrically
symmetric waves with Ez 6� 0 (the so-called E type waves
[23, 24]) have zero-field components Ex,Ey, andBx,By on the
symmetry axis, which gives the following conditions for
expansion coefficients in formulas (3.2.4):X

fng
Axfng �

X
fng

Ayfng � 0 ;

X
fng

nxAzfng �
X
fng

nyAzfng � 0 ; �3:2:5�
X
fng

nxcfng �
X
fng

nycfng � 0 ;
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where Axfng, Ayfng, Azfng are the Cartesian components of the
vector Afng.

Substituting expansions (3.2.4) into equations (3.2.1) and
eliminating the scalar potential yield the following Hamilto-
nian equations for excitation of electromagnetic field harmo-
nic oscillators:

d2Afng
dt 2

� o2
nAfng �

8pec
L3e�n�

XNe

j� 1

�
ve j ÿ

kfng�kfngve j�
k 2
fng

�
� exp

ÿÿikfngre j�t; z0 j�� : �3:2:6�

Here, on is the frequency of the electromagnetic field
oscillator:

o2
n �

c 2k 2
fng

e�n� � k 2
0 c

2 n 2

e�n� ; �3:2:7�

and the dependence of permittivity e on n � �n 2
x � n 2

y � n 2
z �1=2

phenomenologically takes into consideration the frequency
dispersion of the isotropicmedium. The structure of the right-
hand side of equation (3.2.6) is such that kfngAfng � 0, which
is equivalent to the Coulomb gauge. It follows from formulas
(3.2.4) and (3.2.2) that the expression for the total energy of
transverse electromagnetic waves in volume L3 is given by

W?� w?L3 ; w?� 1

16pc 2
X
fng

e�n�ÿ _Afng _A�fng� o2
nAfngA

�
fng
�
:

�3:2:8�
Equations (3.2.3) of electron motion are written out in the
form

dre j
dt
� ve j ;

dpe j
dt
� F1 j � F2 j ;

F1 j � ÿ e

2c

X
fng

n�
_Afng�t� ÿ i

�
ve j
�
kfngAfng�t�

���
� exp �ikfngre j� � c:c:

o
; �3:2:9�

F2 j � ÿi 4pe
2

L3

X
fng

�
kfng

k 2
fnge�n�

�XNe

j� 1

exp �ÿikfngre j�
�

� exp �ikfngre j� ÿ c:c:

�
:

Equations (3.2.6) and (3.2.9) describe in the most general
form the nonlinear dynamics of Cherenkov emission of
transverse electromagnetic waves in an isotropic medium.
Part of the force F2 j in Eqn (3.2.9) is due to the Coulomb
(potential) interaction between bunch electrons; it also
includes self-action. As concerns the force F1 j, it is associated
with the action of radiation on the bunch, i.e., radiative
deceleration of type (2.4.8), and phasing of electrons by
radiation that leads to developing instability.

Substituting representations (3.1.8) into equations (3.2.6)
and (3.2.9), linearizing them with respect to perturbations,
and taking into account relationships (3.2.5) give the
following equations in the linear approximation:

d2Ax; yfng
dt 2

� o2
nAx; yfng

� ÿ 8pecu
L3

nx; ynz
e�n�n 2

�Qnz � ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

d2Azfng
dt 2

� o2
nAzfng

� 8pecu
L3

n 2
x � n 2

y

e�n�n 2
�Qnz � ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

d ~Vnz

dt
� ÿ egÿ3

2mcu

X
fn 0g

ÿ
_Azfn 0gQnzÿn 0z exp �in 0zk0ut�

� _A�zfn 0gQnz�n 0z exp �ÿin 0zk0ut�
�ÿ F�t� ; �3:2:10�

dZnz

dt
� k0uVnz ;

F�t� � i
4pe 2gÿ3

muL3k0

X
fn 0g

n 0z
e�n 0�n 0 2

��Qn 0zQnzÿn 0z ÿQ �n 0zQnz�n 0z�

ÿ in 0z� ~Zn 0zQnzÿn 0z� ~Z �n 0zQnz�n 0z� � in 0z�Qn 0z
~Znzÿn 0z�Q �n 0z

~Znz�n 0z�
�
:

If term F�t� having a Coulomb nature and appearing in the
right-hand side of the equation for ~Vnz is neglected,
unessential differences between equations (3.1.10) and
(3.2.9) are due to a different polarization of radiation alone:
systems of equations (3.1.9) and (3.2.10) describe emission of
longitudinal and transverse waves, respectively. The term
� �Qn 0zQnzÿn 0z ÿQ �n 0zQnz�n 0z� in F�t� depends on the static field
of the electron bunch. In the single-electron case, this term,
being the self-field of a point charge, becomes infinite.
Evidently, the self-field (also called the entrained field) has
nothing to do with the problem of emission of electromag-
netic waves. Two other terms in F�t� describe the high-
frequency self-field of the bunch (in microwave electronics it
is referred to as the field of a high-frequency spatial charge
[19, 25]), the field arising from modulation of the electron
bunch with radiation. It will be shown in Section 4.2 that
under certain conditions the high-frequency field has a
marked effect on the mechanism of stimulated emission.

Let us now turn to the analysis of equations (3.2.10). In
the case of spontaneous emission by a single electron,
neglecting perturbations ~Vnz ,

~Znz in the first three equations
of system (3.2.10) and substituting their solutions into
formula (3.2.8) result in a following expression for the total
energy of transverse electromagnetic waves:

dW?
dt
� 4pe 2u 2

L3

X
fng

n 2
x � n 2

y

n 2e�n�
sin
��on ÿ nzk0u�t

�
on ÿ nzk0u

! e 2u 2

2p

���
k 2
x � k 2

y

k 2e�k� d
ÿ
o�k� ÿ kzu� dkx dky dkz :

�3:2:11�

In writing formula (3.2.11), we replaced summation over nx,
ny, nz by integration over kx, ky, kz, introduced the frequency
o�k� � kc=

��
e
p

, and passed to the delta function [see
Eqn (2.4.5)]. Introducing further spherical coordinates
k; y;j and integrating over azimuthal angle j in formula
(3.2.11) give

dW?
dt
� e 2u 2

��
eÿ1�k� sin3 y d�o�k� ÿ ku cos y

�
k 2 dkdy :

�3:2:12�
When writing out the initial equations (3.2.1), the medium
was assumed to possess only frequency dispersion, i.e.,
e � e�o�. With this in mind, by e�k� in formula (3.2.12) one
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should understand e
�
o�k��, where o�k� is the solution of

dispersion equation o2e�o� � k 2c 2 for transverse electro-
magnetic waves in an isotropic medium.

Because cos y4 1, only those regions of k contribute to
the integral in formula (3.2.12) in which inequality o�k�4 ku
or c=

���������
e�k�p

4 u is fulfilled, the latter by taking into account
the dispersion equation. Then, integration over angle y in
formula (3.2.12) gives the final formula

dW?
dt
� e 2u

�
c=
��
e
p

4 u

�
1ÿ c 2

u 2e�k�
�
kdk

e�k�

� e 2u

c 2

�
c=
��
e
p

4 u

o
�
1ÿ c 2

u 2e�o�
�
do : �3:2:13�

Formula (3.2.13), known as the Tamm±Frank formula [14],
defines the power of spontaneous Cherenkov emission of
electromagnetic waves in an isotropic medium. The losses of
electron energy through emission, described by formula
(3.2.13), are termed radiation losses [15, 21]. It is worth
noting that in moving from integration over k to integration
over o in formulas (3.2.13) we used the relationship
dk � � ��ep =c� do valid when inequality

���e=o� de=do��5 1 is
fulfilled. This means that the Tamm±Frank formula is
applicable only to media with a weak frequency dispersion.
Actually, this was expected from the very beginning. In
particular, when substituting expansions (3.2.4) into equa-
tions (3.2.1), operator e�ô� was replaced by the quantity e�n�
which was later regarded as a constant.

In order to generalize the Tamm±Frank formula to the
case of an electron bunch, account should be taken of
quantity QnzQ

�
nz

in the integrand of formula (3.2.12), where
Qnz is defined byEqn (3.1.15). As a result, integration over the
angle results in the formula

dW?
dt
� e 2u

c 2

�
c=
��
e
p

4 u

o
�
1ÿ c 2

u 2e�o�
�

�
������� ne�r� exp�ÿ izo

u

�
dr

����2 do : �3:2:14�

Let us consider now a radiation pattern for spontaneous
Cherenkov emission of transverse waves in an isotropic
medium. For this purpose, we assume the dispersion to be
weak and move to the integration over frequency o in
formula (3.2.12). Then, one obtains

dW?
dt
� e 2u 2

c 3

��
m�o�odÿ1ÿ b m�o� cos y� sin3 y do dy ;

�3:2:15�

where b � u=c, and m�o� � ���������
e�o�p

is the index of refraction.
We denote by o� the root of the equation

1ÿ bm�o� cos y � 0 �3:2:16�

and perform integration over the frequency in formula
(3.2.15):

dW?
dt
� e 2u 2

c 3

�
m�o��o�

���� b cos y dm�o��
do�

����ÿ1 sin3 y dy ; �3:2:17�
where o� as the solution of Eqn (3.2.16) is a function of
angle y. The radiation pattern is given by the integrand in

formula (3.2.17), namely

D�y� � m�o��o�
���� b cos y dm�o��

do�

����ÿ1 sin3 y : �3:2:18�

QuantityD�y� dy defines the radiation energy flux traveling at
angle ywith respect to the direction of electron motion within
the solid angle 2p dy (sometimes the radiation pattern does
not include factor sin y pertaining to an element of the solid
angle).

For further discussion, it is necessary to render concrete
the dependence m�o�. Let us assume that

m 2�o� � 1� o2
p

o2
0 ÿ o2

; �3:2:19�

where o2
p and o2

0 are certain constants. The dependence
(3.2.19) is characteristic of transparent media with normal
dispersion in the optical frequency range. The solution of
Eqn (3.2.16) has the form

o��y� � o0

������������������������������������������
1ÿ o2

p

o2
0

b 2 cos2 y

1ÿ b 2 cos2 y

s
: �3:2:20�

It follows from formula (3.2.20) that o�4o0. In this
frequency region, m�o� > 1. In a frequency region of
o > o0, Cherenkov emission is impossible because either
m 2 < 0 (nontransparency zone) or m < 1 (region of phase
velocities higher than c). The index of refraction in the
emission region being positive, so does cos y > 0. Then,
formula (3.2.20) gives the condition for the angles in which
Cherenkov radiation is localized:

arccos

"
min

 
1;

c

u

������������������
o2

0

o2
0 � o2

p

s !#
4y4

p
2
: �3:2:21�

At o0 � 0 (as in the case of a cold isotropic plasma), the
angular range covered by inequality (3.2.21) goes to zero,
which implies the impossibility of Cherenkov emission of
transverse waves in an isotropic plasma. This and the results
of Section 3.1 indicate that only Cherenkov emission of
longitudinal waves may occur in an isotropic plasma.

Substitution of formulas (3.2.19) and (3.2.20) into for-
mula (3.2.18) and simple transformations give an expression
for the radiation pattern:

D�y� � o2
p

b cos y sin3 y

�1ÿ b 2 cos2 y�2 : �3:2:22�

Formula (3.2.22) holds true only in the angular range (3.2.20);
outside this range, D�y� � 0. Radiation patterns (3.2.22) for
two values of b are presented in Fig. 9. In a nonrelativistic

0.75

0.9

z

Figure 9.Vavilov ±Cherenkov radiation patterns in an isotropic dielectric:

b � 0:75, and b � 0:9.
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case, for b 2 5 1, the maximum of the radiation pattern lies at
y � arctan � ���2p � � 0:96, while in the ultrarelativistic limit it
falls on the angle y � �1ÿ b 2�1=2 5 1.

Let us calculate the power of Vavilov ±Cherenkov
radiation by the Tamm±Frank formula (3.2.13) in a medium
with refraction index (3.2.19). For simplicity, we shall confine
ourselves to a special case of fulfilling the equality

c

u

������������������
o2

0

o2
0 � o2

p

s
� 1 ; �3:2:23�

in which, in accordance with formulas (3.2.19) and (3.2.20),
all frequencies (from zero to o0) are emitted into all angles
from zero to p=2. Elementary integration in formula (3.2.13)
yields

dW?
dt
� e 2u

c 2
o2

0 F

�
o2

p

o2
0

�
: �3:2:24�

Here, F�x� � �x=2�ÿ�1� x� ln �1� xÿ1� ÿ 1
�
is the function

plotted in Fig. 10.
Relationships between frequencies and angles of waves

originated in Cherenkov emission by an electron in a medium
with refraction index (3.2.19) are illustrated by Fig. 11
depicting dispersion curves of waves in the medium of
interest, i.e., solutions o�k� of the dispersion equation
o2 � k 2c 2=m 2�o�. There are two types of waves: one

comprises optical waves (curve b), and the other acoustic
waves (curve a). Vavilov ±Cherenkov emission occurs only
with acoustic waves. It is easy to see that the left-hand side of
formula (3.2.23) is the ratio Vph�0�=u, where Vph�0� � c=m�0�
is the phase velocity of an acoustic type wave as o! 0.
Figure 11 also presents straight lineso � ku � bkc.When the
equality (3.2.23) is fulfilled, the straight line o � ku is fitted
by line 1. Straight lines o � ku cos y run below (e.g., line 2),
which accounts for the emission of all frequencies under
condition (3.2.23), from zero to o0, and at all angles lying
between zero and p=2. If the left-hand side of equality (3.2.23)
is larger than unity, i.e.,Vph�0� > u, the straight lineo � ku is
positioned as line 2 and waves with frequencies lower than the
frequency of point o shown in Fig. 11 are not emitted. This
radiation travels through all the angles from zero to p=2.
Finally, if the left-hand side of formula (3.2.23) is smaller than
unity, i.e.,Vph�0� < u, the dependenceo � ku has the form of
straight line 3. In this situation, all waves with frequencies
from zero to o0 are emitted, but there is no emission in the
region of small angles.

Let us turn now to stimulated emission induced by a
uniform electron beam. Bearing in mind that in the case of a
uniform beam one has Qnzÿn 0z � dnz; n 0zNe, Qnz�n 0z � 0, and
Qnz>0 � 0, the following equations can be obtained from
system (3.2.10):

d2Azfng
dt 2

� o2
nAzfng

� 8pecu
L3

n 2
x � n 2

y

e�n�n 2
� ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

d ~Vnz

dt
� ÿ egÿ3Ne

2mcu

X
fnx; nyg

_Azfng exp �inzk0ut�

ÿ 4pe 2gÿ3Ne

muL3k0

X
fnx; nyg

n 2
z

e�n�n 2
~Znz ; �3:2:25�

dZnz

dt
� k0uVnz :

Substituting expressions (3.1.18) into equations (3.2.25) and
discarding V and Z lead to the relationship

�o2 ÿ o2
n� ~Afn?g

� 4pe 2Ne

mL3e�o�
o2gÿ3

�oÿ nzk0u�2 ÿ O 2
b

n 2
?

n 2
? � n 2

z

X
fn 0?g

~Afn 0?g ;

�3:2:26�
which is slightly different from formula (3.1.19). Here, o2

n �
�n 2
? � n 2

z �k 2
0 c

2=e�o�, and

O 2
b �

4pe 2Negÿ3

mL3e�o�
X
fn?g

n 2
z

n 2
? � n 2

z

� o2
eg
ÿ3

e�o�
Se

L2

X
fn?g

n 2
z

n 2
? � n 2

z

:

�3:2:27�
The structures of formulas (3.1.19) and (3.2.26) differ in that
the latter expression contains quantity (3.2.27). It will be
shown in Section 4.2 that here physical factors are involved
that influence the mechanism of stimulated Cherenkov
emission. Suppose thus far that the inequality

joÿ nzk0uj4Ob �3:2:28�

is fulfilled, allowing quantity (3.2.27) in relationship (3.2.26)
to be neglected and the following dispersion relation to be

1

3
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2
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k

Figure 11. Frequencies and angles of Vavilov ±Cherenkov radiation in a

medium with refraction index (3.2.19).
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Figure 10.Graph of the function F�x� determining the power of Vavilov ±

Cherenkov radiation in accordance with formula (3.2.24).
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obtained:

1 � o2
eg
ÿ3=e�o�

�oÿ nzk0u�2
Se

L2

X
fn?g

o2n 2
?

�n 2
? � n 2

z ��o2 ÿ o2
n�
: �3:2:29�

Thus, the dispersion relation (3.2.29) is virtually analo-
gous to Eqn (3.1.27), which gives the expected result, viz.
stimulated Cherenkov emission of transverse waves in an
isotropic medium, as of longitudinal waves in an isotropic
plasma, represents beam instability of the same type as the
single-particle stimulated Cherenkov effect. Inequality
(3.2.28), implying a higher growth rate of instability com-
pared with the beam Langmuir frequency, is a condition for
the existence of the single-particle effect. In Section 3.6, we
shall turn back to dispersion relation (3.2.29) and write it out
in the explicit form (containing no infinite sums) based on
different methods of the theory of Cherenkov beam instabil-
ities.

3.3 Emission of transverse-longitudinal waves
in an anisotropic plasma
Now, let us consider Cherenkov emission by electrons in an
anisotropic medium with frequency dispersion, for example,
in a cold electron plasma placed in a strong external uniform
magnetic field. Assuming the electrons to be completely
magnetized (i.e., their motion across the magnetic field to be
forbidden), we shall consider a set of equations describing
excitation of plasma waves by a linear bunch of free electrons
traveling strictly along the external magnetic field:

q
qt

�
D? � q2

qz 2
ÿ 1

c 2
q2

qt 2

�
c� 4p jpz

� ÿ4ped�r?�
XNe

j� 1

vez j�t; z0 j� d
ÿ
zÿ ze j�t; z0 j�

�
;

q jpz
qt
ÿ o2

p

4p
Ez � 0 ; Ez �

�
q2

qz 2
ÿ 1

c 2
q2

qt 2

�
c ; �3:3:1�

dze j
dt
� vez j ; dpez j

dt
� eEz�t; 0; ze j� :

Here, c�t; r?; z� is the Hertz polarization potential [24, 26],
r? � fx; yg, D? � q2=qx 2 � q2=qy 2, and the external mag-
netic field is aligned along the z-axis. System of equations
(3.3.1) contains elements of both (3.1.1) and (3.2.1) systems,
which reflects the coupling of longitudinal and transverse
waves in an anisotropic plasma. Generally speaking, it makes
no sense to categorize electron energy losses in an anisotropic
medium into polarization (Bohr) and radiation ones [6, 13].

Comprehensive analytical treatment of the system of
differential equations (3.3.1), having the fourth order in
time, encounters difficulty. To clarify the simplification
strategy adopted below, we shall consider the dispersion
equation for eigenfrequencies of anisotropic plasma [19],
which is written down in the form

o2 � o2
p

k 2
z ÿ o2=c 2

k 2
? � k 2

z ÿ o2=c 2
: �3:3:2�

Here, k 2
? � k 2

x � k 2
y , kz is the component of the wave vector

k � fkx; ky; kzg in the direction of the external magnetic field.
Taking into consideration the condition o � kzu for
Cherenkov emission, we shall write out an approximate
solution of Eqn (3.3.2) (i.e., only one of the solutions

describing waves with phase velocities lower than the speed
of light, c) in the form

o2�kz; k?� � o2
p

k 2
z

k 2
z � k 2

?g 2
� o2

p�kz; k?� : �3:3:3�

In application to equations (3.3.1) and formulas (3.3.2),
passage from Eqn (3.3.2) to Eqn (3.3.3) is equivalent to the
replacement of the operator:

q2

qz 2
ÿ 1

c 2
q2

qt 2
! 1

g 2
q2

qz 2
: �3:3:4�

Because anisotropy of the system in question leads to other
peculiarities too, we shall slightly change the design of the
study in the present section; specifically, we shall resort to the
energy conservation law instead of direct computation of the
radiation energy.

Following the Hamiltonian method and taking into
account the second equation of system (3.3.1), we expand
the current density in plasma and the longitudinal component
of the electric field strength into plane waves:

jpz�t; r� � 1

2

o2
p

4p

X
fng

�
Afng�t� exp �ikfngr�

� A�fng�t� exp �ÿikfngr�
�
;

�3:3:5�
Ez�t; r� � 1

2

X
fng

�
_Afng�t� exp �ikfngr� � _A�fng�t� exp �ÿikfngr�

�
:

Here, kfng � fn?; nzgk0, and n? � fnx; nyg. Substituting
expansions (3.3.5) into equations (3.3.1) and taking account
of replacement (3.3.4) give the following equation for
excitation of transverse-longitudinal waves:

d2Afng
dt 2

� o2
pnAfng � ÿ

8pe
L3

n 2
z g
ÿ2

n 2
? � n 2

z gÿ2

�
XNe

j� 1

vez j�t; z0 j� exp
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�3:3:6�
dze j
dt
� vez j ; dpez j

dt
� e

1

2

X
fng

n 2
z

�
_Afng�t� exp �inzk0ze j�

� _A�fng�t� exp �ÿinzk0ze j�
�
:

Here, o2
pn is given by formula (3.3.3) with k 2

z � k 2
0 n

2
z and

k 2
? � k 2

0 n
2
?.

In a linear approximation, equations (3.3.6) after the
substitution of representations (2.3.1) and (2.3.3) take the
form

d2Afng
dt 2

� o2
pnAfng

� ÿ 8pe
L3

u
n 2
z g
ÿ2

n 2
? � n 2

z gÿ2
�Qnz � ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

d ~Vnz

dt
� e

mu
gÿ3

1

2

X
fn 0g

�
_Afn 0gQnzÿn 0z exp �in 0zk0ut�

� _A�fn 0gQnz�n 0z exp �ÿin 0zk0ut�
�
;

�3:3:7�
d ~Znz

dt
� k0u ~Vnz :
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In the case of spontaneous emission by a single electron,
we putQnz � 1 in the first equation of system (3.3.7), while the
term ~Vnz ÿ inz ~Znz is neglected. Substituting further the
solution of Eqn (3.3.7) into the second expansion (3.3.5), we
will obtain the electric field strength at the unperturbed
electron trajectory re � f0; 0; utg � re0:

Ez�t; re0� � ÿ 4peu
L3

X
fng

n 2
z g
ÿ2

n 2
? � n 2

z gÿ2
sin
��opn ÿ nzk0u�t

�
opn ÿ nzk0u

:

�3:3:8�

However, in accordance with the law of conservation of
energy, the work of field (3.3.8) done on an electron (taken
with the opposite sign) equals the total energy of waves
emitted by the electron. Passage from summation over n to
integration over the wave number eventually leads to the
expression for the power of spontaneous Cherenkov emission
by an electron in an anisotropic plasma:

dW

dt
� ÿeuEz�t; re0� � e 2u 2

�
k 2d
�
op�kz; k?� ÿ ku cos y

�
� cos2 y

cos2 y� g 2 sin2 y
sin y dy dk ; �3:3:9�

where the frequency op�kz; k?� is defined in Eqn (3.3.3).
In a nonrelativistic case, when g � 1, formula (3.3.9) looks

like formula (3.1.12). However, they are qualitatively differ-
ent. First, formula (3.1.12) holds true at any electron
relativity. Second, formula (3.1.12) has o�k� � op, while
formula (3.3.9) describes, in accordance with formula
(3.3.3), Cherenkov emission of waves with an essentially
different dispersion law. Setting the argument of the delta
function in formula (3.3.9) equal to zero and taking account
of formula (3.3.3) give the limitation on the range of wave
numbers of the emitted transverse-longitudinal plasma
waves:

k 2
z � g 2k 2

? �
o2

p

u 2
! o2

p

u 2g 2
4 k 2 � k 2

z � k 2
?4

o2
p

u 2
: �3:3:10�

Integration first over k and then over y in formula (3.3.9),
bearing in mind solution (3.3.3), yields [27]

dW

dt
� e 2o2

p

u

� p=2

0

D�y; g 2� dy � e 2o2
p

2ug 2
;

�3:3:11�
D�y; g 2� � gÿ4 cos y sin y

�1ÿ b 2 cos2 y�2 :

Expression D�y; g 2� defines the radiation pattern of sponta-
neous Cherenkov emission in fully magnetized anisotropic
plasma. Figure 12 presents functions gD�y; g 2� in polar
coordinates for a few values of g. As g4 1, the maximum of
the radiation pattern, � gÿ1, falls on the angle

ymax ÿ!
g4 1
�
���
3
p

g�ÿ1 :

The half-height width of the radiation pattern is � gÿ1, too.
Due to this, the Cherenkov radiation power (3.3.11)
diminishes as gÿ2. It follows from formula (3.3.3) for g4 1
that an electron radiates in the direction toward themaximum
at frequency o � ���

3
p

op=2. Integration first over the angle in

formula (3.3.9) gives

dW

dt
� e 2u

g 2 ÿ 1

� kmax

kmin

k dk : �3:3:12�

It makes sense to compare formula (3.3.12) with formula
(3.1.13). If limits of integration in expression (3.3.12) are
substituted from Eqn (3.3.10), one comes to the quantity
presented in Eqn (3.3.11).

For stimulated emission induced by an electron beam,
equations (3.3.7) are written out as

d2Afng
dt 2

� o2
pnAfng

� ÿ 8pe
L3

u
n 2
z g
ÿ2

n 2
? � n 2

z gÿ2
� ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

d ~Vnz

dt
� egÿ3Ne

2mu

X
fnx; nyg

_Afng exp �inzk0ut� ; d ~Znz

dt
� k0u ~Vnz :

�3:3:13�

The structure of equations (3.3.13) being even simpler than
that of the previously considered equations (3.1.17) and
(3.2.25), we immediately present a dispersion equation
analogous to equations (3.1.27) and (3.2.29):

1 � o2
eg
ÿ3

�oÿ nzk0u�2
Se

L2

X
fn?g

o2n 2
z g
ÿ2

�n 2
? � n 2

z gÿ2��o2 ÿ o2
pn�

: �3:3:14�

The dispersion equation (3.3.14) describes the effect of
stimulated Cherenkov emission of nonpotential transverse-
longitudinal waves in an anisotropic plasma. Equations
(3.3.14) and (3.1.27) differ in two ways: first, the change of
n 2
z ! n 2

z g
ÿ2 due to the nonpotentiality of plasma waves in

anisotropic plasma, and, second, the difference in dispersion
laws for opn.

3.4 Emission of ion sound in an anisothermic plasma
It is commonly believed that radiation is nothing but
excitation of transverse electromagnetic waves (i.e., light) by
a charge (see Section 3.2). However, it follows from Sections
3.1 and 3.3 that resonant excitation of longitudinal and
transverse-longitudinal waves in a plasma, i.e., waves of
different nature when comparing them with light, should
expediently be regarded as radiation as well, making no
distinction between polarization and radiation losses in the
radiator. Another example of radiation not generally
accepted in electrodynamics is Cherenkov emission of ion-
soundwaves by amoving charge in an isotropic, anisothermic
plasma.
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Figure 12. Vavilov ±Cherenkov radiation patterns in an anisotropic

plasma.
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As is known, ion-sound waves exist in a plasma in which
electron temperature is much higher than ion temperature [8].
Such an anisothermic plasma is described in the framework of
the Silin ±Klimontovich one-fluid hydrodynamics model [8,
13]. The relevant hydrodynamic equations taking into
account the potentiality of ion-sound waves are written out
in the form

qE
qt
� 4pje � 4pji � ÿ4per

XNe

j� 1

vr j�t; z0 j� d
ÿ
rÿ rr j�t; z0 j�

�
;

qji
qt
� o2

i

4p
E ; Dje � ÿ

1

4pr 2De

qE
qt

:

�3:4:1�

Here, je, ji are the electron and ion current densities in plasma,
oi is the ionLangmuir frequency, and rr j and vr j are the radius
vector and velocity of the emitting charged particle. In view of
the low speed of ion-sound waves, it would be interesting to
consider their excitation by heavy nonrelativistic particles
with mass mr and charge er.

Introducing auxiliary function A�t; r� in accordance with
formula E � qA=qt, making use of expansion (3.1.4), and
taking into account the equation of motion for emitters, it is
possible to derive from equations (3.4.1) Hamiltonian
equations describing excitation of ion-sound oscillations
Afng:

d2Afng
dt 2

� o2
snAfng

� ÿ 8per
L3

gfng
XNe

j� 1

ÿ
efngvr j�t; z0 j�

�
exp �ÿikfngrr j�t; z0 j�

�
:

�3:4:2�

Given an evident change of notations e! er and m! mr,
the equations of emitters' motion coincide with the respec-
tive equations of system (3.1.5). Equation (3.4.2) allows
notations

gfng �
k 2
fngr

2
De

1� k 2
fngr

2
De

; �3:4:3�

and o2
sn � o2

i gfng is the frequency squared of ion-sound
waves. In the linear approximation, equations (3.4.2) are
written out in the form

d2Afng
dt 2

� o2
snAfng

� ÿ 8per
L3

ugfng
nz
jnj �Qnz � ~Vnz ÿ inz ~Znz� exp �ÿinzk0ut� ;

�3:4:4�

while equations for ~Vnz and ~Znz coincide with appropriate
equations from system (3.1.9).

In view of the complete identity of equations (3.4.2) and
(3.4.4) with equations describing Cherenkov emission of
longitudinal waves in a cold plasma, we present here only
the most important results of their analysis. The power of
spontaneous Cherenkov emission of ion-soundwaves is given
by the formula

dWs

dt
� 4pe 2r u

2

L3

X
fng

n 2
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n 2
g 2
fng
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��osn ÿ nzk0u�t

�
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; �3:4:5�

or, by passing to integration in formula (3.4.5), by the
formula

dWs

dt

� e 2r u
2

��
k 2g 2�k� cos2 yd�oi

���������
g�k�

p
ÿ ku cos y

�
dk sin y dy ;
�3:4:6�

where g�k� � k 2r 2De�1� k 2r 2De�ÿ1. Integration first over the
angle in formula (3.4.6) gives

dWs

dt
� e 2r o

2
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� xmax
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x 5 dx

�1� x 2�3 �
e 2r o

2
i

2u
ln

Te

Ti
; �3:4:7�

where x � krDe. Setting the lower limit of integration in
formula (3.4.7), we assumed that u > Vs (Vs � oirDe is the
velocity of ion sound). In this case, the condition of
Cherenkov resonance is fulfilled for all k5 0, i.e., xmin � 0.
The upper limit of integration is determined by the fact that
for k > rÿ1Di ion-sound waves undergo strong damping
(thermal ion Landau damping [8], rDi is the ion Debye
radius); it is therefore permissible to put x 2

max � r 2De=r
2
Di �

Te=Ti 4 1, where Ti is the ion temperature.
In the case of a beam of charged particles, Eqn (3.4.4) and

the corresponding equations for ~Vnz and ~Znz give the
following dispersion relation:

1 � o2
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1� �nk0rDe�ÿ2
:

�3:4:8�

Evidently, Eqn (3.4.8) has the same structure as the dispersion
equations obtained earlier. The introduction of longitudinal
permittivity of anisothermic plasma, e l�o; k� �
1� 1=�krDe�2 ÿ o2

i =o
2 [8], in the hydrodynamic model

allows dispersion equation (3.4.8) to be rewritten in the
generalized form

1 � o2
r

�oÿ kzu�2
k 2
z Sr

2p

�
k? dk?

�k 2
? � k 2

z � e l�o; k�
: �3:4:9�

When writing Eqn (3.4.9), we used rule (3.1.21) to move from
summation to integration with respect to transverse wave
numbers. Evidently, dispersion equation (3.1.27) can also be
rewritten in a similar generalized form. It is easy to show that
stimulated Cherenkov emission of longitudinal waves in any
isotropic medium is described by Eqn (3.4.9), taking account
of spatial dispersion.

3.5 The dispersion equation method
In the preceding sections, we have considered Cherenkov
emission of waves of all possible types, namely, longitudinal
waves in an isotropic medium (plasma), transverse waves in
an isotropic medium (dielectric), transverse-longitudinal
waves in an anisotropic medium (magnetized plasma), and
ion-sound waves. Formulas for the power of spontaneous
Cherenkov emission of all these waves differ solely due to
their different physical nature and polarization. Stimulated
Cherenkov emission represents in all cases a resonance beam
instability described by a dispersion equation of the form

D�o; kz� � G�o; kz� o2
eg
ÿ3

�oÿ kzu�2
; �3:5:1�
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where G�o; kz� is the form factor depending on polarization
of radiation, andD�o; kz� is the dispersion function, the zeros
of which define eigenfrequencies of the waves being emitted.
Equation (3.5.1) is a generalization of dispersion equations
(3.1.27), (3.2.29), (3.3.14), and (3.4.8).

Dispersion equations of the (3.5.1) type were first derived
and studied in plasma electrodynamics and plasma micro-
wave electronics [8, 16, 19]. We shall try to elucidate the
relationship between traditional, classical electrodynamics of
radiative processes and the above fields of theoretical physics.
Let us consider a circular metal waveguide of radius R along
the z-axis of which runs a continuous cylindrical electron
beam of radius re 5R; in the region re < r < R, the
waveguide is filled by a homogeneous medium with the
permittivity tensor

ei j �
e?�o� 0 0

0 e?�o� 0

0 0 ek�o�

0@ 1A ; i; j � r;j; z ; �3:5:2�

where r;j; z are the cylindrical coordinates.
In the context of interaction with the beam, only waves

with a nonzero longitudinal component of the electric field,
i.e.,Eu 6� 0, are of interest. Bearing this inmind, let us assume
that azimuthally symmetric waves of the E type are excited in
the waveguide. As is known [23, 24], electromagnetic field
components Ez, Er, Bj of such waves differ from zero, with

Ez�0� 6� 0 ; Er�0� � 0 ; Bj�0� � 0 : �3:5:3�

According to formulas (3.5.3), the longitudinal electric field
around the waveguide axis is the basic one. It allows
transverse field components in the beam region 0 < r < re
for re 5R to be neglected and beampermittivity to be given in
the form (3.5.2) with e? � 1 and

ek�o� � ee�o; kz� � 1ÿ o2
eg
ÿ3

�oÿ kzu�2
: �3:5:4�

It follows from the Maxwell equations with permittivity
tensor (3.5.2) that the electric field component Ez of the
azimuthally symmetric wave of the E type satisfies the
equation

1

r

d

dr
r
dEz

dr
ÿ k 2

?
ek
e?

Ez � 0 ; k 2
? � k 2

z ÿ
o2

c 2
e? ; �3:5:5�

while other components of the electromagnetic field are
computed from the formulas

Er � ÿi kzk 2
?

dEz

dr
; Bj � ÿi o

ck 2
?
e?

dEz

dr
: �3:5:6�

In accordance with Eqn (3.5.5), the electric field in the
waveguide region re < r < R is given by the expression

Ez � C1J0�sr� � C2N0�sr� ; s �
��������������
ÿ k 2

?ek
e?

s
; �3:5:7�

where J0, N0 are the Bessel and Neumann functions, and C1,
C2 are the constants. Taking into account the finiteness of the
field on the waveguide axis, one has in the vicinity of the
electron beam:

Ez � C3J0

� �������������
ÿk 2

0 ee
q

r
�
; k 2

0 � k 2
z ÿ

o2

c 2
: �3:5:8�

The dispersion relation for the frequency spectra of
symmetric E type waves is obtained by joining the solutions
(3.5.7) and (3.5.8) at the boundary r � re and eliminating
constantsC1,C2, andC3 [7, 8]. Also used are the continuity of
functions Ez and Bj at the boundary and the vanishing of the
field component Ez at the conducting wall of the waveguide,
r � R. In the case of a thin beam (linear chain of electrons)
localized on the waveguide axis, the following conditions are
fulfilled:

jk 2
0 jr 2e 5 1 ; o2

eSe � const : �3:5:9�

Taking them into account, we write out the dispersion
equation in the form

o2
eg
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The passage to the limit re ! 0 �kzre 5 1� is needed in
Eqn (3.5.10), the results of which vary between different cases.

In the case of a waveguide filled with a cold isotropic
plasma, one has e? � ek � 1ÿ o2

p=o
2, s �

����������
ÿk 2
?

p
, k 2
? > 0,

and simple Bessel functions go over to imaginary argument
functions. Then, dispersion equation (3.5.10) reduces to
equation (3.1.24).

For a waveguide filled with an isotropic dielectric, one has
e? � ek � e, s �

����������
ÿk 2
?

p
, and k 2

? < 0. Bearing in mind that
frequencies of an isotropic dielectric waveguide are found
from the equation J0�sR� � 0, Eqn (3.5.10) can be brought
into the form

J0�sR� � o2
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Sek 2
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Finally, for a plasma waveguide in a strong external
magnetic field, one has e? � 1, ek � 1ÿ o2

p=o
2,

s � �ÿk 2
0 ek�1=2, and k 2

0 ek < 0. Because plasma waveguide
frequencies are determined from the equation J0�sR� � 0,
Eqn (3.5.10) is reduced to the following form

J0�sR� � o2
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ÿ3

�oÿ kzu�2
Sek 2

0

1

4
N0�sR� : �3:5:12�

Dispersion equations (3.5.11) and (3.5.12) possess the
structure of a generalized dispersion equation (3.5.1) and
correspond to equations (3.2.29) and (3.3.14) written out in
an explicit form, i.e., after the computation of infinite sums.
Using notations adopted in equation (3.5.1), solutions of
equations (3.5.11) and (3.5.12) can be presented in the form

o � o0 �ÿ1� i
���
3
p

2

�
G0

�
qD0

qo

�ÿ1
o2

eg
ÿ3
�1=3

: �3:5:13�

Here, D0 � D�o0;o0=u�, G0 � G�o0;o0=u�, and o0 is the
resonance frequency found from the system of equations

D�o; kz� � 0 ; o � kzu : �3:5:14�

Formula (3.5.13) contains solution (2.5.4) and the solution of
equation (3.1.24).
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Solution (3.5.13) is only applicable in the case of a low-
density beam. This observation refers first and foremost to
dispersion equations (3.5.11) and (3.5.12). The left-hand sides
of these equations define an infinite set of waves correspond-
ing to different transverse numbers fn?g; hence, o0 � o0fn?g
in Eqn (3.5.13). If the difference between frequencies of
neighboring waves is smaller than the increment in formula
(3.5.13), waves with different fn?g merge and the dispersion
equation requires complicated analysis [28]. The difference
between frequencies of neighboring waves being � c=R, the
passage to the limit R!1 in equations (3.5.11) and (3.5.12)
is as difficult as the passage to a free space L!1 in
equations (3.2.29) and (3.3.14).

For completeness, here is one more derivation of disper-
sion equation of the theory of stimulated Cherenkov emission
based on the Hamiltonian method formulated for a wave-
guide. By way of example, let us consider an anisotropic
plasma waveguide of arbitrary cross section. Suppose that an
infinitely thin (`needle') electron beam having unperturbed
density ne�r� � n0eSed�r? ÿ re� (where re � fxe; yeg is the
beam coordinate in the waveguide cross section) passes
through the waveguide parallel to the z-axis. We will proceed
from equations (3.3.1) for the polarization potential
c�t; r?; z� and the plasma current density jpz�t; r?; z�. The
right-hand side of the equation for the potential c we may
write out in the form ÿ4pen0eSed�r? ÿ re� jez�t; z�. Function
jez�t; z� determining the current density in the beam is
calculated based on the cold hydrodynamics model [8]; then,
the following equation is obtained:�

q
qt
� u

q
qz

�2

jez � e

m
gÿ3

q
qt

Ez�t; re; z� : �3:5:15�

Potential c vanishes at the metal lateral surface of the
waveguide.

The polarization potential may be presented as

c�t; r?; z� � 1

2

��X
fn?g

Afn?g�t�jfn?g�r?�
�
exp �ikzz� � c:c:

�
:

�3:5:16�
Here, jfn?g�r?� are the eigenfunctions of the waveguide cross
section that are at the same time solutions of the following
eigenvalue problem:

D?jfn?g � k 2
fn?gjfn?g � 0 ; �3:5:17�

jfn?g
��
SW
� 0 ;

where k 2
fn?g are the eigenvalues, and SW is the lateral surface

of the waveguide. For a waveguide with a rectangular cross
section, x; y 2 �ÿL;L�, one finds

kfn?g � fknx ; knyg � fk0nx; k0nyg ;

k0 � p
2L

; nx; y � 1; 2; . . . ; �3:5:18�

jfn?g �
1

4

�
exp �iknxx� ÿ �ÿ1�nx exp �ÿiknxx�

�
� �exp �iknyy� ÿ �ÿ1�ny exp �ÿiknyy��

and expansion (3.5.16) is a special case of the general
representation (3.1.14) (summation over nz in potential

(3.5.16) is not required because the system is homoge-
neous in z, and different longitudinal modes are indepen-
dent). Putting Afn?g�t� � afn?g exp �ÿiot�, and jpz; jez �
exp �ÿiot� ikzz�, we will substitute expansion (3.5.16) into
the first equation of system (3.3.1), express constants afn?g,
and substitute them into Eqn (3.5.15). The result is the
dispersion equation

1 � o2
eg
ÿ3

�oÿ kzu�2
X
fn?g

�
Sej 2

fn?g�re�
kjfn?gk2

k 2
0

k 2
fn?g � k 2

0 �1ÿ o2
p=o2�

�
;

�3:5:19�

where kjfn?gk is the norm of the eigenfunction. In the case of
replacement (3.3.4), it should be assumed that k 2

0 � k 2
z g
ÿ2. It

is easy to see that dispersion equation (3.3.14) is a special case
of Eqn (3.5.19). Indeed, for a waveguide with a rectangular
cross section, it follows from formulas (3.5.18) that
kjfn?gk2 � L2, k 2

z � n 2
z k

2
0 , k 2

fn?g � n 2
?k

2
0 , and, at re � 0,

j 2
fn?g�re� � 1. Then, Eqn (3.5.19) goes over to Eqn (3.5.14).

This means that the Hamiltonian method in the theory of
stimulated emission applied to an electron beam gives the
same result as themethod of dispersion equation in the theory
of plasma and plasma microwave electronics.

Dispersion equation (3.5.19) has been thoroughly investi-
gated in Refs [7, 19]. Poles on the right-hand side of the
equation, i.e., zeroes of functions k 2

fn?g � k 2
0 �1ÿ o2

p=o
2�,

determine plasma wave spectra in the absence of an electron
beam; in other words, independent plasma waves correspond
to different sets of numbers fn?g. For the Cherenkov
resonance instability of a low-density beam, the frequencies
of emitted plasma waves are given by the formula

o � o0fn?g �
ÿ1� i

���
3
p

2

�
�
Sej 2

fn?g�re�
kjfn?gk2

1

2

o2
eg
ÿ3

o2
p � b 2k 2

fn?gu
2g 4

�1=3

o0fn?g ; �3:5:20�

where

o0fn?g �
�������������������������������
o2

p ÿ k 2
fn?gu

2g 2
q

:

Cherenkov emission of waves for o2
p < k 2

fn?gu
2g 2 is impos-

sible. Formula (3.5.20) is one of the main calculation
formulas in relativistic plasma microwave electronics [19].

The following concrete geometry of a beam-plasma
system is of special importance for applications: a waveguide
of radius R that contains continuous magnetized plasma and
a thin tubular electron beam of mean radius re < R and
thickness De 5 re. The eigenfunctions and the corresponding
eigenvalues in a circular waveguide are given by formulas
jfn?g � Jl�kfn?gr�, fn?g � fl; sg, kfn?g � mls=R, where mls is
the root of the l-order Bessel function, and l, s are the
azimuthal and radial wave numbers. We confine ourselves
to the consideration of an azimuthally symmetric case of
l � 0. Calculating the sum of a series with the help of known
formulas of the theory of Bessel functions [29], we write out
the dispersion equation (3.5.19) in the explicit form

1 � o2
eg
ÿ3

�oÿ kzu�2
Sek 2

0

1

4
J 2
0 �sre�

�
N0�sR�
J0�sR� ÿ

N0�sre�
J0�sre�

�
;

�3:5:21�
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where s � �ÿk 2
0 ek�1=2. Passing to the limit re ! 0 in equation

(3.5.21) and assuming o2
eSe to be constant, Eqn (3.5.21) is

transformed to dispersion equation (3.5.12), while the
expression for frequency (3.5.20) is reduced to formula
(3.5.13).

3.6 Stimulated Cherenkov emission in gas dynamics
In conclusion, we shall discuss a gasdynamic problem of
sound wave emission by a supersonic gas flow, lying far apart
from electrodynamics. We shall demonstrate that it is a
stimulated Cherenkov emission and the methods for its
description are identical with the methods of electrody-
namics used in Sections 3.1 ± 3.3. It should be emphasized
that there is no spontaneous emission of a sound in gas
dynamics similar to spontaneous charge emission in electro-
dynamics. Supersonic motion of a body in a gas produces a
gas flow that represents in itself a source of sound. Therefore,
we shall consider the problem of stimulated Cherenkov
emission in gas dynamics, which is formulated very close to
the problem of stimulated Cherenkov emission by a beam of
charged particles in plasma electronics. The dispersion
equations method appears most suitable for the purpose.

Let us consider a cylindrical channel of radiusRwith hard
walls, filled with a gas. Let a cylindrical gas flow with velocity
u and radius r0 5R be created along the z-axis of the channel.
For simplicity, the gas flow and the `bulk' gas are assumed to
have equal density and temperature (only velocity along the
z-axis undergoes a jump at r � r0). Perturbations in the gas
are given in the form of symmetric cylindrical waves running
along the channel, namely

f �r� exp �ÿiot� ikzz� : �3:6:1�

The linearized equations of gas dynamics for perturba-
tions of density r, velocity v, and pressure p can be written out
as [30]

qr
qt
� HH�r0v� ru0� � 0 ;

�3:6:2�
qv
qt
� �u0HH�v � ÿ 1

r0
HHp ; p � c 20 r ;

where c0 is the speed of sound, r0 is the equilibrium density, p0
is the pressure, all assumed to be constant, and u0 �
f0; 0; u0�r�g is the gas velocity along the z-axis, with

u0�r� � 0 ; r0 < r < R ;
u ; r4 r0 :

�
�3:6:3�

Taking into account the dependence (3.6.1), the system of
equations (3.6.2) is reduced to the equation

1

r

d

dr
r
dp

dr
ÿ
�
k 2
z ÿ

ÿ
oÿ kzu0�r�

�2
c 20

�
p � 0 ; �3:6:4�

supplemented by the boundary conditions that also ensue
from equations (3.6.2):

p
��
r� r0
� 0 ;

�
1ÿ

oÿ kzu0�r�
�2 dp

dr

�
r� r0

� 0 ;
dp

dr

����
r�R

� 0 :

�3:6:5�

Furthermore, the problem is to find eigenfrequencieso�kz� of
the gas channel and the instability condition at the fulfillment
of which Imo > 0.

Solutions of Eqn (3.6.4) in different parts of the gas
channel have the form [see formulas (3.5.7) and (3.5.8)]

p�r� � C1J0�s1r� � C2N0�s1r� ; r0 < r < R ;

C3J0�s2r� ; r4 r0 ;

�
�3:6:6�

where

s 2
1 �

o2

c 20
ÿ k 2

z ; s 2
2 �
�oÿ kzu�2

c 20
ÿ k 2

z : �3:6:7�

Substituting solutions (3.6.6) into boundary conditions
(3.6.5) and eliminating constants C1, C2, and C3 give the
dispersion equation

J1�s1R� � o2

�oÿ kzu�2
S0s 2

2

1

4
N1�s1R� ; �3:6:8�

presented here, for simplicity, only for the case of r0 5R;
S0 � pr 20 is the cross section area of the paraxial gas
flow. The striking similarity of dispersion equations
(3.6.8) and, say, (3.5.12) reflects the uniform wave
nature of stimulated Vavilov ±Cherenkov emission in the
case of superluminal (supersonic) motion of the source in
a medium regardless of the wave type, source structure,
and mechanism of interaction between the source and the
medium.

At S0 � 0, it follows from Eqn (3.6.8) that J1�s1R� � 0
(dispersion equation for discrete sound wave frequencies of
an acoustic waveguide). These frequencies are given by the
formula

o � o0s �
����������������������������
k 2
z c

2
0 �

m 2
1s

R 2
c 20

r
; s � 1; 2; . . . ; �3:6:9�

where m1s are the zeroes of the function J1�x�, and s is the
analog of a generalized index fn?g. For S0 6� 0, dispersion
equation (3.6.8) has complex roots solely for u > c0, i.e.,
for a supersonic flow only. Putting o � o0s � do �
kzu� do and finding do from Eqn (3.6.8) lead to the
following expression for the complex frequency [see
formula (3.5.13)]:

o � o0s �ÿ1� i
���
3
p

2

�
a

S0

4R 2

k 2
z c

2
0

o2
0s

�1=3

o0s ; �3:6:10�

where a � ��N1�m1s�=J0�m1s�
�� � 1. The imaginary part of

expression (3.6.10) is the growth increment of sound waves
under Cherenkov instability of a supersonic gas flow in an
acoustic waveguide.

4. The anomalous Doppler effect
and collective stimulated Cherenkov effect

4.1 Emission in an isotropic medium in a magnetic field
Let us consider emission of electromagnetic waves in an
isotropic medium (dielectric) in the presence of an external
magnetic field B0 � f0; 0;B0g aligned with the unperturbed
motion of emitting electrons. We shall confine our con-
sideration to a one-dimensional model problem of excita-
tion of circularly polarized transverse electromagnetic waves
by a `flat' electron bunch [inhomogeneous flat layer of
electrons (see Section 2)]. The starting set of equations is
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as follows [1, 2, 7]:

q2A
qz 2
ÿ e
c 2

q2A
qt 2
� ÿ 4p

c
eSÿ11

XNe

j� 1

ve j�t� d
ÿ
zÿ ze j�t�

�
;

dve j
dt
� iOeve j � ÿ e

mc

�
qA
qt
� vez j qAqz

�
; �4:1:1�

dvez j
dt
� e

2mc

�
ve j

qA�

qt
� v �e j

qA
qz

�
;

dze j
dt
� vez j :

Here, ve j�t� � vex j�t� � ivey j�t�, A�t; z� � Ax�t; z� � iAy�t; z�
is the vector potential of a circularly polarized electromag-
netic field, and Oe � eB0=mc is the electron cyclotron
frequency (for certainty, we take Oe > 0). The electron
density in the bunch in Eqns (4.1.1) was assumed to be low,
which permitted neglecting the longitudinal electric self-field
of the bunch and disregarding relativistic effects.

Following the Hamiltonian method, the vector potential
of the field is expanded into one-dimensional plane waves:

A�t; z� �
X
n

An�t� exp �ink0z� : �4:1:2�

Unlike expansion (2.2.1), function (4.1.2) is a complex one,
while summation is performed over all integer n. Substituting
expansion (4.1.2) into equations (4.1.1) gives, in the usual
way, the Hamiltonian equations

d2An

dt 2
� o2

nAn � 4pec
LS1e�n�

XNe

j� 1

ve j exp �ÿink0ze j� ;

o2
n � n 2k 2

0

c 2

e�n� ;

dve j
dt
� iOeve j � ÿ e

mc

X
n

� _An � ink0vez jAn� exp �ink0ze j� ;

dze j
dt
� vze j ;

�4:1:3�

dvez j
dt
� ÿ e

2mc
ik0
X
n

n
�
ve jA

�
n exp �ÿink0ze j�

ÿ v �e jAn exp �ink0ze j�
�
:

Let us analyze the system of equations (4.1.3) in a linear
approximation. Let the transverse motion of bunch electrons
be absent in the unperturbed state, i.e., let the complex
transverse electron velocity ve j � vex j � ivey j � ~ve j be a small
perturbation. Using also formulas (2.3.1) and linearizing
equations (4.1.3) over perturbations An, ~ve j, ~vj, and ~zj bring
about a linear approximation system

d2An

dt 2
� o2

nAn � 4pec
LS1e�n�

~Vn exp �ÿink0ut� ;
�4:1:4�

d ~Vn

dt
� iOe

~Vn � ÿ e

mc

X
n 0
� _An 0 � ink0uAn 0 �Qnÿn 0 exp �in 0k0ut� ;

where the quantities ~Vn and Qn are defined in Eqn (2.3.3).
Model system (4.1.4) describes in the one-dimensional
approximation the interaction of an electron bunch in an
isotropic mediumwith circularly polarized transverse electro-
magnetic waves in the external magnetic field.

In the case of a uniform electron beam, one has
Qnÿn 0 � Nednn 0 , and the system of equations (4.1.4) yields

the known dispersion equation [7, 31]:

o2

c 2
e�o� ÿ k 2

z �
o2

e

c 2
oÿ kzu

oÿ kzuÿ Oe
; �4:1:5�

into which the longitudinal wave number kz is substituted
instead of nk0, and e�n� is replaced by the function e�o�.
Frequency o � o0 and wave number kz � kz0 of the electro-
magnetic wave being in cyclotron resonance with electrons
are found from the equations

o2

c 2
e�o� ÿ k 2

z � 0 ; oÿ kzuÿ Oe � 0 : �4:1:6�

Figure 13 illustrates resonance conditions (4.1.6) and the
location of resonance points (points 1 and 2) on the plane
�o; kz�. The spectrum of electromagnetic waves is taken here
in the simplest form:

o � �kzc0 ; c0 � c

m
; �4:1:7�

where m � ��
e
p � const is the index of refraction. Figure 13a

illustrates subluminal electron motion with u < c0. Spectra
(4.1.7) are depicted by solid thin straight lines, the dashed line
corresponds to the Cherenkov resonance line o � kzu, and
the thick straight line presents the cyclotron resonance line.
Expressions for resonance frequencies follow from formulas
(4.1.6) and (4.1.7):

o01 � Oe

1ÿ u=c0
; o02 � Oe

1� u=c0
: �4:1:8�

For u < c0, both resonance frequencies (4.1.8) are positive.
Figure 13b presents a case of superluminal electron motion
with u > c0. The notations here are the same as in Fig. 13a.
Resonance frequencies are given by formulas (4.1.8) as above,
but the frequencyo01 for u > c0 is negative. Notice thatAn �
Axn � iAyn � exp �ÿiot� in conformity with expansion
(4.1.2); therefore, the sign of the frequency determines the
direction of rotation of the field polarization plane, i.e., it has
direct physical sense (the direction of electron rotation in a
magnetic field is specified by the sign of Oe).

The solution of dispersion equation (4.1.5) in the vicinity
of resonance points should be sought in the form

o � o0 � do � kz0u� Oe � do ; �4:1:9�

where o0 is one of the frequencies (4.1.8). Substituting
formula (4.1.9) into equation (4.1.5) and assuming oe 5o0

o
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1
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ÿ10 ÿ5 5 10
kz

o

ÿ15
ÿ10
ÿ5
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10

15

0

2

1

b

ÿ10 ÿ5 5 10
kz

Figure 13. Resonance frequencies in anomalous and normal Doppler

effects: (a) subluminal motion, and (b) superluminal motion.
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give the following relationship for the correction do to a
resonance frequency o0:

�do�2 � o2
eOe

2e0o0
; �4:1:10�

where e0 � e�o0�. It follows from formula (4.1.10) that
�do�2 < 0, i.e., instability occurs only for o0 < 0. In turn,
according to formulas (4.1.8), the frequency for Oe > 0 is
negative only if u > c0; this is the necessary condition for the
development of instability known as the anomalous Doppler
effect [32]. There is no instability for u < c0. The growth rate
of instability in circumstances where the anomalous Doppler
effect shows itself is given by the formula

do � i
oe�������
2e0
p

��������������
u 2

c 20
ÿ 1

s
: �4:1:11�

To sum up, both the anomalous Doppler effect and the
Vavilov ±Cherenkov effect are possible only in the case of
superluminal electron motion in a medium. In the case of the
anomalous Doppler effect, the electrons initially moving
rectilinearly acquire transverse motion, i.e., undergo rota-
tion; simultaneously, the electromagnetic field becomes
stronger. The source of energy is the energy of longitudinal
electron motion [33]. For u < c0, the energy is periodically
pumped from the electromagnetic field into transverse
electron motion and back. This stable process is referred to
as the normal Doppler effect. The region of anomalous
Doppler effect in Fig. 13 is located on the plane �o; kz�
between straight lines o � kzu and o � 0. The rest of the
plane is occupied by the normal Doppler effect. The
dispersion curves for equation (4.1.5) are presented in
Fig. 14, where the imaginary part of the frequency is depicted
by the thick line.

Let us turn now to a single-electron case. Since allQn � 1,
so does ~Vn � ~V and equations (4.1.4) are transformed to

d2An

dt 2
� o2

nAn � 4pec
LS1e�n�

~V exp �ÿink0ut� ;
�4:1:12�

d ~V

dt
� iOe

~V � ÿ e

mc

X
n

� _An � ink0uAn� exp �ink0ut� :

Unlike equations (2.4.1), the system of equations (4.1.12) is
homogeneous. Hence, the absence of spontaneous emission in
the conditions where the anomalous Doppler effect shows
itself; only one electron brought to rotation by the electro-
magnetic field produces stimulated emission. Clearly, no
phasing is needed for that. Notice that spontaneous emission
by an electron in a magnetic field may also take place, but for
this the electronmust have nonzero initial transverse velocity.
Such radiation is called cyclotron radiation [22]. If electrons

are located in Larmour orbits, they undergo angular phasing,
and stimulated cyclotron radiation analogous to stimulated
Cherenkov radiation appears (see Refs [1, 2] for details).

Here, it is appropriate to turn to the plasma theory and
plasma microwave electronics in which an electron beam is
described in terms of the permittivity tensor [13, 16, 17].
Specifically, the following expressions for the diagonal
components of this tensor are known for an electron beam
propagating in the finite external magnetic field [8, 34]:

exx � eyy � 1� e ���? � e �ÿ�? ;

e ���? � ÿ
o2

eg
ÿ1

2o

�
oÿ kzu

oÿ kzu� Oe=g
� 1

2
u 2
?

k 2
z ÿ o2=c 2

�oÿ kzu� Oe=g�2
�
;

ezz � 1ÿ o2
eg
ÿ3

�oÿ kzu�2
; �4:1:13�

where u? is the electron velocity component transverse to the
external magnetic field, and

g �
�
1ÿ u 2

c 2
ÿ u 2

?
c 2

�ÿ1=2
is the electron relativistic factor. Formulas (4.1.13) are given
for the simplest case of an electromagnetic field independent
of the coordinates x; y. Terms of the permittivity tensor
having second-order poles describe radiative processes
associated with the phasing of beam electrons by the field:
the term with the pole �oÿ kzu�ÿ2 is due to longitudinal
phasing in stimulated Cherenkov emission, and the term with
the pole �oÿ kzu� Oe=g�ÿ2 describes transverse-longitudi-
nal phasing in the magnetic field in stimulated cyclotron
radiation. These two forms of stimulated emission in passing
from a uniform beam to a bunch and a single electron are
matched by the corresponding spontaneous processes, i.e.,
Cherenkov and cyclotron emission. It follows from
Eqn (4.1.13) that cyclotron radiation is absent at u? � 0.
Only anomalous and normal Doppler effects remain, to
which the terms with first-order poles �oÿ kzu� Oe=g�ÿ1
correspond in permittivity.

Let us turn back to the system of equations (4.1.12). It
differs from system (4.1.4) by the presence of summation over
all integer n; this is understandable since the field of a single
electron cannot be spatially monochromatic as a bunch field
and is actually a wave packet. This circumstance accounts for
an interesting feature. Let kz01 and kz02 be the solutions of the
system of equations (4.1.6), i.e., resonance wave numbers
corresponding to resonance frequencies (4.1.8). Field consti-
tuents with such wave numbers (or close to them) are
indispensable in system (4.1.12). Let an electron in the regime
of anomalous Doppler effect radiate at frequency o01.
Emission at frequency o02 under conditions of normal
Doppler effect is possible only for an electron having a
sufficient transverse velocity. However, the electron acquires
such velocity due to the anomalous Doppler effect. In other
words, radiation in the case of the anomalous Doppler effect
at frequency o01 stimulates normal Doppler radiation at
frequency o02. In fact, induced scattering from an electron
in a magnetic field occurs:

o01 ÿ o02 � �kz01 ÿ kz02�u : �4:1:14�
This process takes place for an electron bunch too, but its
efficiency for an infinite bunch (i.e., a uniform electron beam)
approaches zero.

ÿ4 ÿ3 ÿ2 ÿ2
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Figure 14.Dispersion curves for equation (4.1.5).
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In order to study radiation dynamics in the conditions of
anomalous and normal Doppler effects, it is appropriate to
use the general nonlinear system of equations (4.1.3) amen-
able to numerical solution in the same formulation as the
nonlinear equations (2.2.2) and (2.2.3) in Section 2.7. Let us
put e�n� � e0 � const, fix the parameters

n � 4pe 2Ne

mLS1O 2
e e0
� 0:01 ; s � k0u

Oe
� 0:1 ; b0 �

c

ue0
� 1

2
;

and vary the number of electrons Ne in the bunch. Equations
(4.1.6) give n � ÿsÿ1�1� b0�ÿ1 for resonant harmonic
numbers. For the given values of parameters, harmonics
with numbers n � n1 � ÿ20 and n � n2 � ÿ7 are in anom-
alous and normal Doppler resonances, respectively. When
solving the system of equations (4.1.3), we shall take account
of harmonics with numbers n 2 �ÿ50; 50� alone. The `dis-
tance' between electrons in the bunch is set to be one-tenth of
the radiation wavelength at anomalous Doppler resonance.

Figure 15 presents dependences of the ratio of total
radiation energy to kinetic energy of an electron bunch on
dimensionless time t � Oet at different numbers Ne of bunch
electrons (1, 10, 100) indicated alongside the respective
curves. The curves are similar (exponential) at the linear
stage, suggesting the development of instability, i.e., appear-
ance of stimulated radiation regardless of the number of
electrons in the bunch. Nonlinear saturation is associated
with the escape from resonance upon a fall in longitudinal
electron velocity.

Figure 16 shows characteristic spectral radiation densities
n in relative units for different Ne at the linear stage of the
process. Maximum spectral densities coincide with n values
corresponding to anomalous and normal Doppler reso-
nances. For Ne � 100, however, no emission occurs under
conditions of normal Doppler resonance. The point is that
induced scattering (4.1.14) occurs on electron density inho-
mogeneity, and the size of a bunch inhomogeneity at
Ne � 100 is 10 times the radiation wavelength; in fact, a
spatially homogeneous case takes place.

4.2 The collective stimulated Cherenkov effect
The anomalous Doppler effect and Vavilov ±Cherenkov
effect are the two main mechanisms of emission of electro-
magnetic waves by an electron executing rectilinear motion in
a medium. In the case of the anomalous Doppler effect, the
emitter is an electron-oscillator whose eigenfrequency is
determined by a certain external impact, e.g., Oe, while
moving over an external magnetic field. For the Vavilov ±
Cherenkov effect, the electron is not an oscillator or can it be

regarded as a zero-frequency oscillator. However, the
Vavilov ±Cherenkov effect under certain conditions resem-
bles the anomalousDoppler effect, e.g., when a dense electron
beam radiates and the eigenfrequency of the electron-
oscillator is the frequency of plasma (Langmuir) oscillations
of the beam as a whole. Such Cherenkov emission, called the
collective stimulated Cherenkov effect [1, 2], is considered
below as exemplified by Cherenkov emission of transverse
waves in an isotropic dielectric (see Section 3.2).

An electron bunch (or beam) interacting with radiation
undergoes density modulation, which leads to the appearance
of an additional longitudinal field. If the radiation wave-
length is small compared with the bunch size, the self-
consistent changes in the longitudinal field and in density
perturbations result in the formation of a plasma (Langmuir)
charge density wave, the frequency of which can be found
from a dispersion equation of the form [7, 32]

�oÿ kzu�2 ÿ O 2
b � 0 ; �4:2:1�

where O 2
b is defined by formulas (3.2.27). Quantity Ob

represents the frequency of Langmuir beam oscillations in
the moving coordinate system. Thus, neglecting the contribu-
tion from O 2

b in dispersion equation (3.2.29), we thereby
neglected natural oscillations of the beam, which is justified
only when inequality (3.2.28) is satisfied. Evidently, this
inequality is brought to the condition

jdoj4Ob ; �4:2:2�
where do is the growth rate of instability in stimulated
Cherenkov emission.
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ÿ40
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Figure 16. Spectral radiation densities in the case of the anomalous

Doppler effect at different numbers of electrons in the bunch.
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Excitation of longitudinal waves in an electron beam
(bunch) occurs in all forms of the Cherenkov emission
examined earlier, not only in the emission of transverse
waves in a dielectric. The fact is that the appearance of an
additional longitudinal field of the beam against the back-
ground of a purely transverse radiation field is simply more
noticeable in a dielectric than in another medium. In any case,
if inequality oe 5o is satisfied (o is the characteristic
radiation frequency), inequality (4.2.2) is also satisfied and
then Langmuir beam oscillations may be neglected. Herein,
beam instability is called the single-particle stimulated
Cherenkov effect [1, 2].

The situation is different, for instance, in the case of
emission by a beam propagating through a vacuum channel
made in a dielectric. Because the transverse electromagnetic
field of the dielectric undergoes exponential decay in a
vacuum, the first term on the right-hand side of the second
equation in system (3.2.25) acquires the `screening' factor

w1 � exp

�
ÿ o
ug
�rc ÿ re�

�
; �4:2:3�

where rc is the radius of the vacuum channel. On the other
hand, the beam current induced outside the dielectric less
efficiently excites the transverse field inside it. As a result, the
right-hand side of the first equation in system (3.2.25) admits
the appearance of the factor w2 � w1. In the end, the right-
hand side of dispersion equation (3.2.29) acquires the multi-
plier w 2 � w1w2 which can be significantly smaller than unity.

It is more convenient to use generalized dispersion
equation (3.5.1) instead of equation (3.2.29) and, taking into
account Langmuir beam waves as well as the weakening of
beam± radiation interaction, write it down in the form [7]

D�o; kz� � ~G�o; kz� o2
eg
ÿ3

�oÿ kzu�2 ÿ O 2
b

; �4:2:4�

where ~G�o; kz� � w 2G�o; kz� is a certain new form factor. It is
easy to see that if inequality (4.2.2) is satisfied, the solution to
equation (4.2.4) coincides with formula (3.5.13) (bearing in
mind the alteration in the form factor notation).

Suppose now that the inequality opposite to Eqn (4.2.2) is
satisfied and, besides, oe 5o. As oe ! 0, equation (4.2.4)
breaks down into two:

D�o; kz� � 0 ; oÿ kzu� Ob � 0 ; �4:2:5�

from which the resonance frequencies o0 are derived. Unlike
system (4.1.6), equations (4.2.5) have two signs. We discuss
here only positive solutions of equations (4.2.5), i.e., o0 > 0.
Representing the solution in the form [see expressions (4.1.9)]

o � o0 � do � kz0u� Ob � do �4:2:6�

and taking into account the inverse of inequality (4.2.2), we
obtain from Eqn (4.2.4) the following relationship for the
correction do to the resonance frequency:

�do�2 � �o2
eg
ÿ3

2Ob

~G0

�
qD0

qo

�ÿ1
: �4:2:7�

As follows from independent physical considerations,
qD0=qo > 0 (e.g., in the case of transverse waves in a
dielectric, one has qD0=qo � 2e0o0). According to formula

(4.2.7), instability only develops when the lower minus sign is
taken in Eqn (4.2.7), to which the lower signs in Eqns (4.2.5)
and (4.2.6) correspond. Thus, the following relation is valid in
the case of developing instability:

o0 � kz0uÿ Ob ! o0

kz0
< u : �4:2:8�

In other words, the beam-excited wave belongs to the region
of the anomalous Doppler effect [33]. The dispersion curves
for equation (4.2.4) are presented in Fig. 17 which can be
compared with Fig. 14. Substitution of formula (4.2.7) into
the inequality opposite to Eqn (4.2.2) leads to the condition

O 3
b 4o2

eg
ÿ3 ~G0

�
qD0

qo

�ÿ1
: �4:2:9�

It can be seen from expressions (3.2.27) that Ob � oe;
therefore, condition (4.2.9) means that the electron beam
must have a high density.

Instability whose growth rate is found from relationship
(4.2.7) and which is analogous to the anomalous Doppler
effect is called the collective stimulated Cherenkov effect.
Such an instability occurs only in high-density electron beams
during their superluminal motion in a medium.

5. Conclusions

To summarize, we have considered two fundamental mechan-
isms of superluminal electron emission, the Vavilov ±Cheren-
kov effect and the anomalous Doppler effect. Cherenkov
emission by a single electron or by a small-sized electron
bunch is spontaneous. During spontaneous Cherenkov
emission, the translational motion of an electron is slowed
down, and the radiation energy grows linearly with time. For
a larger number of radiating electrons, the Cherenkov
radiation becomes stimulated. Stimulated Cherenkov emis-
sion represents a resonance instability. Such an emission
process is accompanied by longitudinal electron grouping in
a bunch (or a beam), in which case the radiation energy grows
exponentially with time.

In terms of a longitudinal size Le of the bunch, there is a
transition region l < Le < ldÿ10 between spontaneous and
stimulated Cherenkov effects, where l is the average radiation
wavelength, and d0 is the growth rate of Cherenkov beam
instability. The range to the left of this region is dominated by
spontaneous emission, and the range to the right of it by
stimulated emission. The first experimental study [35] was
concerned with spontaneous Cherenkov emission. Numerous
experimental data on stimulated Cherenkov emission avail-
able to date are in excellent agreement with the theory.
Specifically, stimulated Cherenkov emission in a plasma

ÿ4 ÿ3 ÿ2 ÿ2
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ÿ4
2
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3 4k1

2

o

0ÿ1

Figure 17.Dispersion curves for equation (4.2.4).
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forms the basis for the existing relativistic plasma emitters
developed in plasma microwave electronics [7, 10, 36, 37].

In contrast to Vavilov ±Cherenkov effect, the anomalous
Doppler effect should always (even for a single electron) be
considered as stimulated because it can be explained only by
accounting for the reverse action of radiation field on electron
motion. During stimulated emission in the conditions where
the anomalousDoppler effect occurs, the longitudinalmotion
of an electron is slowed down, it undergoes rotation, while the
radiation energy grows exponentially with time. We are
unaware of experimental studies on the anomalous Doppler
effect proper. It certainly occurs when electrons are injected
into a magnetoactive plasma but goes unnoticed against the
background of more intense Cherenkov emission. Therefore,
it appears appropriate to design experiments on plasma
microwave electronics in order to obtain deeper insight into
radiation spectra (Cherenkov and anomalous Doppler emis-
sions occur at different frequencies), especially in conditions
where Cherenkov emission is impossible. It is hoped that the
present review will capture the interest of researchers,
especially experimenters, in the fundamental problems of
radiative physics.
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