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Abstract. Mandelshtam’s views on the role of informal physical
arguments in deriving the geometric law of refraction are dis-
cussed. It is shown that Sivukhin’s theorem allows reconciling
different approaches to justifying the choice of the refracted
wave vector. Wave reflection and refraction are considered for
a periodically heterogeneous half-space. It is shown that the
analogy between the Snell — Descartes refraction law and the
properties of a wave propagating in a chain of discrete interact-
ing elements and in a periodically heterogeneous space is incor-
rect. The principal role of the homogeneity of interfacing media
is stressed. The only case that corresponds to the ‘purely’
negative refraction is that of a homogeneous refracting med-
ium in which both the dielectric constant and the magnetic
permeability are negative.

1. Introduction

It is common knowledge that the reflection and refraction
laws cannot be derived mathematically from the boundary
conditions for the electric field strength but require
additional physical reasoning. The problem has a long
history and has recently become particularly important
because of a new issue, the electrodynamics of media with
negative dielectric permittivity and magnetic permeability
and media with a discrete structure or, in other words, with
negative refraction [1]. For such media, the ‘additional
physical reasons’ play a decisive and unexpected role. In

S G Rautian Lebedev Physical Institute,

Russian Academy of Sciences,

Leninskii prosp. 53, 119991 Moscow, Russian Federation

Tel. (7-499) 13261 54

E-mail: sgrautian@mtu-net.ru

Institute of Automation and Electrometry,

Siberian Branch of Russian Academy of Sciences

prosp. ak. Koptyuga 1, 630090 Novosibirsk, Russian Federation

Received 18 March 2008

Uspekhi Fizicheskikh Nauk 178 (10) 1017 —1024 (2008)
DOI: 10.3367/UFNr.0178.200810a.1017

Translated by N Raspopov; edited by A M Semikhatov

1944, in one of his lectures, L I Mandelshtam noted the
possibility of a negative group velocity for electromagnetic
waves and remarked on a close relation of the velocity sign to
the direction of phase variation. He also derived the
refraction law for a homogeneous medium with negative
group velocity [2]. In 23 years, these considerations ceased
to be purely ‘academic and tutorial’ and acquired intriguing
physical and practical importance. In media with negative
dielectric permittivity and magnetic permeability, new fea-
tures have been predicted for the Doppler effect, Cherenkov
radiation, and Fresnel formulas; specific optical devices have
been proposed based on such media, and so on [1, 3]. Starting
with pioneering work [4], several composite materials have
been created with negative group velocity in the microwave
and optical spectral ranges (see, e.g., [5]) and the unusual
properties of those materials have been demonstrated.

In spite of the impressive success, we belive that some
principal physical problems related to certain peculiarities of
refraction on the boundary of a medium with a negative
group velocity have not been fully explained. The present
review is devoted to this problem.

2. The Snell — Descartes — Fresnel problem

We consider the key point of the problem, which we concisely
call the Snell - Descartes— Fresnel (SDF) problem. Figure 1
illustrates its essence. The plane z = 0 is an interface for two
media 1 and 2 with the effective permittivities and perme-
abilities ¢, u; and &, u,. The incident and reflected waves
propagating in medium 1 has a frequency w and the respective
wave vectors k; and ki; in medium 2, the transmitted wave
propagates with a wave vector kj:

Eexp [ —i(wt —kir)], Rexp[—i(wf—kir)],
D exp [ —i(wt —kar)] . (1)

The frequencies w and projections k, of the wave vectors
onto the interface plane are exactly equal for all three waves
due to the linear and uniform character of boundary
conditions [6]. The projections k|, and k,., which are
perpendicular to the interface plane, can be found from
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which express the condition that transverse plane waves (1)
may be nonzero solutions of the Maxwell equations. For the
refracted and reflected waves, it follows from Eqns (2) that

ki, ==+\/k} —k2, kyp.==%\/k}—k2. (3)

From the mathematical standpoint, the two possible signs in
Eqns (3) mean that these relations do not contradict equalities
(2) at either of the signs. From the physical standpoint,
different signs in relations (3) correspond to a phase increase
either along the z axis (+) or in the opposite direction (—).
For the reflected wave, the choice of sign is obvious: both the
incident and reflected waves propagate in the same medium,
and k. and k{, can only differ in sign; the phases of the
incident and reflected waves should vary in opposite direc-
tions. In the incident wave, the component k. > 0 is fixed;
hence, we have k{, = —kj. < 0, thatis, k{_ is directed from the
interface plane toward medium 1.

For the wave vector of the refracted wave, the problem is
more complicated. In a somewhat more general setting, i.e.,
not restricting ourself to plane waves (1), we can assert the
following. Due to the uniformity of media 1 and 2, the
existence of a solution of the Maxwell equations or, in other
words, a normal mode f(z — z/v) propagating in a certain
direction inevitably implies that a wave f(z+ z/v) with the
opposite direction of propagation can exist in principle. The
SDF problem is special in that it involves an incomplete set
of possible normal waves. In accordance with the problem
setting (we find a reflection from the interface only), only
one of the two possible normal waves in (3) propagates in
medium 2, and the question is which case is realized. If
medium 2 is heterogeneous or is a finite-thickness layer, both
normal waves with the opposite propagation directions are
involved in the consideration and no physical complications
occur. Indeed, a solution of the Maxwell equations involves
a linear combination of all normal waves, and the boundary
conditions uniquely fix their amplitudes, and hence the
problem is solved mathematically without invoking ‘addi-
tional physical reasoning.” The need in such reasoning arises
from the SDF problem setting itself.

It is pertinent to note that Mandelshtam repeatedly
stressed the principal difference between reflection from an
interface of two media and from a finite-width layer, that is,
from two boundaries ([7], years 1932 and 1940). To make the
different solutions of these two different problems look like a
‘tutorial paradox,” one of the problems was implicitly
substituted for the other in [7].

There are three ways to argue how the sign of k. is chosen
in (3). Somehow or other, they are related to energy
considerations.

I. The energy in a refracted wave must move away from
the interface toward medium 2, the energy propagates at
a group velocity u, and the wave vector is directed along
the group velocity (if u > 0), that is, from the interface
toward medium 2. Hence, we have k,. > 0. If u < 0, then
ky. < 02, 6].

II. Let medium 2 have a weak absorption. For the field
energy to pass to the energy of the medium, the Poynting
vector must be directed toward the domain in which the
absorption occurs, that is, from the interface toward
medium 2. The Poynting vector and the wave vector are
parallel, and hence k. > 0, i.e., the wave vector projection
is directed from the interface toward medium 2.

I11. Let the radiation source residing in medium 1 emit a
pulse whose shape is an arbitrarily long step function. It is
known that the leading edge of the pulse propagates without
refraction and reflection [6]. As the emitted step-like pulse
excites a polarization of the media, a virtually stationary
regime is established at a finite distance from the source. The
analysis of this regime leads to the conclusion [8] that the wave
vector of the refracted wave is directed from the radiation
source and from the interface plane toward medium 2. This
argument is the most consistent, but also the most compli-
cated. It involves the group velocity because the process is not
stationary and the radiation is not completely monochro-
matic.

We emphasize that in arguments I and III, a strict
correlation is implied between the directions of the wave
vector and of the group velocity, whereas in argument II, we
use the correlation between the wave vector and the Poynting
vector. Sivukhin has shown that both approaches are
physically and formally identical. In 1957, he derived a
fundamental relation between the (time) average of the
energy density w of an electromagnetic field and the average
value of the Poynting vector S, the wave vector k, and the
group velocity u [9]. This relation is rather important for our
purposes and we recall the basic points of the argument in [9].
The average energy density w in a medium is considered the
result of energy storage when a radiation flux passes through
the medium. We assume that no energy dissipation occurs.
The initial relation is

_ 1 dweg(w) do pu(w)
w:m< i E|* + o, |H|> (4)

where E and H are the electric and magnetic field strengths.
For plane waves, the equality

¢|E[* = uHJ? (5)

holds. In view of (5) and of the Poynting vector expression for
a plane wave

§_ ¢ Vet ppk 2 Ve ok o
S 871: U | | kign e ‘ | ’ E’M>O7 (6)
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Eqn (4) becomes [9]
1 dw e(w) do u(w) 2
Y Tonuw (,uw do T do [E|
2 2 2 2 S
_c d(k?) B = c d(k?) \H|2—Sk 1 dk
l6nuw dow

Tuku do’

(7)

T 1l6new  do

which is the statement of Sivukhin’s theorem. The factor 1/u
in (7) is the time lapse during which the energy density w is
accumulated along the unit length due to the flux density S.

Rayleigh, Mandelshtam, and many other researchers
discussed the equality u = S/w instead of (7), that is,
considered the absolute value of the group velocity to be
that of the energy transfer velocity. It seems that such a
statement of the problem was related to the implicitly
assumed parallelism of S and k.

The spatial energy density w is positive, and hence formula
(7) entails a strong correlation, Sk/ku >0 between the
directions of S and k and the sign of the group velocity u:

1) if the group velocity is positive, then the Poynting
vector and the wave vector are unidirectional;

2) if the group velocity is negative, then the Poynting
vector and the wave vector are counter-directed;

3) if the Poynting vector and the wave vector are
unidirectional, then the group velocity is positive;

4) if the Poynting vector and wave vector are counter-
directed, then the group velocity is negative.

Thus, according to Sivukhin’s theorem (7), arguments
I-1II necessarily give identical results. Conclusions 1-4,
albeit formulated in other terms, are made in [I, 3] in
discussing optical phenomena in media with negative dielec-
tric permittivity and magnetic permeability.

Relation (7) is obtained for a uniform plane monochro-
matic wave in a homogeneous isotropic nonabsorbing (non-
amplifying) medium. Under these conditions, the sign of the
group velocity is determined only by the dispersion law for the
medium. In heterogeneous media and media with discrete
elements, the sign of the group velocity can be and actually is
determined by other factors.

We consider the condition that leads to a negative group
velocity in a homogeneous isotropic nonabsorbing medium.
The relation

0 e @), f@)>0,
can be considered a differential equation for the refractive
index n(w), whence

F ()

wn(w)zg—J flo)dor, n(@) = V(@) p@), )

o

where f(w) is an arbitrary nonnegative function. According
to (8), the refractive index n(w) and the product wn(w), which
is proportional to the wavenumber, must be decreasing
functions of the frequency. Not so evident might be the
explicit form of the condition, a constant g minus an
arbitrary increasing positive function of the frequency.

To complete the picture, we consider direct implications
of expression (6) for the Poynting vector of a monochromatic
plane wave in a homogeneous medium:

a) if ¢ and u are positive, then the Poynting vector and the
wave vector have the same directions;

b) if the Poynting vector and the wave vector have the
same directions, then both the dielectric permittivity and the
magnetic permeability are positive;

c¢)if ¢ and u are negative, then the Poynting vector and the
wave vector have opposite directions;

d) if the Poynting vector and the wave vector have
opposite directions, then both the dielectric permittivity and
the magnetic permeability are negative;

e) in a homogeneous isotropic medium without field
absorption and amplification, the only reason for opposite
directions of k and S for uniform waves can be negative values
of ¢and u[1, 3].

The discussion of formulas (6) and (7) clearly illustrates
the importance of factors such as the continuity and
homogeneity or heterogeneity of the medium and uniformity
or nonuniformity of the wave, i.e., those factors that seemed
universal and not crucial, but which turn out to play a very
special role in the subtle problem concerning the refraction
laws and group velocity. This is well illustrated by conclusion
(e), which is very strong although seemingly absurd at first
glance.

Mandelshtam noted that the group velocity of electro-
magnetic waves may be negative [2]. In this case, the energy
should still propagate from the interface plane toward
medium 2, and the phase should propagate in the opposite
direction, that is, the wave vector k, of the refracted wave
should be directed from medium 2 to the interface, as is shown
in Fig. 1 by the dashed vector (k. < 0) [2].

To illustrate the specific features of refraction in the case
of media with negative group velocity, Mandelshtam
considers an example of waves in the model widely used in
solid state physics, a one-dimensional chain of interacting
particles [2]. In such a chain, waves with both positive and
negative group velocity exist. The waves running along the
chain may be of different natures: mechanical, electromag-
netic, or polarization waves. Numerous systems of this kind
are known presently, in particular, photon crystals, periodi-
cally heterogeneous media, and fibers with periodic hetero-
geneity along their axis; systems of the last type are widely
used in practice in fiber-optics communication systems.

The role of the sign of group velocity noted in [2] and the
conclusions that follow from Eqns (6) and (7) are very
important because there may be various reasons determining
a correlation between the propagation directions for the
phase (k) and the flux (S): the discrete character of the
medium, medium heterogeneity, medium amplification, or
wave heterogeneity. For example, the transfer from the
ordinary to the inverse population may change the sign of
the derivative dn/dw. One more example is given by surface
waves [10], in which the field amplitudes in two adjacent
media decrease with the distance from the interface. The
dielectric permittivity is positive in one of the media and
negative in the other; the vectors k and S in the media are,
correspondingly, parallel (¢ > 0) or antiparallel (¢ < 0).

Unfortunately, some arguments and illustrations in [2] are
not fully satisfactory. It is this reason that motivated the
present review. First, the Fresnel reflection is considered for
monochromatic plane waves and for an interface of two
homogeneous media. However, according to consequence (¢)
following from Eqn (6), the directions of k and S may be
different only because of negative values of ¢ and p. Hence,
any other direct reasons for negative group velocity are
irrelevant and may only serve as analogies, distant or close.
Second, in periodically heterogeneous media, such as chains
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of particles, normal waves are created as pairs of contra-
directional running waves. Hence, the illustration in [2] with a
periodically heterogeneous chain of particles is not satisfac-
tory because waves in such a medium run in both directions
and there is no choice problem. In addition, the group
velocity is a good characteristic not of a normal wave but of
a running wave in a chain. Finally, the problem setting of the
reflection from periodically inhomogeneous half-space,
which corresponds to the SDF problem, results, as we show
in Section 3, in absurd consequences and is therefore
incorrect. Hence, we may assert that the only substantial
point in [2] is the abstract indication of a possible existence of
media with negative group velocity. The example of a chain
with interacting elements is not physically justified because it
illustrates a relatively simple physical phenomenon via a
nonexisting one, a single running wave in a periodically
heterogeneous medium.

We note an important methodological point. In discuss-
ing relations (3), informal energy reasoning is first used,
which then determines the mathematical and geometrical
structure of the wave. In the case of a heterogeneous
medium, the geometry is determined by specific features of
the medium, i.e., the functions ¢(w,r), u(w,r), whereas the
energy properties of the field are calculated using the
formulas for solving the wave equation and are therefore a
consequence of medium-specific features.

3. Reflection from a periodically inhomogeneous
half-space

We detail the general considerations in Section 2 for the
example of a medium in the form of periodically hetero-
geneous half-space. We use the simplest model of weak one-
dimensional harmonic heterogeneity. In essence, this model
dates back to Einstein’s work [11], in which fluctuations of the
dielectric permittivity are presented in the form of a spatial
Fourier integral for the intensity of scattered light [11, 12].
Each harmonic of this decomposition determines a harmonic
heterogeneity, and hence formally coincides with our model.
Mandelshtam and Brillouin later used this model, with the
motion of fluctuations taken into account, for predicting the
Rayleigh line splitting [12]. The classical works mentioned
above differ principally from the SDF problem in that they
considered a finite-size medium, whereas we are dealing with
an infinite half-space.

We consider the electric field strength £ (x,z) perpendi-
cular to the plane of incidence xz and parallel to the interface
plane z = 0. This field strength is described by the relations

AE, (x,2) + k2(2) EL (x,2) =0, 9)
k(z) = ko = (%)m z<0, (10)
k(Z):k(){1+7’]COS [K(z—zo)]}, K:Zf, z>0, (11)

where A is the heterogeneity period. To avoid the conven-
tional Fresnel reflection from the interface plane, we assume
the average values of the refractive index in medium 2 (z > 0)
and medium 1 (z < 0) to be equal. We also take the resonance
approximation and the approximation of small modulation
depth:

ko—g <ky, n<1. (12)

Omitting simple calculations, which are similar to those
performed in [13, 14], we give the final expressions. For
simplicity, we omit the symbol L. In medium 1, the normal
waves are, as usual, given by the two functions

exp [i(kyx £ k.2)],

with the factors

ko = \/kZ — k2.

It can be shown [13, 14] that in periodically heterogeneous
medium (11), the normal waves can in general be constructed
from the four running waves with the coordinate factors

. . K
exp {chx—&—l(j:qj:i)z} ,

K
¢ =k, ——
n=k:—=,

In a periodically heterogeneous layer of a finite thickness, the
solution involves all four exponentials (13). If medium 2 is an
infinite half-space, then the increasing (at »* < %, z > 0)
functions should be dropped and the decreasing functions

. . K
exp {chx +i (q + 3) z}

should be kept, where the factors are

q=1\/p* =2, P <p* z>0.

Therefore, the solutions of wave equation (9) in media 1 and 2
take the form

(13)

K
%= B2 p="1

q:

(14)

E(x,z) = exp (ikyx) [Eexp (ik-z) + Rexp (—ik.z)]

z<0, (15)
E(X’ Z) = &Xp (lkxx + IC]Z){ exp {@] B
+eXp[_iK(Z+%)}C}7Z>O7 (16)
L
C=Tp el (17)

The wave amplitudes R and B are found from the system of
equations consisting of Eqn (17) and the continuity condi-
tions for field strengths at the interface z = 0:

B +C,=E+R,
K K
2 B (2_

(5+0) 2 (3

B = Bexp (—ig).

)01 =k.E—k.R, (18)

7KZ()
= 7

Eliminating either R or B; from Eqns (17) and (18), we arrive
at the relations

2k q+x

Yt Eexp (ip) R p— Cexp (2ig),
(20)

Ci=Cexp(ip), ¢ (19)
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qg—x
R— E
Yeotg—n 2 tq-

Cexp (ip) .
” exp (i)

Relations (20) are interpreted in the standard way [6]: the
incident wave (E) transmitted through the interface and the
wave with an amplitude C reflected from it form a wave with
the amplitude B. The reflected wave R is formed as a result of
the reflection of the incident wave E and the transmission of
the C wave. In view of conditions (12), that is, the inequalities
K, k.>|q|, ||, p, we conclude that the transmission
coefficients are close to unity and the reflection coefficients
are small. Then we find

2k, q—x
B= : __E, C= B,
2k, + q — » — fexp (2ip) B

(1)

P ki 2k, — q— » — fexp (—2ip)
B 2k:+q—x—Pexp (o)
Thus, in a periodically heterogeneous half-space, the field

is described by two plane waves (16) with the amplitudes B
and C and the wave vectors

K
k+ = kxex + (—+(1> €,

Eexp (2ip). (22)

2
= ke, + 5+ k Ez—ﬁze
- X%X 2 z 2 Z

k. = \/k§ — k2, (23)

K

k——kxex_(a_q>ez
e (Ko (kK 2—ﬁ2 e (24)
— RxEx 2 z 2 .

The parameter 2 in Eqns (13) and (14) is related to the spatial
Fresnel reflection from medium heterogeneities. The combi-
nation mn/2, in accordance with the calculation in [14], is
equal to the amplitude reflection coefficient from the
heterogeneity period. The spatial reflection plays the role of
a factor damping wave oscillations similarly to friction in
pendulum vibrations. At normal incidence (k, = 0),

K
k; = (EJr xzfﬁ2>ez,

K / K
k_:(—z-i‘ %2—ﬁ2)ez, %:ko—i.

The plots of k+(w) F K/2 as functions of » are presented in
Fig. 2. In the frequency interval

n\ Kc n\ Kc K
—= ) — — | —, —B<ky—=<
(1 2>2n0<w<(1+2>2n0, B < ko B,

(26)

(25)

the ‘friction’ is so high that the radical in Eqns (23)—(25)
becomes imaginary and solutions (16) take the form of
heterogencous waves that exponentially decay with increas-
ing z (the circle in Fig. 2). For a tilted propagation (k. # 0),
we obtain the inequalities

2
peyfig--5 <p <iie(Fap) @)

ki) F K/2

Figure 2.

instead of (26). In this case, the domain of heterogeneous
waves is shifted compared to interval (26) to higher
frequencies, and its width Ak is less than that at normal
incidence:

VK2 = B 4 k2 +\J(K/2 + B + k2
)=
2

K\? K
- 2 _
<2) +kx>2,

Ako—\/(I;Jrﬁ)erk,%\/(I;ﬁ)z*kf

SR Tk

Interval (26) is often called the forbidden gap, by analogy
with the range considered in solid state physics for electrons in
a periodic potential. The term ‘band of heterogeneous waves’
(BHW) seems preferable because heterogeneous waves from
interval (27) play an important role in numerous optical
problems and are not forbidden, hypothetically or actually.
The parameters of the potentials in solid bodies are such that
electron waves are quickly damped. It is not so in optics. In
particular, damped waves essentially determine the spectral
properties of filters based on periodically heterogeneous
media [13]; such waves are present in solution (16).

We can write the expressions for the phase and group
velocities of the running components of field (16), although
they are not very interesting in general. The amplitudes of the
wave vectors k,; and k_ are given by the formulas

ka(w) = \[K2 + <i§+q>27 q=\ (kz—g)z—ﬂz.
(28)

In a counter-propagating wave, k_ is slightly smaller than k.
for the wave running in the positive direction. The phase
velocities for the ‘running’ terms in (16) are expressed as

Q

(] w

- - . (29)
ko) e v (k24 )

Ut

In approximation (12), the phase velocity has almost the same
value as in a homogeneous medium. It is slightly greater for
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the counter-propagating wave. According to (17), we have
q =0, |C/B| =1, that is, a purely standing wave at the BHW
boundary. At a distance from the BHW boundary, ¢ # 0 and
|C/B| # 1, i.e., the field in medium 2 acquires a ‘running’
property.

The group velocities in approximation (12) are equal to

2 2
_ Wq (kz - K/z) - ﬁ 1 - dko
Mi(CO)fit7—j:u() szK/2 , u—ofm
(30)

The signs of waves with the amplitudes C (lower sign) and B
are different. At the BHW boundary, the group velocity
vanishes (see Fig. 3). At positive up, the branches ki (w)
decreasing with frequency correspond to the negative group
velocity (see Fig. 3).

We consider the amplitude properties of the field.
According to equality (17), the oppositely directed waves
with amplitudes B and C in field (16) cannot exist separately
from each other. The zero amplitude of one of them inevitably
implies the absence of the other, and the presence of one of the
waves implies that the other is also present. Hence, as we
stressed above, speaking of phase and group velocities for
each of the running waves is not very substantive from the
physical standpoint, to say the least. Formulas (29) and (30)
follow tradition rather than being a necessity for analyzing
the problem under consideration.

The expressions for the Poynting vectors S; and S, in
media 1 and 2 are instructive:

2 2
S = |E\2{ezk:[l g 2“ }
8mou B

2
-
+exk,\-[1 Ll - \

+2%cos2kzz}}, (31)

2 2
= ¢ [ K lg — x|
- E*le. = [1—
S2 8nwu| | {e“ 2 [ B }

|2 —
+ (exky + e:q) [1 Ll ﬁfl +21 5 % cosK(z — zo)}}.
(32)
uy(ng/c)
___________ I
—p B
0 ko — K/2

Figure 3.
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/
/
/
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/
/
/
/
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Figure 4.

The components S;. and S,. involve the characteristic
quantity 1 — |(g — »)/B|*. Because K > ¢, just this quantity

is dominating in S,.. It can by easily shown that
g =+’ / 2""7_\/%2_52 2 2
1—7:2 #2—p T,%>ﬁ.
(33)

According to (33) (see Fig. 4, where the dashed line is the
asymptote for ¥ < 0), we have

2
1f|qﬁ;{| >0, %>p;
g = N
1 - 5 <0, x<-4. (34)

Hence, depending on the sign of ¥ = k. — K/2, the total flux
propagates either from medium 1 to medium 2 (» > 0) or in
the opposite direction (x < 0). Within the BHW, the total flux
equals zero because the waves propagating in opposite
directions have equal intensities in both media.

There is no need for a more detailed analysis of formulas
(33) and (34) because the calculation result given above
contradicts the energy conservation law: according to
Eqn (22), the inequality |¢ — %[*/B> > 1 implies that the
reflected wave is more intensive than the incident one.

Thus, from the methodological standpoint, the properties
of wave amplitudes in the reflection from a periodically
heterogeneous half-space do not allow using the arguments
similar to those presented in Section 2 in arguments [—III
concerning the reflection from a homogeneous medium.
Additional physical arguments of type I —III are inapplicable
in the case of reflection from a heterogeneous medium. In
relation to physics, the absurdity of conclusions (31)—(34)
seems to be related to the incorrect setup of the problem of
reflection from an infinite periodically heterogeneous med-
ium. In the transition process of forming a wave reflected from
such a medium, this wave acquires energy similarly to the case
of total reflection in an optically less dense medium, which
makes the situation for an infinite medium uncertain. The
problem can be posed correctly only for a periodically
heterogeneous layer of a finite thickness, where, in addition
to waves of type (14), the complete set of exponentials (13)
exists [13].
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4. Conclusion

We summarize our observations. It is not correct to use
waves arising in periodically heterogencous media for a
physical illustrative interpretation of waves in the SDF
problem, as was done in [2]. First, in a heterogeneous
medium, there are no running waves because the waves are
standing and the group velocity is not a ‘good’ characteristic
for them. Second, the choice among the normal waves is not
a problem in a heterogeneous medium, although it is a key
point in the SDF problem. Both the solid and dashed
arrows in Fig. 1 correspond to real waves (16). Finally, the
Fresnel reflection is considered for two half-spaces, whereas
periodically heterogeneous media related to such a problem
can only be correctly considered for a layer of finite
thickness.

An important positive element in [2] was the indication
that a negative group velocity may exist in principle, with the
corresponding consequences for the geometrical law of
refraction. Nevertheless, up to now, the hypothetic medium
with negative dielectric permittivity ¢ and magnetic perme-
ability p is the only example of a homogeneous medium with
negative refraction. Moreover, according to Eqn (6), no other
example of plane waves in uniform media can exist. In 1957,
Sivukhin wrote: “Media with ¢ < 0 and x < 0 are not known.
The question whether such media can exist in principle is not
clear” [9]. In the more than 50 years that have passed, the
situation has not changed and, I am sure, will never change.
No continuous homogeneous media with ¢ < 0 and ¢ < 0 can
exist in the optical spectrum range.

The above consideration does not mean that media with
negative group velocities for monochromatic plane waves
merit no attention. Quite the opposite, as we mentioned in the
Introduction, a rapid progress is currently observed in the
electrodynamics of periodically heterogeneous media, media
with discrete elements, and media with periodically disposed
elements. In such media, there are spectral intervals wherein
the group velocity takes a negative value. In the optical
spectrum range, these are media of a new type with unusual
properties, which are quite promising from the standpoint of
applications in nanotechnology. In addition to the relatively
simple case of negative refraction, there may be other new
linear [1] and nonlinear (see, e.g., [15]) optical effects.
However, the propagation of waves in such finite-size media
is a difficult independent problem, which we do not consider
here.

Mandelshtam’s interpretation of a possible negative
refraction in the framework of the analogy with the
properties of a medium comprising discrete elements had
a negative effect. The fact is that all experimental and
theoretical works aimed at searching for negative refraction
were performed earlier and are performed now with
samples that are analogous to a chain involving interacting
particles, that is, comprising periodically disposed discrete
elements. The negative group velocity in such samples is
determined not by the negative dielectric permittivity and
magnetic permeability but by the periodic heterogeneity of
the medium. It would seem reasonable to develop a
theoretical approach and a system of physical concepts
for such media of the new type. But most of the
approaches available in the literature only reduce systems
with discrete elements to certain effective continuous
media. For example, we note papers [16, 17], which
contain interesting results, but where this tendency is well

pronounced.! It is clear, however, that dealing with an
effective refractive index is fraught with losing new,
interesting, and unusual optical properties of the discrete
systems.

To conclude, we join the discussion of the terminology
pertaining to the problem under consideration [18]. The term
‘forbidden zone’ has already been discussed. At the beginning
of the last century, the tradition was established to associate
the fields of optics or electrodynamics with the properties of
matter equations: the optics of homogeneous media, the
optics of isotropic media, crystal optics, metal optics, the
optics of gyrotropic media, the optics of heterogeneous
media, the optics of randomly heterogeneous media, the
optics of fibered media, etc. In the relevant literature,
however contrary to the tradition mentioned, the term
‘negative refraction medium’ is used. In other words, the
term used pertains to a particular, concrete phenomenon
(refraction) rather than the properties of the matter equations
(negative dielectric permittivity and magnetic permeability),
which can and do embrace numerous phenomena considered
in [1] and in the short, albeit substantial, review [3]. All this
also applies to the term ‘left-hand materials,” which is based
on a symmetry of the vector triplet E, H, k. But this symmetry
characterizes a very particular type of field, a linearly
polarized monochromatic plane wave in a medium with
negative permittivity and permeability, rather than the
medium itself. Of course, such an eccentric name attracts
attention to the new field; however, there is little chance of it
persisting ‘for ages.’

It seems preferable to follow the terminology tradition
and use the terms mentioned above: ‘media with negative
permittivity and permeability’ and ‘media with discrete
elements.’

The terminology tradition mentioned above is not
solitary, it is closely connected to the ‘general principle of
physical science,” as it was emotionally and precisely for-
mulated by the great Fresnel in 1819 [19]: “Nature seems to be
aimed at doing much by smaller means; this principle is
steadily confirmed in the course of developing physical
sciences... If Nature is aimed at creating maximum phenom-
ena by minimum reasons then, undoubtedly, this great
problem is solved by Nature with all entirety of its laws...
No doubt, it is very difficult to reveal the fundamentals of
such wonderful economy, that is, the simplest origins of
phenomena considered from sufficiently wide point of view.
But if this general philosophical principle of physical sciences
does not help us to directly cognize the truth, nevertheless, it
can control human mental efforts obviating the systems that
reduce the phenomenon to excessively great number of
various reasons....”

' Paper[16], similarly to some other papers by the same authors, starts with
the phrase: “Refractive index... is a key parameter in the interaction of
radiation with matter.” In fact, spatially heterogeneous materials with
discrete periodically disposed elements are discussed in [16]. The concept
of the refractive index cannot be applied to such a medium as a whole,
because it is not a property the medium. One can only speak about a local
value of the refractive index at a certain point in the medium or about some
effective refractive index in the framework of the analogy with a
continuous medium. It is common knowledge that ‘interaction of radia-
tion with matter’ is determined by the parameters of matter equations, that
is, the dielectric permittivity and the magnetic permeability. In contrast,
the refractive index describes the phase variation of a field of a rather
special type, a running monochromatic plane wave, and nothing more
than that.
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