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Abstract. The electron structure and physical properties of
strongly correlated systems containing elements with unfilled
3d, 4d, and 5f shells are analyzed. These systems include several
transition metals, rare-earth elements, and actinides, as well as
their numerous compounds, such as various oxides exhibiting
metal —insulator phase transitions, cuprates, manganites, f sys-
tems with heavy fermions, and Kondo insulators. It is shown
that the low-energy physics of such systems is described by three
basic models: the Hubbard model, the sd-exchange model, and
the periodic Anderson model under the condition that the on-site
Coulomb repulsion energy U or the sd exchange energy J is of
the order of the conduction-band width W. This situation does
not involve a small parameter and should be treated nonpertur-
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batively. We describe one such approach, the dynamic mean-
field theory (DMFT), in which a system is considered to be only
dynamically but not spatially correlated. We show that this
approach, which is fully justified in the limit of large spatial
dimensions (d — c0), covers the entire physics of strongly
correlated systems and adequately describes the phenomena
they exhibit. Extending the DMFT to include spatial correla-
tions enables various d and f systems to be quantitatively
described. Being a subject of intense development in recent
years, the DMFT is the most effective and universal tool for
studying various strongly correlated systems.

1. Introduction

In recent decades, the center of gravity of experimental and
theoretical studies of the nature of metallic systems has
moved into the field of transition and rare-earth elements
with incompletely filled 3d, 4f, and 5f shells and the related
chemical compounds. In early studies, in the 1960s, the most
intriguing problem in this field was that of the metal -
insulator (MI) phase transition, which is observed in many
oxides of transition metals upon changes in pressure,
temperature, or concentration of doping elements. About a
decade later, a new class of chemical compounds of rare-earth
metals with charge carriers whose effective mass exceeds the
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electron mass by one or two orders of magnitude — the so-
called heavy-fermion (HF) systems—were discovered. In
such systems, a great variety of interesting physical phenom-
ena have been revealed, such as phase transitions with the
appearance of magnetically ordered phases and superconduc-
tivity, insulating and metallic states, transitions with the
appearance and disappearance of localized magnetic
moments, and specific transport properties. Such a combina-
tion of electric and magnetic properties may be related to the
manifestation of strong interactions of the electron and
magnetic degrees of freedom in many compounds with 3d
and 4f elements. A vivid example of this type of interconnec-
tion of various properties is manganites with the colossal
magnetoelectric effect, in which a moderate magnetic field is
capable of radically changing the electron state of the system,
from metallic to insulating. However, the most significant and
entirely unexpected phenomenon was the discovery of high-
temperature superconductivity (HTSC) in transition-metal
oxides. This finally shifted the interest of researchers to the
synthesis of new classes of chemical compounds and the study
of their physical properties. In the subsequent two decades,
numerous new compounds with unique properties have been
discovered.

It is clear that the variety of physical phenomena in all
these compounds is caused by the existence of incompletely
filled 3d, 4f, or 5f electron shells in them; as a result, the atoms
of these elements in the solid state retain the fully or partly
localized magnetic moments. The strong interaction of these
groups of electrons between themselves or with the collecti-
vized electrons of the outer shells is the special feature that
determines the unique properties of these compounds. Such
systems with strong electron interactions have been called
strongly correlated systems (SCSs). All the above-mentioned
classes of chemical compounds, and many others with which
we deal in this review, refer to SCSs.

With the discovery of new classes of SCSs, difficulties arose
in interpreting the physical properties of SCSs from the
standpoint of their electron structure. The old band theory of
solids, which has long been successfully used for describing the
properties of transition metals and semiconductors, proved to
be incapable of explaining the properties of SCSs. The point is
that the standard band theory ignores electron—electron
interactions, which are usually weak in simple metals and
semiconductors. But in SCSs, the interactions of electrons are
of the same order as the width of the energy band of the active
group of electrons (typically belonging to 3d, 4f, or 5felectrons
of the basic element atoms), or even substantially exceed this
width. In this situation, a completely different quantum-
mechanical approach is necessary, which goes beyond the
theory based on perturbations in the electron—electron
interaction. In the last 40 years, beginning with Hubbard’s
pioneering works[1, 2], quite numerous approaches have been
suggested for describing the electron structure and physical
properties of newly discovered SCSs. Usually, the theoretical
studies were based on simple models such as the Hubbard, ¢/,
sd, and Anderson models. Many of these approaches proved
to be successful for some classes of SCSs, but they were not
universal and frequently did not allow dealing with more
complex models close to realistic systems.

It seemed that the theory of SCSs would forever remain
motley and semiquantitative because of the difficulties of
taking the strong interelectron interaction into account.
However, a breakthrough occurred in 1989 after Metzner
and Vollhardt [3] proposed formally considering the system

of strongly interacting electrons in a space with a large
dimension d (or to consider atomic lattices with a large
number of nearest neighbors z). It turned out that in the
limit as d — oo (or z — o0), the mathematical equations
describing electron motion in the lattice simplify dramati-
cally and can be exactly solved at any value of the
interelectron interaction; the results of calculations in this
limit are very close to those of numerical calculations for real
space with the dimension d = 3.

The theory simplifies as d — oo because it is then possible
to neglect spatial fluctuations in the system and examine only
dynamic fluctuations. On the basis of this discovery, the
dynamic mean-field theory (DMFT) was born, where the
frequency (and only frequency) dependence of the mean field
acting on a given electron from all other electrons is taken into
account but the dependence on the wave vector, which in the
usual approaches entails basic difficulties in solving the
equations, is ignored. In the DMFT, a computational
scheme is suggested that reduces the problem of the structure
of the electron spectrum of systems of interacting electrons on
a lattice to the problem of a single impurity center located in
the effective dynamic field of other electrons. A method of
calculation of this field for a given model was proposed. The
first to use the new approach for the Hubbard model were
Georges and Kotliar in 1992 [4]; they obtained the so-called
three-peak structure of the SCS spectrum, which consists of a
narrow central peak onto which the Fermi level falls in the
case of half filling (one electron per lattice atom), and two
wide lateral peaks, which correspond to Hubbard subbands
(see also [5]). The spectrum obtained determines whether a
metal —insulator phase transition is possible and also deter-
mines specific features of the transport properties of the
system. Such a structure was soon confirmed experimentally
in a number of compounds of 3d and 4d elements.

Subsequently, the DMFT was applied to basic models of
SCSs; the results of theoretical studies and their comparison
with the experimental data are generalized in review [6]. In
recent years, the DMFT has been elaborated for calculating
not only simple (in composition, but not from the standpoint
of their study!) but also complex chemical compounds. This
allows obtaining the electron structure from first principles,
i.e., when only the lattice, the chemical elements that compose
it, and the electric charges on the atoms are specified. These
problems have been considered in reviews [7— 16], in which the
properties of many compounds were considered in detail and a
satisfactory agreement with experimental data was noted. In
addition, there exist a number of works in which the DMFT is
generalized so as to account for spatial correlations ignored in
the initial approach. Thus, the DMFT can now be considered
a unified theory of SCSs, and the physical properties of these
systems following from this theory are frequently in good
quantitative agreement with the experimental data. It is
therefore not surprising that in 2006, the creators of the
DMFT, Georges, Kotliar, Metzner, and Vollhardt, were
awarded a special prize (Agilent Technologies Europhysics
Prize) [17] for studies in the field of condensed matter physics.

The aim of this review is to consider the basic classes of
SCSs from a unified standpoint based on the DMFT; the
method itself is not considered in detail because the reader can
become acquainted with its various aspects independently
using numerous reviews we cite in this paper. Itis essential that
we consider all the SCSs in totality rather than one of the SCS
classes, for each of which there are many detailed surveys. The
main task, which is for the first time set in such a way, is to
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reveal common features in the electron structure of different
compounds and interpret them on the DMFT basis. At the
same time, we want to trace those common features that are
inherent in different classes of SCSs, such as the structure of
phase diagrams in the temperature —electron concentration
plane, the development of phase separation, the strong
sensitivity of SCSs to the level of doping with other elements,
the instability to various types of magnetic ordering, and the
degree of localization of magnetic moments, i.e., all those
phenomena that are determined by strong electron correla-
tions in the system.

To conclude this introduction, we warn the reader against
a possible misinterpretation that there was no understanding
of the basic phenomena in the theory of SCSs caused by strong
correlations before the development of the DMFT. Beginning
with Hubbard’s classical works, numerous theoretical
approaches based on the decoupling of the equations of
motion have been developed, as well as variational methods,
the method of auxiliary bosons and fermions, numerical
methods, etc., which have allowed qualitatively explaining
the basic experimental facts in the physics of SCSs. We simply
assert that the DMFT is presently the most universal method
of studying different classes of SCSs, which frequently allows
obtaining quantitative agreement with experimental data even
for complex compounds. The reader can find the description
of early theoretical approaches in many reviews of the DMFT
given in the references. In particular, various methods of the
investigation of SCS models have been described in several
reviews published in Russian, e.g., the Hubbard model [18],
the #/model [19], HTSC models [20], and the double-exchange
model [21] (see also monograph [22]).

More than thirty years ago, we published two reviews [23,
24] devoted to compounds of transition metals, first and
foremost V3Si and NbsSn, which at that time had record
temperatures of the superconducting transition, and then, in
cooperation with Vonsovskii, the monograph [25], in which
we analyzed the superconductivity of these compounds.
However, systems with heavy fermions and superconductiv-
ity in copper oxide compounds were not yet known at that
time. Nothing then foreshadowed the rapid development in
this field, the latest achievements in which we want to discuss
in this survey.

2. Electron structure of strongly correlated
systems

2.1 Fermi-liquid description

Simple metals and semiconductors, such as silicon, are quite
adequately described by the band theory, which considers the
motion of a single electron in the periodic field of a lattice.
This one-electron approach is well substantiated by the
smallness of the interelectron interaction. From the stand-
point of the many-body quantum mechanical theory, this
approach corresponds to the Landau Fermi-liquid theory.
According to this theory, the system of interacting electrons is
described by slowly decaying (near the Fermi surface)
quasiparticles, which have an energy ¢ and are characterized
by a quasimomentum k. The quasiparticle states (also called
coherent states) are determined by the pole of the Green’s
function (GF) for electrons,

Zx

Gko)=——"—,
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(2.1)

and the spectral density 4(k, w) is described by the imaginary
part of the GF,
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The quantity Z; determines the intensity of the quasiparticle
peak (for noninteracting electrons, Z; = 1), and v, is the
quasiparticle damping rate. At the Fermi surface, y, =0,
and hence quasiparticles are nondamping states at this
surface.

With a change in the electron concentration, the
quantities ¢ and y, usually vary monotonically; however,
this is certainly not the case for SCSs. Upon band half-
filling, as was shown by Mott and Hubbard, a metal—
insulator phase transition is possible, and this is a typical
experimental fact. Such a situation arises in the case of a
strong interelectron interaction. This phenomenon can best
be explained within the framework of the simplest SCS
model, the Hubbard model, which describes the system of
nondegenerate electrons in a lattice with on-site Coulomb
repulsion for an electron. This model is described by the
Hamiltonian

H= Z lij ¢t ¢ie + UzniTnil ;

ijo i

(2.3)

where i and j label the lattice sites, ¢ =T, | are the electron
spins, t;; is the matrix element of the electron transition
between two sites, and U is the on-site Coulomb repulsion.
The Fermi operators ¢;. and ¢;, respectively describe creation
and annihilation of an electron at a given site with a given
spin, and n;; = cic; is the operator of the number of
electrons at a site i with a spin a.

The terms that correspond to the kinetic and potential
energy in (2.3) reflect two opposite tendencies of electrons:
toward delocalization (kinetic energy) and toward localiza-
tion (potential energy). The measure of the kinetic energy is
the band width W = 2zt (where ¢ is the matrix element of the
electron transition between nearest neighbors), and the
measure of the potential energy is the parameter U. For
U < W, a Fermi-liquid description applies, i.e., the system is
metallic at any level of the incomplete filling of the band; for
at Uz W, the behavior of the system is determined by the
competition between both tendencies and, as a result, either a
metallic or an insulating state can arise, and a strong
dependence of the Fermi states on the electron concentration
is observed. As we see below, this competition manifests itself
most strongly at the band half-filling, n = 1.

In SCSs, exactly the situation where U 2 W is realized, in
which case the perturbation theory in the electron interaction
becomes inapplicable. In this situation, it is possible to use a
small parameter of another nature, namely, 1/d (d is the
spatial dimension), which leads to the DMFT method.

2.2 Dynamic mean-field approximation

Metzner and Vollhardt showed [3] that as d — oo, the self-
energy part X(k,w) of the electron energy is independent of
the quasimomentum: it depends only on frequency. This fact
is the basis of the DMFT. We write a general expression for
the electron GF with this fact taken into account:

1
ot u—e -2

Gk, o) (2.4)
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We note that a retarded GF [26] is understood in Eqns (2.1)
and (2.4); in the space—time representation for the system
described by Hamiltonian (2.3), it is denoted by G;;(r — ')
(the spin indices are omitted for simplicity). Expression (2.4)
isits Fourier component with respect to time and coordinates.
To calculate it, it is convenient to use the formalism of
temperature GFs:

Gij(t — 1) = —(Tei(n) ¢ (7)) (2.5)
where the notation is standard [27], i.e., c¢(t) =
exp [(H—puN)t]ciexp [~ (H—puN)1], T is the operator
of ordering in imaginary time 7, which ranges within the
limits 0 <t< f=1/kT, and (...) is the symbol of
statistical averaging. The Fourier component G;;(iw,) of
function (2.5) depends on imaginary discrete frequencies
iw, =i(2n+ 1)nT. The analytic continuation from the
imaginary to the real axis, iw, —  + 10, yields the retarded
GF [26].

In the limit d — oo, the self-energy part of GF (2.5) is also
independent of momenta and, instead of relation (2.4), we
have an analogous relation for the temperature GF:

1

G(k,iwy) = '
( ,lwn) lwn+'u_6k—2(lwn)

(2.6)

Summing (2.6) over the momenta, we obtain the following
expression for G(iw,):

G(iw,) :zk: Gk, i) => y— ik e (2.7)

k

which is nothing else but the diagonal matrix element G;;(iw,)
of GF (2.5) (for a spatially uniform system, the site index j can
be omitted).

On the other hand, we regard X(iw,) as the self-energy
part of the GF Gjo(iw,) of a certain auxiliary problem on the
same lattice defined with the help of an action S[L] that is a
functional of a certain function Ly(t — t’):

B B
S[Lo] = fJO de L di'ct (1) Ly (r—1') e (z)

B
+ UJ drni(t)ny(t). (2.8)

0

The quantity S [£o] should be considered an effective action
obtained as a result of integration in the functional integral
for the lattice GF over all sites except a preferred one;
therefore, L, ! (t —1’) contains information about all sites.
The function £, ' (t — 1) does not coincide with the bare GF
for the single-impurity problem, but is essentially a dynamic
mean field that acts on the preferred site from all other lattice
sites.

Using action (2.8), we can calculate the electron GF of the
single-impurity problem. We let it be denoted by Gioc(iw,). To
find EO’I (t — '), we write the self-consistency equation by
equating Gjoc(im,) to the GF G(iw,). Thus, we obtain the
equation

Gloc (iwn) = Z ! 5

m o, + 1 — g — Z(iwy)

(2.9)

which relates £, (iw,) to Z(im,). At the same time, all the
quantities of the single-impurity problem are related via the
Dyson equation

Ly (ion) = Gl (io,) + Z(iwy) - (2.10)

Equations (2.9) and (2.10) allow calculating both
unknown functions £ l(iwn) and Z(iw,). The solution of
the equations can be found by of iterations. The iterative
procedure consists of the following stages:

(1) using a given initial value of £, ' (iw,), we find the GF
Gioc(imy,) of the single-impurity problem using action (2.8);

(2) from Eqn (2.9), we determine X(iw,,);

(3) with the value of X(iw,) thus obtained, we obtain a
refined value of £, (i»,) from Eqn (2.10);

(4) the entire cycle is repeated until stable values of
Ly (iw,) and X (iw,) are obtained.

From the values of X(iw,) thus obtained, the function
2 (w) is found using analytic continuation, which yields the
retarded electron GF (2.4).

Thus, the DMFT reduces the problem of the dynamics of
interacting electrons on a lattice to a single-impurity problem,
which can be solved numerically; this allows avoiding many
difficulties connected with solving the initial lattice problem.

The information about the lattice that corresponds to this
model is contained in the right-hand side of Eqn (2.7), where
we should pass from summation over the momentum k to
integration over ¢ with an appropriate density of bare states
on the lattice. Thus, in the DMFT, we always deal with the
original lattice of crystal, which has a finite dimension
(d =3, 2); the passage to the limit d — oo manifests itself
only in the assumption that the self-energy part of the GF is
independent of momentum. A comparison of the results of
calculations performed in the DMFT approximation with the
results of numerical calculations carried out via the diagona-
lization of small clusters shows that the dimensions d = 3 and
even d =2 are sufficiently large for the difference in the
results to be unessential. At the same time, the DMFT does
not suppose that some of the parameters of the Hamiltonian
should be small. Formally, the small parameter is 1/d.

Georges and Kotliar [4] were the first to apply the general
idea of the DMFT to the Hubbard model with Hamiltonian
(2.3) and showed that the problem of electron motion over a
lattice under conditions of strong interelectron interaction
reduces to the problem of a single impurity center placed in
the ‘sea’ of noninteracting electrons, creating a dynamic mean
field that acts on the electron located at that ‘preferred’
center, i.e., reduces to the well-studied single-electron
Anderson model (SEAM) [28]. The calculation of the
effective parameters of this auxiliary model is the basic
difficulty of the DMFT. We do not describe the computa-
tional procedure here, but turn directly to the consideration
of the results of calculations for the Hubbard model with
Hamiltonian (2.3). The basic results are presented in Fig. 1,
which displays the local density of states !

Alw) = Ak o). (2.11)

K

Figure 1 moves from one review to another, since it is a
classical illustration of the electron structure of SCSs. We see
how the system passes from the regime of weak electron
correlations to the regime of SCSs with increasing the

! The quantity A(w), which is defined by Eqn (2.11), is in fact the usual
density of states in the electron spectrum [denoted most frequently as
p(w)]. In the literature on the DMFT, A(w) is usually called the local
density of states, because it represents the spectral density of the auxiliary
single-impurity problem, which in essence should be calculated. The self-
consistency equation leads to the identity A(w) = p(w). In what follows,
we use both the A(w) and p(w) notation.
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Figure 1. Local spectral density in the Hubbard model at the temperature
T = 0 and band half-filling (n = 1) calculated within the DMFT [4]. D is
the half-width of the bare band.

Coulomb parameter U, such that at the band half-filling,
when the Fermi level lies at w = 0, the system passes from the
metallic to the insulating state. At intermediate values of U, a
three-peak structure occurs, which consists of a central peak
and two wide lateral maxima. These maxima correspond to
two Hubbard subbands revealed more than 40 years ago with
the help of the heuristic approach of decoupling of the
electron GF [1, 2]. The Hubbard subbands correspond to
the incoherent escape of an electron from the atomic level
occupied by two electrons with opposite spins, or to the
transition of an electron to an empty atomic level.

The origin of the lateral peaks can be understood by
examining Hamiltonian (2.3). The kinetic term becomes
diagonal in the momentum representation, whereas the
Coulomb term becomes diagonal in the site representation.
This means that in the case of weak interelectron interaction,
when U < W, the momentum representation is most con-
venient for the description, and the spectral density is
determined by an expression of type (2.1). On the contrary,
in the case where U > W, the site representation is most
convenient, and the spectral density is close to the density
characteristic of an isolated atom,

an 1/2
A(w)_w+U/2+w—U/2'

In the intermediate case, when U~ W, the spectral density
must reflect features of both limits, (2.1) and (2.12); therefore,
the three-peak structure shown in Fig. 1 appears.

Thus, two energy scales exist in the spectrum of single-
particle states of the Hubbard model. One of these is related
to the width of the peak of quasiparticle states (let it be called
ef); the other scale is related to the separation of peaks of
incoherent states (a value of the order of U). The low-energy
scale ¢ is defined by an expression g ~ ZD, where Z is the
statistical weight of the quasiparticle state [see Eqn (2.1)], and
D is the band half-width, or the Fermi energy at half-filling.
For SCSs, Z < 1; therefore, ¢ < D. The integrated intensity
of the high-energy excitations that form the incoherent peaks
is determined by the factor 1 — Z. As we see below, such a

(2.12)

structure of the quasiparticle spectrum is also characteristic of
some other models of SCSs and is observed experimentally in
different substances that belong to the class of SCSs.

2.3 Electron spectrum of the Hubbard model calculated in
the DMFT approximation

Figure 2 displays the results of calculations of the spectral
density in the Hubbard model at a finite temperature [29] that
were performed using another DMFT procedure. As we
already noted, it is necessary to solve an auxiliary problem
of the single-impurity Anderson model, which can be done
using various numerical methods. In the above-cited work [4],
the authors used the quantum Monte Carlo method (QMC),
and in [29], the numerical renormalization group (NRG)
method.? It is seen from Fig. 2 that the spectrum has a
three-peak structure in the range of intermediate values of U.
The intensity of the quasiparticle peak sharply decreases
(without becoming zero, however) in a vicinity of the critical
point, after which it gradually decreases to zero with
increasing U. Figure 3a shows the behavior of the
A(0) W(U/W) dependence with a change in temperature.
The hysteresis, which is revealed with increasing and decreas-
ing U, indicates the occurrence of a first-order metal—
insulator phase transition (Fig. 4). The critical values Ug
and Uy corresponding to the loss of stability of the metallic
and insulating phases (whose existence manifests itself in the
hysteresis, Fig. 3b), are the initial points of spinodal curves,
which intersect at the critical point 7., where a second-order
phase transition occurs. For 7 < T, there is a first-order

Lo b U/W = 1.05
YT ==-u/w=1.10
— —U/W=1.15
0g L ——U/W=120 X
0 0.5 1.0 1.5 20
Sy u/w
S 06 : N
S ¥ E)
)
0.4 |- : A
i 1
02 I \
4 \
0 | | | |
~15 -10 —05 0 0.5 1.0 1.5 2.0

/W

Figure 2. Evolution of the spectral density in the Hubbard model with
increasing U at a finite temperature 7= 0.0276 W, where W is the width of
the bare band. The inset displays the dependence of the quasiparticle peak
on U [29].

2 1In [29], the authors used the Fye—Hirsch algorithm [30] with the QMC
method. Recently, an extremely effective generalization of the QMC was
suggested, namely, the method of ‘continuous-time quantum Monte Carlo
expansion’ [31], which is free of the disadvantages of the usual QMC
method and allows performing calculations at very low temperatures.
There already exist first applications of the new method to SCS models
[32]. The efficiency of the method is so high that it allows making DMFT
calculations for actinides with several orbitals at the impurity center.
Using this method, it is likely possible to conduct LDA-+DMFT
calculations of electron spectra for arbitrarily complex SCSs.
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Figure 3. (a) Temperature behavior of the height of the quasiparticle peak
and (b) hysteresis observed upon an increase and decrease in U [29].

Semiconductor

Dielectric

Mwtal

Uc Ucl Ua U

Figure 4. Phase diagram of the Hubbard model in the (7, U) plane
(schematic) [9]. Dashed lines show spinodal curves; the solid curve
corresponds to a first-order transition; the ‘washed’ curves correspond to
a crossover.

phase transition; for 7> T, no phase transition between the
metallic and dielectric phases occurs and only a crossover is
observed.

Figure 5 displays the temperature dependence of the
electric resistance in the metallic phase of the Hubbard
model near the metal —insulator phase transition. This figure
was obtained in the DMFT approximation, where the
auxiliary problem of the effective single-impurity Anderson
model was solved using the method of iterative perturbation
theory (IPT) — one more method frequently utilized in the
DMFT framework. At low temperatures, p ~ T2; this
temperature range corresponds to the regime of 7' < ¢f. In
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Figure 5. Resistance of the metallic phase near the metal—insulator
transition (U = 2.3W) as a function of the temperature 7" according to a
Hubbard-model calculation in terms of the DMFT method [9]; the
temperature is expressed in units of the matrix element ¢ of hopping
between nearest neighbors. The inset shows the spectral density for three
temperatures marked on the p(7") curve by circles.

this interval of temperatures, the resistance is given by
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(2.13)
where py, is the Mott limit for p, which corresponds to the
mean electron path of the order of interatomic spacing a. A
sharp increase in p at T ~ ¢ corresponds to a ‘bad’
(‘incoherent’) metal, in which the quasiparticle peak is
strongly suppressed but still exists. Finally, in the region of
T> ¢f, the quasiparticles are completely absent and a
pseudogap manifests itself in the transport properties, which
determines the semiconductor nature of conductivity. The
inset in Fig. 5 demonstrates the suppression of the quasipar-
ticle peak with increasing temperature; precisely this feature
causes the nature of the temperature dependence of resistance
in SCSs.

The nature of the quasiparticle peak is completely under-
standable. This peak is in essence the Suhl—Abrikosov
resonance, which was first predicted in connection with the
problem of the Kondo effect in metals containing paramag-
netic impurities. It is also called the Kondo peak, which is
formed near the Fermi level as a result of the multiple
scattering of electrons on impurities accompanied by spin
flip. In the Hubbard model under consideration, there are
initially no localized spins at lattice sites, but there are spin
fluctuations, and the electron scattering on them leads to a
resonance of electrons on the Fermi surface. This phenom-
enon is considered in detail in Section 8.

Under deviation from half-filling, the three-peak struc-
ture is retained, but with an increasing level of doping
0 =n — 1, the lower Hubbard band is displaced toward the
chemical potential and the width of the quasiparticle peak
increases substantially; however, its height does not change
(Fig. 6a). It is seen from Fig. 6b that the maximum value of
the imaginary part of the spin dynamic susceptibility
substantially decreases with a decreasing level of doping.
Electron scattering on spin fluctuations, whose spectral
density is determined by Im y(w), leads to the quasiparticle
peak that represents the Suhl — Abrikosov resonance. Figure 6¢
shows the calculated temperature dependence of the spin—
lattice relaxation time 1/7}, which is determined by Im y(w).
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Figure 6. Evolution of the electron (a) and spin spectral density (b) in the
Hubbard model with an increasing level of doping. The calculation was
performed in the DMFT framework at 7=0 and U/W=2.
(c) Temperature dependence of the relaxation time 1/7) calculated at the
same value of the parameter U/ W [33].

This quantity changes with an increasing level of doping in the
same way as the spin density itself. The results of DMFT
calculations presented in Figs 2—6 demonstrate typical
behavior of the spin density of SCSs depending on the value
of the Coulomb repulsion U, electron concentration #, and
temperature 7. These dependences can serve as a theoretical
basis for the interpretation of the results of experimental
studies of SCSs.

3. Experimental tests of the DMFT predictions

3.1 Structure of the electron spectrum

The development of experimental methods of studying the
electron structure of solids has allowed confirming many
qualitative predictions of the DMFT method. First and
foremost, this refers to the three-peak structure of the
spectrum of substances in the strongly correlated metallic
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Figure 7. Comparison of the experimental and calculated spectral density
of V203 doped with Cr (in order to transfer the system into the region of
the metal —insulator phase transition) [7]: (a) according to the data in [35,
36] and (b) according to the newest data [37].

phase near the Mott transition. The existence of a Hubbard
subbahd located deep under the Fermi level, caused by the
incoherent processes of transitions at localized atomic levels,
was first demonstrated as early as 1992 in [34] on the example
of the compound NiS,_,Se, with the help of photoemission
spectroscopy (PES). The observation of a quasiparticle peak
in this compound was revealed later.

As an example of the observation of a three-peak
structure, we give Fig. 7a, which shows the spectral density
for V.03 measured with the help of PES (data points), and the
results of calculations using the LDA+DMFT (QMC)
method (continuous curve).? The theoretical curve has

3 The abbreviation used for this method means the following: DMFT
(QMC) indicates the method for solving the auxiliary problem of the
single-impurity Anderson model; LDA indicates the method of calculat-
ing the band structure of the compound. In the LDA, the exchange-
correlation energy depends only on the electron density of a homogeneous
electron gas [38].
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Figure 8. Electron density of SrVO3 and CaVOs; [10]: comparison of the experimental data obtained by the PES and XAS methods (symbols) and data

calculated in the DMFT framework (curves).

quasiparticle and noncoherent (Hubbard) peaks, whose
positions coincide with the positions of the experimental
peaks.

Figure 7b shows recently obtained experimental data and
the results of DMFT calculations for the paramagnetic—
metal (PM) phase. In Ref. [37], the correct relation between
the intensities of the quasiparticle and noncoherent peaks was
also obtained. The calculations were carried out for the
Coulomb potential U=4.2¢V. It was shown that the
intensity of the coherent peak in the PM phase varies by
only 10% as the temperature increases from 400 to 1200 K,
which also agrees with the experimental results.

Figure 8 shows the spectral density for two compounds,
measured by PES (below the Fermi level) and by X-ray
absorption spectroscopy (XAS) (above the Fermi level).
Both Hubbard subbands and a quasiparticle peak are clearly
seen. The results of calculations by the LDA+DMET
(QMC) method agree satisfactorily with the experimental
data.

Figure 9, which compares the spectral densities of four
compounds (with the same crystal structure) calculated using
the LDA +DMFT (QMC) method and the LDA method
(i.e., without taking correlations into account) is very
instructive. It can be seen that the LDA does not give
Hubbard subbands. For the SrVO; and CaVO3 compounds,
the entire spectral density is concentrated in the region of the
quasiparticle peak; therefore, these compounds, according to
the predictions of the standard band theory (with strong
correlations taken into account) are metals. The predictions
for the other two compounds, LaTiOs and YTiOs, differ
dramatically: the LDA predicts a metallic state, whereas
taking strong correlations into account leads to an insulating
state with a wide gap in the spectrum, which corresponds to
reality.

3.2 Phase diagram

We now consider how the phase diagram prediction in terms
of the DMFT method (see Fig. 4) agrees with the real phase
diagram. As an example, we use the phase diagrams of two
compounds (Fig. 10): V,03 and NiS,_,Se,. In the first case,

the metal —insulator phase transition occurs under the effect
of pressure or due to doping (see the upper abscissa scale). We
see that doping is equivalent to ‘chemical pressure,” because
the structure of the phase diagram is independent of which
pressure is applied, real or ‘chemical.’ In the second case, the
metal —insulator phase transition occurs as a result of doping.
The low-temperature regions, which correspond to magneti-
cally ordered phases, differ from each other. In V,0s3, only an
antiferromagnetic insulating (AFI) phase is realized at low
temperatures, whereas in NiS,_,Se,, there occurs an alterna-
tion of an AFI phase, a weakly ferromagnetic insulating
(WFI) phase, and an antiferromagnetic metallic (AFM)
phase.

This situation is quite typical of very different SCS
materials in which metal —insulator phase transitions occur;
the low-temperature phases can strongly differ in the nature
of magnetic or other types of ordering. This is related to the
differences in the crystal and electron structure of the
compounds, in which a significant role belongs to specific
magnetic interactions, different in magnitude and type in
different materials, which have not been taken into account in
constructing the phase diagram presented in Fig. 4. As
regards the high-temperature parts of the diagram, which lie
outside the region of magnetic ordering, they are very similar
and qualitatively correspond to the schematic diagram in
Fig. 4, although Fig. 4 presents phases as functions of the
Coulomb repulsion U and that shown in Fig. 10, as functions
of the pressure and concentration. However, it is necessary to
keep in mind that the abscissa axis in Fig. 10 corresponds to
the relative value of the Coulomb interaction U/ W, which can
change as a result of an increase in the matrix elements ¢;; of
electron transitions from site to site. An increase in W is
equivalent to a decrease in U; this leads to a similarity in the
phase diagrams shown in Figs 4 and 10 (we note that the
sequence of metallic and insulating phases is different in these
diagrams!). The specific features of the phase diagrams of
different classes of SCSs are considered in Sections 6—8. We
have not so far touched on the problem of the nature of the
paramagnetic state in the insulating and metallic phases, i.e.,
the problem of the degree of localization of atomic magnetic
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Figure 9. Results of the calculations of the spectral density for four isomorphic compounds with (thick curves) and without (thin curves) taking electron

correlations into account [8].
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Figure 10. Phase diagrams of V,0s3 (a) and NiS;_,Se, (b): I, insulator; M, metal; AFI, antiferromagnetic insulator; AFM, antiferromagnetic metal; WFI,
weak ferromagnetic insulator; PI and PM, paramagnetic insulator and paramagnetic metal (borrowed from [7].)

moments in SCSs, which strongly depends on the electron
structure of the matter and on the values of the energy
parameters. This question is considered when we discuss the
specific classes of SCSs.

4. Specific features of the electron structure
of d and f systems

4.1 d systems
In pure d and felements, and even more so in related chemical
compounds, there exist various electron states (atomic

orbitals) that make contributions to the density of states
near the Fermi level. This leads to the question of which
electrons must be considered in simplified models, such as
Hubbard or any other models of SCSs. Calculations of the
band structure of a substance by the LDA method (without
taking correlations into account) usually give a complex
pattern of dispersion curves ¢, originating from different
orbitals. In considering the physical properties of d and
f systems, we must, first of all, separate the orbitals related
to the electrons of the unfilled shells. These electrons remain
strongly localized in the solid state, whereas the s and p outer-
shell electrons become collectivized. Because the d and
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f electrons are strongly localized near the atomic cores of the
corresponding d and f elements, their on-site Coulomb
repulsion is especially large; therefore, its magnitude U must
be an important parameter of the electron structure.

It is necessary to note that the d or f'states emerge onto the
Fermi surface, as follows from an analysis of cohesion in the
series of transition elements depending on the number of
electrons in the unfilled shell. This conclusion also follows
from the results of numerous LDA calculations of the band
structure of d and f systems. The degree of localization of
electrons increases in the sequence of 3d, 4f, and 5f elements,
and this should be taken into account in constructing
simplified (basic) models of the corresponding systems.

In the case of 3d elements, a significant delocalization
(collectivization) of these electron states occurs and we can
restrict ourselves to taking only them into account in the
description of the physical properties of these substances,
such as the magnetic susceptibility and transport and
thermodynamic characteristics. In this situation, we can use
the Hubbard model with Hamiltonian (2.3) if we ignore the
degeneracy of electron states in the azimuthal quantum
number.

4.2 f systems

In the 4f and 5f elements (lanthanides and actinides), the
localization of electrons in the unfilled shells is stronger;
therefore, it is necessary to account for the collectivized
electron states originating from the outer shells. We arbitra-
rily call them s electrons. Then, we come to one of the two
basic models. The first is the periodic Anderson model
(PAM), which is specified by the Hamiltonian

H=> tjcico+ey np+U> nhnf
ijo ic i
+ Z(Vijcl’:fjrr + Vi ‘,j;cia) ; (4.1)
ijo

where ¢,/ (ci;) and f;;(fj,) are the respective operators of
creation (annihilation) of s and f electrons, nf = fF f;, is the
operator of the number of f electrons at a site i with a spin g, &
is the atomic level of the felectron, and V;; is the hybridization
matrix element of s and f electrons.

Thus, the PAM takes the completely localized f electrons,
collectivized s electrons, and their hybridization into account,
but ignores the interaction between s electrons and takes the
strong Coulomb interaction of f electrons into account.
Besides the parameters ¥ and U (the same as in the Hubbard
model), this model involves the hybridization parameter V.
The f electrons are initially considered completely localized,
but their motion over the lattice becomes possible because of
the hybridization with the collectivized electrons.

The second model, which accentuates the interaction of
spin and charge degrees of freedom in the f and d systems
through the exchange interaction, is defined by the Hamilto-
nian

H= Z Lijcis ¢jp — JZ(SI- So6') Cin Cig »

ijo ioo’

(4.2)

where S; is the spin operator of the unfilled electron shell of a
d or fatom localized at a site i, s is the spin of a collectivized
electron, and J is the so-called sd exchange (or sf exchange)
integral. Model (4.2) is called the sd model or, in recent years,
the Kondo lattice model (KLM).

If the Coulomb parameter U in Hamiltonian (4.1) or the
exchange parameter J in Hamiltonian (4.2) is large, this is
called the regime of strong electron correlations; then, when
dealing with these models, the same difficulties as in the case
of the simpler Hubbard model described by Hamiltonian (2.3)
appear. These difficulties can be overcome with the help of the
DMFT method. The corresponding results are considered in
what follows when we discuss those classes of SCSs that are
described in terms of the PAM or KLM. Anticipating these
results, we note that the strong correlations in both models
also lead to the appearance near the Fermi level of a sharp
quasiparticle peak, which determines the entire low-energy
physics in the corresponding domain of the model para-
meters. This confirms the previously expressed assertion
that the DMFT is the most universal adequate method for
describing various classes of SCSs.

We now consider what is neglected in the three basic
models represented by their Hamiltonians. We mean the
degeneracy of the electron states of the d or f type. The d-
type states are fivefold degenerate, but this degeneracy is
lifted in solids due to the effect of the crystalline field that acts
from the adjacent atoms. The character of splitting of a
degenerate level of a discrete atom is determined by the
symmetry of its environment. Many compounds of transi-
tion metals, e.g., oxides, have a cubic symmetry. The atoms of
nontransition elements (ligands, e.g., oxygen) frequently
form octahedra or tetrahedra around the transition-element
atom. In a field of cubic symmetry, the fivefold degenerate d
level is split into two levels, which belong to two groups of
states: tyg(dyy, dy-, d-) and eg(dy2_)2,d;.2_,2). In the octahe-
dral environment, the triplet states ty, have a lower energy
than the doublet states e,. In the tetrahedral environment, the
positions of these levels are reversed. Thus, depending on the
environment, levels of either the to, or e; symmetry are filled,
and we deal with actual electrons (lying near the Fermi
surface) that are either triply or doubly degenerate. This
group of levels spreads to form a band, and precisely this
band should be associated with the electrons considered in the
Hubbard model. In calculating the electron structure of a
specific d compound according to the LDA+DMFT
method, we must consider precisely these electronic states.

In f systems containing lanthanides or actinides, the
situation is different: the 4f states and, moreover, the
5f states in the solid state are localized more strongly than
the 3d states; therefore, for describing their properties
(primarily, transport properties), it is also necessary to
consider the group of collectivized electrons and the interac-
tion with them via hybridization or exchange. We should
therefore use models that are more complex than the
Hubbard model, namely, the PAM or the sd model [28]. It
should immediately be noted that the PAM is a more general
model and can be reduced to the sd model under certain
conditions [39].

5. Compounds of 3d transition metals

5.1 Metal —insulator phase transitions

For many years, the central problem in the study of
compounds of 3d elements was the nature of the metal—
insulator (MI) phase transition. It was not clear how a metal
with an incompletely filled electron band can become an
insulator. It was Mott who first gave a physical explanation to
this phenomenon [40 —43]. According to his intuitive idea, the
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strong electron —electron interaction (which is ignored in the
band theory) can be responsible for this phenomenon.
Indeed, we imagine a substance that consists of atoms, each
contributing one electron to the band of collectivized states.
Without the Coulomb interactions, this substance is metallic.
But if the strong Coulomb interaction U of two electrons that
fall onto the same atom is taken into account, then a high
energy is required to transfer electrons from site to site. In the
case of half-filling, each atom has one electron, and hence the
transfer of electrons over the lattice becomes impossible at
large U. In other words, the band of single-particle states is
split into two subbands such that the lower includes the
system with one electron per site, the upper includes the
system with two electrons per site, and the Fermi level lies in
the gap between these subbands. Thus, upon half-filling of the
initial band, the substance becomes insulating. The metal—
insulator phase transition at n» =1 is called the Mott
transition.

Later, Hubbard confirmed Mott’s idea by calculations in
the framework of the model that bears his name; the bands
split as a result of the electron correlations are therefore called
the lower and upper Hubbard subbands. The results of
DMEFT studies presented in Section 3 confirm this picture of
the electron spectrum of the Hubbard model and determine
the fine structure of the spectrum of the metallic phase near the
phase transition. However, the insulating state of the system at
U> U, and n=1 has an effect on the metallic phase at
concentrations n different from unity but close to it, which
can lead to the extension of the insulating-phase field into the
range of electron concentrations n # 1. Thus, the occurrence
of the metal —insulator phase transition is expected at n = 1
and at a certain critical value of the ratio U/W, but also in
some vicinity of the line » = 1. Hence, it follows that there are
at least two ways of realizing the phase transition in
experiments on real SCSs: one is connected with a change in
the band width W (and therefore with an increase in the
parameter U/ W), e.g., by the application of an external or
internal (chemical) pressure, and the second is connected with
a doping of the initial system. The first way is referred to as
BC-MIT (from Bandwidth-Control Metal —Insulator Transi-
tion), and the second, as FC-MIT (from Filling-Control
MIT).

We briefly discuss how the problem of the metal—
insulator phase transition can be considered on the basis of
the Fermi-liquid theory, in which each state of an electron in
the lattice with a given momentum is associated with a state
corresponding to noninteracting electrons in the same lattice;
in the framework of this theory, it seems impossible to
approach the insulating phase. We recall, however, that in
the Fermi-liquid theory, the spectral weight of a quasiparticle
state is determined by the quantity

m
L ~—
m*’

zZ<1, (5.1)
which depends on the ratio of the electron mass m to the
quasiparticle effective mass m*. If m* increases as the
Coulomb interaction increases, then the intensity of the
quasiparticle peak decreases and we have Z — 0 as
m* — oo. Thus, the divergence of the effective mass of
charge carriers as a result of the electron—electron interac-
tion indicates a transition of the metal into the insulating
state, although a direct description of the insulating phase in
the framework of the Fermi-liquid theory is impossible. An
approach to the description of the insulating phase was

theoretically developed in [44]. An increase in the effective
mass of carriers in the vicinity of the metal —insulator phase
transition is observed in many SCS calculations. An increase
in m* leads to many anomalies in the behavior of the metallic
phase of real SCSs near the phase transition, and the nearer
the phase transition to the second-order phase transition, the
more distinct these anomalies are. We have already seen
from the results of calculations of the electron structure by
the DMFT method that the first-order transition can occur
in a simple model, e.g., the Hubbard model, as a result of
taking correlations into account. However, as a result of
interaction of the electron system, for instance, with an
atomic disorder or with lattice degrees of freedom, a first-
order transition is usually developed instead of a continuous
phase transition.

The metal —insulator phase transition caused by electron
correlations is usually called the Mott or Mott—Hubbard
phase transition. We emphasize its difference from the phase
transitions caused by the appearance of any long-range order,
for example, magnetic, in which case an energy gap appears at
the boundary of the new Brillouin zone (and disappears at
T > Tn). We note one more (non-Mott) type of metal—
insulator phase transition, under which a certain super-
structure appears in a stoichiometric compound at 7' < Tn
and the substance is insulating, but pockets of carriers appear
at the boundaries of the new Brillouin zone and the substance
becomes conducting with a deviation from stoichiometry.
This situation is frequently observed in cuprates in which
high-temperature superconductivity is realized.

Along with the Hubbard model, the so-called pd model is
used for an analysis of the compounds of 3d elements; in this
model, d states at the transition-element atoms and p states at
the atoms of ligands are taken into account. The Hamiltonian
describing the pd hybridization can be represented as

H=ta) g+ Usa ) niinij+e ) mp
io i Jjo
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(5.2)

where 7 is the order number of an atom of the transition
element and j is the order number of an atom of the ligand.
This model takes only the atomic levels of d and p electrons
into account and ignores electron motion over the lattice.
However, the pd hybridization allows the electrons to pass
from the d sublattice into the p sublattice with an effective
hopping matrix element between the nearest sites in the d
sublattice

f~—P (5.3)

which determines the width of the carrier band.

In this situation, an important role is played by the charge
transfer energy 4 = eq — ¢, (in the compounds of 3d elements,
the d level lies above the p level of ligands). When 4 > Uyq,
the width of the hybridized band is ng /A < Uqq and the
system is a Mott insulator. When 4 < Uyq, two energies
should be compared: the band width Vrfd /4 and the energy
gap 4 that separates the energies of the d and p states. At a
sufficiently large value of A4 and with the condition
V;d /4 < A < Uy satisfied, a charge-transfer metal —insula-
tor phase transition (CT-MIT) occurs [45].
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Direct information on the electron structure of real
substances can be obtained using spectroscopic methods.
A comparison of experimental data with the results of
model calculations allows determining the basic parameters
of the Hamiltonian; the necessary a priori estimates of these
parameters can be made, for example, via LDA calcula-
tions.

5.2 Various types of chemical compounds

An analysis of experimental and theoretical data on the
electron structure and metal —insulator phase transitions in
various compounds of transition 3d elements can be found in
the fundamental review by Imada, Fudjimori, and Tokura
[46] published in 1998 (see also [47]). The list of the
compounds investigated is presented in Table 1. As is seen,
oxides predominate in the list, but sulfides and selenides are
also present.

The list begins with four BC-MIT compounds: V,03, NiS,
NiS,_,Se,, and RNiOj. The first two have long been known
as prototypes of compounds in which a metal—insulator
phase transition can occur under the external or chemical
pressure. The V,03; compound is regarded as a Mott
insulator, whereas NiS and NiS,_,Se, are regarded as
insulators with a charge transfer between the 3d states of Ni
and np states of the chalcogen. In this case, the band of np
states is filled, and the Hubbard subband of Ni is empty. The
relation between the width of the filled band and the energy
gap between the np and 3d bands can be changed by applying
pressure or by doping. An analogous situation occurs in
RNiO; compounds, where R is a rare-earth element in the
range from La to Lu.

The V,03; compound is the most thoroughly studied of the
compounds in which the metal—insulator phase transition
occurs. This compound has a corundum structure, in which

Table 1. Compounds of 3d elements in which metal —insulator transitions were revealed (according to [46]).

Compound Type of transition* Néel temperature** Parameter®** Transition™*** Structure,
~, K dimension*****
V,0;_, MH ~ 180 FC, BC 1 3
NiS,_,Se, CT 40-80 BC 1 Corundum, 3
RNiO; CT 130-240 T,BC 1 Rutile, 3
NiS;_.Se, CT 260 T, FC, BC 1 Perovskite, 3
Ca;_,Sr,VO; — — — — 3
La,_,Sr,TiO3 MH 140 FC C Perovskite, 3
La;_,Sr,CuO, s*¥***** CT 110 FC C lor3
HTSC cuprates
Sri4—Ca,CupOy CT — FC C lor2
BaVsS; MH ~ 35 T C 1
Fe;0y4 — — T 1 Spinel, 3
La;_,Sr,FeO; CT 740 (x = 0) FC Perovskite, 3
134(x=1) T

Lay_,SryNiOy, CT ~ 500 (x=y=0) FC C 2, K,NiFy
La;_,Sri+ MnOy CT 120 — — 2, K,NiFy
La;_,Sr,MnO; CT 140 FC C Perovskite, 3
Las_5,Sri42:Mn, 07 CT FC C 2
Manganites See Section 7
FeSi T CR Perovskite, 3
VO, (MH) T 1 lor3
Ti,0; MH FC, T Rutile, 3

T =400-600 K Corundum
LaCoO; CT T CR Perovskite, 3
Laj17-xA4:VSs17 (MH) FC (x. ~ 0.35) CR 2

T=280K

* MH — MH, Mott—Hubbard phase transition; CT, phase transition with charge transfer;

** Néeel temperature of stoichiometric compounds;

**% Control parameter responsible for the phase transition: BC, bandwidth; FC, band filling; 7, temperature;
**#% Type of phase transition: 1, first-order phase transition; C, continuous (second-order) transition; CR, crossover;

***kx% Type of crystal lattice and (or) effective dimension;
#ikkkk See Table 2.
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the V atoms form chains along the ¢ axis and a honeycomb
structure in the basal plane. Each V atom is surrounded by an
octahedron consisting of trigonally distorted atoms; as a
result, the triply degenerate ty, level is split into two sublevels
(one nondegenerate and one doubly degenerate) and, accord-
ing to band-structure calculations, the nondegenerate level
should be related to electrons with a strong correlation, which
prevail on the Fermi surface.

Therefore, the nondegenerate Hubbard model can be
adequate for the description of the V,03 compound with the
parameters W and U that satisfy the condition for the metal —
insulator phase transition, i.e., the relation U ~ W.

The photoemission spectra (see Fig. 7) indicate the
existence of a wide region of noncoherent states under the
Fermi surface, which correspond to the lower Hubbard
subband, and of a quasiparticle peak at the Fermi level. The
DMFT calculations well confirm these experimental data.
From the phase diagram in Fig. 10, it is apparent that the
metal —insulator phase transition that occurs under the
external or chemical pressure applied to the compound is of
the BC-MIT type. The experiments also show that the
electron specific heat (the coefficient y in the relation
C = yT) increases in approaching the phase transition from
the side of the metallic phase due to a decrease in pressure,
which corresponds to an increase in the effective mass by a
factor of 3—5. The total body of experimental data indicates
that V,0; exhibits the Mott phase transition described by the
nondegenerate Hubbard model. The results of investigations
of the electron structure by the DMFT method have already
been discussed in Section 3, where some other compounds
were also considered that are given in Table 1 before the
cuprates. The DMFT gives a satisfactory description of these
representatives of SCSs. The cuprates, which are high-
temperature superconductors, are considered in Section 6.

Moving further down Table 1, we come to a group of
compounds including Fe;O4 and strontium-doped com-
pounds LaFeO;, La;NiO4, and LaMnQOy, in which the
metal —insulator phase transition is caused by an ordering of
the different-valence ions of the transition element. The
clearest and best-known representative of such compounds
is Fe304.

The magnetite Fe;O4 has a spinel structure in which one-
third of the Fe ions are located at sites that have a tetrahedral
environment and two thirds at sites with an octahedral
environment. The tetrahedral and octahedral sites are
respectively called A and B sites. At a temperature
Ty =~ 120 K, there occurs a change in the resistance reaching
two orders of magnitude, which is caused by the ordering of
Fe>* and Fe** ions—a phenomenon known as a Verwey
phase transition. At the A sites, only Fe3* ions are found,

Table 2. HTSC cuprates.

whereas at the B sites, one-half of the ions are Fe** ions and
the other half are Fe?* ions, which have the respective spins
S'=5/2 and S = 3/2. At the point Ty, an ordering of these
ions in the B sublattice begins, such that the low-temperature
ordered phase becomes almost insulating. This ordering
occurs as a result of the Coulomb repulsion of ions located
on adjacent sites in the B sublattice, because this process
minimizes the Coulomb energy of the crystal. Magnetite is a
ferrimagnet in which the spins in the A and B sublattices are
antiparallel; the magnetic ordering appears at the Curie
temperature 7¢c = 858 K, and hence the magnetic and
charge ordering are well separated.

Charge ordering of another type, which was revealed in
La;_,Sr,FeOs at a temperature below 210 K and x = 2/3, is
accompanied by the development of an antiferromagnetic
order. One of the initial compounds, LaFeOs, is an anti-
ferromagnetic insulator with 7n =134 K. In the
La;_,Sr,FeO; solid solution, the Néel temperature mono-
tonically decreases as x increases. When x reaches approxi-
mately 2/3, the resistance at 7= 207 K increases sharply;
upon cooling, a narrow thermal hysteresis is observed, which
indicates a first-order transition in the phase with two types of
long-range order: insulating and antiferromagnetic.

The compound La;NiOy4, which has the structure of the
layered compound K;NiQy, exhibits a cooperative ordering
of holes upon doping by strontium, and a simultaneous
ordering of spins of Ni ions. Depending on the Sr concentra-
tion, either charge ordering of the spin-density-wave type can
arise or charged diagonal domain walls can appear in
La, Sr,NiQO,4. Charge ordering manifests itself in anomalies
in the transport and optical properties at Sr concentrations
x=1/3and 1/2.

We mention one more compound, La;_,Sr;;MnQOsy,
which also exhibits charge ordering near x =1/2. The
stoichiometric compound LaSrMnOy (x = 0) can be consid-
ered a Mott insulator with an antiferromagnetic ordering.

The group of manganites with a perovskite structure (see
Table 1), which belongs to a wide class of compounds with a
ferromagnetic ordering exhibiting a ‘colossal’ magnetoelec-
tric effect, is considered in Section 7.

6. Cuprates as high-temperature superconductors

6.1 Basic experimental data

High-temperature superconductivity was discovered in the
group of doped copper oxides whose structure is based on the
perovskite structure (Table 2). The most important structural
elements in these oxides are CuO, planes separated by planes
consisting of La or Nd, Y, and Bi atoms. Each Cu atom is

Compound Type n, K Parameter Transition T, K Range of doping in
of transition which T, # 0
Lay_,Sr,CuOy4 CT 300 FC C 40 x =0.06—-0.25
Nd,_Ce,CuOy4 CT ~ 240 FC C 24 x=0.15-0.17
YBa,;Cu;07_, (YBCO-Y123) CT ~ 400 FC C 94 y=0.1-0.7
Bi,SrpCa;_ R Cuy 0345 (Bi2212)  CT 260 FC C 90 0=0.11-0.18
HgBa,Ca,_;Cu, 02,125 CT FC C 97-135 0=0.08—0.12

(n=1-3)

164 (P = 31 GPa)
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surrounded by six atoms that form an octahedron. This
structure is characteristic of the initial stoichiometric com-
pounds, which are antiferromagnetic insulators. High-tem-
perature superconductivity appears in the doped compounds
upon the substitution of a nontransition element by atoms of
an element with a different valence.

We first consider the initial compound La; CuQOy4 in more
detail. Because it contains trivalent La ions and divalent Cu®*
ions with a d° configuration, the t,, states are completely
filled. In the crystalline field of a distorted octahedron, of the
two e,-symmetry states, the dj,>_,2 state is also filled and the
dy2_,> state is only half-filled (because there is also a
degeneracy in spin). The strong on-site Coulomb repulsion
leads to the formation of a gap, and the compound becomes
insulating. On the energy scale, the 2p, orbitals of oxygen
lie near the d.» ,» orbitals of copper; therefore, a pd
hybridization of adjacent atoms of Cu and O occurs, and
La,CuQy4 is an example of compounds of the CT type,
according to the arguments given in Section 5. The
stoichiometric compound La,CuQy is an antiferromagnetic
insulator with the Néel temperature Ty ~ 300 K and
remains insulating at temperatures slightly exceeding Ty
due to strong correlation effects.

The doped compound La,_,M,CuQOy4, where M = Sr, Ba,
Sr, is an insulator at x < 0.05 but becomes metallic at large x;
the antiferromagnetic long-range order is destroyed in this
case, but a short-range magnetic order is retained in the entire
metallic region. The magnetic-order correlation length ¢
changes with increasing x in accordance with the law
¢ ~a/\/x, where a is the lattice constant. Because of the
large crystalline anisotropy, the fluctuations in magnetic
order are strong in the CuO» plane; therefore, the correlation
length & in fact coincides with the average spacing between the
dopant atoms. The electric properties, most of all conductiv-
ity, also manifest strong anisotropy; therefore, the compound
is quasi-two-dimensional from the standpoint of electric and
magnetic properties. Upon doping, the dopant atoms replace
only La and do not fall into the CuO» planes. The divalent Sr,
Ba, and Caions, replacing the trivalent La ions, produce holes
in the CuO; planes, which are charge carriers.

The antiferromagnetic exchange interaction is very large:
J =~ 1600 K, although Tx =~ 300 K. This large difference
between J and Ty confirms the idea that this compound is a
quasi-two-dimensional magnetic material. If this compound
were exactly two-dimensional, no magnetic long-range order
could exist in it. However, owing to the existence of a certain
exchange coupling between the planes, a three-dimensional
magnetic order with T that is substantially smaller than J is
established in the compound, as must be the case for quasi-
two-dimensional systems. It is believed that La,CuQOy is a
quasi-two-dimensional Heisenberg antiferromagnet with the
magnetic moment at the Cu ions equal to 0.4puz. The
deviation in the value of the magnetic moment from 0.5 uy is
caused by quantum fluctuations, which are always present in
any antiferromagnetic structure.

The phase diagrams of HTSC cuprates are similar;
therefore, in Fig. 11, we give only a schematic phase diagram
characteristic of different groups of HTSC materials in their
general features. On the (7, x) plane, for example, for
La,_,SryCuQy4, the diagram looks as follows. For
0 < x < 0.05, there exists an insulating antiferromagnetic
phase with Ty that rapidly decreases from the maximum
value at the stoichiometric composition to zero. With a
further increase in x, a normal metallic phase with a magnetic
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Figure 11. Phase diagram of HTSC cuprates (schematic).

state of the spin-liquid type arises, and then a superconduct-
ing phase appears. The temperature of the superconducting
transition T, passes through a maximum at x ~ 0.15 and
again becomes zero at x =~ 0.3. A normal metallic phase is
realized outside the interval 0.05 < x < 0.3. The maximum
values of T, at x, ~ 0.15 are approximately 40 K; this xy, is
usually called the optimum concentration. The range x < xy,,
in which the superconducting state is observed, corresponds
to a regime called underdoped, and the range x > xy
corresponds to the regime called overdoped. In Fig. 11, a
dashed line that goes through the region of the normal
metallic phase, where the nature of the normal state changes
and a crossover from the usual state of the metallic system
(above the T* line) to a special metallic state is observed (see
Section 6.2).

We have described the basic properties of the
La, ,Sr,CuQy system in detail. Another family of cuprates,
Nd,_,Ce,CuQy, is remarkable because the doping with
cerium introduces electrons rather than holes into the CuO;
planes; however, the general features of the phase diagram
remains as before, although the dimensions of the phase fields
on the (7, x) plane change noticeably: the antiferromagnetic
insulating phase exists for 0 < x < 0.13 and is immediately
followed by a metallic superconducting phase whose existence
interval in the neodymium system is narrower than in the
lanthanum system.

6.2 Pseudogap state

We now return to the phase diagram in Fig. 11 and focus on
the line denoted by T*. It was already long ago noted that the
properties of the normal metallic phase differ strongly for
underdoped and overdoped cuprates. In the latter case, the
metallic phase is described sufficiently well in terms of the
Fermi-liquid approach, i.e., there is a definite Fermi surface
and the damping of quasiparticles tends to zero upon
approaching this surface. In the case of underdoped systems,
at sufficiently low temperatures (7' < T¥), anomalies in all the
electron properties of the system are observed. The change in
the properties upon intersection of the 7* line is not sharp and
represents not a phase transition but a crossover from the
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usual Fermi-liquid state to a pseudogap state. The concept of
a pseudogap state means, first and foremost, a reduction in
the density of states at the Fermi surface. This follows, in
particular, from a very noticeable decrease in the linear
coefficient y in the electronic specific heat and a decrease in
the Pauli magnetic susceptibility y, upon crossing the 7 line
and especially from the data of tunneling experiments and of
angle-resolved photoelectron spectroscopy (ARPES).

The ARPES method allows directly measuring the
spectral density of quasiparticles in the vicinity of the Fermi
surface and reconstructing the Fermi surface itself. It turned
out that a characteristic phenomenon was observed in all
classes of HTSC cuprates that were investigated, namely, the
destruction of part of the Fermi surface along the directions
(0,ky) and (0,k) of the Brillouin zone, whereas in the
diagonal directions (ky, k,), the Fermi surface remained in
the usual sense: the intensity of the ARPES spectrum
decreases sharply upon crossing it. In the (0,k,) and (k,,0)
directions, the change in A(k,®) occurs in a wide interval;
moreover, at a fixed quasimomentum, the density 4(k, w) has
a two-humped structure with a minimum at the ‘former’
Fermi surface, which could exist in the absence of a
pseudogap state, for example, at 7> T*. A detailed discus-
sion of this phenomenon can be found in the fundamental
reviews [48, 49], and recent data can be found in review [50]
devoted to an ARPES study of La, ,Sr,CuQy, and in [51]
devoted to studying the Bi2212 system (see also the references
given in these works). Thus, in HTSC cuprates, the Fermi
surface has an ‘arched’ nature, i.e., is preserved only on the
arcs that adjoin the diagonal directions of the Brillouin zone.

These unusual properties of the normal phase of under-
doped cuprates undoubtedly must influence the HTSC
formation mechanisms and, therefore, they immediately
drew considerable attention of theorists. There are two
scenarios for the appearance of a pseudogap state. In one of
them, the appearance of a pseudogap is connected with
fluctuations of Cooper pairs at T > T, which lead to a
coherent superconducting state at 7.. Another scenario is
based on fluctuations of the spin or charge order parameters,
which in the metallic phase of all cuprates are very large,
although both the magnetic and insulating long-range orders
are absent in the range of existence of the superconducting
phase. The first mechanism is apparently less probable
because the pseudogap state manifests itself most strongly as
the level of doping decreases to x = 0.05, in proportion to
moving away from the superconductivity region. However,
the fluctuations in spin order grow upon approaching the
stoichiometric composition, at which the system becomes an
antiferromagnetic insulator.

We now consider the dynamic magnetic susceptibility of
the metallic system that is in a state close to the antiferromag-
netic ordering [52]:

éz
T1+8q-Q)P —iwjo,

7(q, ) (6.1)

where Q = (£m, Fn) is the wave vector of the antiferromag-
netic structure in the insulating phase, wy is the characteristic
frequency of fluctuations, and ¢ is the correlation length of
spin fluctuations. The interaction of electrons with spin
fluctuations is proportional to y(q,w); therefore, it must
sharply increase for those electrons at the Fermi surface
whose wave vectors are close to the boundaries of the
magnetic Brillouin zone, or for electrons located on the flat

segments of the Fermi surface (if they exist) separated by the
vector Q. Two models thus appear in which the pseudogap
state can manifest itself: the model of ‘hot’ spots and the
model of ‘hot’ regions near the Fermi surface [48]. Under-
doped systems exist near the band half-filling, and hence the
Fermi surface undisturbed by band correlations lies near the
magnetic Brillouin zone, and one of the two models can be
realized in this case.

Near the ‘hot’ spots in the k-space region of the width ¢ !,
electrons are strongly scattered with a change in the
momentum by the vector Q, which leads to the opening of a
pseudogap in the vicinity of these points, similarly to how a
gap opens on the entire Fermi surface due to the appearance
of an antiferromagnetic phase if the bare Fermi surface
involves nesting. If we disregard the dynamics of spin
fluctuations and consider the static fluctuations to be
Gaussian, then the problem of the interaction of electrons
with such fluctuations can be solved exactly in the one-
dimensional case [48], and its solution can be used for a
qualitative study of the situation in the two-dimensional case.
The results of calculations indicate the pseudogap character
of electron states in the hot regions of the Fermi surface; in
particular, they reflect the two-hump structure of the spectral
density of states (Fig. 12).

In the above approach, the strong electron correlations
inherent in all HTSC cuprates were ignored. The Coulomb
interaction was not taken into account explicitly at all,
although implicitly it is present in the expressions for the
correlation length & and for the force of interaction of
electrons with spin fluctuations 4, which were introduced
phenomenologically, but their microscopic nature was based
on the (Coulomb) interaction of electrons. The strong
Coulomb correlations, as we saw above, are taken into
account most effectively in the DMFT. Keeping in mind the
application of the theory to cuprates, the authors of [53, 55—
57] suggested a hybrid approach by combining a microscopic
DMFT method and the above-described method based on
including static spin fluctuations [48] through the phenomen-
ological parameters £ and 4. The Coulomb correlations in the
framework of the single-band Hubbard model can be taken
into account in the standard DMFT scheme under the
assumption that the self-energy part of the electron GF
2 (w) depends only on frequency. The presence of inhomo-
geneities in the system, which are taken into account through
the correlation length &, leads to a contribution to the self-
energy 2 (w) that depends on the quasimomentum. The X ()
and X (w) contributions are assumed to be additive. With this
approach, which was called DMFT + X, and the parameters
of model U = 4 and n = 0.8, the density of states p(w) and
the spectral density A(k,®) were calculated; the two-hump
structure of the spectral density indicated the formation of a
pseudogap state. The calculation of dispersion curves showed
that the Fermi surface has a hole structure; for momenta with
the directions close to (0,0)—(n, 7t), well-specified quasipar-
ticles exist, whereas in the direction toward the points (0, )
and (m,0), a typical two-hump structure of A4(k, w) appears
such that we can speak of the destruction of the Fermi surface
near these points (Fig. 12a).

Figure 12b shows the real part of the optical conductivity
calculated for the same values of the parameters at two
temperatures and two values of the intensity of the pseudo-
gap fluctuations 4. It is seen that at nonzero 4, a dip appears
in the Re g(w) curve in the metallic phase at low frequencies,
which gradually disappears with increasing the temperature.
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Figure 12. Effects of the pseudogap state in the Hubbard model obtained
on the basis of DMFT + X calculations using the parameters U = —4¢,
t'" = —41, and n = 0.8: (a) the spectral density A(k,®) along symmetry
directions in the first Brillouin zone F(0,0) — X(m,0) — M(n,n) —
I'(0,0) at 4 = 2r and 7' = 0.0088¢ [53]; and (b) the real part of the optical
conductivity at two temperatures, r = 0.25 eV, (cf/a)’1 =0.1[54].

At high frequencies (of the order of w ~ U), together with a
Drude peak, a wide maximum appears caused by the electron
excitations and by transition of electrons into the upper
Hubbard subband. In the insulating phase, the Drude peak
disappears, and the conductivity at w = 0 decreases rapidly
with decreasing the correlation length & of static fluctuations.
This picture of the behavior of Re g(w) corresponds to that
observed in cuprates.

This approach meets with certain difficulties, most of all
in the substantiation of the additivity of X(w) and X (w); but
this approach is attractive because it allows studying the
phenomenon while changing the parameters ¢ and 4 that
characterize fluctuations in the system, although these
parameters themselves are only implicitly determined by the
chosen values of the basic model parameters U and n. We note
in connection with the above that the DMFT + X} method,
which takes spatial fluctuations into account, is a heuristic

approach rather than a systematic method of expansion in
terms of the parameter 1/d. In recent years, various proposals
have appeared for the introduction of spatial fluctuations into
the DMFT scheme, mainly by passing from the lattice
problem to the problem for a certain local cluster (rather
than a single site) embedded into an effective medium that
creates a dynamic mean field acting on this cluster [12]. The
question of going beyond the limit d — oo and, thereby, of
including spatial fluctuations into the DMFT scheme is
considered in a number of serious theoretical studies [58,
59], although there is still no complete clarity in this problem.
The various new approaches proposed, including those that
are entirely microscopic (do not use the phenomenological
quantities ¢ and A4), are discussed in [48, 51, 54]. We also
mention paper [53] devoted to the extension of the
DMFT+ 2, method to the case where the real band
structure of a substance calculated on the LDA basis is
taken into account instead of a model Hubbard Hamiltonian
being used. This approach was called LDA + DMFT + .

In [53], this approach was applied to the compound
Bi>Ca,SrCu,0Og, which was selected because numerous
ARPES data are available for such systems. In [53], the
authors considered the specific structure of the d,»_,»
electron states for Cu ions, which were calculated within the
LDA method. The LDA data were used to calculate the basic
parameters that determine the low-energy physics of the
system, i.e., the matrix elements ¢, ¢/, ... of the transitions
between the nearest and next-to-nearest neighbors, the local
Coulomb potential U, and the value of the spin—electron
interaction 4. The calculations were performed for an
underdoped compound with 6 = 0.15, 4 =0.21 eV, ¢ = 5aq,
and 7 = 255 K. The results of calculations of p(w), A(k,w),
the Fermi surface, and ARPES spectra confirm the general
picture of the pseudogap state and agree well with the
experimental data.

The majority of ARPES investigations of cuprates were
performed on the Bi2212 system [60]; the results of the first
successful studies of LSCO are given in [61]; the results of
recent studies are given in [50], where the ARPES spectra of
La,_,Sr,CuO4 were studied in detail in the concentration
range 0.03 < x < 0.30. These experimental results confirmed
the evolution of the electron properties with a change in the
level of doping described above on the basis of theoretical
studies. In the overdoped regime, the system behaves like a
Fermi liquid, but in the underdoped regime, all signs of the
pseudogap state are revealed at hole concentrations down to
x = 0.03. The Fermi surface manifests itself on the arcs lying
in the direction toward the point (, ), but a pseudogap state
is revealed in the directions toward the points (0, ©) and (n, 0).
In a wide range of x, a ‘large’ Fermi surface (rather than
pockets at the boundaries of the magnetic Brillouin zone) is
observed; with an increase in the level of doping, it changes
from the hole to the electron type. We also note that the
ARPES spectra allowed restoring the dispersion curves for
the quasiparticle states and determining the transition matrix
elements ¢ and ¢’, which agree well with the data of LDA
calculations.

The ARPES studies of HTSC cuprates and other SCSs
revealed characteristic kinks in the dispersion curves at
energies several hundred meV away from the Fermi level.
The appearance of kinks is a very common phenomenon in
systems with d and f elements. Initially, the kinks were
discovered at energies 40— 70 meV and their appearance was
ascribed to the interaction of electrons with collective modes
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in the system. Phonons, magnons, and other branches of Bose
excitations can serve as such modes. In a recent work [62], it is
shown that a strong electron—electron interaction can also
generate kinks when a three-peak structure with well-
separated Hubbard subbands is formed in the system. These
kinks lie inside the quasiparticle spectral peak and separate
the region of the Fermi-liquid behavior of the system from the
deeper regions (with respect to the Fermi level) located inside
the central peak, where the behavior of quasiparticle states
differs from the Fermi-liquid behavior. The position of these
high-energy kinks thus determines the applicability limits of
the Fermi-liquid state for SCSs, which cannot be determined
in the framework of the Fermi-liquid theory. The existence of
such kinks, which was theoretically predicted in the Hubbard
model, must be a characteristic property of SCSs. A detailed
bibliography on the ARPES studies of various SCSs in which
both low-energy kinks caused by electron interaction with
bosons and high-energy kinks appearing due to Coulomb
interaction between the electrons is given in [62].

We note that apart from the two above methods
(phenomenological and microscopic) of investigation of the
pseudogap state, which are based on the DMFT, there is one
additional microscopic approach based on Hubbard’s idea to
include a large Coulomb energy in the zero-approximation
Hamiltonian and regard hopping (a specific mode of electron
transfer over the lattice) as a perturbation. In the framework
of the self-consistent Born approximation (SCBA), this
approach allows obtaining an integral equation for the self-
energy part of the electron GF X (k, w), which describes the
interaction of the strongly correlated (Hubbard) electrons
with spin fluctuations in the system [63].

In the SCBA approach, in contrast to the DMFT method,
the dependence of self-energy not only on the frequency but
also on the momentum is taken into account; however, the
SCBA involves an unknown quantity, the dynamic spin
susceptibility, for which an equation relating it to the electron
GF should be written in order to determine both these
quantities self-consistently. This is a very difficult problem,
which explains the large popularity of the DMFT, where only
the electron GF has to be calculated, although this advantage
comes at the expense of ignoring spatial correlations in the
system. Therefore, the SCBA method is a very useful
supplement to the DMFT method.

In practical work with the SCBA approach, some
approximation for the dynamic susceptibilities must be
chosen. In [63], the SCBA equations were solved numerically
using the following values of the parameters, which, accord-
ing to the estimates of the authors of that work, correspond to
the parameters of real cuprates: U = 8¢ and 4¢, t = 0.4 eV,
t = —0.3¢', and ws = 0.4 ¢ (wy is the width of the spectrum of
spin fluctuations). The calculation was performed for two
values of the level of doping (6 = 0.05 and 0.3) and two
temperatures (7 = 0.03 7 ~ 140 K and 7 = 0.31¢). The calcu-
lated characteristics of the quasiparticle spectrum agree well
with the DMFT results for cuprates discussed above. Thus, in
the underdoped regime, there arise a pseudogap state in the
vicinity of points (0, ) and (r, 0) and quasiparticle states that
adjoin the diagonal direction. In the overdoped regime and at
high temperatures, quasiparticle peaks in all directions of the
Brillouin zone are observed and the system is close to the
Fermi-liquid state. The Fermi surface changes its topology
with a change in the level of doping.

We note that cuprates are described not by the Hubbard
model but by the pd model, and an important parameter of

the pd model is the energy of charge transfer 4 = &, — ¢q from
oxygen to copper. Specifically, 4 plays the role of the effective
Coulomb repulsion U at a copper site. In cuprates, 4 is
assumed to be of the order of W, which corresponds to the
strong-coupling condition U ~ W [63].

6.3 Specific features of the superconducting state

We now consider specific features of the superconducting
state in cuprates. Numerous experiments show that in these
compounds, the usual Cooper pairing of electrons (holes) in
the singlet state is realized, but with a specific spatial
symmetry of the wave function of the pair, the so-called d
symmetry (see, e.g., [20]). The coordinate and momentum
dependence of a Cooper pair in this case are given by

Y(x,y) ~x? —y?, Y(k) ~cosky — cosk,. (6.2)
We note that the d symmetry of pairing in cuprates has no
relation to the symmetry of the 3d orbitals of Cu described by
the wave function of electrons with the d,>_ > symmetry. The
d symmetry of pairing in cuprates is determined by the
specific nature of the pairing mechanism caused by strong
electron correlations. The idea of the correlation mechanism
of superconductivity in cuprates was first suggested by
Anderson [64], who noted that the HTSC in cuprates occurs
near the metal—insulator transition (i.e., at a low level of
doping) and is therefore caused not by the electron—phonon
mechanism realized in the usual superconductors but by the
strong electron —electron interaction.

If we accept the Hubbard model with Hamiltonian (2.3) as
a working electron model for cuprates, then we must take into
consideration that we must deal with an intermediate case
where U ~ W, which is most difficult for theoretical analysis.
However, we can attempt to approach this case from the side
of weak (U < W) and strong (U > W) Coulomb interactions,
use a perturbation theory in an appropriate small parameter,
and then interpolate the results to U ~ W. In the case of weak
interaction (U < W), it is possible to use the standard
perturbation theory and to derive the Eliashberg equations
for a superconductor, in which the kernel is determined by
two contributions to the effective interaction of electrons, V;
(through spin fluctuations) and ¥, (through charge fluctua-
tions), which can be written as

Vs(k>w) ~ Usz(ka w) 9 VC(kaw) ~ U2Xc(k7w) ’ (63)
where y(k,w) and y.(k,w) are the dynamic magnetic and
dielectric susceptibilities, respectively. A numerical study of
the Eliashberg equations shows that they have solutions in the
case of the d symmetry of the superconducting gap and the
superconducting transition temperature 7. ~ 10 K.

In the other limit, U > W, it is useful to pass from the
initial Hamiltonian (2.3) to an effective Hamiltonian, using
W /U as a small parameter. Then, we come to the ¢/ model,
which is given by the Hamiltonian

) e
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where S; is the spin operator at a site i, ¢;- is the operator of

creation of electron with a spin ¢ at a site i when there is no

electron at this site, #n; is the number of electrons at a site 7,

and J=4¢%/U is the effective exchange integral for the

neighboring sites. Thus, in the limit U > W, the Hubbard

n;n;
4
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model reduces to model (6.4), which describes the motion of
correlated electrons on a lattice, interacting with each other
by means of exchange forces of an antiferromagnetic
nature.

To investigate the zJ model, the so-called extended DMFT
scheme (EDMFT) was developed in [65]. The extension is
needed because in contrast to the Hubbard model, where the
Coulomb interaction is local, the ¢/ model involves the
exchange interaction between nearest neighbors. This
reduces the problem of motion of a strongly interacting
electron on a lattice to the single-impurity Anderson
problem, which, besides the interaction of the localized
electron with the ‘sea’ of noninteracting fermions (as in the
standard DMFT for the Hubbard model), must also include
the interaction of the localized spin with the ‘sea’ of spin
fluctuations. In other words, it is necessary to introduce an
auxiliary single-impurity Anderson model in which the
localized electron interacts with the fermion and boson
degrees of freedom that imitate the dynamic mean field
acting on a given d electron from other d electrons strongly
interacting with it.

This means that we must simultaneously calculate the
electron GF G(k,w) and the spin GF y(k,w), i.e., the
dynamic spin susceptibility, and consider them on a general
basis. In accordance with the basic idea of the DMFT, when
considering the self-energy part of the electron GF Z(k,w)
and the spin GF M (k, w), we should ignore their dependence
on the momentum, i.e., proceed from the representations

1 1

G(kvw):mv X(q7w):m7

(6.5)

where J, is the Fourier component of the exchange interac-
tion; we recall that g is the Fourier component of the hopping
matrix element. In [65], an intricate EDMFT scheme was
developed, which allowed simultaneously calculating X ()
and M(w).

We give some results of calculations in [65]. Figure 13
depicts the spectral density of the electron states A(w) and the
evolution of 4(w) with the level of doping 6. At all values of 9,
a wide incoherent region is observed, which corresponds to
the lower Hubbard subband, and a quasiparticle peak on its
upper edge, onto which the Fermi level falls. As d increases,
the integrated intensity of the quasiparticle peak increases due
to a decrease in the incoherent states, and the system
approaches the Fermi-liquid regime. With decreasing o,
traces of the pseudogap state manifest themselves. The
width of the pseudogap determines the temperature 7,
which is shown in the inset in Fig. 13 as a function of §. It is
also shown in [65] that the pseudogap in the spin density of
states appears at the line (0, 0) — (rt, ©) as we move away from
the point (n, 7). A similar behavior of the dynamic magnetic
susceptibility is also revealed in cuprates according to the
neutron spectroscopy data. The study of the dynamic spin
susceptibility [65] in the framework of the £/ model supple-
ments the DMFT results of the study of the electron states of
the Hubbard model and explains the low-energy physics of
cuprates. The #J model was recently investigated in the
framework of another version of the EDMFT method in
[66], where the optical conductivity was studied depending on
the temperature and the level of doping.

In [19, 20], the possibility of the appearance of the
superconducting state was studied in the framework of the
tJmodel. The solution of the Eliashberg equations derived for
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Figure 13. Local spectral density of electrons 4(w) in the z/ model
calculated using the extended DMFT method [65]. The inset displays the
dependence of the T* temperature on the doping level.

Hamiltonian (6.4) showed the possibility of electron pairing
with the d symmetry at 7, equal to several dozen degrees
kelvin. Thus, the Hubbard model in the two limit cases
U < Wand U > W showed the possibility of the appearance
of the d-type superconductivity as a result of the action of a
spin-fluctuation mechanism caused by the on-site Coulomb
repulsion. We also note that 7, depends on the level of doping
in approximately the same way as in the experiment. The
problem, however, lies in the fact that the values of T,
reaching several dozen degrees kelvins are possible only if
U~ W, ie., in the intermediate case, which is beyond the
limits of weak and strong coupling. This means that it is most
expedient to proceed from the Hamiltonian of the complete
Hubbard model, without assuming the presence of any small
parameter.

6.4 Competition between the superconducting

and antiferromagnetic states

The microscopic theory of HTSC is not yet completed, and
the central issue on the path of its development is the problem
of the competition of antiferromagnetic (AF) and super-
conducting (with the d symmetry) (dSC) order parameters in
the Hubbard model with strong electron correlations. The
early approaches to this problem are presented in review [67].
In Ref. [68], it was shown using the method of functional
renormalization group that for the Hubbard model under the
conditions of weak coupling, the leading instabilities are those
related to the formation of the AF and dSC order parameters.
In Refs [69—71], devoted to studying the competition of these
parameters under conditions of strong coupling, the authors
used the DMFT scheme with one complication: instead of a
monatomic impurity center in which strong Coulomb
interaction is included, they used a minimum cluster of four
neighboring atoms of a square lattice. A necessary condition
for the construction of an adequate DMFT when a super-
conducting state with the d symmetry is considered is the
extension of the impurity cluster, because the corresponding
order parameter must allow pairing of electrons on neighbor-
ing sites as a result of spatial extension of the wave function
with the d symmetry. This means that into the initial (one-
impurity) version of the DMFT scheme, which ignores spatial
fluctuations, we should introduce such fluctuations, although
limited by the size of the chosen cluster.
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Lichtenstein and Katsnelson [69] derived DMFT equa-
tions that involved either the AF or the dSC order
parameter. The solution of these equations in the case of a
moderate Coulomb repulsion, U/W = 0.6, showed that
either one order parameter or another can be realized in
the Hubbard model; the dependences of these order
parameters on the doping level (deviation from n = 1) were
calculated. The antiferromagnetic order parameter has a
maximum at x =0 and vanishes at x ~ 0.05. The super-
conducting order parameter with the d symmetry becomes
different from zero immediately at x >0 (i.e., from the
beginning of doping) and attains a maximum at x ~ 0.15.
Such behavior, as well as the maximum values of TN and T,
are close to those observed in cuprates, for example, in
La,_,Sr,CuQy4; however, the result obtained cannot be
considered the resolution of the problem of the competition
of these two order parameters, because the case of the
coexistence of both order parameters in the same volume
has not yet been investigated. This problem was further
developed on the basis of the method proposed in [69] in the
recent work by Capone and Kotliar [71], who showed that a
change in U leads to a sharp change in the nature of the AF
and dSC phases. In the limit of strong correlations (U = W),
the AF and dSC phases do not mix (there are no solutions of
the DMFT equations with both nontrivial order parameters)
and a first-order transition between these phases occurs with
a change in the level of doping. It thus becomes possible to
extend the metastable SC phase to the region of small x. In
the region of weak correlations (USW), a phase of
coexistence of both order parameters appears, with the
relative weights of the order parameters changing with a
change in the level of doping, and the AF component
prevails at small U in the mixed state. Recently, analogous
results were obtained using the functional renormalization
group method [72].

Studying the chemical potential u as a function of x in the
case of strong correlations showed that in the region of the
first-order transition between the AF and dSC phases, phase
separation can occur, which agrees with the data obtained by
other methods. The results in [71] in many respects agree well
with the results in [70] obtained by a special variational
method.

The authors of fundamental review [73] detail various
theoretical approaches to research on the low-energy physics
of cuprates. They conclude that the two-dimensional single-
band Hubbard model with a moderate Coulomb repulsion U
is capable of explaining the basic totality of the properties of
these compounds: the specific features of the phase diagram
on the (7, n) plane, the dependence of the Néel temperature
T and the temperature 7, of the superconducting transition
with the d symmetry of the order parameter on the doping
level, and also the behavior of the spectral density A(k, ®) of
quasiparticle states, the type of the Fermi surface, and the
structure of the pseudogap state. The entire low-energy
physics of HTSC compounds is caused by the proximity of
the system to the Mott—Hubbard transition into the insulat-
ing state; in this case, the electron properties of the system in
both the normal and superconducting phase are caused by the
interaction of quasiparticles with spin fluctuations, which are
well developed in the vicinity of the antiferromagnetic phase.
Nonperturbative calculations with the parameter values
chosen as U=28t, r=0.35¢V, t'=-0.3¢, and " =0.2¢
lead to results that agree well with the experimental data.
We note that the above properties are retained in the model

upon doping of the system, which corresponds to the band
half-filled with both holes and electrons. These successes of
the theory became possible due to the creation of nonpertur-
bative methods, of which the most important is the DMFT
scheme. Further development of this method is leading to new
unexpected results, which reveal the fine special features of
the physics of SCSs. One important example is the detection
of the fine structure of the spectral density in the Hubbard
model at n =1 in the vicinity of the metal—insulator phase
transition [73].

Beginning with moderate values U = 6 ¢, two sharp peaks
located far from the Hubbard subbands centered at the
energies FU/2 appear in the density of states for the
paramagnetic phase at the boundaries of the Mott—Hub-
bard gap. These peaks lie sufficiently close to those peaks that
would appear in the case of an antiferromagnetic long-range
order; therefore, the appearance of peaks in the paramagnetic
phase should be interpreted as an effect caused by a short-
range magnetic order. In this DMFT version, the short-range
order is effectively taken into account by the choice of a
suitable finite-size cluster, which consists of several atoms
embedded in a medium of noninteracting fermions that
imitate the dynamic mean field acting on the cluster. The
fine structure of the spectrum revealed near the Fermi level
leads to the formation of a pseudogap in the weakly doped
system in the vicinity of points (0, ) and (r, 0). The standard
DMFT scheme with a monatomic impurity center cannot
reproduce the pseudogap state. In Ref. [73], the pseudogap
state is obtained within a microscopic model without the
phenomenological introduction of the correlation length of
spin fluctuations used in [48, 51, 53].

In spite of the significant success of the theory, the problem
of the HTSC mechanism in cuprates remains unsolved,
because, for example, the role of the phonon pairing
mechanism in them is unclear [74, 75]. This mechanism must
be investigated under conditions of strong electron —electron
interaction. For usual superconductors with their well-known
phonon mechanism, the Coulomb repulsion tends to weaken
superconductivity: T, decreases with increasing the Coulomb
pseudopotential. In the metallic phase of an SCS near the
metal —insulator phase transition, the Coulomb repulsion
leads to a strong renormalization of the initial electron band,
as we saw from the DMFT data; near the Fermi level, a
quasiparticle band with the width ZW appears, where Z < 1.
The small width of the band leads to an increase in the
quasiparticle density of states p = p,/Z at the Fermi surface,
which, it seems, must in turn lead to an increase in the
attraction parameter p» (¥ is the electron pairing potential).
In the Fermi liquid, this potential is renormalized as a result of
the decreasing intensity of the quasiparticle peak proportional
to the factor Z?; therefore, the pairing parameter pJ becomes
equal to Zp,V, i.e., decreases considerably. However, in the
case of strong Coulomb correlation, the character of its
influence on pairing through the electron —phonon coupling,
as DMFT calculations showed [76], changes radically. This
question requires further study.

Although no complete quantitative theory of HTSC
cuprates has been constructed so far, the attempts to explain
this unique phenomenon, which began already twenty years
ago, have strongly advanced the theory of SCSs on the whole
and allowed understanding the electronic physics of different
materials containing d and f electrons, as we can easily see
from examining other classes of SCSs.
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7. Manganites

7.1 Crystal and electron structure

Following intensive studies of the HTSC materials of the
group of metal-oxide compounds of copper, a true boom
arose around the manganites— another class of oxides of
transition elements. Of greatest interest here are the com-
pounds of the La;_,4,MnOj type, where A4 is a divalent
element (Ca, Ba, Sr, ...). The concentration x of 4 can be
varied within wide limits (0 < x < 1); the physical properties
of manganites change sharply as x changes; the system passes
through a chain of phase transitions with various types of
ordering: magnetic, structural, electronic.

Great interest in the manganites arose due to the so-called
‘colossal’ magnetoresistance (CMR). The CMR effect is
observed in the range of concentrations where a metallic
ferromagnetic phase exists, and it lies in the fact that the
resistivity p decreases upon the application of a magnetic
field. The ratio Ap/p in fields of the order of 1 T can reach
about ten percent. The effect reaches a maximum value in the
vicinity of the Curie temperature T¢ (Fig. 14). This phenom-
enon is accompanied by various anomalies of physical
properties, which have been considered in detail in many
reviews (e.g., [77—79]).

One of the remarkable properties of manganites consists
in the appearance in them of a metallic ferromagnetic phase in
a certain vicinity of the concentration x ~ 0.3 (Fig. 15). At
smaller concentrations, an insulating phase appears, which is
denoted in Fig. 15 as FI (ferromagnetic insulator), or CI
(canted antiferromagnetic phase). At high concentrations, an
antiferromagnetic insulating (AFI) phase can appear. Thus,
the metallic phase is ferromagnetic, and the explanation of the
connection between the magnetic and electric states is one of
the primary problems of the theory. As can be seen from
Fig. 15, with increasing the temperature, the ferromagnetic
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Figure 14. Temperature dependence of the resistance of a single crystal of
La,/3(Pb, Ca)1/3Mn03 in different fields H. The inset shows the magne-
tization in the transitional temperature range [80].

metallic phase becomes insulating in a certain range of the
existence of ferromagnetism; in any case, its conductivity
decreases sharply in the vicinity of T¢.

To understand the physical properties of manganites, we
should consider their electron structure. The oxides of the
La;_Ca,MnO; type can be regarded as mixed-valence
compounds, which are solid solutions from the range
between LaMnO3; and CaMnQOs with the valence states of
the La**Mn3*0%~ and Ca?*Mn**O3~ ions. The valence
structure of the intermediate compound is written as
(Laj" Ca*")(Mn}* Mn*")Os. Thus, when doping the initial
compound LaMnOs; by a divalent element with a concentra-
tion x < 0.5, holes arise in the 3d band with the same
concentration x. At x > 0.5, the compound can be regarded
as the initial compound CaMnOs; doped with electrons with
the electron concentration 1 — x. Hence, in a mixed-valence
manganites, the charge carriers are either holes or electrons in
the 3d band [81].

The Mn ions surrounded by octahedra of atoms have the
ty level lying lower than the e, level; therefore, the Mn** ion
has the configuration ,, and the Mn** ion has the
configuration tgge;. In view of the strong intraatomic Hund
coupling, the three electrons at the ty, level produce a
localized spin S = 3/2; the e, electron of the Mn3t ion, in
view of the same Hund rule, aligns its spin parallel to the
localized spin of the ion on which it is located at a given
moment; but the e, electrons are collectivized; therefore,
during motion of the e, electron through the lattice, it is
energetically favorable that all localized spins are parallel to
each other, i.e., that a ferromagnetic ordering occur. Accord-
ing to this idea, which was suggested many years ago by
Zener [82], the kinetic mechanism of magnetic ordering is
caused not by the exchange interaction but by electron
motion. The ferromagnetic ordering minimizes the kinetic
energy.

The above considerations lead us to the sd model specified
by Hamiltonian (4.2). In considering manganites, the Hamil-
tonian should be interpreted as follows: the operators ¢;, and
¢} correspond to the collectivized e, electrons and the matrix
element ¢;; describes hops over the lattice occupied by Mn ions
that have a localized spin S = 3/2. The intraatomic exchange
integral J > W must be positive in order to ensure the
parallelism of the electron and ion spins. The sd exchange
model in which the condition J > Wis satisfied was called the
double exchange (DE) model (not very appropriate but a
widespread name).

The physics of manganites is mainly developed on the
basis of the DE model. Because of the small parameter W/ J, it
is possible to pass from Hamiltonian (4.2) to an effective
Hamiltonian, which in the limit as J — oo describes the
motion of spinless fermions on a lattice [83, 84]:

H="Y 1;(0,)¢", (7.1)
i

with an effective hopping matrix element that depends on the
angle between the spins located at sites 7 and j. For the nearest
neighbors, we have

0
1(0) = tcos = .
(0) = tcos 3
Results (7.1) and (7.2) were obtained in the limit of the
classical spin S, although S = 3/2 for manganites. In the
ferromagnetic case, 0 = 0 and expression (7.1) ensures the

(7.2)
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Figure 15. Phase diagrams of materials with the colossal magnetoelectric effect: CI, canted spin state; COT, insulator with charge ordering; PI and FI,
paramagnetic and ferromagnetic insulators; FM and PM, ferromagnetic and paramagnetic metals; AFI, antiferromagnetic insulator; CAFI, canted spin
insulating state; T¢, TN, and Tco, temperatures of the ferromagnetic, antiferromagnetic, and charge ordering, respectively; and Tca, temperature of

transition to the canted spin state [78].

minimum energy. Hence, it follows that in the paramagnetic
state, the electron band must become narrower because the
average value of cos 0/2 < 1 is less than unity.

7.2 Calculation of the electron spectrum
in the dynamic mean-field theory
The DE model has become the basic working model for the
description of the properties of manganites. To ensure the
possibility of a quantitative comparison of the results of
theory and experiment, it was necessary to develop methods
of dealing with Hamiltonian (4.2) under the conditions of not
only the maximally strong but also an intermediate sd
exchange coupling (J ~ W). Furukawa developed the
DMFT method for the sd model with Hamiltonian (4.2),
but only for classical spin; the details of the method were
presented in a series of works [85—88]. For the classical spin
(S = o0), the solution of the auxiliary problem of the single-
site center is strongly simplified; therefore, the transport and
magnetic characteristics of manganites were already calcu-
lated in the first works [85, 86]. It turned out that the
resistance implicitly depends on the temperature through the
magnetization. The results of numerical calculations at
temperatures close to the Curie point corresponded to a
quadratic dependence p(M )/p(0) = 1 — CM? with the coef-
ficient C < 4 for J > Wand C = 1 in the weak-coupling limit
(J < W). The results of calculations of the optical conductiv-
ity [86] showed good agreement with the experimental data.
Figure 16 displays the phase diagram of manganites in the
(J,n) plane calculated in terms of the Furukawa method at
S = oo [88]. A large region is occupied by the ferromagnetic
phase F; at n = 1, in a small region that adjoins the straight
line n = 1, an antiferromagnetic phase (AF) is located; at
greater n, a paramagnetic phase P appears. Between the P and
F phases, a region PS of phase separation is located, which
expands with decreasing J. The existence of this phase is
established from the presence of a jump in the dependence of
the electron concentration n on the chemical potential u. This
phase diagram was calculated under the assumption that an
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Figure 16. Low-temperature phase diagram of manganites in the plane
(J, n) calculated in terms of the DMFT for the classical spin S = oo [88]. PS
stands for the region of phase separation.

AF structure with only two sublattices can be realized in the
system. In reality, as n deviates from unity, phases with
incommensurate magnetic structures are also realized.

In Ref. [88], the authors also calculated phase diagrams in
the quantum case, although for the localized spin S = 1/2 (in
manganites, S = 3/2), which simplifies the calculations. The
quantum corrections, which proved to be essential, mani-
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fested themselves mainly in a contraction of the ferromag-
netic phase region as a result of the increasing regions of the
paramagnetic and antiferromagnetic phases. The inhomoge-
neous PS phase remains within the limits of the boundaries
established in the calculation with § = oco. At S =3/2, the
role of quantum corrections decreases; therefore, the phase
diagram for classical spin can be regarded as a guideline for
the phase diagrams of manganites.

The existence of the PS phase in the model with classical
spins was also shown in Ref. [89] based on a study of the
instability of DMFT solutions under large-amplitude local
fluctuations.

The DE model augmented by Coulomb interactions at
the same site and at the nearest neighbors was studied in
terms of the DMFT [90] in the approximation of the Ising
localized spin, where only its S° component is taken into
account. The calculation of transport and thermodynamic
properties showed the importance of electron correlations
for manganites, in particular, in the range of concentrations
0<x<0.5, where the DE model with a quantum spin gives
an inadequate behavior of the Curie temperature with
decreasing x.

The simplified DE model in which the localized spin is
replaced by the Ising spin was used in [21, 90—-92] for the
investigation of the thermodynamic and transport properties
of manganites using the DMFT technique. In this model, it
is possible to easily include additional interactions, for
example, a diagonal disorder [90—-92]. We also note papers
[93-95] devoted to theoretical studies of some models of
manganites.

A remarkable property of manganites discovered
recently is the charge ordering of the Mn>t and Mn** ions,
which occurs in doped systems in the range of the existence
of the ferromagnetic phase [96, 97]. The DE model cannot
explain this phenomenon, and therefore additional terms
must be introduced into the Hamiltonian of the model to
account for the chaotic distribution of the Mn** and Mn**
ions over the lattice sites caused by the chaotic distribution
of divalent ions of the doping element. This leads to a
chaotic distribution of the Coulomb potential that acts on
the collectivized e, electrons from Mn ions. To describe the
ferromagnetic and charge ordering, the following model, at
least, must be used [91]:

H= IZ cihep — Jz Sisi + E, Z wi + VZ RigWi .
i io

ijo i

(7.3)

Here, the first two terms correspond to a simplified DE model
in which the exchange interaction of the localized spin with
the spin of the e, electron is approximated by the Ising term
with the electron spin s7 = 1/2(n;; —n;). The third term
describes the local variation in the energy upon doping; w; is
a classical variable that takes two values: w; =1 if a
substitution occurs at the site i and w; = 0 for other sites
occupied by Mn ions. The last term accounts for the
difference between the Coulomb potential at the site
occupied by a doping atom and the Coulomb potential at
this site occupied by an Mn atom.

The first two terms in the Hamiltonian can be responsible,
as we know, for the ferromagnetic ordering in the system; and
the last two terms, which depend on the chaotic distribution
of dopants over the lattice sites, can be responsible for the
charge ordering, which minimizes the Coulomb energy. The

total Hamiltonian in (7.3) realizes both tendencies, the
magnetic and the charge ordering. This Hamiltonian is very
complex, but it allows performing part of the calculations
analytically, which leads to the exact solution of the well-
known Falicov—Kimball model. Based on passing from the
complete DE model to a simplified model, this fact allows an
effective application of the DMFT method to model (7.3).
The result of the study in [91] was the calculation of the
temperatures of charge (7o) and ferromagnetic (7¢) order-
ing depending on the electron concentration n. The curves
Tco(n) and Tc(n) are similar to each other and have a
maximum at n = 0.5, but the first curve lies below the
second. This means that with decreasing the temperature,
the ferromagnetic ordering appears first, to be followed by
charge ordering.

7.3 Charge and orbital ordering

It should be kept in mind that some other mechanisms of
charge ordering have been suggested, e.g., due to the
interaction of e, electrons with the Jahn—Teller distortions
of the octahedral environment of chaotically distributed ions.
Among the various types of charge ordering, we first mention
the stripe structures initially discovered in HTSC compounds
(see review [98]); in manganites, they exist in the insulating
phase. The stripe structures represent alternating chains of
Mn** and Mn** ions consisting of identical ions arranged
into the sequence Mn** — Mn** — Mn3*. Their formation is
apparently due to elastic interactions caused by the Jahn-—
Teller distortions of the environments of the Mn** ions.
Repulsive forces apparently exist between such stripes
formed by three chains, preventing them from adhering to
each other.

In manganites, orbital ordering is also observed in
addition to the spin and charge ordering; all these three
forms of ordering are usually closely related. They are
shown schematically in Fig. 17, which displays such struc-
tures observed in many manganites at x ~ 0.5. Figure 17
depicts ordering of e, orbitals of the ds,2_, type.

Until now, in describing the fundamental features of the
physics of manganites, we ignored the orbital degeneracy of
Mn ions in them. But the importance of the orbital
degeneracy of ions in the magnetic insulating compounds of
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Figure 17. Spin, charge, and orbital ordering observed in the majority of
manganites at x = 1/2 [81].
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transition elements has already long been recognized.
Anderson [99] first showed that the kinetic exchange between
magnetic ions depends on the symmetry of the trivalent
degenerate orbitals and the crystal lattice geometry. The
complete theory of kinetic exchange in insulating crystals
with Jahn—Teller ions was developed by Kugel’ and
Khomskii [100], who proceeded from the Hubbard model
with the intraatomic exchange interactions additionally taken
into account. It turned out that in such crystals, the spin and
orbital degrees of freedom closely interact with each other
even in the absence of the spin—orbit interaction in the ions,
which is primarily manifested precisely in the orbital order-
ing. The two types of ordering substantially influence each
other, and the theory allows predicting the type of one
ordering if the type of the other is known.

Because insulators of this type are parent substances for
metallic (doped) manganites, these ideas were extended to
the double exchange model, which in the general case
describes metallic systems [101]. Taking the orbital degen-
eracy into account allows, for example, explaining the
asymmetry of the phase diagram for the La;_,Sr,MnOj;
system, which looks different for of x < 0.5 and x > 0.5,
although it should be symmetric from the standpoint of the
electron—hole symmetry of the Hamiltonian of the non-
degenerate DE model.

We note in conclusion that although the DE model
qualitatively correctly describes many properties of manga-
nites, it does not ensure quantitative agreement with the
results of experiments. The authors of [102] therefore
concluded that the DE model must be augmented by lattice
degrees of freedom in order to be considered a base model for
this class of compounds. Various aspects of the role of lattices
in the formation of the electric and magnetic properties of
manganites can be found in reviews [21, 103].

It is instructive to compare two oxide classes of SCSs,
cuprates and manganites. These two classes have much in
common. The compounds of both classes have a perovskite
structure. The initial compounds in both cases are antiferro-
magnetic insulators. The physics of electrons in them is
determined by Mn or Cu ions surrounded by oxygen
ligands. The substitution of a trivalent element by a divalent
one leads to the appearance of holes in the system of Mn ions
in the manganites or in the system of Cu ions in the cuprates.
These holes are charge carriers in both cases. Here, however,
the similarity of these two oxide classes ends, because the
interactions in these systems are different: a strong sd
exchange in the first case and a strong on-site Coulomb
interaction in the second. Because of this difference, different
phenomena occur in these compounds: CMR in the manga-
nites and HTSC in the cuprates, which are not connected with
each other.

Although the main interactions in manganites and
cuprates are different, they frequently exhibit common
physical phenomena, for example, phase separation and the
appearance of special types of charge ordering in the form of a
striped structure. Apparently, this is a general manifestation
of strong electron correlations in both systems.

7.4 Ferromagnetic half-metals

One more question to be discussed in relation to the physics of
manganites is the structure of the electron spectrum of
metallic ferromagnetic phases depending on the electron
spin o. In the case of a classical localized spin and the
extremely large sd exchange parameter J > W, an analytic

expression for the electron GF can be obtained as [86],
Py
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where PE = (1 &+ Mo)/2 and M is the spontaneous magnetic
moment in the system of localized spins. Expression (7.4)
describes two bands of single-particle states with a given spin
o, which are centered at the energies w + u = FJ and are
characterized by the damping Pf W. The relative weights P
of these bands depend on the orientation of the electron spin
with respect to the spontaneous moment. In the ground state
(M = 1) for the spin ¢ =7, we have P? =1 and Py =0;
therefore, the spin states fill the lower band, while the upper
band is empty. At the other spin orientation (¢ =]), the lower
band is empty. This means that in the ground state, all
electrons are polarized in the direction of the spontaneous
magnetic moment, and no electrons with the opposite spin are
present. This substance was called a ferromagnetic half-
metal. With increasing the temperature, states with the
opposite spin in each of the bands appear, and the system
ceases to be a saturated ferromagnet.

The half-metallic ferromagnets can arise not only in
systems described by the sd model but also in systems with
strong Coulomb correlations, which are described, for
example, by the Hubbard model [104]. Such systems are
exemplified by CrOaz,, or Heusler alloys such as Co,MnZ,
RMnSb, in which the half-metallic state can be experimen-
tally established with the help of photoemission spectroscopy
or tunneling microscopy with polarized electrons. The
ferromagnetic half-metals are promising materials for spin-
tronics, which deals with spin-dependent electron transport.

8. Compounds based on f elements

8.1 Heavy fermions

Among the extensive classes of systems that contain 4f and 5f
elements, of special interest are systems with heavy fermions
(HFs), which have unique physical properties (see reviews
[105—109]). The low-temperature electron heat capacity and
magnetic susceptibility in many of them is several hundred
times greater than the appropriate values for usual metals;
because in the simplest models of metals with weakly
interacting electrons, both quantities are proportional to the
effective mass of charge carriers, these anomalous substances
were called HF systems. Among the first systems of this type,
alloys that contain U and Ce, such as CeAls, CeCu6, UBe;3,
and UPts, were studied. Later, the class of HF materials
broadened rapidly and other unique properties were discov-
ered in them, drawing the attention of many researchers, both
experimenters and theorists.

It turned out that at high temperatures, these substances
behave as systems with weakly interacting localized magnetic
moments of f electron shells and conduction electrons with
ordinary masses. At low temperatures, the magnetic moments
of f electrons begin strongly interacting with conduction
electrons and with themselves. Just in this case the phenom-
enon of heavy fermions occurs. To this remarkable phenom-
enon, another one is frequently added: a transition from the
metallic into the insulating state is possible at low tempera-
tures. Such substances were called ‘Kondo insulators’ for the
reason that is to become clear in what follows. Typical
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representatives of the compounds of this class are Ce;BiyPt;,
CeNiSn, SmBg, TmSe, YbBi,, and UNiSn.

The most important question that relates to the entire
extensive class of heavy-fermion compounds is whether they
are usual Fermi liquids with properties predicted by the
Landau theory. For some HF systems, such as UPts, the
totality of the experimental measurements of heat capacity,
electric resistance, and the de Haas—van Alphen effect
indicates that they can be described by the Landau theory
with renormalized Fermi-liquid parameters. The Fermi-
liquid picture implies the existence of a well-defined Fermi
surface and a steplike electron-momentum distribution
function f(ex), as well as the existence of quasiparticle
damping described by the relation y(w) ~ @® 4+ T2 at low
energies w (referenced to the Fermi level) and low tempera-
tures (much lower than the Fermi energy ¢p).

But this picture of quasiparticle excitations was found to be
violated in many HF systems discovered later (see review [108]
and the references therein), such as UCus_,Pd, (x =1 and
1.5), CCCU5.9AUOA1, ThlfoA\-RUQSiz (X < 0.07), and
U;_,Th,Pd,Al; (x > 0.4). These systems exhibit C,(T),
%(T), and p(T) temperature dependences that differ from
those predicted by the Fermi-liquid theory. A typically non-
Fermi-liquid behavior in HF systems is manifested in
the divergence of the linear coefficient in heat capacity
C,(T), a strong temperature dependence of y(7') as T — 0,
and a specific temperature dependence of the electric
resistivity p(7T).

The magnetic properties of these systems are very
uncommon and diverse, which is expressed, most of all, in
how the localized magnetic moments themselves are revealed
in them. In a number of systems, the atomic magnetic
moments of f shells are conserved in the alloy or in the
compound; in such systems, some features of the Kondo
effect frequently manifest themselves, in particular, as is well
known, in dilute alloys of magnetic atoms in a usual metal. In
other cases, the magnetic moments of f shells strongly differ
from integer values as a result of a hybridization of f electrons
with conduction electrons. Such systems were called mixed-
valence systems. The complete suppression of localized
magnetic moments is also possible. At low temperatures,
different types of magnetic ordering frequently appear.

Remarkably, the electric and magnetic properties of HF
systems, including the appearance of a long-range magnetic
order in them, are closely related to each other, and it is
frequently difficult to identify the basic mechanism respon-
sible for the formation of the totality of their physical
properties: either the formation of a narrow quasiparticle
peak near the Fermi surface corresponding to charge carriers
with large effective masses and, as a result, the appearance of
anomalies in the magnetic properties, in particular, the
appearance of a magnetic order; or, on the contrary, the
appearance of a magnetic order and, as a result, a change in
the electron states of the system, including alterations in the
Fermi-liquid picture. Examples of HF compounds whose
properties are connected with the appearance of magnetic
ordering are given by U,Zn;7 and UCus, which are antiferro-
magnets with the respective Néel temperatures Ty = 9.7 and
15K.

8.2 The Kondo effect and the single-impurity

Anderson model

We have seen that the physics of HF systems is very rich in
anomalies of different physical properties, but two questions

are apparently crucial for the understanding of the entire
picture of the phenomena observed. The first is: What factors
are responsible for the formation of a quasiparticle spectrum
near the Fermi surface with large effective masses of charge
carriers? And the second is: Due to what factors is a small
energy scale (temperature 7j) formed that separates the high-
temperature metallic region with the usual properties of
charge carriers from the low-temperature region where the
strong interaction of the localized moments with the conduc-
tion electrons manifests itself and signatures of an insulating
state appear? It became clear quite soon after the discovery of
HF systems that the answers to these questions should be
sought on the basis of two well-known phenomena: the
hybridization of localized f electrons with conduction elec-
trons and the Kondo effect, i.e., the appearance of a
resonance peak in the density of states at the Fermi level as a
result of electron scattering on the localized moments of
impurity centers, which is accompanied by spin flip. Both
phenomena are described well in the framework of the sd
exchange model [Hamiltonian (4.2)] and the single-impurity
Anderson model, which were proposed and studied in detail
long before the discovery of HF systems. In connection with
the discovery of such systems, the periodic Anderson model
(PAM) became topical, which is the basic model for the HF
systems [Hamiltonian (4.1)].

We first examine the single-impurity sf model and the
single-impurity Anderson model; their Hamiltonians can be
written as

H=>Y afifio—T > (SS5.0)fis firor» (8.1)
ko kk'cy0,
H= Z EkChoCha + St‘z 1. fo + Unging
ko 4
(8.2)
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The single-impurity sf model deals with a single localized spin
embedded in the ‘sea’ of collectivized noninteracting electrons
with a dispersion law g. In the single-impurity Anderson
model, we consider a single localized f level imbedded in the
‘sea’ of s electrons (which do not interact between themselves
but allow hybridization with f-level electrons) and of f
electrons (which interact with each other if they are at the
same site).

The most dramatic phenomenon described in the frame-
work of the single-impurity sf model is the Kondo effect, i.e.,
the appearance of a narrow resonance peak in the density of
states at the Fermi surface (Suhl—Abrikosov resonance) in
the case of an antiferromagnetic exchange coupling (J < 0).
The width of this peak is determined by the so-called Kondo
temperature (see, e.g., [110])

1
TK:W“"(‘W)’

where p is the density of states at the Fermi level. The quantity
Tk is the only energy scale that characterizes the entire low-
energy physics of the sf model. The main thermodynamic and
dynamic properties of the model (the heat capacity, magnetic
susceptibility, etc.) depend on the ratio 7/Tx; the system
therefore has scaling properties. The Tx temperature divides
the temperature interval into two regions: at T < Tk, the
impurity spin is screened by the electron spin cloud such that

(8.3)
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if the value of the localized spin is S = 1/2, then the effective
spin at the impurity site is equal to zero. This phenomenon
(Kondo screening) amounts to the formation of a bound state
of the impurity spin with the spin cloud of conduction
electrons; the value of Ty is the measure of the binding
energy of this state.

Because the Hamiltonian of the Anderson model depends
on several parameters (W, &, U, V), the behavior of the model
is much more complex than that of the single-impurity sf
model. Two basic regimes should be distinguished: that of a
localized magnetic moment and the intermediate-valence
regime. Figure 18 depicts both these regimes, which differ in
the position of the f level relative to the Fermi level and the
conduction band. In the first case, the atomic level & is below
the conduction band and the second atomic level & + U is
above it. Thus, the lower level is always filled and the upper
level is empty, and therefore the atom carries a localized
moment. In the second case, part of the f states are above the
Fermi level because of the strong hybridization of f electrons
with the conduction electrons, and the impurity site carries a
noninteger magnetic moment (intermediate valence).

Furthermore, one more special case should be noted, the
symmetric Anderson model characterized by the following
relation between the energies of two f levels: &g — g =
(er + U) — eF; both levels are therefore separated by identical
energy intervals from the Fermi level. In this case, the
excitation of a hole in f states requires the same energy as
the excitation of a particle. If the energy is referenced to the
Fermi level (¢g = 0), the last relation becomes 2¢r + U = 0. In
the case of the symmetric model, all the expressions are
simplified.

Shrieffer and Wolff [39] showed that under certain
conditions, the Anderson model is equivalent to the sf model
in which the charge degrees of freedom in the f-electron
system are absent (frozen), but there are on-site localized
moments. These conditions are apparently realized when the
Fermi level lies between two split levels ¢, = & (¢ = 1) and
&y, = & + U (o = 2) of the atomic f states corresponding to the
presence of one and two electrons at the impurity site. In this
situation, if the average number of f electrons is (ng,) =~ 1,
Hamiltonian (8.2) can be reduced by a canonical transforma-
tion to form (8.1) with the effective exchange integral [39]

U

J=-=2 V27<
IV e Ta+ 0]

0. (8.4)

In the Kondo regime, the Anderson model therefore
reduces to the sf model, and a common energy parameter
Tk appears, determined by formula (8.3) if we substitute

N
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regime

Figure 18. Localized-magnetic-moment regime (Kondo regime) and the
intermediate-valence regime in the Anderson model.

expression (8.4) for the sf exchange integral into it. Conse-
quently, the energy parameters &, U, V, and W are ‘absorbed’
into a single parameter Tk, which then determines the low-
energy physics of the Anderson model, similar to the Kondo
temperature in the sf model.

8.3 The Kondo lattice and the periodic Anderson model
We now consider the lattice models [the sd model, or the
Kondo lattice model (KLM), and the periodic Anderson
model (PAM)]. The most reliable information about the
structure of the electron spectra in these models was recently
obtained in the DMFT framework. We begin with the simpler
(KLM) model. When considering manganites, we already
mentioned the application of the DMFT scheme to the KLM,
in which the localized spins were considered classical unit-
length vectors. These studies, in particular, allowed obtaining
a phase diagram in the (J, n) plane in this model. Now, we
discuss the results of a detailed study of the quasiparticle
spectrum in the KLM with a quantum localized spin S = 1/2.
The DMFT calculations performed at a fixed value
J/W = 0.15 and different electron concentrations # from the
range 0.9 > n > 0.4 showed that two energy scales, T and
T*, exist in the system [111]. The high-temperature scale 7* is
close to the Kondo temperature Tk for the single-impurity
model and is independent of n, but the low-temperature scale
Ty is substantially lower than T if n deviates from the value
n=1 at which Ty and T* have an identical scale. As n
decreases, the temperature 7, decreases sharply, with
To~ 103 W/k at n=09 and Ty~ 107> W/k at n ~ 0.4,
The parameter Ty is determined from the position of the
narrow Suhl—Abrikosov quasiparticle resonance near the
Fermi level, and T* from the width of the pseudogap in the
electron spectrum.

The quantities 7y and 7* characterize the bounds within
which the physical properties of the system vary with a change
in the temperature. At 7 > T*, the system behaves as an
ensemble of independent impurities described by the single-
impurity Anderson model; in this case, 7" ~ Tx corresponds
to the beginning of the formation of Kondo singlets. For
temperatures 7' < T*, a coherent state appears, a Fermi liquid
with no localized magnetic moments. In a sense, this situation
resembles the one that is characteristic of superconductors,
where the Cooper pairs can be formed locally at temperatures
exceeding T¢, but a coherent state of Cooper pairs, which
manifests itself in the appearance of superconductivity,
occurs only at 7' < T¢.

We note that at low temperatures, the properties of the
KLM are scaled, i.e., depend on temperature through the
ratio T/ T, as the temperature changes up to 7~ 107,. For
example, such a behavior is characteristic of the intensity of
the quasiparticle peak as the temperature increases from 0 to
~ 10T). These two energy scales manifest themselves also in
the presence of two maxima in the temperature dependence of
the spectral density of the calculated spin fluctuations, and
also in the calculated intensities of the ARPES spectra for two
KLM lattices, YbInCus and YbAgCuy; we note that good
agreement with the experimental data is observed in this case.
We note that the conclusion about the existence of two energy
scales at low electron concentrations in the KLM was made
earlier in [112, 113].

We next turn to a more complex model, the PAM. The
physics of the PAM, naturally, must rest on the results of the
investigation of the single-impurity Anderson model (fre-
quently called SIAM, a term convenient for comparing
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single-impurity and periodic models). In spite of the great
progress in studying the SIAM, the study of the PAM
encountered significant difficulties, which were partly over-
come only in the last decade due to the use of powerful
computational methods, first and foremost, the DMFT
methods. The ‘analytic’ period of the study of the PAM is
characterized by the use of perturbation-theory methods of
various types. Initially, intensive PAM studies were con-
ducted with the help of the perturbation theory through the
second order in U. In the Kondo regime with the small
parameters such as 7/U and T/|&q], effective Hamiltonians
were obtained in which the sf hybridization was excluded and,
as a result, terms that describe the indirect interaction of the
localized spins appeared. This allowed investigating the
possible magnetically ordered phases. In the intermediate-
valence regime, effects of interaction of spin and charge
degrees of freedom were studied. Studies of the structure of
the quasiparticle spectrum and its evolution with a change in
the parameters of the Hamiltonian required the use of
nonperturbative methods.

The fundamental feature of the PAM — the existence of a
characteristic energy scale similar to the Kondo temperature
Tk in the STAM — was revealed by Rice and Ueda [114], who
used one such nonperturbative approach, the variational
Gutzwiller method. In the Anderson model (in both the
SIAM and the PAM), the number of f electrons is not
conserved because of their mixing with the conduction
electrons. This leads to the appearance of two variational
parameters, the average number (n¢) of f electrons at a site
and the average number of doubly filled f states D = (nyn)).
Obtaining the effective Hamiltonian of the PAM at large
Coulomb interactions requires using Gutzwiller’s idea
(initially used in the Hubbard model) that the PAM
Hamiltonian is to be projected onto the space of states that
contain no doubly filled f states on the sites. This leads to the
effective Hamiltonian

A+ d
Hepr = E EkCpCko 1 €d E n,
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which does not involve the on-site Coulomb interaction of f
electrons but contains a renormalized hybridization para-
meter depending on the average filling of sites by one-electron
states:

Vo =2, V. (8.6)
The normalization parameter g, in the limit as U — oo
depends on the filling of f states; in the paramagnetic case,
we have

4o =q~(1-(n"). (8.7)

In the symmetric case (2¢r+ U= 0,n=2, (n') = 1), the
Fermi level falls into the hybridization gap and the system is
insulating at 7= 0 (a Kondo insulator). The hybridization-
induced reduction in the energy per lattice site relative to the
energy of the metallic phase is 0F = —kT*, where

kT* = W exp (7 ﬁ) . (8.8)

Thus, the reduction of energy caused by hybridization in
the PAM has the same Kondo form as that in the SIAM but
involves the factor 1/2 in the exponent. We see that the energy
scale for the Anderson lattice is substantially greater than that
for the single-impurity model. This analytic result is to be
refined in the numerical approaches to the PAM theory
presented below.

It follows from effective Hamiltonian (8.5) that in the
second-order perturbation in hybridization, the transfer of f
electrons through the lattice can occur, which leads to the
appearance of an effective band of carriers with the width

Wef;‘f ~ |ﬁ0‘2 ~{s ~ (l - <nt>) . (89)

The narrow band arising in the system of strongly
correlated f electrons near the half filling of the localized f
states corresponds to charge carriers with the large effective
mass
m* _ T,
m ~ (Weg‘f) ! N?Z’
where T is the Fermi temperature. These carriers correspond
to heavy fermions revealed in a number of rare-earth and
actinide compounds. Together with relation (8.10), there is a
relation between the density of f states at the Fermi level
p¢(er) and the density of states p(eg) in the conduction band,

T
T+
Relation (8.11) reflects the presence of a very sharp and high
peak of quasiparticle states near the Fermi level.

The simplest explanation of the appearance of such
carriers is that at (n') ~ 1, there are only a few holes (and
twos, i.e., doubly occupied states) to (or from) which an f
electron can pass while ‘wandering’ over the lattice. Because
the band of f carriers arises near the Fermi level, which is
formed by all conduction electrons and f electrons, and
because it is characterized by a high density of states, it is
clear that the f electrons prevail on the Fermi surface. The
structure of the electron states in the PAM in the Kondo
regime revealed on the basis of analytic calculations is
responsible for the heavy-fermion physics [114]. On scales
that considerably exceed kT*, there exist wider peaks of
quasiparticle states, which lie near the atomic levels ¢ and
& + U. Such quasiparticle states correspond to the generation
of a hole at the lower level and an electron —hole pair on the
upper level.

These conclusions were confirmed in other analytic
approaches to the Kondo and Anderson lattices, most of all
in the approach with the use of the method of slave bosons
(auxiliary bosons) and of the 1/N-expansion method, where
N is the number of degenerate orbitals for f electrons. These
approaches are of great interest because they allow obtaining
systematic corrections to the zeroth approximation, which is
the mean-field approximation.

(8.10)

prler) ~ p(er) (8.11)

8.4 Investigation of the periodic Anderson model using the
dynamic mean-field theory

A detailed study of the PAM using the DMFT and QMC
methods for calculating the auxiliary single-impurity Ander-
son model was carried out by Jarrel [115] for the symmetric
PAM, where

(8.12)
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Figure 19. Temperature dependence of the density of states of f electrons
pi(w) calculated in the DMFT terms at the parameter values V' = 0.5,
U=2,T*=023,and p = 1/kT[115].

This means that the Fermi level falls into the middle of the
bare s band and that there is one electron per site. Then, at
T = 0, gaps appear in the quasiparticle spectrum and in the
spectra of collective charge and spin excitations. Figure 19
shows the variation in the density of quasiparticle states as a
function of temperature. At high temperatures greater than a
certain characteristic value 7%, pe(w) is a relatively smooth
function of frequency. As the temperature decreases
(T < T*), a distinct maximum is formed, and p;(w) at small
o rapidly decreases to zero as T — 0; i.e., a gap in the
spectrum appears at 7 = 0. Because the energy is referenced
to the value of the chemical potential, the system becomes
insulating at 7= 0 (a Kondo insulator). The appearance of a
peak in pg(w) is caused by the resonance Kondo scattering of
electrons by localized moments, and the position of this peak
should be connected with the Kondo temperature in the
PAM. In Fig. 19, T* = 0.23 (in W units); in this case, the
width of the gap in the spectrum is 4 ~0.57*. The
calculation of the dynamic magnetic (y,) and charge (y.)
susceptibilities shows that they also have gaps, which are
twice as wide in magnitude as those in the single-particle
spectrum, Ay = A. &= 24 ~ T*.

Thus, an energy scale 7* analogous to the Kondo
temperature 7k in the single-impurity Anderson model
appears in the PAM. A comparison of the calculated values
of T* and Tk shows that Tk is less than T*, in accordance
with the prediction in [114].

The above results were obtained using the QMC method
for the numerical calculation of the single-impurity model. In
another fundamental work [116], the authors used the NFG
method in the DMFT approach for the numerical calculation
of the single-impurity model.

The calculations of the frequency dependence of the self-
energy X(w) allow obtaining the density of quasiparticle f
states in the vicinity of the Fermi level X (w):

dRe 2¢(w) m*

Z{lzl _ =—,
m

- (8.13)
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where the effective quasiparticle mass m * is introduced, which
turns out to be considerably greater than the electron mass m.
A comparison of the effective masses m* calculated with the
same values of the parameters (U=2, V> =0.2) in the
symmetric case for the two models, the PAM and the STAM,
shows that m},,, is considerably less than n1; .. The results
of numerical calculations are in good agreement with the
analytic dependence mpg,y\/mian ~ exp (—1/|J|p). This
indicates an exponential increase in the energy scale 7% in
the PAM relative to the scale Tk for the SIAM, which was
revealed by analytic methods in [114].

In Ref. [116], the authors investigated the electron
spectrum of the PAM not only near the half filling of the
conduction band (n, = 1) but also at small electron concen-
trations. At ng = 1, the energy scale T is of the order of the
Kondo temperature Ty, although T, exceeds Tx; with a
decrease in ng, Ty decreases strongly, and at ny = 0.2 the
ratio T/ Tx decreases by two orders of magnitude relative to
that observed at ng = 0.8. This result agrees with the results of
earlier studies of the PAM [117] and with the result of the
study of the KLM [111, 113] presented in Section 8.3. We note
that the appearance of two energy scales in the PAM and the
KLM at small concentrations of conduction electrons was
predicted in [112]. The results of DMFT calculations [111,
113] agree with these predictions only qualitatively, thus
confirming the physics of the PAM and KLM systems with
a low electron density, which is responsible for these
phenomena. According to the arguments in [112], at low
concentrations ng < 1, the number of electrons is insufficient
to screen all magnetic moments localized at the lattice sites;
therefore, the behavior of the system is expected to be
completely different from its behavior in the case of ng ~ 1,
when all the moments can be screened.

The last basic research of the electron structure of the
PAM was performed by the DMFT + NRG method in [118]
in connection with the study of the transport properties of the
f system. We consider the formulation of DMFT equations
for the PAM described by Hamiltonian (4.1) in more detail.
The Green’s functions of conduction electrons G(k,®) and
the Green’s function of f electrons F(k,w) are expressed
through the self-energy part of X(k,w) for correlated f
electrons by the exact equations [118]

2 -1

Gk,w) = {w — ek — #‘Z(k,w)] , (8.14)
2 9-1

F(k,w) = {wfsffl(k,a))fa‘)l/flgk} . (8.15)

In accordance with the general idea of the DMFT, we assume
that X(k,®) is independent of the momentum k and is a
function of only the frequency X(w). We introduce the
diagonal matrix element of GF (8.15) with respect to the site
indices,
Flo)=)Y_ F(k o), (8.16)
K

and assume that F () coincides with the GF Fioc(w) of the
single-impurity Anderson model, which can be written as

1
w—¢&—Aw)—Z(w)’

Fioe(0) = (8.17)

where X () is the same self-energy part that determines the
GF of f electrons in the PAM and 4(w) is the hybridization
function. The GF Fjoc(w) of f electrons in the single-impurity
model is calculated with the help of some numerical
procedure (QMC, NRG, or another) as a functional of X(w)
and 4(w), and these two functions are found from the self-
consistency condition F(w) = Fioc(w).

Thus, the calculation of the local GF of the PAM is
reduced to the calculation of the GF for the single-impurity
Anderson model with specially chosen parameters. An
analogous scheme for the Hubbard model is described in
Section 2.
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Figure 20. Local spectral density p;(w) for the PAM calculated in terms of
the DMFT + NRG method [117]: (a) depending on temperature at the
parameters U/I'y = 5, g — & = —2.5T; and (b) at a fixed temperature
T =0.0003 I'y. The chemical potential is =0, n = 1.6, and all the
energies are given in the units of I'y = ©V2p,(0) (Anderson’s width of
the f'level).

Equations (8.14)—(8.17) are to be supplemented by two
additional equations that determine the local densities of f
and s electrons at a site:

nr) = —% J dof () Im F (o), (8.18)
2 .
(ng) = - J dof(w)ImG(w). (8.19)
The expression for the total electron density
n = (ng) + {ns) (8.20)

is an equation for the chemical potential p.

Figure 20 displays the calculated spectral electron density
of f electrons p¢(w)= —1/nIm F(w) depending on the
temperature and the Coulomb potential. Figure 20a shows
how the intensity of the central peak varies with temperature
at fixed U: as T decreases, the quasiparticle peak increases
strongly; moreover, in the vicinity of the chemical potential, a
pseudogap caused by the hybridization of the localized and
collectivized electrons appears. In Fig. 20b, it is shown how
the spectral density of f states changes at a fixed temperature
with increasing U. At U = 0, there exists a hybridization gap,
which gradually disappears with increasing U, forming a
quasiparticle Kondo peak characteristic of the Hubbard

model. It is seen from Fig. 20b that incoherent maxima
analogous to atom-like Hubbard bands of the Hubbard
model appear.

The authors of Ref. [118] calculated many transport
properties of the PAM and showed that the totality of
various thermodynamic and transport properties of f sys-
tems with HFs is described well in terms of the PAM
calculated by the DMFT + NRG method. Thus, the calcula-
tions showed that in the metallic state at low temperatures
(T < Ty), the electric resistivity behaves as p(T) ~ T2, as in
the theory of the Fermi liquid. At 7'~ Ty, a sharp increase in
p(T) is first observed; then, after passing through a maximum
(Tiax ~ 10—200 K), p(7T) decreases logarithmically. This
behavior of p(7T) is typical of many real HF systems. The
optical conductivity o(w) at low 7 demonstrates a Drude
peak. The calculations in the Kondo-insulator regime show
an activational behavior of p(T') and the absence of a Drude
peak, which agrees with experimental data. The results of
calculations of the thermo-emf and thermal conductivity also
agree satisfactorily with the experimental data. Thus, paper
[118], as well as [116, 117, 119] in which the DMFT methods
are used, show that the PAM is an adequate model for
describing the low-energy physics of f systems with HFs.

The formation of HFs in SCSs is a more common
phenomenon, not restricted to systems with 4f and 5f
elements. There are numerous systems based on 3d elements
with very high values of the linear coefficient y in the heat
capacity and the static magnetic susceptibility y, of the Pauli
type (Table 3). These 3d systems also exhibit a Fermi-liquid
behavior; in particular, their electric resistance changes
according to the law p ~ T?. But the mechanisms of the
formation of heavy effective masses in these systems can differ
from those in the f systems. Table 3 [33] lists some of these
mechanisms associated with specific compounds. Thus, MIT
denotes the most common mass enhancement mechanism in f
systems caused by the proximity to the metal—insulator
transition. Other mechanisms are denoted by KL (Kondo
lattice), F (frustration), and QCP (proximity to the quantum
critical point). The frustration mechanism occurs in systems
with a mixed exchange interaction between ferromagnetic
and antiferromagnetic ions or in systems with antiferromag-
netic coupling, in which the character of the geometric
arrangement of ions in the lattice does not allow establishing
a long-range magnetic order that minimizes the exchange
energy. The various scenarios of the formation of HFs are
discussed in [120].

Table 3. Heavy-fermion compounds of transition metals [33].

Compound 7, mJ mol~! K2 Mechanisms
LiV,04 350-490 F/KL

Y (Sc)Mn, 160 F

CaRuO; 77 QCP/MIT
-Mn 70 F
GdggSr,TiO; 50 MIT
Sr,RuO, 39 MIT/QCP

8.5 Phase diagram
We now turn to an analysis of magnetically ordered phases in
terms of the PAM. In the Kondo lattice, just as in the single-
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impurity Anderson model, by eliminating the hybridization
term, we can obtain an effective Hamiltonian of the sf
exchange for the PAM and then, with the help of an
additional canonical transformation, reduce it to an effective
Hamiltonian in which the initially localized f electrons can
hop over the lattice, and an indirect exchange interaction of
an oscillating nature, similar to the Ruderman-—Kittel -
Kasuya—Yosida (RKKY) interaction arises between the
localized spins that are formed on the lattice sites. Thus, in
the Kondo regime of the PAM at low temperatures (7 < Tx),
there is a competition between two opposite phenomena, the
Kondo screening (formation of a Kondo singlet at each lattice
site with a localized f electron) and the exchange interaction
between localized moments on the lattice. Kondo screening
tends to make the entire lattice nonmagnetic, whereas the
RKKY interaction tends to create a magnetic order. Which of
the phases is realized as a result of the competition between
these two tendencies depends on the relation between kTx
and the indirect interaction ~ J?/W.

The corresponding theoretical problem is very complex.
In the framework of the mean-field approximation in the
method of auxiliary bosons [121, 122], a phase diagram was
constructed in terms of the PAM for the Kondo regime with
the average number of f electrons (n') ~ 1. It turned out that
at any degree of hybridization ¥V, the magnetic state strongly
depends on the total number n = (n") 4 (n°) of electrons at a
site. At n = 1 and 2 and in small vicinities of these values, an
antiferromagnetic insulating phase arises, similar to what
occurs in the Hubbard model at half-filling. For n < 2 and
n < 1, a ferromagnetic metallic phase appears in a wide
interval of concentrations. These results, however, can be
significantly refined by using the DMFT.

The problem of the competition of the Kondo screening
and RKKY interaction was recently thoroughly studied in a
series of works [123—126] in the DMFT framework. Taking
the long-range RKKY interaction into account in the DMFT
framework requires an extension in order to include nonlocal
terms together with the local self-energy of electrons, which is
taken into account in the standard scheme. Several versions of
such an extension were proposed in [123—125]. In [124], a
phase diagram in the (7, V) plane was constructed. The
ordered antiferromagnetic phase prevails at small V" and low
temperatures, while the phase with the formation of Kondo
singlets dominates at large V. The Néel temperature 7y and
the Kondo temperature T decrease in approaching the point
V.~ 0.25 at low T, but their curves do not intersect each
other, at least down to the lowest temperature 7= 0.01 W
that was attained. Apparently, the point V. is the quantum
critical point of the PAM.

The PAM depends on so many parameters (including the
densities of f and s electrons {n¢) and (n)) that the Kondo
regime already involves many possibilities for the realization
of different phases with a long-range order, including
antiferromagnetic and superconducting ones; therefore, the
determination of phase diagrams on the (7, V'), (T, U), and
(T,n) planes requires significant effort. Experiments show
that in the weak-coupling regime (in which the localized
magnetic moments are conserved), the local moments of f
electrons have a tendency toward antiferromagnetic ordering,
whereas in the Kondo regime (in which the localized moments
are screened by conduction electrons), itinerant-electron
magnetism with incommensurate wave vectors Q and small
magnetic moments is realized. The crossover from the

localized moment to the collectivized one, which is observed
in CeCu(_,Gey with a change in the coupling constant
upon doping, was studied in [127]. The phase transitions
between the Kondo insulator and the paramagnetic metal in a
magnetic field in the DMFT framework were investigated
in [126].

8.6 Nonstandard superconductivity

In the HF systems, two phases with a long-range order —
antiferromagnetic and superconducting— compete at low
temperatures. The superconductivity in these compounds
was first discovered in CeCu;,Si; [128] in 1979, then in UBe;3
[129] in 1983, and in UPt; [130] in 1984 (at present, about
twenty superconducting HF compounds are known). At the
very beginning, an idea was suggested that a nonstandard
superconductivity caused by the nonphonon mechanism of
pairing is realized in the HF compounds. This was an
extremely bold hypothesis, expressed even before the dis-
covery of HTSC in cuprates. One of the bases for this
hypothesis was a consideration that the pairing mechanism
via a virtual exchange of excitations (phonons) was connected
with the same electron—phonon interaction that is respon-
sible for the electric resistance of metals as a result of the real
scattering of electrons by phonons. In the HF compounds at
low temperatures, the resistance behaves as p(T') ~ T2. In the
usual Fermi systems, the same law of variation of p(7T')
corresponds to the electron—electron interaction. This can
serve as an indication that in the systems where a quadratic
temperature dependence of resistance is observed, precisely
the electron—electron interaction is responsible for the
pairing mechanism [131]. Furthermore, because of the
narrowness of the quasiparticle peak in HF systems, the
Fermi energy in them is small in comparison with the energy
that corresponds to the characteristic frequency of the
phonon spectrum.

Experimental studies of the superconductivity of HF
systems showed that the superconducting order parameter
(the gap in the electron spectrum) takes zero values at some
points or even on certain lines on the Fermi surface. This
indicates a special symmetry of the wave functions of
Cooper pairs [132], for example, a d symmetry, as in
cuprates. This type of symmetry leads, in the case of a
local character of the Coulomb potential, to a minimization
of the repulsive energy in the anisotropic Cooper pair. As in
cuprates, attraction arises in the HF systems as a result of
antiferromagnetic fluctuations. Neither of the phenomena
observed in these systems—antiferromagnetic and super-
conducting ordering—excludes the other but they compete
with one another. For example, in UPt; at temperatures
below 7.~ 0.33 K, superconductivity coexists with an
antiferromagnetic ordering.

An unexpected event proved to be the discovery of
superconductivity in the compound SryRuQy, in which the
pairing is assumed to have a triplet nature (and the order
parameter has a p symmetry, correspondingly) [133]. This
type of pairing can arise due to ferromagnetic fluctua-
tions, similar to those observed in 3He. We have no
possibility to consider the problems of superconductivity
in HF systems in much detail here and refer the reader to
reviews [134, 135].

Some examples of f systems that exhibit various phenom-
ena caused by the strong electron correlation are given in
Table 4 [136].
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Table 4. Examples of f systems with strong electronic correlation

Type of system Compound

Concentrated
Kondo systems

Ce, La;_,Ce,, La;_,Ce,Al;,
Lal,xCe,\,Cuﬁ, Cel,,\,Labeg

CeCu(,, CCAI}, UCU5, CeRuZSiz, UAlz,
Ulr, UyZn,7, UPt3, UCd,

Heavy fermions

Kondo insulators Ce;BiyPt;, CeNiSn, SmBg, YbBi,,

CCRth, Ce3 Sb4Pl3, YbBlz, Ce;Au3Sb4

Intermediate-valence
systems

CeSnj3, CePdj, (Sm, Y)S, CeFe,Alg,
CeCu,Ge,

U,Pt,In, UCus_,Pd,, YbCus_,Al,,
U;_Ni3Sn4_,, CeColns

Non-Fermi-liquid
systems

Antiferromagnets UAgCuy, URu; Sip, UCus, UyZnyy,

UGdy;

UPt3, UB613, CCCLI2 Siz, CCszSiz,
URUQSiz

HF superconductors

Reentrant superconductors  (La, Ce)Al,, (La, Th)Ce, UGe,, CeRu,,

LaCe

9. Conclusion

9.1 General properties of materials with strong electron
correlations

Chemical compounds based on transition metals, rare-earth
elements, and actinides, in spite of their different crystal—
chemical structure and composition, have much in common
in the behavior of their physical propertics. When being
stoichiometric, many of these compounds are insulators or
‘bad’ metals. Upon substitution of atoms of some elements (in
no way necessarily of the d or f type) by atoms with a different
valence, these initially insulating compounds can become
metals. The classical example is given by the HTSC
cuprates, for instance, La,CuQOy, in which La is replaced by
Sr, or the manganite LaMnQs3, in which La is replaced by Ca.
A typical feature is that even at relatively small levels of
doping, the physical properties of these compounds can
change quite substantially. The passage from the insulating
to metallic state occurs as a second-order phase transition.
Such electron transitions are usually accompanied by strong
changes in the magnetic and transport properties.

The metal —insulator transitions, as we have seen, can also
occur in stoichiometric compounds under the effect of some
external factors, e.g., pressure, temperature, or substitution
by elements with the same valence (which imitates external
pressure). The metal —insulator transitions represent a very
common manifestation of strong electron correlations in d
and f systems.

Another general property of strongly correlated systems
(SCSs) is a complex structure of quasiparticle states, which
manifests itself in spectroscopic experiments (PES and
ARPES) and in optical conductivity. These experiments
frequently reveal a narrow quasiparticle peak of coherent
states in the vicinity of the Fermi energy and two wide
maxima located on the opposite sides of the Fermi level at
distances equal to the characteristic local (intraatomic)
energies: the Coulomb potential U at the atoms of either the
d or f element, or the intraatomic Hund exchange J. These
high-energy excitations are a consequence of incoherent
transitions of an electron or a hole onto a localized atomic

level. The existence of such incoherent excitations is a
sufficiently general property of SCSs, which seems to have
been first found in [44] many years ago.

The existence of a narrow quasiparticle peak near the
Fermi level implies a strong renormalization of the charge-
carrier effective masses, by one or two orders of magnitude
(heavy fermions). The intensity of the quasiparticle peak
usually changes substantially with changes in the concentra-
tion and decreases sharply with increasing the temperature.
This behavior is especially characteristic of the heavy-fermion
(HF) systems, in which the magnetic and structural properties
strongly change in passing from high to low temperatures.
The crossover from one regime to another occurs at a
representative temperature 7, which is of the order of the
Kondo temperature Tk.

A characteristic feature of many SCSs is a strong
dependence of their magnetic properties on the control
parameters, one of the most important of these being the
level of doping, i.e., the concentration of the substituting
element. At a zero level of doping (stoichiometric composi-
tion), the compound with d and f elements is usually an
antiferromagnetic insulator. With an increasing level of
doping, the long-range magnetic order disappears, but the
strong fluctuations of short-range order are retained. In this
situation, states with a different long-range order occur. In
particular, a superconducting state appears in cuprates and
HF systems. Their phase diagrams on the (7, n) plane are
quite diverse, but there is the following regularity: at low
temperatures, with a deviation in the composition of the
compound from stoichiometric (which frequently corre-
sponds to band half-filling), a metallic phase appears in
which different types of long-range order can compete. At
high temperatures, the phase diagram is simplified; in the
paramagnetic state, insulating and metallic phases usually
compete. In the cases where doping leads to the appearance of
a ferromagnetic ordering, as in manganites, the phase
diagrams become more diverse. For example, the ferromag-
netism can be replaced by magnetic ordering of other types.

In strongly correlated systems, the heterogeneous state of
phase separation is frequently realized. Examples of this state
are encountered in cuprates in the form of ferromagnetic
inclusions in an antiferromagnetic matrix. The energy gain of
the heterogeneous state relative to the homogeneous state is
caused by the competition of the kinetic energy of electrons
and the interactions that are responsible for some long-range
order (e.g., antiferromagnetic). The appearance of islands of a
ferromagnetic phase inside the ordered antiferromagnetic
phase decreases the kinetic energy of electrons. Theoretical
arguments in favor of the possible existence of such hetero-
geneous phases in compounds such as cuprates or manganites
can be found in reviews [93, 137].

9.2 Theoretical description of d and f systems in terms

of the basic models and DMFT

A remarkable fact is that the basic physical properties of SCSs
with d or f elements can be described with the help of three
simple models: the Hubbard model, the sd model, and the
periodic Anderson model. This is just what we intended show
in this review. Moreover, it typically suffices to use the
simplest version of the model, in which only nondegenerate
electron states corresponding to atoms of the d and f elements
are taken into account. In the Hubbard model, only one
electron band is considered, which imitates d electrons with a
strong interaction between themselves. In the sd model, which
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is frequently called the Kondo lattice model (KLM), a band
of electrons is considered that interact not directly between
themselves but by means of the exchange forces with localized
magnetic moments belonging to the electron shells of atoms
of d or f elements. In the most complex model — the periodic
Anderson model (PAM)—two groups of electrons are
considered: f electrons, which strongly interact among
themselves, and noninteracting s electrons; their hybridiza-
tion is also taken into account.

In these three basic models, only maximally localized
interactions of electrons are taken into consideration: they
interact only if they are located at the same lattice site. This
refers to both the Coulomb interaction, which is considered in
the Hubbard model and the PAM, and the exchange
interaction considered in the sd model. The local nature of
these interactions allows developing an effective method for
the calculation of the electron structure, the dynamic mean-
field approximation. The DMFT allows calculating the
quasiparticle spectrum of electron states at an arbitrary
value of the Coulomb parameter U or the exchange para-
meter J, i.e., solving the problem of strong correlations in the
case where U= W or J = W. The relevant investigations show
that in the Hubbard model at U ~ W and band half-filling
(n = 1), a three-peak structure of the quasiparticle spectrum
arises; in this case, the height of the quasiparticle peak
strongly depends on the temperature and the level of doping
(deviation of n from 1): it decreases with increasing 7" and
|n — 1]. As U approaches a certain critical value U, ~ W, the
quasiparticle peak disappears and a phase transition from the
metallic to the insulating state occurs. The three-peak
structure of the spectrum and its change with a change in the
temperature and in the level of doping, which follow from the
DMFT approach to the Hubbard model, are just those
features that are observed in many SCSs considered in this
review.

However, if we want to calculate the dynamic response
functions, such as the conductivity or magnetic susceptibility,
then we should introduce spatial fluctuations into the DMFT
scheme. In this review, we considered several versions of the
corresponding extension of the DMFT scheme: the use of a
multiimpurity cluster (instead of the single-impurity auxiliary
problem) or the phenomenological introduction of static
short-wavelength fluctuations. This is one of the main areas
in which the DMFT is developing now. With spatial
correlations taken into account in the DMFT framework, it
is possible, for example, to solve the problem of pseudogap
states in HTSC materials.

The low-energy physics of f systems is described by the
PAM at least as successfully as the Hubbard model describes
d systems. The most important new element in the PAM is the
hybridization of the collectivized and localized electrons. The
PAM can be used especially effectively for the description of
systems with heavy electrons and of Kondo insulators. These
systems are realized in a certain range of parameters of the
Hamiltonian that correspond to the Kondo regime. In this
regime, a single energy scale T exists in the system above the
Kondo temperature Tx — the energy scale of the single-
impurity Anderson model. The scale T divides the tempera-
ture scale into two regions: the high-temperature region, in
which the localized magnetic moments are conserved in the
system rather weakly interact with the collectivized electrons,
and the low-temperature region, in which this interaction is
very strong and Kondo singlets (coupled states of the
localized spin and the screening cloud of the spin polariza-

tion of electrons) are formed. In the Kondo regime, a three-
peak structure is realized in the spectral density of the metallic
phase in the PAM (just as in the Hubbard model), with a very
narrow central peak at the Fermi level. In this case, a strong
renormalization of the electron mass occurs: m*/m ~
Tr/Ty > 1, i.e., heavy electrons appear.

The results of the DMFT calculations of the PAM
correspond to the picture presented above and adequately
describe the transport properties of f systems. Of special
importance is the problem of constructing the phase diagram
of the model allowing competition of two opposite phenom-
ena, Kondo screening and long-range indirect exchange of the
RKKY interaction type. To solve it, it is necessary to extend
the DMFT to allow spatial correlations in the system. The
passage from the single-impurity auxiliary problem to the
problem of a multiimpurity cluster has already allowed
considering the competition of two forms of ordering in the
PAM, antiferromagnetic and superconducting, similarly to
how this was done in the framework of the extended DMFT
method for the Hubbard model.

9.3 Newest results of studies in the DMFT

Thus, the basic physical properties of virtually all classes of
compounds of d and f elements are described within the
DMFT framework by three basic models. To obtain a
quantitative agreement with the experimental data, an
LDA +DMFT method (described in reviews [7—12]) was
developed, which allows considering the real crystal struc-
ture of specific chemical compounds. One of the basic factors
is taking the degeneracy of d and f states of electrons in atoms
into account. The introduction of orbital degrees of freedom
together with spin and charge ones allows obtaining various
types of ordering in the crystal, including orbital ordering,
and the interaction between them. A general discussion of this
question can be found in review [136]. The orbital degeneracy
of electrons is especially important in considering the
LDA + DMFT scheme for describing pure metals with 4f
and 5f incompletely filled shells. Detailed calculations are
presently in progress for cerium and plutonium (see [7, 8,
138]). Detailed calculations of the electron structure were
carried out for the compounds NiO [139, 140] and Sr,RuOg4
[141]. We also note paper [142], in which the DMFT method
was applied to the calculation of the band structure and
ARPES spectra of ferromagnetic nickel; the results obtained
agree very well with the experimental data.

We now turn to some important results obtained in the
DMFT most recently. DMFT calculations for the Hubbard
model allow obtaining inhomogeneous states of the phase-
separation type together with uniform phases. In [143], the
authors constructed a phase diagram for the paramagnetic
state on the (u, U) plane for the Bethe lattice with electron
transitions between the nearest neighbors taken into account
(Fig. 21a). At T = 0 and half-filling (at which u = U/2), the
system is insulating at U > Ug,, where U, ~ 5.84¢(cf. Fig. 4).
Upon deviating from the half-filling, the ground state of the
system is metallic, and the chemical potential varies jumpwise
from pu=pu; to pb as the electron concentration n
approaches unity from below or from above. Thus, for
Uo < p < ph, the system is insulating at half-filling. In the
regions where g < p < p, or pl > u > ub, the metallic
and insulating phases coexist, whereas a stable metallic phase
is realized beyond these regions. The appearance of a metallic
phase at the points u = u is caused by the appearance of
states inside the Mott gap, and the disappearance of the
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Figure 21. Phase diagrams for the Hubbard model [143]: (a) on the (u, U)
plane at 7 = 0 and (b) on the (7, n) plane near the half-filling at U = 6¢.

insulating phase at the points u = p is related to the fact that
1 reaches the boundary of the gap.

At a finite temperature, a phase separation region arises in
a small vicinity of n = 1 (Fig. 21b). This region is substantially
enlarged with increasing the temperature if we take the
electron hopping to next-to-nearest sites into consideration.
This hopping causes frustration in the system and breaks the
electron—hole symmetry, and the phase diagram therefore
becomes asymmetric with respect to the point # = 1, which is
typical of SCSs based on d elements.

We note that the majority of works concerning the
Hubbard model in the DMFT framework were performed
on a square lattice. However, in [144, 145], the DMFT (QMC)
method was applied to a two-dimensional triangular lattice at
half-filling [144] and at a deviation from half-filling [145]. The
motivation for these calculations was the discovery of super-
conductivity in Na,CoO; x yH,O and the exotic phase
diagram of the compound Na,CoO,. At n=1 on the
triangular lattice, a metal—insulator transition occurs at
U. =121 [144] and U, = 151 [145]. As was shown in [145],
at a deviation from the half-filling, the phase diagram
strongly depends on the sign of the hopping matrix element.
At t > 0 and n # 1, the system is metallic but has different
properties in different regions of the (U, n) phase plane. At
large U, approximately in the middle of the concentration
interval 1 < n < 2, a ferromagnetic phase with signatures of
itinerant-electron magnetism appears. Outside this interval,
in the metallic paramagnetic phase, localized magnetic
moments appear, which manifest themselves in the Curie—
Weiss behavior of the magnetic susceptibility. At # < 0 and
Uz W, signatures of the weakly correlated paramagnetic
metal with a Pauli susceptibility appear in the periodic

lattice. The studies in [144, 145] show an important role of
frustrations in the system with strong correlations. At the
same time, the DMFT results in [145] satisfactorily describe
the basic properties of the exotic compound Na,CoO,.

We note in conclusion that the DMFT method is an
approximate theory in application to real systems with a finite
spatial dimension; however, in comparison with other
approaches, it has a number of advantages in describing
strongly correlated systems. The equations of this theory
have two exact limits: at U = 0 (the free-electron limit) and
t = 0 (the atomic limit). Hence, at finite U, an interpolation
between these limits occurs, which takes the collectivized and
local aspects of the electronic states of SCSs into account. It is
important to note that the necessary sum rules for the Green’s
functions of electrons are satisfied in this approach and their
analytic properties are not violated. We also recall that, as
applied to the basic model of SCS — the Hubbard model —
the DMFT method connects two conflicting regimes at the
band half filling: the insulating state with a gap in the electron
spectrum and the metallic state with a quasiparticle peak at
the Fermi level. Earlier, completely different theoretical
approaches were used for describing these regimes, the
decoupling of Green’s functions (the so-called Hubbard III
approximation [2]) for describing the dielectric state, and the
Gutzwiller approximation for describing the quasiparticle
state. The DMFT method linked together both these regimes
and showed that the transition between them occurs as a
result of a change in the Coulomb repulsion parameter U.
This single advantage is already a motivation strong enough
to discard spatial correlations in describing real strongly
correlated systems. Nevertheless, there are several extended
versions of the DMFT scheme, which were described above;
they allow taking these correlations into account.

We now compare the situation with the description of the
electron state of simple (nontransition) metals and d and f
metals and related chemical compounds. Fifty years divides
the periods of the construction of detailed theories for these
groups of metals. The description of simple metals is based on
the standard band theory and Landau Fermi-liquid theory.
The combination of these two fundamental concepts allowed
creating the science of fermiology in the 1950s, whose
predictions were confirmed using many experimental techni-
ques that existed at that time. This was the period of the
predominance of analytic approaches to the theory of
condensed state, which was caused by two factors: the
relevant physical objects were relatively simple and the
computational possibilities were very limited.

After fifty years, the situation changed radically: the
objects of studies—d and f metals and their compounds—
became substantially more complex. Models have become
necessary that are capable of providing one approximate
description or another; moreover, in the case of strongly
correlated systems, the theory no longer contained a small
parameter, and therefore solving the equations of even simple
(basic) models required powerful computational facilities,
which had already appeared by this time and became
accessible. Thus, owing to an appropriate physical idea (to
formally consider the models in the limit of a large spatial
dimension) and to the development of effective computa-
tional programs, the DMFT scheme is becoming the basic
tool in the theory of strongly correlated systems.
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