
Abstract. It is demonstrated how a theoretical analysis preced-
ing numerical calculations helps to determine the ground-state
energy of the helium atom and enables one to avoid qualitative
errors when calculating the characteristics of double photoioni-
zation.

1. Introduction

Many papers published over the years that deal with the
interaction between photons and atoms or molecules have
the same structure. First, the most general formula known
from quantum mechanics is written down. Then a wave
function that is as exact as possible and describes the bound
system is substituted into the formula. Such a wave function is
either derived in the same paper or is taken from previous
publications. Since the binding energies of bound systems are
measured to a high accuracy, the wave functions are tested for
the reproducibility of this quantity. The most exact is
considered the wave function that reproduces the value of the
binding energy to the highest accuracy. The computer
calculations follow afterwards. Sometimes attempts are made
to account for the interaction in the final state, to which end
combinations of Coulomb functions are usually utilized.

Two decades ago such an approach could be justified.
Usually, the characteristics that can be measured are those
that are calculated. In experiments, the energies transferred to
the targets were usually of the order of the binding energies.
Thus, no small parameter emerged in such a problem and the

general formulas provided by quantum mechanics did not
allow for any further transformation. The only distance scale
was the size of the bound system. Further investigations in
this area of research amounted to battling for higher
accuracy. The physics of processes in the immediate vicinity
of a threshold, where a small parameter can be singled out,
amounted to one of the exceptions.

The situation changed in the late 1980s, when new
synchrotron sources of photons became available. Experi-
ments in which atoms interacted with photons having energies
up to 10 keV were begun. For light atoms, such energies are
much higher than the binding energy of even the 1s-electrons.
Asa result, a small parameter emerged in theoretical problems.

A general approach to high-energy atomic physics can be
based onBethe's ideas [1] whosemodern interpretation can be
found in Refs [2, 3]. Bethe's approach [1] formulated for
electron ± atom scattering can be extended to any process of
interaction between high-energy particles and bound systems.
The term `high energies' means that the energies considered in
the specific problem aremuch higher than the binding energy.
The cross sections of such processes can be expressed in terms
of certain parameters of the bound system. The interactions
between the fast and slow components of the compound
system can be taken into account by applying the perturba-
tion theory. Each act of transfer of momentum much larger
than the characteristic momentum of the bound system leads
to the emergence of aparametrically small factor. In the region
in which a process involving a free electron is kinematically
allowed, known as Bethe's surface, a momentum q on the
order of bound-electron momentum Z is transferred to the
nucleus. Processes outside Bethe's surface require high-
momentum transfers to the nucleus (q4 Z). Therefore,
processes outside Bethe's surface are highly suppressed.

Thus, the amplitudes of processes in high-energy atomic
physics depend on the parameter

k � Z
q
: �1�

E G Drukarev B P Konstantinov Petersburg Nuclear Physics Institute,

Russian Academy of Sciences,

Orlova Roshcha, 188300 Gatchina, Leningrad region,

Russian Federation

Tel. (7-813) 714 60 96. E-mail: drukarev@thd.pnpi.spb.ru

Received 16 March 2007

Uspekhi Fizicheskikh Nauk 177 (8) 877 ± 887 (2007)

Translated by E Yankovsky; edited by A Radzig

METHODOLOGICAL NOTES PACS numbers: 31.15. ± p, 31.50.Bc, 32.80.Fb

Atomic physics: computer calculations and theoretical analysis

E G Drukarev

DOI: 10.1070/PU2007v050n08ABEH006372

Contents

1. Introduction 835
2. Calculating the ground-state energy of the helium atom 836
3. Asymptotics of double photoionization: xÿ7=2 or xÿ5=2? 838

3.1 Single-ionization asymptotics; 3.2 Double-photoionization asymptotics. An apparent contradiction; 3.3 Resolving

the contradiction; 3.4 The Lippmann ± Schwinger equation

4. Shape of the double-photoionization spectrum: U or W? 841
4.1Mechanisms of the process; 4.2 Calculations in the dipole approximation; 4.3An explanation of the results obtained

in the dipole approximation; 4.4 Evolution of the shape of the spectrum; 4.5 Properties of approximate functions

needed for a description of double photoionization

5. Conclusion 844
References 844

Physics ±Uspekhi 50 (8) 835 ± 845 (2007) #2007 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



On the Bethe surface, one has k � 1, while outside it k5 1.
The characteristic binding momentum may be defined as
Z � �2mI �1=2, where I > 0 is the binding energy. Using the
relativistic system of units in which �h � c � 1, for the ground
state of a hydrogenlike atom we obtain

Z � maZ ; �2�

where m is the electron rest mass, a � 1=137, and Z is the
charge of the nucleus.

Sometimes, the description of a fast electron by the
perturbation theory, which is another item in Bethe's theory,
leads to confusion. In the chapters devoted to perturbation
theory in most textbooks on quantum mechanics, only short-
range forces are considered. In the case of the Coulomb field
each term that emerges as a result of iteration of the
Lippmann ± Schwinger equation contains infrared-diverging
contributions. In this sense, the perturbation series diverges,
so that the possibility of describing fast electrons by plane
waves appears unjustified. Nevertheless, a solution to this
problem was found fairly early. In 1951, Dalitz [4] assumed
that the divergent contributions to the electron ± nucleus
interaction amplitudes form a factor exp�iF�, where F
is real. This factor and the complex-conjugate factor cancel
out when the cross section is calculated. Gorshkov [5]
provided a rigorous proof of this assertion. Thus, represent-
ing the electrostatic electron ± nucleus interaction in the form
V �r� � ÿaZ exp �ÿlr�=r with l! 0, we are justified in
writing the Lippmann ± Schwinger equation and solving it by
perturbation theory technique. The terms that depend on l
will cancel out when the cross section is calculated.

The parameter of the perturbation theory for a contin-
uous-spectrum nonrelativistic electron with an asymptotic
momentum p moving in the field of the nucleus of electric
charge Z can be written as follows (see Ref. [6]):

xZ �
maZ
p

: �3�

The condition xZ 5 1 means that the relative contribution of
the interaction with the nucleus to the electron wave function
is much smaller than unity. Since for different terms in the
wave function expansion in powers of xZ different distances
may be important, one must be careful to see that all terms
contributing to a particular order in the series expansion of
the amplitude are accounted for.

Nevertheless, large discrepancies between the results of
calculations that use plane waves and Coulomb-field func-
tions of the nucleus often show up even at very high energies.
Sometimes this leads to statements like `the plane-wave
approximation never works'. Actually, the reason for all this
lies in the simple fact (see Ref. [7]) that the electron ± nucleus
interaction contains two parameters that depend on the
electron momentum p. In addition to the parameter x 2

Z,
which is used as the small parameter in the expansion of the
wave function at distances from the nucleus of order Zÿ1,
there is the parameter pxZ which comes into play in the
interactions at small distances of order� pÿ1. In any case, the
dependence on the parameter pxZ emerges in the normal-
ization factor of the nonrelativistic Coulomb function.
Additional contributions of order pxZ appear in processes
that require the transfer of large momenta to the nucleus, say,
in the photoeffect. Luckily, all contributions that depend on
pxZ are factorable and appropriate factor can be calculated.

Thus, the perturbation theory has a broader range of
applicability for the ratio of cross sections than for the cross
sections proper [8]. Assuming that

pxZ � 1 ; x 2
Z 5 1 ; �4�

we can make expansion in powers of x 2
Z.

Attempts to account for the interaction of continuous-
spectrum particles in the final state with bound electrons were
also fraught with difficulties caused by long-range interac-
tion. In Ref. [9], we proposed an approach that takes into
account the interaction in the lowest order in the parameter

x 2 � �ma�2
p 2
r

; �5�

where pr is the momentum of relativemotion of the final-state
electron and the bound electron [formula (5) is given for the
cases of electron ± electron interaction]. Calculations require
accounting for the first- and second-order amplitudes.
Infrared divergences emerge in the intermediate stages of the
calculations, the same as in the case of electron ± nucleus
interaction, and in the final expression for the cross section
these divergences cancel out.

Since for a long time experiments involving high-energy
photons were unachievable, these ideas were not often used in
theoretical works. As far as I know, only V G Gorshkov and
his collaborators [10] used this approach, and only for
hydrogenlike atoms.

Thus, in high-energy processes involving bound electrons,
distances of order Zÿ1 and of order pÿ1 5 Zÿ1 may be
important. Therefore, it is not enough to require (and is not
really important) that the wave function correctly reproduce
the binding energy. If the process is forbidden kinematically
for free electrons, what is more important is the behavior of
the wave function at small distances between an electron and
the nucleus or between electrons. Here, the perturbation
theory relying on the parameter k 2 can be used. In describing
the final state one can employ the perturbation theory in the
parameters k 2; x 2

Z, and x 2, making sure that all contributions
of a given order are taken into account.

I believe that the history of studies of the helium double
photoionization is a good illustration of how employing these
principles helps to obtain results and also of the fact that
ignoring them leads to qualitative mistakes. We begin with
the static problem of calculating the binding energy of the
helium atom.

2. Calculating the ground-state energy
of the helium atom

The ground-state energy of the helium atom has been
measured very accurately. In the late 1950s, the error
amounted to one part in a million [6], and today it is
2� 10ÿ7 [11]. All this has stimulated a search for more exact
solutions of the wave equation for helium, with the focus on
solving the nonrelativistic equation (the SchroÈ dinger equa-
tion) in the field of a force center.

The Hartree ±Fock (HF) method developed at the
beginning of the 1930s makes it possible to find the ground-
state energy with an accuracy of 1.5%, whereas the accuracy
achieved in experiments is incomparably higher. The reason
for this failure is understandable. The wave function in the
Hartree ±Fock method constitutes a combination of single-
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particle functions and does not depend on the relative distance
r12 between the electrons, with the result that it does not
reproduce the pattern of theirmotion in relation to eachother.

Another approach was being advanced at the time when
the Hartree ± Fock method was being developed. What was
postulated in this approach was the analytical dependence of
the approximate wave function ca�r1; r2; r12� on the distances
r1 and r2 between the electrons and the nucleus and on the
electron ± electron separation r12. Such functions ca depend
on several parameters determined by the condition of
minimization of the mean value of the helium atom
Hamiltonian, namely

E � 
cajH jca

�
: �6�

The simplest example is the product of hydrogenlike func-
tions with a certain `effective charge of the nucleus', Zeff,
which acts as a variational parameter. In this case, one has

ca�r1; r2� � cH�r1�cH�r2� ; �7�

with the well-known expressions cH�r� � exp �ÿar�, a �
maZeff for the ground-state hydrogenlike functions cH.
(Here we used the normalization condition c�0� � 1.) The
well-known solution Zeff � 27=16 [6] reproduces the energy
value with an error of 2%.

The approximate functions in the from

ca�r1; r2; r12� � exp
�ÿ a�r1 � r2�

�
P�r1; r2; r12� ; �8�

were applied from the early days of quantum mechanics,
where the parameter a and coefficients in the polynomial

P�r1; r2; r12� �
X

ci j kr
i
1r

j
2 r

k
12 �9�

are variational parameters. In the first calculations, dating
back to the late 1920s, wave functions (8) comprised three
parameters. After three decades, the functions that were used
could contain more than 200 parameters. Moreover, in
addition to polynomial contributions (9), a dependence on
the ratios

r12
r1 � r2

and
�r1 ÿ r2�2

r 212

was introduced into the functionsP�r1; r2; r12�. This approach
allowed achieving a continually refined quantity interpreted
as the binding energy (the accuracy with which this quantity is
determined may be as high as several parts in 10ÿ10), which
also reproduces the experimental value. Calculations with an
accuracy exceeding 10ÿ4 require taking into account relati-
vistic corrections, the finite mass and size of the nucleus, and
some other factors.

However, as early as 1935, Barlett et al. [12] pointed out
that functions (8), in which P are polynomials, cannot satisfy
the SchroÈ dinger equation. Such solutions cannot exist
because they do not reproduce the limiting case of triple
coalescence, r1 � r2 � r12 � 0. Later on, Fock showed [13]
that the inclusion of logarithmic terms in the polynomial

P�r1; r2; r12� �
X

ci j k nr
i
1r

i
2r

k
12

�
ln �r 21 � r 22 �

�n �10�

yields correct behavior at this point and found the algorithm
for building the appropriate expansion. Usually, such
functions are specified in hyperspherical variables.

The inclusion of logarithmic terms has little effect on the
accuracy of energy calculations, but it does speed up the
convergence of variational calculations. Here, allowance for
logarithms makes possible a reduction in the number of
parameters needed for acquiring the necessary accuracy. For
instance, calculations with an accuracy of one part in a billion
with the aid of functions (9) require introducing 1078
parameters, while the same accuracy can be achieved by
functions of type (10) containing 52 parameters [15].
Furthermore, as noted by Myers et al. [16], the variational
procedure for some functions of type (9) selects the values of
the parameters in such a way that the function P can be
represented in the form of expression (10) with a smaller
number of parameters.

The behavior of the solution C�r1; r2; r12� of the
SchroÈ dinger equation at the points r1 � 0, r2 � 0, and
r12 � 0 of coalescence of two particles is determined by the
Kato conditions [17]. For the point of coalescence of an
electron and a nucleus we have

r0
qC�r1; r2; r2�

qr1
� ÿZC�0; r2; r2� ; �11�

and the same relation emerges at r2 � 0. At the point of
coalescence of two electrons, one finds

r0
qC�r1; r1; r12�

qr12
� 1

2
C�r1; r1; 0� ; �12�

where r0 � 1=ma is the Bohr radius. Equations (11) and (12)
constitute the condition for the cancelling out of singular
terms in the SchroÈ dinger equation.

To illustrate, let us examine the single-electron wave
function of the ground state in an effective field U�r� that
approximates the electron's interaction with the nucleus and
the electron cloud. The SchroÈ dinger equation for this case is
given by

ÿ 1

2m

�
c 00�r� � 2

r
c 0�r�

�
�U�r�c�r� � Ec�r� : �13�

As r! 0, the field U�r� begins to be determined by the
interaction with the nucleus, viz. U�r! 0� � ÿaZ=r. Hence,
as r! 0, we can write

ÿ 1

2m
c 00�r� � lim

r!0

�
ÿ 1

m

c 0�r�
r
ÿ aZc�r�

r

�
� Ec�r� : �14�

Since both sides of this equation must be regular, the
expression in the parentheses on the left-hand side must
have a finite value. Hence, we arrive at

r0
qc�r�
qr
� ÿZc�0� �15�

\ss as r! 0. Analyzing the SchroÈ dinger equation for the
helium atom in a similar manner leads to Eqns (11) and (12).
What is interesting is that these relations, which could have
been derived immediately after the SchroÈ dinger equation was
written in 1926, were discovered only 30 years later.

The correct behavior of the approximate wave function
near the two-particle coalescence point proves to be more
important than near the three-particle coalescence point,
since the latter manifests itself in a smaller phase volume.
Myers et al. [16] analyzed the simplest approximate wave
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function

ca�r1; r2; r12� � exp
�ÿ a�r1 � r2� � br12

� �16�

satisfying both Kato conditions, with a � maZ and
b � ma=2. This function, which contains no adjustable
parameters, reproduces the binding energy to the same
accuracy as function (7), which contains the variational
parameter Zeff. Nevertheless, function (16) does not properly
behave at the three-particle coalescence point r1 � r2 �
r12 � 0. The simplest function with the correct behavior at
this point was also given in Ref. [16].

If a meaningful form of the approximate function is
selected, the variational procedure selects the values of the
parameters at which the Kato conditions are met to a high
accuracy as, for example, is true of the function

ca�r1; r2; r12� � exp
�ÿ a�r1 � r2� � br12

� X
ci j kr

i
1r

j
2 r

k
12

�17�

�i� j� k4N�, analyzed by Teng and Shakeshaft [18]. Even
in the case of four parameters �N � 1�, the relative errors in
equalities (11) and (12) for function (17) amounted to 6 and
25%, respectively.When there aremore parameters, theKato
conditions are met to a higher accuracy. Achieving the sought
accuracy for functions of type (17) requires the use of a
significantly smaller number of parameters than for functions
(8), (9). For instance, function (17) with 14 parameters
reproduces the binding energy with an error of 3� 10ÿ5.
Achieving such accuracy with a function from the (8), (9) class
requires the use of 210 parameters.

In addition to determining themean value ofHamiltonian
(6), modern computations embrace the local energy

E �r1; r2� � Hca

ca

; �18�

which provides detailed information on the relation between
the approximate function ca and the exact solution C of the
SchroÈ dinger equation. Another approach consists in solving
the SchroÈ dinger equation directly. In one method belonging
to this approach (see Ref. [19], where other methods are also
discussed), the approximate wave function is the product of a
correlation factor, which determines the behavior at the
singular coalescence points, and a smooth function
expanded in terms of the hyperspherical harmonics. A
detailed description of these methods is beyond the scope of
the present article.

Thus, we have shown that allowing for the correct
analytical structure in approximate wave functions improves
the results of binding-energy calculations, which is even more
important when we are dealing with dynamical problems
discussed in the sections that follow.

3. Asymptotics of double photoionization:
xÿ7=2 or xÿ5=2 ?
Since the late 1950s, double photoionization of helium atoms
has been studied as the simplest dynamical three-body
problem with electromagnetic interaction. Large experimen-
tal data on this subject allows theoreticians to evaluate their
approaches.

The mechanism that determines the high-energy nonrela-
tivistic asymptotic behavior of the double-photoionization

cross section s 2��o� (here, o is the photon energy) has been
established by Kabir and Salpeter [20]. At energies o much
higher than the electron binding energy I, the process can be
considered single ionization accompanied by a change in the
state of the second electron due to changes in the system's
Hamiltonian. Here, the secondary electron acquires, basi-
cally, an amount of energy e2 � I. Thus, the amplitude and
cross section of the process depend on o in the same way as
they do in single ionization, and the asymptotic behavior of
the cross-section ratio s 2��o�=s��o� is energy-independent.

This resembles the ionization of atoms in beta-decay. The
latter, as shown by Feinberg [21], basically occurs (at
sufficiently high energies) due to change in the charge of the
nucleus and the resulting redistribution over the final states of
the atom (shaking). However, this analogy is not perfect. A
change in the nuclear charge alters the effective field, which
the atomic electrons `feel'. As shown by Byron and Joachain
[22], attempts to explain the knockout of the second electron
into the continuum by a sudden change in the self-consistent
field underestimate the asymptotic value by a factor of three.
Thus, correlations that are not accounted for by the effective
field play an important role in double ionization. Hence,
approximate functions of the type (8) or (17), in which such
correlations are effectively accounted for, are used in
computations.

Despite the fact that the mechanism proposed by Kabir
and Salpeter [20] is simple, calculations of the cross-section
asymptotics have led to a paradox, and it took several years to
resolve it. First, let us recall how the asymptotics of single-
and double-ionization amplitudes are calculated.

3.1 Single-ionization asymptotics
We will describe the electrons by single-particle wave
functions. The general expression for the ionization ampli-
tude can be represented in the form [23]

F� � �4pa�1=2
�
d3rc�p1�r� g exp

�
i �kr��c�r� ; �19�

where cp1
is the continuous-spectrum wave function with the

asymptotic momentum p1,c describes the bound electron (we
limit ourselves to the case of a 1s-electron), and g is the
electron ± photon interaction operator. We begin with the
case where this operator is given in its `gradient form'

g � ÿi �eHHr�
m

; �20�

where e is the photon polarization vector. The right-hand side
of formula (19) is expressed in terms of the Fourier transforms
cF of the wave function as follows:

F� � �4pa�1=2
�

d3q

�2p�3 c�Fp1�q�
�eq�
m

cF�qÿ k� : �21�

Momentum transfer to the recoil ion accompanies the
process. Note that the electron energy e � p 2

1 =2m, while the
binding energy can be written as I � Z 2=2m. Hence, the
condition o4 I leads to the inequality p1 4 Z, i.e., the
momentum of the outgoing electron is much higher than the
binding momentum. Moreover, k � o, and at nonrelativistic
energies of the outgoing electron we have p1 4 k. Thus, at
asymptotic energies o4 I the recoil ion acquires the
momentum Q4 Z.
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To begin with, we describe the electron belonging to the
continuous spectrum by a plane wave:

cFp1
�q� � c �0�Fp1

�q� � �2p�3 d�p1 ÿ q� : �22�

In this case, the entire momentum Q is transferred to the ion
by the initial-state electron. The respective contribution to the
amplitude amounts to

F�0 � �4pa�1=2
�ep1�
m

cF� p1� : �23�
For hydrogenlike functions, the asymptotics is given by

cHF� p1� �
8p1=2 Z 5=2

p 4
1

�O� pÿ61 � :

One can expect the asymptotic function cF� p1� � pÿ41 to
retain its form if the electron ± electron interaction is taken
into account, since the condition p1 4 Z corresponds to
distances pÿ11 from the nucleus much smaller than the size
Zÿ1 of the atom, with the result that the interaction with the
nucleus is predominant. The asymptotics of the wave function
can be calculated without resorting to additional approxima-
tions. Since the s-state function is independent of the direction
of vector r, we can perform the following transformations:

cF�p� �
�
d3rc�r� exp �ÿ i �pr��

� ÿ 4p
p2

�
dr rc�r� cos pr

� . . .ÿ 8pc 0�0�
p 4

�O� pÿ6� : �24�

The last equality is obtained as a result of two integrations by
parts.

In order to verify that formula (24) does indeed describe
the asymptotic behavior of the amplitude (19), let us see what
we get by taking into account the interaction of the outgoing
atomic electron and the ion. The first correction of the
perturbation theory for the interaction VC�r� � ÿaZ=r with
the nucleus can be written in the form

c �1�n �
X VC

nmc
�0�
m

En ÿ Em
; �25�

where the sum is extended over the states m that differ from
the state n, Em; n are unperturbed energy values, and c�0�m are
given by formula (22). Direct calculations produce the
correction to wave function (22):

c�1�Fp1
�q� � ÿ 8paZm

�p1 ÿ q�2� p 2
1 ÿ q 2� �26�

and to the amplitude:

F�1 � ÿ�4pa�1=2
�

d3q

�2p�3
�e q�
m

8paZm

�p1 ÿ q�2� p 2
1 ÿ q 2� cF�q� :

�27�

In the amplitude F�1 , the large momentum can be transferred
to the nucleus by the electron in the initial or final state. Here,
in the former case q4 Z, and the integral is determined by the

region where j p1 ÿ q j � Z5 p1; q. In the latter case, the main
contribution is provided by the region where q � Z, i.e., the
electron interacts with the photon over distances on the order
of the size of the atomic shell, but then it moves closer to the
nucleus to small distances of order pÿ11 and transfers a lot of
momentum (Q4 Z). Direct calculations of the integral on the
right-hand side of Eqn (27) with the use of formula (24) show
that the amplitude F;�1 does indeed contain a factor xZ not
present in F;�0 . The same approach is utilized to show that the
interaction of the outgoing electron with the electron shell
weakens (at least as much as pÿ11 ) and that, basically, a large
momentumQ is transferred to the nucleus by the electron that
is in the initial state. Thus, the asymptotic behavior of the
amplitude is, indeed, described by the contribution F�0 (23) in
which cF� p1� is given by formula (24).

The large numerical factor in the leading contribution of
order pÿ11 emerges, in particular, from the normalization
factor of the wave function cp1

�r� � c �0�p1
�r� � c �1�p1

�r�. Tak-
ing the integral

cp1
�0� �

�
d3q

�2p�3
�
c �0�Fp1
�q� � c �1�Fp1

�q�� ;
we get

cp1
�0� � 1� xZ J ; �28�

where

J � 1

p

�1
0

dx

x
ln

1� x

j1ÿ xj �
p
2
: �29�

Hence, c �0�p1
�0� � 1� pxZ=2. The factor p can be considered

the result of integration in formula (29) in the complex plane
with the discontinuity ÿi ln �ÿ1� � p. The normalization
factor is not the only source of contributions of order pxZ.
In the case of photoionization, all contributions that depend
on pxZ are factorizable [7, 8]. In some processes, all such
contributions cancel out and the dependence on pxZ
disappears [24].

Thus, the nonrelativistic asymptotics of the photoeffect
cross section can be expressed by the following function

s��o� � C1�pxZ�oÿ7=2 : �30�

Here, the true asymptotics, in which we can put
C1�pxZ� � C1�0�, is achieved only for the lightest atoms. In
other cases, relativistic effects begin to play a significant role
before the expansion in powers of pxZ becomes possible.

3.2 Double-photoionization asymptotics.
An apparent contradiction
Let us write out the general expression for the double-
photoionization amplitude as follows:

F 2� � 
Cf j g jCi

�
; �31�

whereCi andCf are the exact wave functions of the initial and
final states, and

g � g1 � g2 ; gj � ÿi
�eHHj�
m

�32�

describe the interaction between a photon and a two-electron
system. The asymptotic behavior of the amplitude, as shown
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byKabir and Salpeter [20], is determined by the interaction in
the initial state accompanied by the transfer of a small
amount of energy to the secondary electron, and the
momentum

Q � kÿ p1 ÿ p2 �33�

to the nucleus.
To calculate the cross-section asymptotics, it is sufficient

to describe the final state by a product of single-electron
functions and disregarding all interactions of the fast
electron, i.e., cf �r1; r2� � c�0�p1

�r1�cC
p2
�r2�, where the plane

wave c�0�p1
is given by formula (22), and cC

p2
is the

continuous-spectrum wave function of an electron in the
Coulomb field of the nucleus. Since p1 4 p2, we can assume
that g � g1.

Analysis similar to that conducted in Section 3.1 yields

F 2� � �4pa�1=2 �ep1�
m

�
d3q

�2p�3 cC�
p2
�q�CF � p1; q� : �34�

The region of small q � Z5 p1 determines the integral. A
transformation similar to Eqn (24) yieldsCF� p1; q� � pÿ41 for
p1 4 Z. Thus, at e2 � I and p2 � Z, the dependence of the
amplitude F�2 on p1 is the same as that of F�0 (23). The energy
distribution drops off very rapidly with increasing e2, and the
integral with respect to e2, which converges on e2 � I, is
independent of the photon energy. Hence, the asymptotic
dependence of the cross sections s 2� and s� is the same. It
can be shown that their dependence on the parameter pxZ is
also similar. What is important here, however, is that

s 2��o� � C2oÿ7=2 : �35�

Byron and Joachain [22] calculated the double-ionization
cross section by using a variational wave function of type (8)
to describe the ground state, while the cross-section asympto-
tics was the leading term in the expansion in powers of xZ.
Here, for the g operators the researchers used both the
`gradient form' (20) and the `length form'

g � g1 � g2 ; gj � of i�erj� ; �36�

where of i is the difference between the energies of the final
and initial states of the atomic system (in our case of i � o).
The matrix elements of the operators (32) and (36) sand-
wiched between the exact solutions of the SchroÈ dinger
equation are the same. Discrepancies caused by the use of
approximate functions have been repeatedly discussed in the
literature. This time, however, the results were qualitatively
different. Calculations with the use of Eqn (36) yielded

s 2��o� � CL
2 o
ÿ5=2 : �37�

Such a result can be explained as follows. When p2 5 p1, the
important range of distances is r1 5 r2, and we can put
g � g2. In contrast to the case of single photoionization, the
fast electron acquires no orbital momentum. The electron
that directly interacts with the photon carries away only a
small fraction of the energy, e2 � I, so that almost all energy
e1 � o is carried away by the secondary electron. From the
standpoint of physics, this picture appears to be unrealistic.
Nevertheless, by using a plane wave to describe the fast
electron in the formula for the amplitude in the `length

form'

F 2� � �4pa�1=2o
�

d3q1 d
3q2

�2p�6
� cC�

p1
�q1�cC�

p2
�q2��eq2�CF�q1; q2� �38�

we find that the amplitude's dependence on the fast electron's
momentum p1 � �2mo�1=2 is determined by the factor

oCF�p1; q2� �
o
p 4
1

�39�

which contains the additional [compared to the right-hand
side of formula (23)] factor o1=2. This leads to a behavior of
the cross section described by formula (37). In Ref. [22], the
given result remains valid if one allows for interaction
between the fast electron and the nucleus.

Byron and Joachain [22] assumed that the contradiction
appeared because the approximate functions were used for
the ground state and that the contribution oÿ5=2 to the cross
section vanishes when exact functions are used. Several years
later, this guess was confirmed by A

�
berg [25].

3.3 Resolving the contradiction
A
�
berg's results in Ref. [25] can be presented as follows. The

large momentum Q � p1 4 Z can be transferred to the
nucleus by the electron in the initial or final state. In contrast
to the `gradient form', when employing the `length form',
both cases yield parametrically similar contributions. Thus,
the wave function of the fast electron can be written as the
sum of a plane wave and the first Coulomb correction,
whereas the amplitude can be written as F 2�

L � F 2�
L0 � F 2�

L1 ,
namely

F 2�
Lk � �4pa�1=2

�
d3q2

�2p�3 c�Fp2�q2��eq2�Ak�q2� ; �40�

where

Ak�q2� � o
�
d3q1

�2p�3 c�k��Fp1
�q1�CF�q1; q2� ; k � 0; 1 : �41�

For the contribution provided by the plane wave we
immediately have

A0�q2� � oCF�p1; q2� �42�

with the largemomentum p1 4 Z transferred to the nucleus by
the electron in the initial state. While A0 is determined by
large q1 � p1 4 Z, the respective integral for A1 is saturated
by small momenta q1 � Z. This is obvious if we look at
formula (26) which directly expresses a correction to the
wave function. We can ignore the momentum q1 everywhere
except in the wave function CF�q1; q2�. As a result, we arrive
at

A1�q2� � ÿo
8pZ
p 4
1

�
d3q1

�2p�3 CF�q1; q2�

� ÿo 8pZ
p 4
1

CPF�0; q2� : �43�

Here, we have introduced the partial Fourier transform

CPF�r; q2� �
�
d3r2C�r; r2� exp

�ÿ i �q2r2�� : �44�
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A transformation similar to formula (26) yields

A0�q2� � ÿ
8po
p 4
1

C 0PF�0; q2� : �45�

Thus, the amplitudes F 2�
L0 and F 2�

L1 are, indeed, of the same
order. This does not contradict the fact that at any point r the
function c �1��r� is xZ times smaller than c �0��r�. The
amplitudes A0�q2� and A1�q2�, which can be written as

Ak�q2� � o
�
d3r1c

�k��
p1
�r1�CPF�r1; q2� ; �46�

are formed by different ranges of distances r1. While A0 is
determined by the range r1 � pÿ11 of distances, much larger
distances r � Zÿ1 contribute the most to A1.

Each A0;1 examined separately provides contribution to
the cross section that decreases as oÿ5=2. However, using
formulas (43) and (45), we have A0�q2� � A1�q2� � 0 for any
q2, with the result that

F 2�
L0 � F 2�

L1 � 0 : �47�

Therefore, the contributions of order oÿ5=2 cancelled out
because of theKato condition (11). In the calculations done in
Ref. [22], the researchers used an approximate wave function
that does not meet condition (11), and this led to incorrect
asymptotic behavior in calculations using the `length form'.

3.4 The Lippmann ± Schwinger equation
In this section we will show that the Lippmann ± Schwinger
equation is a convenient instrument for asymptotic analysis.
The general form of this equation for a two-electron system in
the field of the nucleus is given by

C � C �0� � G EVC : �48�

Here, V denotes the interactions in the system, E is the energy
eigenvalue of the respective SchroÈ dinger equation, and c �0�

and G E are the solution of the SchroÈ dinger equation and
Green's function at V � 0 (free motion), respectively. In the
nonrelativistic case, the Feynman diagram technique can be
considered a graphic illustration of the Lippmann ± Schwin-
ger equation.

To simplify notation, we write out this equation for the
single-particle wave function c in a certain effective field
U�r�:

c � c �0� � G EUc : �49�

Now, G E is a free single-particle Green function. In the
momentum representation, one finds


p jG Ej f � � d�pÿ f �
Eÿ p 2=2m� in

; n! 0 : �50�

For bound electrons c �0� � 0 and

cF�p� �
2m

2mEÿ p2

�
d3q

�2p�3


p jU j q �cF�q� ; �51�

where E is the single-particle binding energy. Asymptotically,
p2 4 2mjEj. The integral on the right-hand side of formula
(51) converges at momenta q � Z. Thus, Eqn (51) expresses

the bound-state wave function for large momenta in terms of
the same wave function as for momenta of order of the
binding momentum.

For s-states we can put


pjU j q��
pjU j0�. Since large

momenta p correspond to small distances r, only interactions
with the nucleus are important in the asymptotic region.
Hence, one obtains


pjU j 0 i � ÿ 4paZ
p 2

and

cF� p� �
8paZc�0�

p 4
�O� pÿ6� : �52�

Using the Kato condition (15), we find that expression
(52) coincides with formula (24). The same approach can be
applied to find the asymptotic behavior of the wave function
of the helium atom:

CF� p; q2� � 8paZCPF�0; q2�
p 4

�O� pÿ6� ; �53�

where the function CPF is defined in formula (44).
Calculations of the double ± photoionization amplitude in

the `length form' with the use of expression (53) yield

A0�q2� �
8poZ
p 4
1

CPF�0; q2�

instead of formula (45). Both formulas are equivalent in view
of the Kato condition (11). However, in the approach based
on the Lippmann ± Schwinger equation, contributions of
order oÿ5=2 automatically cancel out, even without using
the Kato relation.

4. Shape of the double-photoionization spectrum:
U or W?

4.1 Mechanisms of the process
Late in the 1980s, progress in experimental techniques made it
possible to measure the energy distributions of double-
photoionization electrons for helium. Measurements at low
photon energies have already been conducted, and results for
high energies are expected soon.

The evolution of the shape of the double-photoionization
spectrumwas analyzed even earlier, in themid-1970s [26]. The
distribution ds 2�=de2 reaches its maximum values at e2 � I,
e � o (it is assumed that e2 4e1), i.e., at the spectrum's edges.
We discussed this mechanism [20] in Section 3. As we move
away from the edges to the center, i.e., at e1;2 � o, photo-
ionization with subsequent scattering of the knocked-out
electron by the remaining bound electron becomes the main
mechanism of the process [27, 28]. This mechanism of final-
state scattering (FSS) is predominant for allo4 I, but up to a
certain distance from the center of the spectrum. For close
energy values je1 ÿ e2j5o, the FSS mechanism competes
with the quasifree (QF) mechanism, in which the electrons
leave the nucleus by transferring only a small amount of
momentum,Q � Z, to it. At sufficiently high photon energies
o, the QF mechanism is predominant near the center of the
spectrum.
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To clarify the nature of the QF mechanism, we note that
each act of exchange of a large momentum leads to
suppression of the scattering amplitude. In the FSS mechan-
ism, large momentum is transferred twice: in single ionization
(between a bound electron and the nucleus), and in electron ±
electron scattering (between the electrons). However, a single
transfer is also possible. An electron that directly interacts
with the photon can transfer a large momentum to a second
electron even without the nucleus participation in the process.
In contrast to single photoionization, the process may involve
free electrons as well. The Bethe surface is determined by the
condition Q � 0, namely

p1 � p2 � k ; �54�

which requires that

d � e1 ÿ e2
o

4
�������������
o

o�m

r
5 1 : �55�

In this reviewwe do not examine the case of very high energies
o � m (the reader will recall that m � 511 keV), which
requires a relativistic description of the electrons. Such a
problem was solved in Ref. [29]. Hence, in formula (55) we set
o5m, and d5 1.

Following the analysis carried out in Section 1, we find
that small Q � Z play an important role in the QF mechan-
ism. Ignoring themomentumQ5 pi in the final-state electron
wave functions, we can express the QF amplitude FQF in
terms of the amplitude Ffr of the process involving free
electrons:

FQF�p;Q� � D�Q 2�Ffr�o; d� ; �56�

where p � �p1 ÿ p2�=2 � p1 � ÿp2. The factor D�Q 2� con-
tains the parameters of the initial state. Its explicit form is
given below, in formula (70), while here we focus on the
second factor on the right-hand side of formula (56), i.e., on
the scattering amplitude of the free process. The amplitude of
photon absorption by a system of two free electrons can be
written down as follows:

Ffr�o; d� � �ep1� f �o; d� � �ep2� f �o;ÿd� : �57�

For the time being, the explicit form of the function f �o; d� is
unimportant.We immediately note that the process cannot be
described correctly if we limit ourselves to the lowest-order
approximation in powers of k=pi. Indeed, in this case
p1 � ÿp2, and the electrons cannot carry away a unit angular
momentum transferred by the photon. This follows from
formula (57) if we limit ourselves to the lowest term in the
expansion in powers of d:

Ffr�o; 0� � �e; p1 � p2� f �o; 0� � �ek� f �o; 0� � 0 ; �58�

and the leading nonvanishing contribution is given by

Ffr�o; d� � 2�ep� df 0�o; 0� : �59�

Here, f 0 is the derivative with respect to d. For a free process,
one finds

d � �p k�
mo

: �60�

Hence, the QF mechanism requires stepping beyond the
limits of the dipole approximation, which approximation
would correspond to the zeroth term in the expansion in
powers of k=pi. Unfortunately, this fact was not pointed out
by Amusia et al. [26] and by the author in the more detailed
paper [28].

Thus, near the spectrum's center, two factors contribute
to the energy distribution: scattering in the final state with a
minimum at the very center, and the QF mechanism which
has a peak at the center (the contribution of `shaking' is sure
to be smaller). The relative role of the QF mechanism
increases with photon energy, and for o > 1:2 keV [30] the
peak at the center becomes noticeable, with the result that the
U-shaped spectrum is replaced by a W-shaped one. The
reader will recall that the corresponding calculations require
stepping beyond the limits of the dipole approximation.

4.2 Calculations in the dipole approximation
Meanwhile, some results of computations of double-photo-
ionization spectra at high energies have been published. The
results are based on direct computations of the scattering
amplitudes. According to the above analysis, these spectra
must have a dip at the center. However, Kornberg and
Miraglia [31] obtained a U-shaped spectrum only by ignor-
ing the final-state interaction (FSI) between the outgoing
electrons. Allowance for this interaction led to a W-shaped
spectrum. The result from Teng and Shakeshaft [32] was just
the opposite: ato � 2:8 keV, a low peak without allowing for
the final-state interaction was replaced by a U-shaped
spectrum when this interaction was taken into account.
Later on, Kornberg and Miraglia [33, 34] did calculations
without allowing for the final-state interaction and arrived at
a peak in the spectrum's center.

4.3 An explanation of the results obtained
in the dipole approximation
It was Suri�c et al. [35] who explained these results (see also
Ref. [36]). By introducing the variables R � �r1 � r2�=2 and
q � r1 ÿ r2 and the notation ~C�R; q� � C�r1; r2�, we can write
down the amplitude with all final-state interactions ignored:

F �0� � �4pa�1=2
�
d3R d3r exp

�
i �QR� ÿ i �pÿ k; q ��

� g ~C�R; q � : �61�
According to the analysis in Section 3, the asymptotics
F �0�� pi;Q� � 1=p 4Q 4 for p;Q4 Z. However, with the QF
mechanism we need to know the asymptotic behavior for
p4 Z andQ � Z, since such values ofQ determine the energy
distribution near the spectrum's center. Calculations similar
to those with formula (24) yield the following result in the
dipole approximation:

F �0� � ÿ�4pa�1=2 �eQ�
m

8pa
p 4

�
�
d3 R exp

�
i �QR�� r0 q ~C�R; r � 0�

qr
: �62�

For p4 Z and Q � Z, the partial derivative of ~C is evaluated
at the point r � 0. The energy dependence is determined by
the factor pÿ4, and near the spectrum's center p � �mo�1=2.

Electrons may exchange by large momentum in the final
state as well. To account for this mechanism, we must build a
wave function of the final state that allows for electron ±
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electron interaction. This can be done by using formula (25)
with VC replaced with the electron ± electron interaction.
Direct calculations yield the following expression for the
appropriate amplitude:

F �1� � �4pa�1=2 �eQ�
m

4pa
p 4

�
d3 R exp

�
i �QR�� ~C�R; r � 0�

�63�
for p4 Z andQ � Z. Each amplitude F �0;1� taken separately is
much larger than the FSS amplitude which requires large
momenta Q4 Z. Thus, each contribution defined by
Eqns (62) and (63) should result in a peak at the center, but
their sum

F �0� � F �1� � �4pa�1=2 �eQ�
m

4pa
p4

�
d3 R exp

�
i �QR��

�
�

~C�R; r � 0� ÿ 2r0
q ~C�R; r � 0�

qr

�
� 0 ; �64�

since the expression in parentheses vanishes in view of the
Kato condition (12). Hence, the contribution from small
momenta Q � Z is suppressed in the dipole approximation
and for all e1;2 � o the spectrum is determined by the region
where Q4 Z, in which the FSS mechanism is predominant.
The spectrum should have had a minimum at its center.

Now, the results of Kornberg and Miraglia [31, 33, 34]
and Teng and Shakeshaft [32] are understandable. Kornberg
and Miraglia [31] used an initial-state wave function that
depended only weakly on r. Therefore, amplitude (62) proved
to be too small to lead to a peak at the spectrum's center.
Inclusion of a final-state interaction produced a false
uncompensated maximum. On the other hand, Teng and
Shakeshaft [32] used an approximate wave function that
satisfied condition (12). Hence, they obtained a peak in the
absence of a final-state interaction, which was cancelled out
when such interaction was taken into account. The spurious
peak at the center obtained later by Kornberg and Miraglia
[33, 34] without allowing for final-state interaction is of the
same origin. The main drawback of all these calculations in
Refs [31 ± 34] is that the researchers did not go beyond the
limits of the dipole approximation, which provides a very
simplified approach in the case at hand.

This result may be obtained much more simply if we rely
on the Lippmann ± Schwinger equation (48). The amplitude
F�0� can be expressed in terms of the asymptotic form of the
Fourier transform of the wave function:

F �0� � ÿ�4pa�1=2 �eQ�
m

~CF�ÿQ; p� ; �65�
which in turn satisfies the Lippmann ± Schwinger equation

~CF�ÿQ; p� � ÿ 4pma
p 4

�
d3q

�2p�3
~CF�ÿQ; q� �66�

atQ � Z and for p4 Z. The integral on the right-hand side of
Eqn (66) converges on the region where q � Z. Thus, the
Lippmann ± Schwinger equation expresses the function
~CF�Q � Z; p4 Z� in terms of the function ~CF�Q � Z, q � Z).
Using formula (63) and (65), we immediately find that
F �0� � F �1� � 0, in accordance with Eqn (64).

Note that in our case the electron ± electron interaction
turned out to be more important than the electron ± nucleus
interaction. The latter produces only a small correction, while
the former determines the mechanism of the process. Of

course, all these results may also be obtained by starting
with a description of the electrons from the continuum by
Coulomb function, which was done in Ref. [35].

4.4 Evolution of the shape of the spectrum
The evolution of the shape of the double-photoionization
spectrum of the helium atom under variations in the photon
energy o was first described in Refs [26, 28]. Without
discussing the possible variations in shape at low photon
energies o � I, we note that at energies of several hundred
electron-volts the spectral curve is U-shaped, and the process
at large e1;2 4 I is determined by the FSS mechanism [27]. As
the photon energy grows, near the center of the spectrum the
FSSmechanism competes with the QFmechanismwhose role
increases with a rise in o. This leads, at a certain photon
energy o � o1, to the emergence of a peak at the center, and
the spectral curve becomes W-shaped. At an even higher
energy o � o2, the central peak splits into two peaks shifted
symmetrically with respect to the center, while at the center
there appears a local minimum. This last variation of shape is
due to the quadrupole nature of the QFmechanism.What we
have just discussed is illustrated by Fig. 1.

The characteristic energies o1;2 depend on the approx-
imate functions used to describe the initial state. Liverts et al.
[30] described the helium atom by approximate functions
based on Haftel and Mandelzweig's approach [19], which we
mentioned at the end of Section 2. This providedo1 � 1:9 keV
and o2 � 8:9 keV. The dependence of the energies o1;2 on the
nuclear charge Z for two-electron ions has been studied in
Refs [28, 37].

1.9 keV

8.9 keV

o

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

Figure 1. Evolution of the shape of the double-photoionization spectrum

of helium atom caused by variations in the photon energy o. The lowest
diagram corresponds to energies o < o1, where the knocking out of two

fast electrons is due to FSS. In the next diagram corresponding to the

energyo � o1 � 1:9 keV, the QFmechanism becomes noticeable near the

center.Within the intervalo1 < o < o2 (the third diagram), there appears

a peak at the spectrum's center, caused by the contribution from the QF

mechanism. Ato � o2 � 8:9 keV andwithin the intervalo > o2 (the next

two diagrams), the peak acquires an inner structure thanks to the

quadrupole nature of the QF mechanism.
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4.5 Properties of approximate functions needed
for a description of double photoionization
Most computations of the double-photoionization spectrum
are based on the general formalism of quantum mechanics.
This leads to the use of the formula for the cross section in the
form

ds 2� � p
o
j �F j2d�e1 � e2 ÿ oÿ I 2�� d3p1

�2p�3
d3p2

�2p�3 �67�

with the amplitude of the process defined by

F �
�
d3r1 d

3r2c
�
fa�r1; r2�

�
�
g1 exp

�
i �kr1�

�� g2 exp
�
i �kr2�

��
ca�r1; r2� �68�

and a direct calculation of the integral. In order to describe
the final and initial states, we are forced to use approximate
wave functions, cfa and ca. To reproduce the main physical
mechanisms of the process, the approximate wave functions
must demonstrate certain properties of the exact solutions of
the SchroÈ dinger equation.

As shown in Section 3, near e2 � I and e1 � o the
interaction of electrons in the final state does not play a
significant role, and the final state can be approximated by the
product of single-particle wave functions: cfa�r1; r2� �
cap1
�r1�cap2

�r2�. Here, the slow electron must be described
by the Coulomb function of the nucleus, while in the gradient
form for the operator g the fast electron can be described by a
plane wave [20]. But the description of the initial state by the
product of single-particle functions, namely

ca�r1; r2� � cs�r1�cs�r2� ; �69�

will lead to quantitatively incorrect results [22]. Still, it is
impossible to write out a formula that would allow us in this
case to select a `good' wave function. Here, one must be very
careful in using the operator g in the `length form'. A plane
wave is not suitable for the fast electron, and one should take
into account the first Coulomb correction. Moreover, the
initial-state function must satisfy the Kato condition (11).

In the region where e1;2 4 I, the interaction between final-
state electrons must be accounted for in the function ca, since
it is this interaction that determines the main mechanism of
the process in the larger part of this region. Here, no special
conditions are imposed on the initial-state function far from
the center. However, to describe the central region of the
spectrum we need an initial-state function ca that satisfies the
Kato condition (12), since otherwise the spectrum acquires a
false peak in the dipole approximation, in which the
exponential factors exp

�
i �krj�

�
are replaced by the unities in

formula (68).
Thus, the true W-peak appears when we step outside the

limits of the dipole approximation. Technically, this means
allowing for the second terms in the expansion
exp

�
i �krj�

� � 1� i �krj� � . . .. Such an approach leads to
formula (56) for the amplitude of the QF mechanism with
the amplitudes Ffr�o; d� defined in formula (59) and

D�Q 2� � 2r0

�
d3R exp

�
i �QR�� q~ca�R; r � 0�

qr
: �70�

The derivative q~ca�R; r � 0�=qr is determined by the Kato
relation [17]. Hence, even isolating the quadrupole contribu-

tions, we must use a function ca that satisfies this condition
[12]. Of course, any approximate function ca with a nonzero
value of q~ca�R; r � 0�=qr produces a central peak, but
quantitative results are reliable only if condition (12) is met.

It should be emphasized that a combination of products
of single-particle functions does not reproduce the contribu-
tion from the QF mechanism. For such functions, it follows
that

~ca�R; q � � ~cs

�
R� q

2

�
~cs

�
Rÿ q

2

�
�71�

is an even function of r, with the result thatD�q 2� � 0, and no
trace of the QF mechanism is left. In particular, this is true of
the wave functions in the Hartree ± Fock approximation.

Note that the simplest functions describing electrons at
two-particle coalescence points and satisfying the Kato
conditions, ca�0; r; r��exp

�ÿ �Zÿ 1=2� r� and ca�r; r; 0��
exp �ÿ2Zr � [38], reproduce the values of o1 and o2 to within
several percent. What is more, the first function yields good
results in calculations of the single-photoionization asympto-
tics of the helium atom. This explains the old evidence that
photoionization of the K-shells by high-energy photons is
described well by hydrogenlike functions with an effective
charge Zeff � Zÿ a, where a � 0:5 [39].

5. Conclusion

One can see from the above consideration that theoretical
analysis preceding computer calculations proves very useful.
In the static problem of determining the binding energy of the
ground-state helium atom, such an analysis accelerates the
convergence of the procedure and substantially reduces the
number of phenomenological parameters introduced. Theo-
retical analysis makes it possible to avoid hidden obstacles in
calculating the asymptotics of the double-photoionization
cross sections and to find the true shape of the spectrum.

The Lippmann ± Schwinger equation turns out to be very
effective in studying asymptotic behavior. This equation, as
well as its graphic illustration, Feynman diagrams, could
become useful in studies dealing with high-energy atomic
physics.
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