
Abstract. This paper presents the foundations of the continuous
wavelet-transform-based multifractal analysis theory and the
information necessary for its practical application. It explains
generalizations of a multifractal concept to irregular functions,
better known as the method of wavelet transform modulus
maxima; it investigates the benefits and limitations of this
technique in the analysis of complex signals; and it discusses
the efficiency of the multifractal formalism in the investigation
of nonstationary processes and short signals. The paper also
considers the effects of the loss of multifractality in the dy-
namics of various systems.

1. Introduction

The theory of fractals and multifractals [1 ± 6] is currently
widely used to describe self-similar and complex scaling
properties observed in various physical systems [7 ± 15].
Fractals are geometric objects (lines, surfaces, and bodies)
that have a jagged shape and exhibit some degree of similarity
(repetition) in a wide range of scales. The repetition can be
complete (regular fractals) or might show some elements of
randomness (random fractals). The structure of random
fractals on a small scale is not identical to the structure of
the entire object, but their statistical properties coincide and
self-similarity persists after averaging over statistically inde-
pendent realizations of the object.

A single quantityÐ the Hausdorff dimension or scaling
exponentÐ is sufficient to statistically describe a fractal. It

describes the preservation of both the geometry and the
statistical properties under scaling. But many effects in
physics, chemistry, biology, and other sciences exist that
require generalizations of a fractal-like idea to more complex
structures with additional scaling exponents. These struc-
tures are often characterized by a set of coefficients, and the
Hausdorff dimension is just one of them [2, 3]. Complex
fractals, called multifractals, are important because they
most often occur in nature, while simple, self-similar objects
only idealize real phenomena. In practice, the multifractal
approach means that the object under study can be divided
into parts each of which has its own self-similarity proper-
ties [2]. This approach, initially proposed for the statistical
analysis of scaling properties of singular measures [16 ± 20],
has been successfully applied in diverse fields: in studying
aggregation properties of blood cell elements in biology, in
describing diffusive cluster growth and destruction of materi-
als, in the theory of developed hydrodynamic turbulence, in
investigating incommensurable structures and quasicrystals
in solid state physics, in analyzing the RNA molecular
structure, in the problems related to one-dimensional ran-
dom walk and Brownian motion, and in describing invariant
measures of strange attractors [21 ± 26]. Multiple natural
objects can be classified as `multifractals,' and it would be
very hard to find a branch of science that does not have
representatives of this class.

Signals recorded in natural experiments are also impor-
tant representatives of this class, and the existence of a precise
mathematical approach to the analysis of complex structures
of processes is undoubtedly valuable for a large number of
practical problems. Simple or monofractal processes (for
example, a 1=f noise or a Wiener random process) are
homogeneous in the sense that their scaling parameters
remain the same on any scale. The spectrum of such signals,
S � f � � f ÿb, does not change in a large frequency range, i.e.,
b is a constant. A multifractal process can be decomposed
into regions with different local scaling properties [27].
Consequently, describing such a process requires a large

A N Pavlov, V S Anishchenko International Research Institute

of Nonlinear Dynamics, Chernyshevskii Saratov State University,

ul. Astrakhanskaya 83, 410026 Saratov, Russian Federation

Tel. (7-8452) 51 45 49, (7-8452) 51 57 38

E-mail: pavlov@chaos.ssu.runnet.ru, wadim@chaos.ssu.runnet.ru

Received 3 May 2006, revised 25 March 2007

Uspekhi Fizicheskikh Nauk 177 (8) 859 ± 876 (2007)

Translated by L Zhukov; edited by A M Semikhatov

METHODOLOGICAL NOTES PACS numbers: 05.45. ± a, 05.45.Pq, 05.45.Tp

Multifractal analysis of complex signals

A N Pavlov, V S Anishchenko

DOI: 10.1070/PU2007v050n08ABEH006116

Contents

1. Introduction 819
2. Multifractal theory: from singular measures to singular functions 820

2.1 Fractal dimension; 2.2 Fractal measures; 2.3 Fractal functions

3. Multifractal analysis based on the wavelet transform 824
3.1 Wavelet analysis of singular functions; 3.2 The method of wavelet transform modulus maxima

4. Examples of multifractal analysis applications: the effects of losing multifractality 827
4.1 Chaotic dynamics of interacting systems; 4.2 Stochastic synchronization; 4.3Multifractal analysis of blood pressure

dynamics

5. Capabilities and limitations of the multifractal analysis 831
6. Conclusions 833

References 833

Physics ±Uspekhi 50 (8) 819 ± 834 (2007) #2007 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



number of coefficients. In particular, the multifractal process
spectrum cannot be described by a power law with a single
exponent b.

Several known attempts to generalize the multifractal
concept to functional signal dependences exist [27, 28]. One
such attempt is based on the method of structure functions,
which is often used in various fields of research. This
approach is most popular in the study of strongly developed
turbulence [27, 29]. In the early 1990s, Muzy, Bacry, and
Arneodo [30, 31] proposed a more advanced method of the
`wavelet transform modulus maxima' (WTMM), which has
significant advantages: the possibility of analyzing a wide
range of singularities and their derivatives, smaller errors in
computing the scaling characteristics, etc. The WTMM
method has been successfully applied in studying the
structure of inhomogeneous processes of various kinds. It is
based on wavelet analysis [32 ± 40], which is also called a
mathematical microscope due to its ability to preserve good
resolution on multiple scales.

We note that wavelet analysis is presently an extensive
scientific field. Papers devoted to practical applications of the
wavelet theory use the discrete form of the transform. This is
because wavelet basis functions built on continuous wavelets
are not strictly orthonormal. The discrete transform leads to a
more accurate representation of a signal, in particular, in
problems related to signal compression and reconstruction. It
permits fast transforms and is important not only in
information transmission but also in the analysis of random
processes. Applying the discrete transform is more natural in
the case of digitized data (time series) and is used in practice
whenever it is required to quickly compute some character-
istics. The continuous transform is slower, because it contains
additional information. Nevertheless, there exist cases in the
analysis of the structure of complex signals where such
additional information can be helpful, allowing clearer
results that are more intuitive to an expert with a basic
radio-physical education. Moreover, these experts can more
easily analyze the information presented by the continuous
wavelet transforms, being able to visually follow the time
behavior of instantaneous frequencies and amplitudes on
different scales.

The WTMM method, which we consider below, was
proposed by Muzy, Bacry, and Arneodo and is based on the
continuous wavelet transform. This method is attractive
because it allows considering both singular measures and
singular functions and is much more universal in studying
multi-scale properties of objects than the previously devel-
oped methods [27, 28]. Wavelets are often interpreted as a
generalization of classical algorithms for covering a set by
spheres, cubes, etc. Because the basis functions of the wavelet
transform are well localized (soliton-like), they provide an
effective mathematical method for analyzing nonstationary
processes. Today, the WTMM method is one of the most
popular methods to analyze nonstationary data.

After a publication on the multifractal description of
cardiac rhythms in Nature in 1999 [43] and a subsequent
series of papers [44 ± 48], multifractal analysis became widely
used as an instrument of applied studies and, in particular, of
processing bio-medical measurements in the cases where the
nonstationarity of the signals restricts using classical experi-
mental data analysis methods. This method improves the
chance of diagnosis based on wavelet theory, first demon-
strated in [49], where the authors proposed a clinically
important measure of heart beat irregularities. In the last

several years, the multifractal structure has been discovered
and numerically characterized in the dynamics of multiple
systems of various natures. Some have said the WTMM
method is one of the most effective methods to statistically
describe inhomogeneous processes.

Because many processes in nature belong to the multi-
fractal class, the multifractality property can be considered a
very general rule of nature; this phenomenonmerits study and
description itself. Moreover, this study is practically valuable
due to the possibility of developing new methods of analysis
for experimental data based on the WTMM method and
applicable to the solution of multiple problems. We note that
few methods for processing nonstationary data exist. If the
properties of a process change even in extremely short time
intervals, then classical random process analysis algorithms
can lead to errors in interpreting the results. The set of
universal tools, applicable independently of stationarity,
includes the interpretation based on the analytical signal
concept [50, 51], the detrended fluctuation analysis [52, 53],
and the wavelet analysis [32 ± 40]. The multifractal method
discussed in this paper is another instrument for this task.
Although the WTMM method uses a wavelet analysis in
intermediate calculations, it would be incorrect to regard this
method as a part of wavelet analysis: it is a combination of
two separate theories, the theory of wavelets and the theory of
multifractals, which has profound similarities with statistical
thermodynamics. Such a combination of two separate
theories gives new opportunities to solve applied problems.
Nevertheless, the WTMM method is not well known to
applied scientists dealing with experimental data processing.

In this article, we describe the foundations of the theory of
multifractal analysis of complex signals based on the
continuous wavelet transform; we also provide the details
needed for using the method in practice. The discussed
method is quite difficult in application without a detailed
methodology and a usage instruction. We try to provide such
an instruction and make it simple and accessible to a broad
audience. The examples of applications of the WTMM
method are typically based on the authors' results. We paid
special attention to describing new opportunities to analyze
signal structure that are possible using this methods as well as
to limitations and shortcoming of the multifractal formalism.

We show that multifractal analysis is an effective method
of study of correlation properties of nonstationary random
processes. We highlight the advantages of this approach
compared to the classical correlation analysis for short-time
signals.

2. Multifractal theory:
from singular measures to singular functions

2.1 Fractal dimension
Fractal objects have self-similar properties and demonstrate
various singularities (very irregular shape). Fractal dimension
is traditionally used to numerically characterize the complex-
ity of fractal geometry. Fractal dimension can be defined as
follows. Let d be the dimension of a Euclidian space contain-
ing a fractal object.We cover this object with balls of diameter
e such that each point of the object is inside one of the balls.
We assume that this takes at least N�e� balls. If, for a
sufficiently small e, N�e� satisfies the power law

N�e� � eÿD0 ; �1�
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then D0 is called the fractal dimension or fractal capacity of
the object. The Hausdorff dimension DH, which is also
frequently used in the theory of fractals, is introduced as
follows [54 ± 56]. Let S be a set in Rn. We cover this set with
balls with a diameter not exceeding e. The Hausdorff measure
ld is defined as

ld � lim
e!0

inf
K

X
i

r di ; �2�

where the inf operator determines the smallest value over all
possible coversK of the set S by balls with diameter ri (ri 4e).
This limit depends on the parameter d. The Hausdorff
dimension dH is the value of d at which ld is finite:

d < dH�) ld � 1 ;
d > dH�) ld � 0 :

�
�3�

According to this definition, dH can take noninteger values.
Although the Hausdorff dimension is well defined from

the mathematical standpoint, it is extremely hard to compute
in practice. Consequently, many researchers prefer to work
with more practical measures, such as the fractal capacity.
For many fractals, D0 and dH coincide. In general, the
inequality dH 4D0 holds [57].

D0 takes integer values for simple geometric objects such
as a point, a straight line, or a smooth two-dimensional
surface (corresponding to D0 � 0, 1, 2) and noninteger
values for self-similar fractal objects with a strongly irregular
shape. One classical example is the Cantor set, whose
construction procedure follows (Fig. 1). A unit-length
segment is split into three equal parts and the middle part is
removed. Then each of the two remaining parts is split into
three parts and the middle one is removed. This process
continues to infinity. The Cantor set is the infinite set of
points that remain after this procedure. To compute the
dimension of the Cantor set, we rewrite Eqn (1) as

D0 � lim
e!0

lnN�e�
ln �1=e� : �4�

At the nth step of the construction, we have 2n line segments
of length 1=3n. As N�e� in this step, we can consider 2 n and
take e to be 1=3n. In the limit e! 0, which corresponds to the
limit n!1, we have

D0 � lim
n!1

ln 2n

ln 3n
� ln 2

ln 3
� 0:63 : �5�

The Cantor set, like other regular fractals, preserves its
geometry under scale changes in the range of e where Eqn (1)
holds. Rescaling leads to the power-law dependence
N�le� � lÿD0N�e�.

2.2 Fractal measures
Fractals occur in nature not only as complex geometric
objects. Various processes on fractals (physical, chemical,
etc.) can generate stationary distributions called fractal
measures. Examples of such measures include the invariant
probability measure on a strange attractor, the distribution of
growth probabilities in a process with limited diffusion
aggregation, and the distribution of mass on a fractal set.
While D0 is used as a characteristic of the complex fractal
geometry, the mathematical description of fractal measures
involves a singularity spectrum f �a� [2]. This function has the
following interpretation. We assume that there is a given
measure distribution m on a set, for example, a distribution of
charge or mass. If this set is covered with balls of diameter e,
then the measure of a ball centered at a point xi depends on e
in accordance with the power law

mxi�e� � e a �xi�; �6�

where a �xi� is called the singularity exponent. Dependence (6)
can be conveniently rewritten as

a�xi� � lim
e!0

lnmxi�e�
ln e

: �7�

The smaller the value of a�xi� is, the more singular the
distribution of measure is at the given point. In the case of a
uniform distribution, a�xi� � 1. The limit a�xi� � 0 corre-
sponds to the measure distribution similar to the Dirac delta
function, with the charge or mass concentrated at a single
point [58]. The singularity spectrum f �a� characterizes the
dependence on e of the number of the covering elements Na

corresponding to the points with a singular exponent equal to
some value of a:

Na�e� � eÿ f �a� : �8�
By its meaning, f corresponds to the Hausdorff dimension
[2]. In the case of a uniform measure distribution on a set,
a � const and the singularity spectrum is a single point in the
plane �a; f �. In the case of a nonuniform measure distribu-
tion, the function f �a� has amore complicated bell-like shape.

Everything said can be illustrated with the Cantor set. We
assume that it is endowed with a uniform distribution of
measure m, for example, mass, and 2n elements (circles) with
diameter e � 3ÿn are used for the cover. The measure of each
element in the cover is mxi�e� � 2ÿn, where xi is the center of
the circle. According to Eqn (7), the singularity exponent
a�xi� is determined by the slope of the dependence
ln mxi�e��ln e�, which takes the value a�xi� � ln 2= ln 3. In the
limit e! 0, the value of the exponent corresponds to every
point in the Cantor set. In the described example, the
exponent a coincides with the Hausdorff dimension dH and
the singularity spectrum f �a� consists of a single point
f �a� � a � 0:63 [2]. Thus, we observe only one type of
singularity; such measures m are called uniform [1, 3]

If the measure is nonuniformly distributed over the set,
the singularity spectrum becomes more complicated. To
illustrate this case, we consider the binomial distribution [2].
We assume that the segment [0, 1] is again partitioned into
three parts, the middle one is discarded, but the two
remaining parts [0, 1/3] and [2/3, 1] are assigned different
weights p1 and p2 � 1ÿ p1 6� p1. If at the beginning (at n � 0)
we set m0 � 1 for the entire interval [0, 1], then at the first step
of the Cantor set construction, the two segments have the
measures m1 � p1m0 and m2 � �1ÿ p1� m0. In the consecutive

1

1/3 1/3

1/9 1/9 1/9 1/9

n � 0

n � 1

n � 2

Figure 1. The Cantor set construction procedure.
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steps, when splitting each segment into parts, we use the same
weights p1 and p2 (Fig. 2).

After covering the fractal set with circles of radius e � 3ÿn,
we consider the leftmost and rightmost elements of the cover.
For the first one, containing the point x0 � 0, the measure is
m1 � pn

1 m0 � pn
1 . Then, according to Eqn (7), a�0� �

ln p1= ln�1=3�. Likewise, for the rightmost element of the
cover, containing the point x0 � 1, we can write
a�1� � ln p2= ln �1=3�. Because p1 6� p2, a�0� 6� a�1�. Then
the singularity spectrum no longer consists of a single point.
The typical function shape in the case of a nonuniform
measure is given in Fig. 3. The existence of a nonuniform
distribution of measure on a set is a property of multifractal
objects: the more nonuniform the measure is, the wider the
spectrum of singularities is. We note that the maximum of
f �a� coincides with the singularity spectrum in the case of a
uniform distribution over the Cantor set, which characterizes
the most common singularity.

In practice, it is difficult to compute the function f �a�
using Eqn (8) because the convergence as e! 0 is very slow.
Moreover, the values of the estimated characteristics can
differ significantly for different points. Therefore, multi-
fractal theory uses a special approach based on calculating
generalized dimensions as global characteristics that can be
used to compute the singularity spectrum f �a�.

Within this approach, one introduces the generalized
partition functions [58, 59]

Z �q; e� �
XN �e�
i�1

m q
i �e� ; �9�

whereN�e� is the number of cover elements with size e, mi is the
measure of the ith element of the cover, and q 2 R. The
dependence of Z on e typically obeys a power law:

Z �q; e� � e �qÿ1�Dq ; �10�

where Dq are characteristics called the generalized fractal
dimensions [60 ± 63]. The coefficient qÿ 1 is introduced into
the exponent to satisfy the normalization condition for m,
Z �1; e� � 1. The combination

t�q� � �qÿ 1�Dq ; �11�

called the scaling exponent, is typically used. It follows from
Eqn (9) andEqn (10) that at q � 0, the equation reduces to the
previously introduced definition of fractal dimension or
capacity, Eqn (1).

For simple fractals, also called monofractals,Dq � const.
In the general case of multifractal objects, the values of Dq

monotonically decrease as q increases (Fig. 4a). This decrease
can be considered a criterion confirming that the object is a
nonuniform fractal. As a result, the dependence t�q� is a
straight line for uniform fractal measures and a nonlinear
function for nonuniform measures (Fig. 4b).

1

p1 p2

p1 p1 p1 p2 p2 p1 p2 p2

n � 0

n � 1

n � 2

Figure 2. The Cantor set with a nonuniform distribution of measure.
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Figure 3.The singularity spectrum for amonofractal object (the Cantor set

with a uniform measure distribution), the point; and a multifractal object

(the Cantor set with a nonuniform measure distribution), the solid line.
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Figure 4. Spectra of the generalized fractal dimensions (a) and of scaling

exponents (b) for a monofractal (white circles) and a multifractal (black

circles).
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The calculation of the singularity spectrum based on the
scaling exponent t�q� for the generalized fractal dimension is
more stable and reliable than direct computations based on
definition (8). Using thismethod, the functions f �a� are found
via the Legendre transform:

a � dt
dq

;

f �a� � qaÿ t�q� :

8<: �12�

Thus, the sought function f �a� is immediately determined
from the known spectrum of the scaling exponents t�q�.
Multifractal analysis is often called the multifractal formal-
ism, specifically referring to the approach where the
singularity spectrum f �a� is regarded as a Legendre trans-
form of t�q�. As pointed out in [64], a profound parallelism
exists between the multifractal approach and statistical
thermodynamics. The variables q and t�q� play the same
role as the inverse temperature and free energy; a and f �a�
correspond to energy and entropy [17, 18, 65]. A number of
rigorous mathematical results in the multifractal formalism
have been obtained within the framework of dynamical
system theory. In recent years, this approach is becoming
increasingly popular in various experimental studies. We
note, however, that the use of the term `multifractal
analysis' (although very widespread), might not always be
correct, because the bell-shaped structure of f �a� in Fig. 3
can also be obtained for objects that are not multifractals.
In the general case, there should be additional physical
reasons to fully justify the use of the multifractal terminol-
ogy. We mention limitations of the multifractal analysis in
Section 5.

2.3 Fractal functions
The practical importance of multifractal theory would not be
significant if it were only restricted to singular measures. But
fractal objects occur in nature as singular functions, which
suggests multifractal analysis as a tool for studying these
complex signals; it is only necessary to adapt this tool for
irregular processes.

The most intense research in random fractal functions
may have been related to the study of diffusion processes or
Brownian motion. In the one-dimensional case, the displace-
ment of a Brownian particle x�t� along a straight line is a
random process with zero mean and dispersion


x 2�t�� � t ; �13�

where angular brackets denote averaging over the ensemble
of realizations. The linear dependence of the dispersion on
time in (13) characterizes the case of normal diffusion. The
function x�t� can be interpreted as a fractal [3] in the sense that
its graph on a time ± coordinate plot is a fractal point set with
dimension D0 � 1:5 (Fig. 5).

A more general case of Brownian motion is a fractal
Brownianmotion, where the displacement of a particle x�t� in
the one-dimensional space is a random process with the
dispersion


x 2�t�� � t 2H ; �14�

where 0 < H < 1. For H 6� 0:5, this dispersion corresponds
to anomalous diffusion with correlated increments. The
correlations of increments affect the graph of x�t�, making it
more jagged (H < 0:5 ) or more smooth (H > 0:5). The

dimension, which is connected with the exponent H as [3]

D0 � 2ÿH ; �15�

In studying fractal functions, the dimension of the graph
may be calculated, but this classical approach gives less
information than the multifractal analysis, which allows
obtaining a continuous spectrum of fractal dimensions and
statistical data about the existence of various singularities.
Computing a single quantity D0 characterizes functions with
only one type of singular behavior, which is constant in time
(the case of a homogeneous fractal function). This is of course
an idealization of real processes occurring in nature.

Brownian motion belongs to the class of random
fractals: a scaled segment of x�t� is not identical to the
entire graph. Fractal theory often uses the notion of self-
affinity to characterize sets that are invariant under affine
transformations. In particular, in the plane, rescaling of a
function graph with different magnification coefficients
along the x and y axes leads to a graph that is similar to
the original one. Self-similarity, which has been noted in
relation to fractal objects, is, strictly speaking, a particular
case of self-affinity and means similarity between an object
and its segment scaled identically along both axes. For a
self-affine function, we can write

g�x0 � lx� ÿ g�x0� ' lH
ÿ
g�x0 � x� ÿ g�x0�

�
: �16�

In considering random processes like Brownian motion, an
exact equality in Eqn (16) can be satisfied only for certain
values of l and x0. The exponent H in (16) is called the Hurst
exponent [1, 4] and characterizes the irregularity degree of the
function g at the point x0. For H < 1, this function is non-
differentiable and, in analogy to the previously introduced
singularity exponent a, a smaller value ofH corresponds to a
stronger singularity in g�x�. The study of local irregular
behavior of self-affine functions using multifractal analysis
is a more informative approach compared to the study of the
complex geometry of its graph on a time ± coordinate plot.
Because singularities of a function can be different at different
points, they cannot be described with only a single parameter
H in general. Therefore, by some modification of the
definition of H, one introduces the notion of local Hurst

50

x

0

ÿ50

ÿ100
0 20 40 60 80

t

Figure 5. Brownian motion (the case of standard diffusion).
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exponents, or HoÈ lder exponents h�x0�,�� g�x0 � l � ÿ g�x0�
�� � l h�x0� ; �17�

which characterize the local singular behavior of g at the point
x0. As noted in [58], the multifractal approach to signal
description characterizes a wide class of processes that are
more complex than those that can be described by a single
number (such as a single value of the fractal dimension or a
single scaling parameter that corresponds, for example, to the
frequency dependence of the spectral density).

The analysis of irregular functions, just as the analysis of
fractal measures, is performed in terms of the singularity
spectrum. But in considering functional dependences (irre-
gular signals), thenotation is changed. Insteadof the spectrum
f �a�, one uses an analogous function D�h�; the HoÈ lder
exponent corresponds to a, and D�h0� is the dimension of the
subset of the data characterized by the exponent h0.

Several ways exist to compute the singularity spectrum.
As in the case with fractal measures, computations based on
its definition are hampered by the slow convergence and the
fact that other singularities can occur even in the small
neighborhood of x0. The overlapping effect of several
singularities leads to significant errors in calculating the
scaling parameters and instability in numerical algorithms.
To increase the confidence of D�h� calculations, a statistical
analysis is performed based on structure functions [27] or
partition functions [30, 31]. The latter method is preferred,
because it allows studying a wider range of singularities. In
Section 3, we present the foundations of multifractal analysis
with the computations of partial functions based on the
wavelet transform.

3. Multifractal analysis based on the wavelet
transform

3.1 Wavelet analysis of singular functions
At the beginning of the 1990s, Muzy, Bacry, and Arneodo
proposed a novel approach for the study of multifractal
signals of a complex structureÐ the method of wavelet
transform modulus maxima [30, 31, 58]. This method, as
follows from its name, is based on a wavelet transform that
consists in a signal decomposition with respect to a basis built
from a soliton-like wavelet function with certain properties
using scaling transformations and translations. Each function
in this basis represents a particular space or time frequency as
well as its localization in physical space or in time [32 ± 39].

The continuous wavelet transform of a function g�x� is
given by

W �a; b� � 1���
a
p

�1
ÿ1

g�x�c
�
xÿ b

a

�
dx ; �18�

where a is a scaling parameter, b is a space or time coordinate,
and c is a soliton-like wavelet function constructed, for
example, using derivatives of the Gaussian function

c �m� � �ÿ1�m qm

qxm

�
exp

�
ÿ x 2

2

��
: �19�

For a detailed description of the wavelet theory, we refer the
reader to review [38]. For the study of local singularities of
g�x�, the values m � 1 (a wave-wavelet) or m � 2 (an mhat

wavelet) are typically used. Higher derivatives are used rarely.
The choice of the basis functionc is an important step in such
a study: wavelets that reveal the desired information must be
chosen. This can be done using various functions; continuing
the analogy of wavelet analysis with a mathematical micro-
scope, a choice of wavelet basis functions can be interpreted
as a choice of microscope resolution: if the selected resolution
reveals the desired details, then this wavelet is good for the
problem. Moreover, selecting a lens (wavelet) with a higher
resolution does not illuminate anything new.

As mentioned in Section 2.3, the degree of singularity of
the g function can be described with the help of the HoÈ lder
exponent, whose mathematically more rigorous definition is
as follows. We consider the case where a function g is n times
differentiable at a point x0, but the (n� 1)th derivative does
not exist. Then g�x� can be expanded into a Taylor series
through the nth term. Let Pn�x� denote the resulting
polynomial of degree n. The HoÈ lder exponent at the point x0
is the maximal value of h for which the inequality

jg�x� ÿ Pn�xÿ x0� j 4C jxÿ x0 j h �20�

holds. The higher the value of h is, the more regular (smooth)
the function g is. Integration of the function increases the
value of h by one and differentiation decreases it by one. We
assume that the singular function under consideration can be
represented as

g�x� � Pn�x� � C jxÿ x0 j h�x0�; �21�

that is, as a sum of a regular component (a polynomial Pn)
and the term that describes the irregular behavior and is
characterized by a noninteger value of h�x0� [58]. One of the
particularly widely used properties of the wavelet transform,
used to remove the polynomial components of signals, is that
the wavelets with the vanishing first m moments�1

ÿ1
xmc�x� dx � 0 �22�

are orthogonal to polynomials up to the degree m and�1
ÿ1

Pn�x�c�x� dx � 0 �23�

for m5 n. Therefore, the wavelet transform of g�x� is

W �a; x0� � Ca 1=2

�1
ÿ1

c�x�j ax j h�x0� dx : �24�

To simplify the analysis, it was proposed in [58] to slightly
change the definition of the wavelet transform by multiplying
the right-hand side of (18) by 1=

���
a
p

:

W �a; x0� � 1

a

�1
ÿ1

c
�
xÿ x0

a

�
g�x� dx : �25�

In this case, the simple power-law dependence

W �a; x0� � ah�x0� �26�

holds as a! 0. Therefore, if a function g�x� has a singularity
at the point x � x0, then its local singular behavior is
characterized by the power law in (26). But if this function is
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m-times continuously differentiable at x0, then

W �a; x0�4 am �27�

as a! 0.
In the study of signal structure, one usually considers the

function g�x� itself, and rarely its derivatives. The signal is
locally characterized by the dependence of the HoÈ lder
exponent on the signal point, and the values of the exponents
are easily computed by the rate of decrease in the wavelet
coefficients with the scale a. The faster the coefficients
decrease as a! 0, the more regular the function at that
point is. Thus, the values of W �a; x� in the vicinity of a
point with a local singularity can diverge or decrease
anomalously slowly. Such behavior of the wavelet coeffi-
cients allows a detailed analysis of the singularity structure.

3.2 The method of wavelet transform modulus maxima
The WTMMmethod studies irregular behavior of a function
g�x� in two stages. In the first stage, the wavelet transform is
performed in accordance with Eqn (25). The result of the
wavelet transform can be interpreted as a surface in a three-
dimensional space (Fig 6a). The most important information
is contained in the `skeleton'Ð the lines of local extrema of
the coefficient surface W �a; x�, which are sought at each a
(Fig. 6b).

The choice of the basis functions is determined by the type
of information to be extracted from g�x�. A necessary
condition is that the selected wavelet have the smoothness
not less than that of the signal. Regarding the choice of the
parameter m in (19), we note that on one hand, increasing m
allows ignoring large-scale polynomial contributions (that is,

removing the trend) and analyzing small-scale variations of
the function, but on the other hand, multiple differentiation
leads to an increase in the number of lines of local extrema of
the wavelet coefficients and to a large number of additional
lines occurring at a small scale. Those lines are too short to
conduct estimates of power dependences like (26) and become
obstacles in a numerical study of the singularities. As pointed
out in [36], the wavelet transform is constructed such that
W �a; x0� is a regular function even if g�x� is irregular. All the
information about a possible singularity of g�x�, including its
localization x0 and exponent h�x0�, is reflected in the
asymptotic behavior of the coefficients W �a; x0� for small a.
If the coefficients diverge at small scales, then g has a
singularity at x0 and the HoÈ lder exponent can be found by
plotting Eqn (26) in a double logarithmic scale and calculat-
ing the slope of lnW �a; x0�( ln a). If the coefficientsW �a; x0�
are close to zero in the vicinity of x0 on a small scale, then g is
regular at that point. An important observation in computing
the HoÈ lder exponent is that the sought characteristics are
theoretically independent of the choice of the wavelet trans-
form basis functions, which allows introducing a universal (in
some sense) analysis of local irregularities [38] (although the
wavelet representation, of course, depends on the chosen
basis).

The first step of theWTMMalgorithm concludes with the
selection of a skeleton. The analysis of the selected lines of
local extrema and the local maxima of the wavelet transform
moduli theoretically allows computing the HoÈ lder exponent,
i.e. analyzing the singularities of g�x�. But this approach is
only approximate; with an increase in scale, the influence of
neighboring singularities increases, leading to various errors.
In multifractal theory, it is preferable to perform calculations
based on the so-called partition functions Z�q; a� that allow
obtaining more reliable estimates of the sought character-
istics. Therefore, the second step of the WTMM method
consists in constructing the partition functions as

Z �q; a� �
X
l2L�a�

��W ÿ
a; xl�a�

��� q ; �28�

where L�a� is the set of all lines of local maxima of the
wavelet-coefficient moduli that exist on scale a, and xl�a�
characterizes the position of the maximum belonging to the
line l. In this case, the use of the modulus of the wavelet
coefficients ensures the stability of the method. Without that
(using phase information), the method would not allow
obtaining a stable solution. We note that in general,
considering the maxima can lead to difficulties related to the
stability of the method (it is better to operate with averaged
values). Nevertheless, the wavelet transform procedure itself
uses coefficients computed within a frequency ± time window,
which already provides averaging. Definition (28) does not
work for negative q, because it is possible to have a situation
where W �a; xl�a�� � 0. In practice, therefore, another for-
mula is used,

Z �q; a� �
X
l2L�a�

�
sup
a 04 a

��W ÿ
a 0; xl�a 0�

����q ; �29�

which means selecting the maximum value of the wavelet-
coefficient modulus along each line on scales less than the
given value of a. According to [30, 31], the relation

Z �q; a� � a t�q� �30�

0 x 1

aÂ

0 x 1

bÂ

Figure 6. (a) A projection of a wavelet transform onto the ax plane. Larger

values of the wavelet coefficients W�a; x� correspond to darker regions.

(b) Lines of the local extrema of theW�a; x� coefficient surface; theminima

are white circles and the maxima are black circles.
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holds, where t�q�, to be determined for some q from the
slope of lnZ�q; a�(ln a), is called the scaling exponent.
Varying the powers q in constructing partition functions
(29) yields a linear dependence t�q� for monofractal objects
(H � dt=dq � const) and a nonlinear dependence t�q� �
qhÿD�h� with a large number of HoÈ lder exponents
h�q� � dt=dq 6� const in the case of multifractals.

For some values of q, the scaling exponents t�q� have a
simple interpretation [58]. Thus, there is a dependence
between t�2� and the exponent b in the spectral power
density function S� f � � 1=f b:

b � 2� t�2� : �31�

Furthermore, because the spectral density function is related
to the correlation function by the Fourier transformation, the
known b allow determining the rate of decrease of correla-
tions C�t� � tÿg, i.e., the exponent g. The dependence
between the basic quantities used within theWTMMmethod
is determined by the Legendre transform

h � dt
dq

;

D�h� � qhÿ t�q� :

8<: �32�

Compared to the method of structure functions, the
multifractal analysis based on the wavelet transform allows
investigating singularities at negative q. The partition func-
tions Z�q; a� for q < 0 characterize the scaling properties for
weak singularities (small fluctuations), and for q > 0, for
strong singularities (large fluctuations).

We illustrate the application of the WTMM algorithm
with the example from Section 2, the Cantor set. To perform
numerical computations, we construct a correspondence
between the Cantor set and a binary sequence consisting
of zeros and ones (zeroes correspond to deleted segments).
Thus, at the beginning (n � 0), this sequence consists of one
element (1), after the first step, three elements (101), after the
second step, nine elements (101000101), and so on. As the
fractal function g�x�, we take the distribution function of a
uniform measure m on the Cantor set. Normalizing the
measure

ÿ
m��0; 1�� � 1

�
, we define g�x� as

g�x� � m
ÿ�0; x�� � �x

0

dm : �33�

The resulting function is shown in Fig. 7. Selecting a c �m�

mhat wavelet for the basis function and following the
algorithm in Section 3.1, we first perform a wavelet trans-
form of g�x� and select lines of local maxima of the wavelet
coefficient moduli. As can be seen from Fig. 6, the number of
local maxima decreases with an increase in the scale a.
According to Eqn (26), the local singular behavior of g�x�
can be analyzed by constructing the dependence of
lnW �a; x0� on ln a and calculating the slope of the fitting
line. The results of calculations for various lines of local
maxima are shown in Fig. 8a. Along with the expected values
h � ln 2= ln 3, we find theHoÈ lder exponent changing in a large
range for short lines. The situation changes if we exclude lines
disappearing at small scales and consider the power-law
dependences of the wavelet coefficients, e.g., with ln a > 1:5
(Fig. 8b). To avoid difficulties related to poor small-scale
resolution, we study scaling singularities at the scaling factors
a that are not too small.

Direct estimates of the HoÈ lder exponent h from the power
dependence of the wavelet coefficients are less accurate than
the results for the spectrum t�q� of partition functions and the
calculation of the local slopes h � dt=dq (the second step of

0 x 1

1

g

Figure 7. The uniform measure distribution function on the Cantor set.
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Figure 8. HoÈ lder exponent values computed using the slope of the power-

law dependence of form (26), for all lines of local extrema (a); without

considering lines that terminate at small scales (ln a < 1:5) (b).
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the WTMM method). With a large number of steps n in the
Cantor set construction, the numerically computed values of
h � dt=dq and the singular spectrum D�h� almost coincide
with theoretical results. For example, in calculations for
n � 10, the deviation from the theoretical value ln 2= ln 3
does not exceed 1%.

We already noted that in the analysis of the local
regularity of the signal based on the wavelet transform
coefficients, the computed HoÈ lder exponents are theoreti-
cally independent of the choice of the basis. In practice,
however, such dependences do appear. In the majority of
papers known to us, the wave and mhat functions (the first
and second derivatives of a Gaussian function) were used as
the basis functions. If higher-order derivatives are used as the
analyzing wavelet, then the number of additional short lines
of local maxima of W �a; x0� increases due to the oscillating
tails of soliton-like functions c�m�. In this case, a compromise
is to be sought between ignoring polynomial components (the
trend), which requires an increase in m, and a significant
consequent increase in the number of short local maxima
lines, which complicates the skeleton and leads to deviations
from the power-law dependence at small scales. In practice, it
makes sense to restrict m to small values (usually m4 2).

So far, we have considered the case of a uniform
distribution of measure m over a fractal set. Numerical
analysis allows studying a more complicated example, the
Cantor set with a random distribution of measure. In
constructing such a set, the weights p1 and p2 � 1ÿ p1 are
taken to be 0:5� x at each step, where x is a random variable.
For the random variable with small dispersion, the structure
of the resulting set is close tomonofractal.With an increase in
dispersion, the dynamics become multifractal: a point in the
planeD�h� is transformed into a bell-like dependence, typical
of multifractals (Fig. 9). Thus, with a random distribution of
measure on the Cantor set, the most probable singular
measures correspond to the value ln 2= ln 3, and the multi-
fractal degree, or the width of the spectrum D�h� depends on
the dispersion of the random variable x, i.e., the nonunifor-
mity of measure distribution.

The multifractal analysis can be applied to signals of
various natures. In addition to irregular realizations of
continuous random processes, the WTMM method can be

used, e.g., to analyze symbol sequences, like nucleotide chains
in RNA. For this, they are represented as binary sequences
u�i� � 1 or u�i� � 0 depending on the nucleotide labeled by i.
Then, as in one-dimensional random-walk problems [52], one
considers the sum

g�k� �
Xk
i�1

u�i� : �34�

The correlation analysis of g�k� using the WTMM method
allows speaking of the absence of correlations in the symbol
sequence if h � 0:5 and their presence if h 6� 0:5. Sometimes,
correlations (h > 0:5) and anticorrelations (h < 0:5) are
considered [52]. The dynamics of a binary sequence are
anticorrelated when the probability of alternating pairs 01
or 10 is higher than the probability of the pairs 00 or 11. In the
case of correlated dynamics, zeros are more often followed by
zeros, and ones by ones, i.e., the probability of finding the 00
and 11 pairs increases. For continuous random processes, the
HoÈ lder exponents also allow detecting anticorrelated
(h < 0:5) or correlated (h > 0:5) dynamics. In the first case,
the alternation of large and small values in a random process
is observed (a large value is followed by a small one with high
probability, and vice versa). In the second case, a large value is
more often followed by a large value, and a small by a small
one; the process is smoother. The case of h � 1 corresponds to
the 1=f noise, and h � 1:5 to the Wiener random process.

We note that the analysis of multiscale properties for
sequences of form (34) leads to the same results as taking the
g function to be the initial binary sequence g�i� � u�i� if the
1=a prefactor is removed from (25). This is because integra-
tion increases h by 1. Taking this circumstance into account in
Eqn (26), we can perform calculations without computing the
sums in Eqn (34), which is equivalent to integrating with a
variable upper limit. This property is useful in practical
applications of the multifractal analysis method.

4. Examples of multifractal analysis
applications: the effects of losing multifractality

We consider several examples of applying the WTMM
method to practical problems, which include testing the
method for a quantitative description of known phenomena
in nonlinear system dynamics (chaotic and stochastic syn-
chronization), and also using multifractal analysis to diag-
nose the state of living objects from nonstationary signals.
The examples were selected, on one hand, to demonstrate the
universality of the method and on the other hand, to show the
existence of common effects that allow using the degree of
multifractality as a quantitative characteristic of the studied
system state. We note that using the multifractal method
based on wavelet analysis reveals more subtle characteristics
compared to traditional methods of signal processing (for
example, correlation analysis). The WTMM method is
sensitive to the dynamics on various scales, from weak
singularities (small fluctuations) to strong singularities
(large fluctuations). The underlying wavelet transform is
well suited for the study of self-similarity (in terms of wavelet
coefficients, this means a power-law behavior of their higher
moments with variations in scale). The method is well suited
to the solution of physical problems, because it operates with
characteristics intuitive to physicists. In particular, the
singularity spectrum contains information about correlation
properties of the studied processes as well as information
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Figure 9. Singularity spectra for the Cantor set with a random distribution

of measure. In creasing the spectrum width D�h� corresponds to an

increase in nonuniformity in the measure distribution.

August, 2007 Multifractal analysis of complex signals 827



about the signal uniformity, quantitatively measured by the
width of the D�h� function.

4.1 Chaotic dynamics of interacting systems
As a first example, we consider testing the multifractal
analysis for diagnosing the well-known chaos synchroniza-
tion effect in the dynamics of interacting systems that produce
self-sustained oscillations. The synchronization of chaotic
oscillations leads to changes in the complex geometry of
attractors compared to the noninteracting case. These
changes are reflected in the structure of time intervals, such
as the recurrence time to the PoincareÂ secant. According to
[66], the distribution of recurrence times of a dynamical
system can have multifractal properties, i.e., demonstrate
different local scaling. We try to find how the interaction of
oscillatory systems affects the multifractal properties of the
chaotic dynamics.

As an example, we choose the model of two coupled
RoÈ ssler systems:

dx1;2
dt
� ÿo1;2 y1;2 ÿ z1;2 � g �x2;1 ÿ x1;2� ;

dy1;2
dt
� o1;2 x1;2 � Ay1;2 ; �35�

dz1;2
dt
� B� z1;2�x1;2 ÿ m� ;

where parametersA,B, and m determine the dynamics of each
system, g is the coupling parameter, o1 � o0 � d and
o2 � o0ÿd are basic frequencies, and d is the detuning. The
calculations were performed for the following values of these
parameters: A � 0:15, B � 0:2, g � 0:02, m � 6:8, and
o0 � 1:0 [67].

System (35) demonstrates various coexisting synchro-
nized regimes of chaotic oscillations and various types of
asynchronous dynamics with different multifractal character-
istics [26, 28]. We restrict our consideration to the case of
transition over the boundary of the phase synchronization
region with an increase in the parameter d. The projections of
the phase portraits of the system on the plane (x1, x2) for the
synchronous and asynchronous chaos regimes are visually
distinct (Fig. 10). We select the secant surface (for example,
x2 � 0) and analyze the shape of the singularity spectra D�h�
calculated using the sequence of recurrence times to this plane
for the oscillations shown in Fig. 10.

As can be seen from Fig. 11, the function D�h� is much
wider in an asynchronous regime than in a synchronous
regime (where the singularity spectrum collapses to a point).
This means that the phase synchronization of chaotic
oscillations in model (35) is accompanied by a loss of
multifractality in the dynamics of the recurrence times. The
asynchronous chaos regime shows a complex multifractal
structure and is described by a wide spectrum of HoÈ lder
exponents (Fig. 11b). But for the synchronous case, the
sequence of recurrence times to the secant plane can be
regarded as a map of a process characterized by a value of
h�q� that is constant within the margin of error.

The width of the singularity spectrum can vary for
different synchronous regimes. The most typical situation is
where the sequence of recurrence times cannot be described
by a constant value of h�q�. Moreover, calculating HoÈ lder
exponents at large values of q shows significant sensitivity to
the choice of the counting parameters, for example, the range
of the t�q� approximation. It is therefore reasonable to

introduce the characteristic of the multifractality degree Dh

(the width of the singularity spectrum). The analysis of the
various states of chaotic oscillations in system (35) shows that
for any type of synchronous dynamics, the multifractality
degree is much smaller than outside the synchronization
domain [68]. Another difference from the singularity spectra
shown in Fig. 11a is an increase in h�q� for the asynchronous
oscillations, which signifies a change in the type of correla-
tions. The characteristics computed within the WTMM
framework clearly show the transition boundary from the
asynchronous regime to the synchronous (Fig. 12). We note
that the transition from the synchronous regime can be
diagnosed using other methods, but multifractal analysis
yields a different perspective in considering this phenom-
enon: the chaos synchronization can be considered an effect
due to transition from complex multifractal dynamics with a
wide spectrum of HoÈ lder exponents to simpler monofractal
dynamics that can be quantitatively described by a single
scaling exponent. The loss of multifractality signifies the
leveling of various irregularities and a transition from a
process containing several types of singular behavior to
uniform (simpler) dynamics exhibiting only one type of
singularity. The effects of the decrease in (loss of) multi-
fractality with the chaotic synchronization are also observed
in the dynamics of more complex models, considered, e.g.,
in [26].
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Figure 10. Synchronous (a) and asynchronous (b) chaos in the model of

two coupled RoÈ ssler systems.
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4.2 Stochastic synchronization
To illustrate the general tendency in the multifractal descrip-
tion of chaos synchronization effects and noise-induced
ordering in nonlinear systems, we consider the well-known
stochastic resonance effect [69 ± 71].

Recently, the authors of [72] attempted to give a multi-
fractal description of this effect for the model of an over-
damped bistable oscillator described by the stochastic
differential equation

dx

dt
� xÿ x 3 � Ix�t� � A sin �Ot� f� ; �36�

where x�t� is a normally distributed d-correlated process
(white noise), I the noise intensity, and A the amplitude of
an external periodic force, which is a small value. Without
noise, the system does not exhibit transitions between two
states. In the study of a stochastic resonance, two cases are
often considered, where the amplitudeA of a periodic signal is
very small compared to the potential barrier and where A is
comparable to the barrier. In the second case, the dynamics of
the bistable system show a large degree of coherency between
the switching process and the input signal, which can be
described using stochastic synchronization [73, 74]. Accord-
ing to the conclusion in [72], confirmed by our calculations,
for a sufficiently large amplitude of the periodic signal, the
effect of stochastic resonance is accompanied by the loss of
multifractality in the dynamics of model (36). Changes in the

parameter I significantly affect the structure of the singularity
spectrum: at the optimum level of noise, corresponding to the
resonance, the sequence of recurrence times to one of the
bistable states has a clear monofractal structure (Fig. 13), but
when moving away from this value, the singularity spectrum
corresponds to a multifractal object. Thus, the stochastic
synchronization regime is accompanied by the loss of multi-
fractality in the dynamics of the overdamped bistable
oscillator with an external force. This resembles chaos
synchronization in the multifractal description discussed in
Section 4.1.

4.3 Multifractal analysis of blood pressure dynamics
We consider a much more complicated case, the dynamics of
living systems. It is known that many signals of biological
origin are strongly nonuniform and nonstationary, and the
most universal methods (whose efficiency does not depend
on the stationarity of the processes) should be used for
analysis. The multifractal wavelet transform method is one
such universal method, as was shown, in particular in the
paper by Ivanov et al. published in Nature [43]. Using the
WTMM method, the authors demonstrated that physiologi-
cal signals belong to the class of multifractal processes. In
particular, the multifractal properties of the heartbeat for
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Figure 12.Transition through the boundary of the synchronization region,

diagnosed by the characteristic changes in the multifractal formalism.

Figure (b) shows the results of an analysis of the sequence of recurrence

times separately for each of the two interacting systems (secant planes

x � 0 and x � 1).
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August, 2007 Multifractal analysis of complex signals 829



healthy organisms differ from multifractal properties in the
case of a pathology. In particular, the scaling characteristics
of the WTMM method are possible diagnostic tools in

biological systems [46, 47]. This is particularly important in
the cases where the standard methods of signal structure
analysis do not provide acceptable diagnostics (for example,
in processing strongly nonstationary short-time processes).

Various external influences on the organism also change
the characteristics of the multifractal structure of the heart-
beat. In this section, as an illustration, we present the results
of a multifractal description of the adaptation of the cardiac
system to stress factors [75].

Experiments were conducted on 23 white rats (11 male
and 12 female) with implanted intra-arterial catheters for
direct measurements of blood pressure. The blood pressure
was recorded at rest and under stress (by restricting the
animal's motion). In preliminary processing, the initial data
(Fig. 14a) were converted into point processes given by the
sequences of time intervals between the local maxima of the
arterial blood pressure signal (Fig. 14b). Then, these
sequences were analyzed to detect stress-induced changes in
the multifractal signal structure.

Two types of responses were found: stress leads to a
significant decrease in the HoÈ lder exponent (which implies
changes in the local regularity and correlation property of the
signals) (Fig. 15a) or to a decrease in the width of the
singularity spectrum Dh (Fig. 15b). The last response is most
interesting: due to stress, a multifractal process (the rat's
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Figure 13. The singularity spectra corresponding to a stochastic synchro-

nization switchover in a bistable system (black circle) and dynamics

outside the synchronization domain (white circles).
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Figure 14. Signal of white rat's arterial blood pressure (a) and the extracted

sequence of time intervals between local maxima of the signal (b).

1.6

h

1.4

1.2

1.0

0.8
ÿ1.5 ÿ0.5 0.5 1.5

q

a

h

1.4

1.6

1.2

1.0
ÿ1.5 ÿ0.5 0.5 1.5

q

b
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blood pressure in the normal state) becomes monofractal.
Thus, the results of stress on the body in some cases can be
based on the analysis of transition from a monofractal
structure to a multifractal structure and vice versa. We note
an important circumstance: standard analysis methods such
as computing the heart-beat frequency or the spectral
analysis, do not distinguish between the two types of
response shown in Fig. 15. In both cases, similar changes
were detected: an increase in the heart-beat frequency and
energy characteristics. This example demonstrates a case
where multifractal analysis can be an efficient method for
classifying the state of a biological system based on short
nonstationary signals.

In the study, clear distinctions between male and female
rat responses were found. The blood pressure dynamics of the
females show a weak response to stress (Fig. 16a), while the
male dynamics show a much stronger change in the
singularity spectrum D�h� compared to the singularity
spectrum at rest (Fig. 16b). The results in Fig. 16 are the
most distinct, but very typical responses. As can be seen from
Fig. 16b, the HoÈ lder exponent h�q� of a male's blood pressure
signal decreases with stress, which signifies changes in
correlation; the process becomes less smooth. In addition to
changes in correlation, the value Dh also decreases. In the
current example, Dh � 0:5 at rest and Dh � 0:3 during stress,
i.e, the singularity spectrum becomes narrower. A significant

decrease inDh was detected inmales in 7 experiments out of 11
and in 3 cases a transition to an almost monofractal structure
of the point processes was observed. Because the rats were
only weakly stressed, it is possible that a stronger influence
would cause the loss of multifractalily more often. This
suggests the hypothesis that the multifractal measure Dh can
serve as an indicator of the strength of the organism's
response to stress.

5. Capabilities
and limitations of the multifractal analysis

The multifractal analysis on the wavelet transform based can
be considered a method of study of spectral-correlation
properties of various processes, including nonstationary
ones. As follows, in particular, from Eqn (23), slow non-
stationarity (a polynomial trend) does not affect the result if
the selected basis function c is such that its first several
moments vanish. Besides the possibility to study both
stationary and nonstationary processes, the WTMMmethod
has another advantage over the classical correlation analysis:
being an instrument of a `local' study of the structure of
functions of time, the multifractal analysis allows estimating
the correlation properties of random processes based on
comparatively short signals. To illustrate the efficiency of
WTMM usage for correlation signal analysis, we consider a
Wiener random process, whose statistical properties are well
known (h � 1:5).

The results of the classical correlation analysis show that
for relatively short realizations of the same process, the
estimates of the correlation decay can differ significantly.
The rate of decay for different autocorrelation functions
(Fig. 17) for different samples containing 3000 points differ
by almost 2 times. The WTMM method shows the existence
of a Wiener process based on the same sampling much more
reliably. Assuming a homogeneous process, we can estimate
the HoÈ lder exponents averaged over q. These estimates give
the expected value h � 1:5 with an error not exceeding 3%.
The spread of characteristics for the decay rate in the
autocorrelation function is much larger.

As another example, we consider white noise (h � 0:5) or
1=f noise (h � 1) and obtain the expected value of the HoÈ lder
exponent with an accuracy of the same order of magnitude
(� 3% for a sample with 3000 points). But these examples
deal with only very simple objects. To evaluate real capabil-
ities and limitations of the multifractal method, one should
consider a more complicated problem and analyze inhomo-
geneous signals containing various types of singular behavior.

In considering the simultaneous activity of several
processes with different statistical properties and ampli-
tudes, we can expect one of the processes to be present on a
small scale (with weak singularities) and another on a large
scale (strong singularities). For clarity, we consider an
artificial signal that is a sum of a Wiener random process
and a sequence of pulses with a Cantor set structure. It is
expected that as a result of such summation (Fig. 18), the
Cantor set structure is to be exhibited through large
fluctuations and the Wiener random process is to dominate
at small scales. The computations confirm this expectation
(Fig. 19). The HoÈ lder exponent approaches h � 1:5 at
negative q (weak singularities) and h � 0:63 at positive q
(strong singularities). Thus, the WTMM method clearly
determines the differences in structure of the analyzed signal
with changes in the scale of observations. In the case of several
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Figure 16. The typical response to stress for a female (a) and a male (b).

August, 2007 Multifractal analysis of complex signals 831



types of singularities, the WTMM method determines when
these singularities belong to different scales. If the difference
in scales is insignificant, then there is no clear separation of

singularities. In particular, in the example considered with a
sum of pulses of the Cantor set and the Wiener process, the
increase in the intensity of the latter leads to shifting the
HoÈ lder exponent at q > 0 towards h � 1:5 (see Fig. 19). The
second type of singularity (h � 0:63) can appear only at large
q, but as q increases, the reliability of the estimates of HoÈ lder
exponents decreases. In the case of several types of singula-
rities with similar scales, the WTMM method leads to
averaged values of h.

TheWTMMmethodmay entail difficulties in the case of a
special frequency-modulated behavior, observed for so-called
chirps [76].Alternatingoscillatory functions are better studied
using a more general approach, based on the double
microlocal analysis proposed in [76]. The case of chirps
shows the limitations of the WTMM method. Thus, this
method is not applicable to the study of singular oscillatory
functions. Another limitation of the multifractal analysis is
that it only estimates the upper envelope of the true multi-
fractal spectrum. This can lead to mistakes in interpreting the
results. First, if the true singularity spectrum D�h� is discrete,
i.e., h takes only discrete values, then the envelope curve
includes `false' points that interpolate these discrete values.
Second, the envelope does not identify the internal points (if
they exist) that do not belong to the upper envelope of the
spectrumD�h� (Fig. 20). The authors of [77] point out that the
bell-like shape of the singularity spectrum can be obtained
even in the cases where theWTMMmethod is used to process
signals without multifractal properties. If a process is
characterized not by a continuous spectrum D�h� but by a
small set ofHoÈ lder exponents, then obtaining an envelope like
that shown in Fig. 20 does not allow asserting in general
whether there exist singularities, for example, characterizedby
h � 0:63� 0:005. To avoid difficulties in interpreting the
results, it is better not to attempt to determine whether the
number of scaling characteristics a is finite or infinite but to
consider the WTMM method as a numerical tool for
estimating the range of the HoÈ lder exponent (i.e., the multi-
fractality degree) and determining the existence and charac-
terization of various types of correlations in nonstationary
random processes. We thus have an opportunity to perform a
correlation analysis of short-time nonstationary signals and
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Figure 18. An artificial signal that is a sum of realizations of the Wiener

random process and a sequence of pulses with the Cantor set structure.
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numerically evaluate the inhomogeneity degree of a random
process.

6. Conclusions

The existence of multifractality or complex scaling in the
structure of various natural processes has been widely
discussed in the scientific literature in recent years. The
appearance of a new tool for complex signal analysis, based
on a combination of multifractal theory and wavelet analysis,
significantly increases the ability to use rigorous mathema-
tical results in experimental studies.

Multifractal analysis based on the continuous wavelet
transform can be interpreted as a novel look at the problem of
signal structure analysis. In statistical radio-physics pro-
blems, in particular, considerable attention is traditionally
given to spectrum-correlation analysis. But classical methods
of calculating correlation functions or power spectra can be
used only for stationary processes, and long-time signals are
required to obtain reliable estimates of correlation decay or of
the frequency dependence of the spectral density function. In
contrast to the classical approaches, the WTMM method
allows performing correlation analysis using rather short and
nonstationary signals, which positions this method as a tool
for studying the structure of real processes obtained in
experiments. Moreover, this tool is quite universal and can
be applied independently of the stationarity and the nature of
the signal: processes obtained from physical experiments, bio-
medical studies, and meteorological series can all be success-
fully analyzed.

Multifractal analysis presents an interesting tool for
studying the dynamics of living systems. These systems often
exhibit complex irregular behavior whose characteristics
constantly change with time. Using classical probability and
spectral methods for such analysis means making an a priori
assumption that these processes are approximately ergodic,
but the veracity of such assumptions is difficult to justify
when a living organism constantly adapts to changing
environmental conditions. Problems often arise in interpret-
ing analyses of biological data. For example, the existence of
two peaks in a power spectrum whose frequencies are not a

multiple of one another can correspond to two opposite
situations: the dynamics of the studied system can contain
two independent rhythms, or the frequency is changing and
only one rhythmical process is detected at each instant. These
situations, which often arise in functions of living natural
objects, demonstrate the restrictions of classical methods for
analyzing these random processes and point to the necessity
of using more efficient tools of signal analysis. Modern
biological studies are impossible without applying special
physical methods. The development of modern equipment
led to advanced experimental studies where biological signals
can be measured on a microscopic scale of separate cells and
intracellular dynamics. But the analysis of these signals is
often reduced to simple statistical processing of experimental
data. Introducing more precise instruments for signal
structure analysis, which detect complex structures, is
becoming an urgent problem: modern high-precision biolo-
gical experiments clearly need the corresponding analysis
methods. Applying methods from physics to problems in
biology undoubtedly enriches physics itself. In particular,
developing special methods not restricted by nonstationarity
not only significantly increases the opportunity of experi-
mental studies but also determines future progress in the
evolution of signal structure analysis. Along with the well-
knownwavelet analysis, the multifractal method based on the
wavelet transform can justifiably assume this role.
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