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Abstract. Results of investigating nonlinear regimes of the
homogeneous precessional dynamics of magnetization in
iron—garnet films with various orientations of crystallo-
graphic axes and in metallic thin-film structures are presented.
Attention is primarily focused on static and dynamic bistabil-
ities, which, under the effect of an ac magnetic field, lead to the
magnetization reversal of the systems, bifurcational changes in
the magnetization precession amplitude, or the establishment of
both stochastic and complex regular (including auto-oscillat-
ing) precessional regimes. The bifurcation diagrams considered
reveal diverse possibilities of efficiently controlling the non-
linear dynamics of magnetization in thin-film structures by
varying external magnetic fields.

1. Introduction

Interest in the nonlinear precession dynamics of magnetiza-
tion in magnetically ordered crystals cam be explained by
the variety of dynamic effects arising under the action of a
high-frequency field on dissipative spin systems [1—5] and
by the possibility of obtaining large angles of magnetization
precession and the realization of dynamic chaos and various
static and dynamic self-organizing states of magnetic
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systems [6—8]. One of the most suitable objects for the
realization and investigation of numerous nonlinear
dynamic regimes is thin-film structures, which are widely
used in modern integrated-circuit technologies [9].

In recent years, in connection with the active development
of new information carriers and methods of information
recording, investigations of the dynamic magnetization
reversal in thin films [10—13], the formation and propaga-
tion of an excitation front [14], and the development of
homogeneous and structurally inhomogeneous nonlinear
dynamic states [15—19] have become quite topical. It is
understandable that many of the main features of nonlinear
regular and stochastic precession regimes should most clearly
manifest themselves in homogeneously magnetized struc-
tures. In addition, when using nonlinear effects in practice,
where the magnitude of the response of a system to an
external action is important, it is homogeneous precession
dynamics that are preferred. Of special interest are large-
amplitude precession regimes, which is related to the
possibility of using them for modulating laser radiation,
whose efficiency is determined by the magnitude of the
precession angle [20—23].

It is well-known that in the case of the mutually
perpendicular orientation of high-frequency (ac) and static
(de) fields (transverse pumping), there exist two mechanisms
of energy transfer from homogeneous precession to spin
waves that limit the increase in the precession amplitude [7,
24]. The first mechanism is related to a three-magnon process,
in which a magnon with the wave vector k = 0 vanishes and
two magnons with wave vectors k and —k and the frequency
wx = wo/2 (where wy is the resonance frequency of uniform
precession) arise. The second mechanism is related to a four-
magnon process, in which two magnons with wave vectors k
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and —k and the frequency w; = @ appear instead of two
magnons with k = 0. When the high-frequency field exceeds a
certain threshold field, these processes lead to the develop-
ment of spin-wave instabilities; as a result, both regular and
stochastic nonlinear dynamic regimes can be realized in the
related spin system [7, 25— 28].

To obtain large angles of uniform precession of
magnetization, a condition for the suppression of the Suhl
instabilities caused by three- and four-magnon interactions
should be satisfied. This condition amounts to the require-
ment that the frequency of the ac field does not exceed the
lower value of the frequency w(k) in the spectrum of spin
waves, i.e., correspond to the bottom of the spin-wave
‘band’ [1-7]. For a thin perpendicularly magnetized layer,
the resonance uniform mode of the spin-wave spectrum
corresponds to the bottom of the band and, by adjusting the
layer thickness, can be moved fairly far from the frequency
of the first (nonuniform) spin-wave mode [29]. It is precisely
for this reason that the above mechanisms of energy transfer
are not realized in perpendicularly magnetized films under
the condition w < wy. As a result, as the amplitude of the
high-frequency (microwave) field increases, no saturation of
the resonance in the uniform mode occurs [30] and the
specific features of the nonlinear dynamics of magnetization
already manifest themselves in the case of uniform preces-
sion [31].

One of the manifestations of the nonlinear dynamics of
magnetization at large angles of uniform precession is the
frequency doubling effect, which occurs in the case of a linear
polarization of the high-frequency field. In the case of
precession in a transverse microwave field, the consideration
is typically limited to this nonlinear effect [24]. But some types
of symmetry of the magnetic crystallographic anisotropy lead
to the predominant manifestation of the higher harmonics of
the basic frequency of precession in the precessional motion
of the magnetic moment [32, 33]. The nonlinear coupling of
magnetization to an ac field is accompanied by a number of
effects caused by a sharp increase in the amplitude of the
precession angle [7, 24, 34—36]. The dynamic bistability and
the related hysteretic field or frequency dependence of the
power absorbed by the sample can be attributed to such
effects [37—39]. Of special interest are the properties of single-
crystal thin-film structures near the critical values of the fields
that determine the orientational phase transitions at which
the change in the magnetization in the layers has a jumplike
character. Therefore, determining the most favorable condi-
tions for excitation of various dynamic regimes requires, first
and foremost, an analysis of the equilibrium states of the
system and the clarification of instability states sensitive to
small changes in the parameters of the system and external
fields [32, 40].

The nonlinear precession regimes are analyzed in this
review using the example of iron—garnet films and metallic
multilayer structures. Iron—garnet epitaxial films, which
have been quite actively studied in the last few decades, are
widely used in various devices of the microwave and optical
ranges [20, 41, 42]. The main focus in this review is on an
analysis of new precession regimes in (111) and (100) films,
i.e., bistable dynamic states, auto-oscillating regimes, and
complex regular and stochastic precession. It is shown that
the orientation of crystallographic axes essentially determines
the trajectory of the precession of the magnetization vector
and the frequency ranges responsible for the realization of the
auto-oscillatory and stochastic dynamics.

The greater attention being paid lately to the investigation
of the ordering features [43—45] and resonance properties
[46—49] of multilayer systems consisting of two or more
layers of ferromagnetic metals separated by nonmagnetic
metallic spacers is due to the variety of the types of coupling
between magnetic moments of the layers [S0—53] and the
unique magnetoresistance properties of these structures [43].
Nonlinear precession regimes, including stochastic ones, can
be excited in layered metallic systems by a spin-polarized
current passed through the system [54— 57]. In this review, we
restrict ourselves to precession regimes in layered structures
with the antiferromagnetic type of interlayer coupling, which
arise under the effect of an ac magnetic field that is uniform
over the structure.

The dynamics of magnetization in a uniformly magne-
tized thin layer are generally described by the Landau-—
Lifshitz equation, which in a spherical coordinate system is
written as the set of equations [24]
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where 7y is the gyromagnetic ratio and A is the dissipation
parameter. The free-energy density for an individual mag-
netic layer is written as
F=—M(H+h) —2nM?>sin® 0 + F, (0, ¢) + Fu(6, ),
(2)
where M is the magnetization vector, whose direction is
determined by the polar angle 0 referenced to the normal to
the film, and by the azimuthal angle ¢; H and h are the
external dc and ac magnetic fields; and F, and F, are the
contributions determined by the energy of magnetocrystalline
anisotropy and by the energy of anisotropy induced during
film growth, respectively. Solving Eqn (1) permits finding the
time dependence of the magnetization orientation in a given
geometry and for a given time dependence of the applied
fields. In this review, we present a unified analysis (from the
standpoint of the formalism used) of the nonlinear dynamics
of magnetization in various thin-film magnetic structures,
which is based on the study of solutions of Eqn (1).

2. Low-amplitude precession and orientational
dynamic jumps in (111) iron—garnet films

Epitaxial iron—garnet films are single-crystal layers with a
cubic crystal lattice. For (111) films, the crystallographic axis
[111]is assumed to coincide with the x axis directed along the
normal to the film surface, the [112] and [110] axes are taken
to coincide with the y and z axes, and the angles 6 and ¢ are
referenced to the respective axes x and y. With this orientation
of the crystallographic axes, the density of the free energy of
magnetocrystalline anisotropy is determined by the expres-
sion

1 1 2
F, = K| (4_1 sin® 0 + 3 cos* 0 + g sin® 0 cos 0 cos 3@),
3)

and the density of the free energy of growth-induced
anisotropy is written as

F, = K, sin’ 0 , (4)
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where K| and K, are the respective constants of magnetocrys-
talline and growth-induced anisotropy. In what follows, the
external dc and ac magnetic fields are assumed to be mutually
orthogonal (H L h).

As follows from the above relations, a substantial effect
on the dynamics of magnetization in precessional motion,
along with the orientation and magnitude of the magnetizing
field and with the fields of growth-induced and magnetocrys-
talline anisotropy, is also exerted by the polarization, the
amplitude, and the initial phase of the microwave field. At
low amplitudes of the microwave field (& < Hefr, where Hegr is
the effective magnetic field) at a frequency w = w;, a linear
ferromagnetic resonance occurs at which all precession angles
are small and the time dependences 0(7) and ¢(#) can be found
from the equations of motion linearized with respect to small
deviations of the magnetization from the equilibrium posi-
tion. In this case, the frequency of the resonance precession of
the magnetic moment with respect to its equilibrium orienta-
tion is determined by the expression

1/2
o = yHer = ——— (FooFpp — F3,) "%, (5)

Msin 0
where the magnitudes of the second derivatives of the free
energy density are taken at for the equilibrium angles 6y and
¢, obtained from the respective conditions 0F/00 = 0 and
0F/0¢p = 0. With an increase in the amplitude of the
microwave field and, correspondingly, with an increase in
the precession angle, the contribution of the higher harmonics
of the principal frequency of precession to the dynamics of
magnetization increases, and the nutation motion of the
vector M becomes essential. In this case, in solving Eqns (1),
the linear approximation becomes insufficient and the main
features of the precessional motion can be analyzed in detail,
with all the parameters that determine the state of magnetiza-
tion in the film taken into account, only on the basis of
numerical methods.

In what follows, in considering iron—garnet films, we
restrict ourselves to the case of a dc field H directed
perpendicularly to the film surface. With the anisotropy
constants K, and K; corresponding to the equilibrium
orientation of the vector M along the normal to the film
(09 = 0), the frequency of the resonance precession is written
as oy = yHegr(0), where the effective field is

2 2
Heff(o) =H—4nM + M <Ku - g Kl) . (6)
We assume that the ac field is linearly polarized and lies in the
yz plane. In this case, there exist several regimes of preces-
sional motion of the magnetization, determined by the
magnitude of the dc field H (or by the precession frequency ).

To reveal the specific features of the precessional motion
of the vector M, it is necessary to determine the spatial energy
relief specified by the function F (0, ¢). The F (¢) dependence
has the period 27/3, in accordance with the positions of the
magnetizing field and three crystallographic axes {100}. For
the direction ¢ = 6 = 0 (the vector M is parallel to the normal
to the film) and the magnitude of the magnetizing field
H > H,, the F(0) dependence has a local minimum, which
becomes more clearly pronounced with increasing H.

To investigate the above dependences and perform a
further analysis, we used parameters close to those of a real
iron —garnet film, 4nM = 214.6 G,y = 1.755 x 107 (Oes)~!,
A=3x100s"! K,=-10%erg cm™3, and K, ~ —10% erg
cm~> [41, 58]. The magnitude of Hy is determined from

Eqn (6) under the condition Hey(0) = 0; for the structure
chosen, we obtain Hy = 245 Oe. Apart from a minimum
along the direction of the normal, there are also three local
minima, at the angles ¢ = 0°, 120°, 240° and 0 ~ 35—41°.
With an increase in the magnetizing field, these minima
become somewhat shifted toward the normal, become less
pronounced, and vanish at H =~ 279 Oe.

Analysis [32, 59] shows that at sufficiently small magnetiz-
ing fields and low frequencies corresponding to the condition
of linear resonance (for the film under investigation, these are
H <279 Oe and o, <4 x 10% s71), the precession axis
coincides with the normal only at small amplitudes of the
microwave field (2 < 0.04 Oe). The precession amplitude in
this case is a few degrees (¢ ~ 2°). The trajectory of the
magnetization motion substantially differs from a circular
one already at 1 =~ 0.04 Oe because of the nutation motion of
M with a predominant contribution from the third harmonic
of the precession frequency. With an increase in the micro-
wave field amplitude, the magnetization deviates during the
precessional motion toward one of the three directions
(depending on the orientation of the field h in the yz plane
and on its initial phase), which is determined by the
corresponding local minima of the free-energy density with
0 # 0. In a time 7 < 500 ns, the magnetization starts preces-
sing (about the direction toward which it becomes deviated)
over a stationary trajectory with an average amplitude
(¢) < 3°.

Below, we present the results of a numerical solution of
Eqns (1) that characterize the dynamics of the precessional
motion in the film under investigation. Figure 1a displays the
yz projections of the normalized magnetic moment
m, = M,/M, o =y, z, which changes its initial orientation
under the effect of a microwave field, thereby leading to the
establishment of one of the four above-described stationary
dynamic regimes. The magnitude of the dc field was chosen to
be equal to H =260 Oe, which corresponds to a linear
resonance precession with the frequency w, = 1.12x 108 s~
The high-frequency field has the amplitudes 4 = 0.04 Oe
(curve 0) and 1.5 Oe (curves /—3) and a zero initial phase.
The orientational angles, which are referenced to the y axis,
take the values ¢, = 0°, 200°, and 270° (curves /-3, respec-
tively). For the precession of the magnetic moment about
the normal (curve 0), the initial phase is unimportant. The
dashed lines in Fig. l1a divide the yz plane into three sectors
corresponding to the values of the orientational angle ¢, of
the high-frequency field h at the initial instant at which the
precession of M about the corresponding direction is
established. When the initial phase is equal to m, i.e., when
the field changes sign at the initial instant, the distinguished
regions of the angles ¢, are shifted by 180°. In the region of
the boundary between the sectors, a jump by 240° first occurs;
upon a further increase in the angle ¢, a transition to the
missed position occurs, with the dynamic regime subse-
quently remaining in that position until the next changeover
of the angular sectors [32]. With a further increase in the dc
field H, the three minima of F (0, ¢) located at an angle to the
normal vanish; only a precession with the axis oriented along
the normal to the sample surface is realized.

Above, we considered cases of a resonance relation
between the magnetizing field and the frequency [Eqn (6)].
The other dynamic regimes are realized under conditions
differing from the resonance. In the range of magnetizing
fields with boundary values Hy ~ Hy+ H + AH, a linearly
polarized ac field of a small frequency (w/2n < 10 Hz) leads
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Figure 1. yz plane projections of the normalized magnetic moment: exiting,
under the effect of a microwave field, into one of four low-amplitude
dynamic regimes (a), and executing dynamic jumps (b, ¢).

to dynamic orientational jumps of the magnetic moment
between two or three (of four) equilibrium orientations
(Fig. 1a) [60]. The magnitude of H depends on the growth-
induced anisotropy constant; at K, =0, —10°, —3 x 103,
—5x 10%,and —10 x 10? erg cm 3 with the other parameters
corresponding to the above-considered structure, we have
H =~ 37,24,12,7,and 0 Oe, respectively. The magnitude of AH
increases as the induced anisotropy field and the ac field
amplitude increase; at =1 Oe and K, = —3 x 10’ and
—5x 10% erg cm—3, we have AH = 2.6 and 3.0 Oe, respec-
tively; at h=20e and K,=-10°, —3x10% and
—5x10% erg cm™>, we have AH =1.2, 4.1, and 6.1 Oe,
respectively; at 7 =1 Oe and K, = —10° erg cm™3, these
regimes are absent. Thus, to obtain these regimes at small
amplitudes of the ac field, structures with large fields of the
growth-induced anisotropy must be used.

Various regimes of orientational dynamic jumps can be
realized, consisting in the following transitions of the
magnetization: between the equilibrium direction oriented
along the normal to the structure and equilibrium directions
with polar angles closest to the orientational angle of the ac
field; between the latter and one of the other two equilibrium
directions not coincident with the normal; and between three
equilibrium directions, one of which is oriented along the
normal. At sufficiently large amplitudes of the ac field, several
narrow alternating ranges of the values of the magnetizing
field corresponding to various regimes of jumps occur.

Figure 1b shows yz projections of the normalized
magnetic moment executing dynamic jumps in the first
(Fig. 1b) and second (Fig. 1c) of the above regimes under
the effect of an ac magnetic field with the amplitude # = 2 Oe,
frequency w/2rn = 10° Hz, and orientational angle ¢, = 0 at
the growth-induced anisotropy constant K, = —103 ergcm™3
and the magnetizing fields H = 276.8 Oe (Fig. 1b) and
277.0 Oe (Fig. 1c). It can be seen that the dynamic jumps are
accompanied by rapidly relaxing high-frequency oscillations
with the period T ~ 2n/w,; the hopping period, i.e., the total
period of these stationary regimes, corresponds to the period
of the ac magnetic field. In the cases considered, the trajectory
of the magnetization vector encompasses all the four energy
minima. Because w < w;, the parameters of the structure and
of the external magnetic fields combine such that the
magnetization is ‘pushed’ to one of the energy minima, and
a subsequent variation of the phase of the ac magnetic field h
results in the magnetization passing to another energy
minimum, etc. Near the value H = H,, the magnetization
trajectory encompasses only two energy minima, hopping
between them. For the magnetizing field H = 277.9 £+ 0.1 Oe,
dynamic hopping between three equilibria (including the
normally oriented one) is established.

As a result of the realization of the above dynamic
regimes, high amplitudes of the magnetization oscillations,
which are mainly determined by the orientations of equili-
brium states, can be obtained in a wide range of frequencies.
Because the amplitude of such regimes only weakly depends
on the amplitude of the ac field, they should be classified as
auto-oscillating regimes.

3. Multiturn precession of magnetization
in [100] films

The specific features of magnetization reversal in iron—
garnet films substantially depend on the orientation of the
crystallographic axes [61]. The same can be expected of the
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Figure 2. The yz plane projections of stationary orbits of the precession of the magnetization vector at w/(2n) = 10° Hz, and K; = —103 erg cm™3:

(@) h=10e, ¢, =1/2, K,
¢, =-n/4, K,

—10% erg cm™3, and H =450 Oe; (b) h =1 Oe, ¢, = /2, K, = —10° erg cm™3, and H = 410 Oe; (c) h = 0.1 Oe,
—10° erg cm ™, and H = 450 Oe; and (d)h=0.1Oe, ¢, = —n/4, Ky =0, and H = 332 Oe.

arising precession regimes. We now consider the dynamics of
magnetization in a film of another type.

In the investigations and various practical applications of
iron garnets, (100) films are widely used because they allow
most easily ensuring the perpendicular orientation of the easy
axis to the film plane; this orientation is least sensitive to
various inhomogeneities of composition and changes in
voltage and temperature [62].

For (100) films, it is assumed that the crystallographic axis
[100] coincides with the x axis and is normal to the film
surface, and the [010] and [001] axes coincide with the y and z
axes. In the case under consideration, the growth-induced
anisotropy remains the same as before and the density of the
free energy of magnetocrystalline anisotropy is written as

1 . . .
=g K (sin® 20 + sin* 0'sin® 2¢) . (7)
The frequency of the linear resonance in the case of the
equilibrium orientation of the vector M perpendicular to the

film surface (0y = 0) is given by
2(Ku —+ K])

o, =7y |H—4ntM + "

(8)

A characteristic feature of the nonlinear precessional
motion of the magnetization vector in [100] iron—garnet

films is the appearance of complex multiturn trajectories at
sufficiently low frequencies (~ 10° Hz) and large amplitudes
of the ac magnetic field (&~ 0.1—1 Oe) [63]. Figure 2
displays the results of a numerical solution of Eqns (1)
represented by the yz projections of the normalized mag-
netic moment that passes into a stationary precessional orbit
under the effect of a microwave field with the frequency
®/2n = 10° Hz, amplitudes 7 =1 Oe (Figs 2a, 2b) and
h=0.1 Oe (Figs 2c, d), and orientational angles ¢, = n/2
(Figs 2a, b) and ¢, = —n/4 (Figs 2c, 2d); the magnetocrystal-
line anisotropy constant is K; = —10° erg cm3; the growth-
induced anisotropy constant is K 3

—103 erg cm™
(Figs 2a—c) and 0 (Fig. 2d); the magnitudes of the magnetiz-
ing field H =450 Oe (Fig. 2a) and 332 Oe (Fig. 2d)
correspond to the condition of linear resonance (8); in
Fig. 2b, H = 410 Oe. At H = 450 Oe, there is a single energy
minimum corresponding to the orientation of the magnetiza-
tion along the normal. As follows from Fig. 2a, the trajectory
of the precessional motion then becomes elongated in the
direction of the microwave-field polarization, two symmetric
regions with several turns arise in it, and the magnetization
vector jumps from one region into another. The period of the
precessional motion is equal to that of the ac field. A decrease
in the magnetizing field leads to an increase in the amplitude
of the trajectory of motion and subsequently to the concen-
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tration of turns around two of the four arising equilibrium
directions differing from the normal (Fig. 2b). The turns in
this case arise around one of the two pairs of equilibrium
positions lying along the diagonal. Thus, a dynamic bi-
stability occurs, i.e., the existence of two trajectories of
magnetization precession identical in shape but differently
oriented; the realization of one of them can be affected by
fluctuations of the various parameters of the system or by the
initial phase of the ac magnetic field. These regimes are
orientational dynamic jumps and their amplitude is deter-
mined by the orientations of equilibrium states. In narrow
ranges of the ac-field frequency, stochastic regimes have been
revealed characterized by an arbitrary changeover of equili-
brium positions between which these jumps occur. A further
decrease in the magnetizing field leads to low-amplitude
precession regimes corresponding to one of the four equili-
brium orientations of the magnetization. With increasing H,
the precession amplitude decreases and the trajectory of
motion is simplified. With increasing the frequency w,
progressively greater amplitudes of the microwave field are
required to obtain the above trajectories of precessional
motion; at small &, a virtually linear precession is observed.
At large resonance frequencies (w/2n > 103 Hz), the main
nonlinear effect is a nutational motion of the magnetization
vector with the frequency that is twice the precession
frequency (frequency doubling).

In a specific sample with a fixed magnetocrystalline
anisotropy, the parameters of the growth-induced aniso-
tropy can be varied using thermal annealing [62]. But in the
case under consideration, as was shown in [63], the amplitude
of the magnetic moment precession depends to a greater
extent on the field of the magnetocrystalline anisotropy than
on the growth-induced anisotropy. To increase the precession
amplitude, materials with the lowest (in amplitude) aniso-
tropy constant K; should be taken. A significant increase in
the growth-induced anisotropy decreases the amplitude of the
precessional motion of the magnetization vector but does not
result in simplifying its trajectory.

At the amplitudes of the microwave field # ~ 0.1 Oe and
its polarization directions ¢, # 0 ©t/2, or &, an asymmetry of
the precessional motion trajectory is observed (Figs 2c, d),
which reaches its maximum at ¢, = +r/4. It can be seen that
the asymmetry increases with decreasing the growth-induced
anisotropy and that a dynamic bistability occurs, i.e., two
stationary orbits of the precessional motion symmetric with
respect to the x axis exist. The establishment of the stationary
motion along a certain orbit can be affected by fluctuations in
the various parameters of the dynamic system, in particular,
in the initial phase of the microwave field (the solid curves
were plotted at the initial phase ¢ = 0 and the dashed curves
at ¥ = m). In the case of a significant increase or decrease in
the amplitude of the field, the asymmetry of the motion
trajectory and, correspondingly, the dynamic bistability
disappear.

4. Dynamic effects in metallic two-layer
structures

4.1 Equilibrium states

We begin the consideration of the multilayer magnetically
coupled structures that have been intensely studied in recent
years with a system consisting of two metallic layers separated
by a nonmagnetic interlayer (spacer). We assume that each of

the layers of thickness d; (where i labels the layers) has a
magnetization M;, an induced uniaxial anisotropy with a
constant K; and an easy axis lying in the film plane (along the
y axis), which is characteristic of metallic polycrystalline
films. Then, the density of the free energy of the system is
written as

F=F +F, + AM,Myd,,
x ((cosi; cos i, cos (@) — @y) + siny siny, ), 9)

where each of the terms F; is determined by Eqn (2), in which
the magnetocrystalline anisotropy is neglected and the
growth-induced anisotropy is associated with the quantity

Fui = I{uisil'l2 ([),«7 (10)
which determines the energy of the induced in-plane aniso-
tropy; the third term in the right-hand side of Eqn (9), with a
constant A depending in general on the thickness and material
of the spacer and on its structural characteristics, describes
the coupling between the magnetic layers [64]; djp =
didy(dy + dz)_l is the reduced thickness of the two magnetic
layers; the azimuthal angle ¢, is referenced to the y axis; and
Y; = m — 0; is the angle between the magnetization vector M;
and the film plane. We assume that the direction of the
magnetizing field H coincides with the easy axis (the y axis).
For the chosen geometry of the fields and films with large
values of the demagnetizing fields (4nM; > H;, AM;, where
Hy; = 2K,;/M; is the magnetic-anisotropy field of the ith
layer), the equilibrium directions of the magnetization of the
layers (at & = 0), which are determined by the angles ¢,; and
Vi, lie in the plane of the system; therefore, iy, = 0. The
angles @, are determined from the conditions of equilibrium
0F/dp,|, , =0and O®F/d¢p?|, _, >0, which lead to the
relations’ c

K;sin2¢; + HM;sin ¢y; — D;sin (¢g; — @g3_;) =0,
(11)

D;cos . — ;
i (Poi — Po3—1) >0,

M;_;

where i = 1, 2 and D; = Ad;; M M- /d;. In what follows, we
consider the case of positive values of the parameter 4
(A > 0), which ensures an antiferromagnetic coupling
between the magnetic moments in the layers at H =0, i.e.,
the case where their directions are opposite (in particular,
¢@o; = 0and ¢y, = m). In a numerical analysis, parameters are
used that are close to those of real films of the permalloy class,
Hygi =10 Oe and 4nM, = 1.1 x 10* G for the first film, and
Hyy =5 Oe and 4nM, = 8 x 10° G for the second film; the
film thicknesses are assumed to be equal: d; = d, = 0.1 pm.

An analytical solution of Eqn (1) can only be obtained in
the case of small equilibrium angles (¢, < 1), which is the
case for H > Hg; [65]. But in the general case of the
parameters entering Eqn (11), these angles are by no means
small; therefore, an analysis of the set of equations (11) can
only be performed using numerical methods [66].

Figure 3 shows the equilibrium azimuthal angles between
the magnetic moments of two films (obtained for various
values of the coupling constant A) as functions of the
magnetizing field H oriented in the initial state along the
vector M. The dashed lines show the limit values of the field
H, corresponding to the disappearance of the equilibrium
collinear states with the angles ¢, = 0 and ¢4, = m. It can be
seen that the change in the magnitude of the magnetizing field

Hy;cos2¢y; + Hcos g —
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Figure 3. Field dependences of the equilibrium orientations of the magnetic moments of each of the layers on the magnitude of the magnetizing field H
for the coupling constants 4 = 1072, 2 x 1072, 3 x 1072, 4 x 102, and 5 x 10~2 (curves /-5, respectively).

is accompanied in these systems by the appearance of loops
of orientational hysteresis (of various shape) and related
states of the orientational bistability realized in the range of
fields H, < H < H.. As the magnetizing field increases to H.,
an orientational phase transition in the system of coupled
magnetic moments occurs. In the case of small values of the
coupling constant (4 < A, curves /, 2in Fig. 3), the direction
of the magnetization of the second film is reversed at the
phase transition point, and the vector M, becomes parallel to
the vector M;. If 4 > A, (curves 3—5), the magnetization
reversal of the second film is different from 180° because of
the angular ‘repulsion’ of magnetic moments, and the vector
M, also deviates from its initial direction. At H = H, the
state of the system with ¢y, = n becomes unstable and the
magnetization of the second film, with equal probability, can
turn in the direction of either ¢y, < m or ¢y, > n. Corre-
spondingly, the magnetization of the first film rotates in the
direction of either ¢,; < 0 or ¢y; > 0. As a result, one of the
two equilibrium states symmetric with respect to the direction
of the applied field is established. A further increase in the
field leads to a decrease of the angle between M| and M;; this
angle vanishes at H = H,, i.c., the equilibrium at H > H, is
given by the codirectional state of these vectors.

With a decrease in the magnetizing field, in the case of the
initial codirectional orientation of magnetic moments, one of
the two symmetric noncollinear states is realized after the
bifurcational value H = H, is reached. To the noncollinear
states of the magnetic moments of the films, there corre-
sponds an interval of the magnetizing field Hy, < H < H,,
which increases as the coupling constant increases. At
H = Hy, an orientational phase transition occurs, leading to
a state with oppositely directed magnetic moments of the
films. For small values of the coupling constant (curves / and
2), as was already noted, Hy, ~ H,; therefore, the noncollinear
equilibrium states are virtually absent. Depending on the
magnitude of the coupling constant A, the value of H, can be
either greater or lower than H.. At a chosen direction of the
magnetizing field, H, > H}, and the change in H leads to an
orientational hysteresis. It can be seen that as the coupling
constant increases, the values of H. and H}, become closer to
each other and, consequently, the hysteresis loop narrows.
The width of the hysteresis loop can be reduced to a few
fractions of an oersted, which is very important for the
realization of the dynamic regimes considered in Section 4.2.

The exact value of the field H. at which the state with the
angles ¢, =0 and ¢, =7 ceases to be equilibrium is
determined by the expression

1
HC:Z<G1+\/G12+8G2>,

where

(12)

G =AM, — M)+ 2(Hkx, — Hx1)

and
Gy =A(MHyi + M)Hyy) +2Hk H: .

The magnitude of the field A, can be obtained from Eqn (12)
by changing the sign of M, and H,. The value of the coupling
constant A4, is found from the equality H. = H,.

The direction reversal of the magnetizing field (to « = )
leads to an analogous situation: the equilibrium state with the
angles ¢y, = 0 and ¢, = m vanishes at a field exceeding some
critical value and the magnetization of the first film changes
its direction, which at sufficiently large A4 (in the cases under
consideration, at 4 > 0.03) is accompanied by a change in the
direction of the magnetization of the second film. The value of
this critical field can be found from Eqn (12) with the reversed
sign of G.

Near the values of the field H at which the change in the
orientation of the magnetization in the layers has a jumplike
character, conditions arise that are most favorable for the
excitation of various dynamic regimes, which are sensitive to
small changes in the parameters of the system and in the
magnitudes of the fields, by a weak high-frequency field h.

4.2 Dynamic magnetization reversal in a transverse field h
With switching on a high-frequency field h (¢), the expressions
for the susceptibility of the system and separate layers in the
linear approximation with respect to small deviations from
the equilibrium position (6; = ¢; — ¢,; and ;) take the form

_dut
: d+d
M;A5_; cos ¢y; — 4my2DiMs_; cos @y_;
Ay Ay — 161294D; Dy ’

(13)

1 = 41y M;
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Figure 4. Time dependences of the azimuthal angle of magnetic moments of the first (a) and second (b) films at the frequency w = 7 x 10? s™! &~ wy; at
two amplitudes of the microwave field close to the critical value: # = 0.70 (/) and 0.71 Oe (2).

where 4; = o — w? — 4ny2D; + 4nil; w, D; = Adia My M; x
cos (@y; — @g3-;)/di»  and og; = 4nM;y?(H cos ¢y +
Hg;icos2¢,;) are the resonance frequencies of the isolated
layers.

Near the edges of the hysteresis loop, the system is most
sensitive to an external action; therefore, the equations of
motion here should be solved numerically. It follows from a
numerical analysis of the equations of motion that for a
transverse (h L. H) linearly polarized (in the film plane)
microwave field and the magnetizing field close to the critical
value H. (H. — H < 0.5 Oe), we can choose the amplitude of
the ac field /. at any frequency w such that a precession with
oppositely directed axes occurs at 1 < h, whereas a dynamic
magnetization reversal of the system from the initial config-
uration with the angles ¢,; = 0 and ¢, = m occurs at h > A,
and a precessional motion of the magnetic moments of the
films with codirectional axes is established [67].

Figure 4 displays time dependences of the azimuthal angle
of the magnetic moments of the first (Fig. 4a) and second
(Fig. 4b) films going into stationary orbits at the coupling
constant 4 = 0.01 and the frequency w = 7 x 10° s~!, which
is close to the resonance frequency of the first film g, at the
microwave field amplitudes 7 = 0.70 and 0.71 Oe (curves /
and 2), which were chosen to be lower and greater than the
critical value /., respectively. The value of the magnetizing
field H = 8.6 Oe was chosen such that it is close to the critical
field H, for a given value of 4 and an equilibrium state with
the opposite directions of the magnetic moments of films with
angles ¢, =0 and ¢, = 7 is realized in the absence of the
microwave field. It is seen that at the initial stage, the
development of precession occurs in both cases in a virtually
identical way. But the existing small difference in the
trajectories causes a dramatic change in the dynamics of the
magnetic moments of the system and leads to the establish-
ment of different precession regimes. The amplitude of the
precessional motion under the effect of dynamic magnetiza-
tion reversal proves to be several times greater, in spite of an
only insignificant increase in the amplitude of the microwave
field. A similar situation can be obtained by varying the
frequency of the microwave field w near its critical value at a
constant amplitude of /.

For the above values of the coupling constant and
magnetizing field, Fig. 5 displays the frequency depen-

dences of the high-frequency susceptibility of the system
7= (M cos®, + M,cos ¢,)/h, where @; are the amplitudes
of the azimuthal angles of the stationary oscillations of the
magnetic moments of the corresponding layers obtained at
various field values 7 = 0.1, 0.2, 0.5, and 1 Oe (curves /—4,
respectively). The dashed curves correspond to linearized
solutions plotted based on Eqn (13) for the equilibrium
orientations ¢y = ¢p =0 (curve 5) and ¢, =0 and
@y, = T (curve 6). It follows from these dependences that at
the frequencies w < 10° s7!, even at the amplitudes of the
microwave field 2 < 0.1 Oe, a magnetization reversal of the
second film of the system occurs, and a precession of the
magnetic moments with codirectional axes is established.
Beginning with a certain frequency, which depends on the
microwave field amplitude, the magnetization reversal is not
realized and the precession axes of the magnetic moments of
the two films remain oppositely directed. With increasing the
field amplitude /4, the range of frequencies of the magnetiza-
tion-reversing field expands into the region of greater values.
Thus, this range involves the first resonance region at

1000
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0 6 12
, 107 ¢!

Figure 5. Frequency dependences of the high-frequency susceptibility y of
the system at various amplitudes of the microwave field. The dashed
curves 5 and 6 represent linearized solutions corresponding to ¢y =
@¢, = 0and ¢y =0 and ¢, = 7, respectively.
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h = 0.5 Oe, and includes both resonance regions at 2 = 1 Oe;
the magnetization reversal is absent only at the end of the
frequency range under consideration. A characteristic feature
of the effect is also the presence of a sufficiently narrow
frequency region in which the magnetization reversal occurs
bordering the resonance frequency of the system in the initial
configuration ¢, = 0 and ¢4, = m (curve 3) and narrowing
up to the complete disappearance with decreasing the
amplitude of the high-frequency field /.

A change in the magnitude of the magnetizing field H by a
few fractions of an oersted strongly affects the frequency
intervals of dynamic magnetization reversal. Depending on
the chosen frequency interval, the dynamic magnetization
reversal can result in either an increase or a decrease in the
precession angles with respect to the precession angles with
the oppositely directed axes. As follows from the analysis, an
increase in the precession amplitude occurs in the frequency
interval w, < o < wp, whose boundary frequencies can be
found from the conditions |y (g, = 0)| = |1 (¢, = m)|. For
a structure with magnetic layers of equal thickness, in
neglecting damping in the spin subsystem, the approximate
expressions

W, = 2y4/21K;

M>A
Wp XY 4ntM, H+ Hgy —I—T

(14)

are satisfied sufficiently well for the above frequencies; in a
rather wide range of parameters, they give frequencies that
differ from the calculated values by no more than 1—-5%.

The above-considered behavior of a magnetically coupled
system is also observed when the magnetizing field is close to
the critical value Hy, (H — Hyp < 0.5 Oe). The initial config-
uration may then correspond to the angles ¢, = ¢, =0 or
to a noncollinear direction of the magnetic moments, and the
precession after the magnetization reversal has oppositely
directed axes.

4.3 Oscillating regimes in the case of a low-frequency
transverse field

Large magnetization precession amplitudes (about 50°) have
been experimentally obtained in a permalloy film 10 nm thick
upon its excitation by a sequence of magnetic field pulses with
the repetition period equal to the resonance frequency of the
magnetic system [68]. Obtaining large-amplitude precession
regimes with larger deviations of the magnetization angle in
the system considered is possible by the application of a
longitudinal ac field (h||H) [69]. In this case, to efficiently
excite magnetic oscillations, systems should be used in which
narrow (AH <1 Oe) hysteresis loops are realized; the
magnitude of the magnetizing field should then lie inside the
hysteresis loop or be close to its critical values. In metallic
magnetically coupled multilayer systems with the above-
mentioned parameters at small frequencies of the long-
itudinal field, dynamic regimes arise that manifest them-
selves in a periodic magnetization reversal of the layers
composing the structure.

Figure 6 displays the time dependence of the azimuthal
angles of the magnetic moments of the layers at the coupling
constant 4 = 0.05, various frequencies w, the microwave field
amplitude # =1 Oe, and the magnetizing field H = 19 Oe.
The amplitude of the magnetization precession in the polar
angle is significantly less than the amplitude of the change in
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Figure 6. Time dependences of the azimuthal angles of magnetic moments
for large-amplitude precession regimes realized at A = 0.05, 7 = 1 Oe, and
H =19 Oe at various frequencies of the longitudinal disturbing field:
w=01x10%s"(a),w=7x10%s"!(b),and v = 16 x 10% s~! (c).

the azimuthal angle; thus, in the absence of a magnetizing
field, we have \; ~ h/4nM;, whereas ¢@; ~ h/Hg;. It is seen
from these dependences that at a sufficiently low frequency
(Fig. 6a), a ‘pulsed’ regime of oscillations arises with short
transient regions and with the period equal to the ac field
period T},. The amplitude of this regime is determined by the
difference in the angles corresponding to equilibrium sta-
tionary positions at the chosen magnitudes of H and A
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(g1 = 0, F30°; @y, ~ 180°, £89°) and weakly depends on
the amplitude of the ac field 4. The oscillations of the
magnetic moment of each layer occur between two potential
wells, and the microwave field withdraws the system from the
equilibrium state and compensates the energy losses related to
the precessional motion. At 4 = 0.05, the minimum ampli-
tude of the ac field at which a given oscillating regime is
realized is equal to Ay, ~ 0.7 Oe. Anincreasein 2to 1 Oe and
to even greater values does not lead to noticeable changes in
the parameters of the regime. With an increase in the coupling
constant A4, the threshold value of the ac field decreases
because of the narrowing of the orientational hysteresis
loop, and we have /i, =~ 0.4 Oe at A = 0.06. In this regime,
the pulse-period-to-pulse-duration ratio can be controlled by
varying the magnitude of the magnetizing field. In particular,
as H is shifted to the left-hand side of the hysteresis loop
(H = 18.3 Oe), the pulse duration decreases, which is shown
in the figure by a dashed curve. In this case, apart from the
equilibrium orientation with oppositely directed magnetic
moments, there are two noncollinear equilibrium orienta-
tions, and hence the establishment of two equilibrium regimes
of magnetization reversal is possible, with the angles
0<¢p,<mand —m < ¢, <0. But if a ‘pulsed’ regime is
established, then only one of the above-indicated transitions
is realized.

At higher frequencies (w = (7—17) x 103 s71), large-
amplitude oscillating regimes are realized (Figs 6b, 6c)
with a doubled period (27,) and an amplitude that is
almost twice the amplitude corresponding to the regime
presented in Fig. 6a. In this case, in the given range of
frequencies, there exist regions in which large-amplitude
chaotic oscillations of magnetic moments occur, as well as a
region (w ~ (7.5—8) x 108 s7!) in which the system is not
susceptible to the action of the ac field [69]. The region of
dynamic insusceptibility, i.e., the window of transparency of
the spin system to the longitudinal microwave field, is
preceded by a region of chaotic oscillations, which passes
with increasing the frequency into a region of regular
oscillations whose amplitude decreases to complete disap-
pearance with increasing the frequency.

In some of their features, the above large-amplitude
oscillations are close to the regimes of dynamic orientational
jumps of the magnetization vector in iron—garnet films and
have much in common for various systems that exhibit
bistability. Thus, similar oscillating processes arising under
the effect of light were revealed in the system of two thin films
with a resonance nonlinearity in [70]. In magnetic bistable
systems (including thin-film ones) with random noise, a
harmonically varying external field can cause processes of a
rapid periodic magnetization reversal of the system with the
total period of the dynamic regime equal to the period of the
ac field. As the frequency of the external action increases in
this case, the magnetization reversal ceases to occur in each
period of the ac field, which leads to weak chaotization of this
process [71].

5. Bistable states in magnetically coupled
metallic sublattices

5.1 Equilibrium states

We now consider single-crystal multilayer structures with a
strong interlayer coupling typically caused by the indirect
exchange interaction [72]. To exclude the effect of surface

layers, we assume that the system studied consists of a
sufficiently large number (rn > 1) of layers of a magnetic
metal of thickness d; with a magnetization M;, which are
separated by nonmagnetic spacers whose thickness ensures
the antiferromagnetic type of coupling between the magnetic
layers. The interfaces between the layers are assumed to be
sufficiently smooth and each layer is assumed to be
uniformly magnetized. These approximations are widely
used in works devoted to orientational phase transitions in
multilayer nanostructures [72—74]; their correctness is
confirmed by experimental and theoretical investigations of
ferromagnetic resonance in structures such as (Fe/Cr), [75].
According to the experimental data in [76], the magnetic
anisotropy of the magnetic layers in such structures is a
combination of the uniaxial induced anisotropy (the type
with an easy axis oriented perpendicularly to the layers) and
the cubic magnetocrystalline anisotropy (with crystallo-
graphic axes [100] and [010] lying in the plane of the
layers). The density of the free energy of the system is then
given by

(15)

n Ju. .
Fzz(pﬁ%)
i=1

14

where p; = M;/M; and J is the constant of bilinear coupling
caused by the indirect exchange interaction of the magnetic
moments of neighboring layers, which in general depends on
the thickness and type of material and on the structural
characteristics of the spacer. For each of the magnetic
layers, F; is determined by Eqn (2) with the energies related
to the magnetocrystalline and the growth-induced anisotropy
described by Eqns (7) and (4). The magnetic layers are
assumed to be identical, i.e., it is assumed that M; = M,
d; = d, and the constants of the cubic and growth anisotropy
are K;; = K; and K,; = K,. Then, the entire ensemble of
magnetic layers can be divided into two subsystems (j = 1, 2)
with an identical behavior of the layers of each subsystem.
The coupling constant J is assumed to be positive, which
ensures an antiferromagnetic coupling of the magnetic
moments in neighboring layers.

For metallic layers, the magnitude of the demagnetizing
field 4t M is much greater than the field of the growth-induced
uniaxial anisotropy Hx = 2K,/ M, and hence, in the absence
of an external magnetizing field, the magnetic moment of one
of the neighboring layers is oriented in the plane of the
corresponding layer along the crystallographic direction
[100] (to which the azimuthal angle ¢; of the magnetic
subsystem is referenced), and the magnetic moments in
neighboring layers are directed opposite to this direction.
Thus, in the case of an in-plane magnetizing field, the
magnetic moments lie in the plane of layers and the
equilibrium angles are y,; =0. The corresponding azi-
muthal angles ¢, ;(H) are determined from the equilibrium
conditions for the two magnetic systems, which are written as

2HM sin (pg; — @p) + Ki sinde,;
—2Jsin (‘Po; - (P037j) =0,
(16)
HM cos (¢, — @)
+ 2K, cosdgg; — Jcos (@g; — @3 ;) >0, j=1,2,

where ¢ is the angle (referenced to the [100] axis) that
determines the in-plane direction of the field H. Then, based
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on [16], we can investigate the equilibrium states of the
magnetizations of the two systems in the case where the
magnetizing field is oriented along the direction [100]. In a
numerical analysis, parameters close to those characteristic
of the (Fe/Cr), system are used: the magnetization of iron
layers M = 1260 G, the anisotropy constants K; =
4.6 x10° erg cm ™3, K; = 1.5 x 10° erg cm™3, K, = 2.06x
10° erg cm™3, the layer thickness d = 21.2 x 1078 cm, and
the damping constant 2 = 5 x 107 s~!; the parameters of the
chromium layers do not enter Eqn (15) explicitly, but
determine the value of the coupling constant J [77].

Figure 7 shows the dependences of the equilibrium
azimuthal angles ¢, (solid curves) and ¢, (dashed curves) of
the magnetic moments of two neighboring films on the
magnitude of the magnetizing field H obtained for the values
of the coupling constant J = 0.1 erg cm™2 (curve /) and
J=0.2 ergcm™2 (curve 2), where J = Jd/2 [78]. At the initial
orientations of the magnetic moments @y = m and ¢y, =0,
the equilibrium state of the system is the initial one in the range
of H from 0 to H.. When the field reaches H., a jumplike
orientational phase transition in the entire system occurs. In
the case of small coupling constants (curve /), the magnetic
moments become codirectional: ¢,; = ¢y, = 0. In the case of
a sufficiently strong interlayer coupling (curve 2), the
magnetization reversal of the films with j = 1 proves to differ
from 180° because of the antiferromagnetic interaction of
neighboring magnetic moments. The angular ‘repulsion’ of
magnetic moments also causes a change in the direction of the
magnetization of films with j = 2; in this case, we obtain
Poo(He) = — @y (Hc). With a further increase in the field, the
angle between the magnetization vectors of neighboring films
decreases, and at H = H,, when this angle reaches the
minimum value ¢@q; — ¢, = 2¢,(J), which decreases as the
coupling constant increases, a second phase transition occurs,
which leads to a state with an orientation of the magnetic
moments that is codirectional with the field. As the magnetiz-
ing field decreases from the magnitude H > H, at which the
initial state is one with a codirectional orientation of the
magnetic moments of the films, this state is retained down to
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Figure 7. Dependences on the magnetizing field for the equilibrium
azimuthal angles ¢, (solid lines) and ¢, (dashed lines) upon the in-
plane 180° and 90° magnetization reversal: J = 0.2 erg cm™2 (/) and
J=02ergem 2 (2).

the field values H, < H,. At H = Hy, areverse orientational
phase transition occurs, which is accompanied by a jumplike
‘divergence’ of the vectors M; and M, to the angles
o1 (Hp) = —@go(Hp). A further decrease in the magnetizing
field leads to a gradual increase in the angle between the
magnetizations, which again becomes equaltorat H = 0. But
none of the magnetic moments separately returns to the initial
state.

Thus, switching on a magnetizing field of magnitude
H > H_. and subsequently switching it off leads to a rotation
of magnetic moments through the angle /2, i.e., the initial
configuration with the angles @), = mand ¢, = 0 passes into
a configuration with ¢y, = n/2 and ¢y, = —n/2. From the
energy standpoint, this orientation of magnetic moments is
equivalent to the initial orientation, in view of the anisotropy
type of magnetic layers and the chosen position of the
crystallographic axes. In the case of an in-plane 90°
magnetization reversal, which occurs when we have
P01 = —@¢» = /2 and ¢y = 0 in the initial state, an increase
in the field to a value H, leads to a gradual convergence of the
magnetic moments. At H = H,, as in the above case, an
orientational phase transition occurs; as a result, the only
equilibrium orientation becomes the codirectional orienta-
tion of magnetic moments. The noncollinear configuration is
restored upon a decrease in the magnetizing field as a result of
the reverse phase transition when the field reaches Hy. Thus,
an orientational hysteresis loop arises, which narrows with
increasing the coupling constant. But in the case of large
coupling constants, Hy, = H, and the hysteresis loop is
absent.

The exact expressions for the critical values of the fields,
which can be obtained from the set of equations for the
equilibrium angles, are given by

4 J+ K, 2
=— J+K H,=— (J-K
IM 6K, ( + 1)7 b ( 1)7

M
2
HC:M \/K](J+K1).

The minimum angle between the magnetic moments in the
case of their noncollinear configuration is determined by

J+ K
cos @, = T

With an increase in the coupling constant, the hysteresis loop
narrows; the angle ¢, decreases, and at the value
J=Ja ~0.24 erg cm? corresponding to the equality
H, = H,, ¢, vanishes together with the disappearance of the
hysteresis loop.

The equilibrium orientations of the magnetic moments at
another direction of the magnetizing field were considered
in [79, 80]. It was shown in [80], in particular, that when the
magnetizing field is oriented along the crystallographic axis
[110], i.e., at ¢ = /4, the magnetization reversal is accom-
panied by a bifurcation: as the magnetizing field becomes less
than the bifurcation value Ht(,“/ 4>, the magnetization reversal
in the system of coupled magnetic moments can result in the
establishment of equilibrium angles close to either the [100] or
the [010] direction. The choice of the direction of the
magnetization reversal that occurs as a result of the phase
transition is affected by various fluctuations of'its parameters,
as well as by the parameters that determine the character of
the decrease in the magnitude of the magnetizing field.

H,

(17)

(18)



804 D I Sementsov, A M Shutyi

Physics— Uspekhi 50 (8)

5.2 Dynamic bistability

Near the critical values of the magnetizing fields correspond-
ing to orientational phase transitions, the system with the
antiferromagnetic-type coupling is most sensitive to the effect
of a high-frequency field. In the system with a cubic
magnetocrystalline anisotropy considered here, a special
combination of structure parameters becomes possible such
that at J ~ J,, two critical values of the field, H. and H,, are
close in magnitude [45]. The critical value of the coupling
constant at which H, = H, is given by

36 -2 K.

Jea === (19)

Figure 8 displays (for the coupling constant J=
0.132 erg cm~2 close to the critical value Jg, = Jed/2 =
0.131 erg cm™2) the frequency dependence of the high-
frequency susceptibility of the system

7= M cos @, + M cos @y,

L h )

where ¢;,,, are the amplitudes of the azimuthal angles of
stationary oscillations of the magnetic moments of corre-
sponding layers. The above dependences were obtained for
the microwave field amplitudes & = 0.2 Oe (Fig. 8a) and
0.4 Oe (Fig. 8b) and for the magnitude of the magnetizing
field H = 1093.2 Oe, which is close to the critical values
H,~ 10934 Oe and H, ~ 1103.2 Oe. With these para-
meters of the structure in the absence of the microwave field,
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Figure 8. Frequency dependences of the high-frequency susceptibility ¢ of
the system at J = 0.132 erg cm~2, H = 1093.2 Oe, and 4 = 0.2 (a) and
h=0.4 Oe (b).

an equilibrium state with an opposite direction of the
magnetic moments of the films with ¢, = 0 and ¢y, =m is
realized. The dashed curves in Fig. 8a correspond to the
linearized solutions for the high-frequency susceptibility of
the system y = y; + y», where

M2
Xj = m (D COS ([)0371' - A37j Cos (pO/) ) (20)
wg; — o* + 4nilo
Aj = 5,5 )

4my?
wg; = 4my? (HM cos (9y; — @) + 2K cosdgy;) ,

with D = Jcos (py — ¢p), plotted for the equilibrium
orientations @y = @¢, = 0 (curve /), ¢y, =7 and @y =0
(curve 2), and a symmetric noncollinear configuration
(curve 3). It can be seen from these dependences that at
frequencies not exceeding a certain value ., the precession of
the magnetic moments with initial oppositely oriented axes is
unstable, which leads to a dynamic magnetization reversal of
the system. As a result, a precession arises either with
codirectional axes or with axes oriented at an angle to one
another in accordance with the noncollinear configuration of
the magnetic moments of the films corresponding to a given
magnetizing field. A dynamic bistability is thus realized at
o < w.. Which of the two configurations of the precession
axes is realized upon exiting the initial antiferromagnetic
phase depends on various fluctuations of the film parameters
and magnetic fields, e.g., the initial phase of the microwave
field.

The frequency range of dynamic bistability can easily be
controlled because w, strongly depends on the microwave
field amplitude. An increase in / leads to an increase in the
frequency w. and an expansion of the dynamic bistability
region toward higher frequencies. Thus, at 4 = 0.2 Oe
(Fig. 8a), the dynamic bistability region involves only the
resonance corresponding to the precession about symmetric
noncollinearly oriented axes; at 4 = 0.4 Oe (Fig. 8b), the
critical frequency is close to the resonance frequency of the
precessional motion of the magnetic moments about codirec-
tional axes; at A =1 Oe (not presented in the figure), the
dynamic bistability region completely involves the resonance
with both noncollinear and codirectional axes.

At o > ., no dynamic magnetization reversal is
observed in the system and the precessional motion is
established around oppositely directed axes. However, at a
sufficiently large amplitude of the microwave field (but such
that w, is less than the frequency of the antiferromagnetic
resonance m,;), a characteristic feature of the dependences
considered is the existence of a narrow frequency region near
w, (Fig. 8b), where a dynamic magnetization reversal into
one of two orientational states of the dynamic bistability
occurs. At even greater /1, the dynamic magnetization reversal
is absent only in the postresonance (with respect to the
antiferromagnetic precession with the angles ¢, =n and
@, = 0) frequency region.

We note that no magnetization reversal is observed in the
frequency region preceding the resonance region (for the
antiferromagnetic precession) at the initial phase of the
microwave field close to m/2; moreover, the system is
virtually unsusceptible to the effect of an ac field. This state
is stable with respect to small variations in the initial position
of the magnetic moments of the films (¢y = 180 £ 1°,
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@y = £1°) and
(=90+£5°.

The frequency w, also strongly depends on the magnitude
of the magnetizing field. As H moves away from the critical
value H., the frequency w. decreases. Thus, at H = 1093 Oe
and 4 = 1 Oe, the dynamic bistability region does not reach
the region of resonance with parallel precession axes,
completely involving only the resonance of the precessional
motion with noncollinear axes. In this case, near the
resonance with oppositely directed axes, there is a frequency
region of dynamic bistability, which is several times narrower
than the corresponding region in Fig. 8b. From the stand-
point of the realization of the dynamic bistability state, the
approach of the magnetizing field magnitude to the critical
value H. is equivalent to an increase in the microwave field
amplitude. The character of the dependence of the high-
frequency susceptibility of the system on the magnetizing
field magnitude and the presence of a dynamic bistability
region are also determined by the microwave field frequency
and by the relation between the critical fields H. and H,
and, consequently, by the value of the exchange coupling
constant [45].

The processes of dynamic magnetization reversal in
metallic nanostructures caused by the action of a spin-
polarized current have been considered, e.g., in [81, 82]. In
[81], the auto-oscillations of the magnetization and the
dynamic magnetization reversal in the ferromagnetic layer
of a magnetically coupled three-layer structure under the
action of a spin-polarized electric current passing perpendi-
cularly to the plane of layers were investigated analytically;
regimes of dynamic magnetization reversal with various
resulting precession amplitudes realized at various values of
a current-dependent function have been obtained. In [82],
results of experimental investigations of the current-induced
magnetization reversal with the development of hysteresis
loops in a separate ferromagnetic layer of an asymmetric
Cu/Co/Cu system are given; the obtained phase diagrams of
the induced dynamics of the magnetization are presented. The
experimental data on the current-induced magnetization
reversal and oscillations of magnetization alternating in time
and corresponding to two different dynamic regimes in
multilayer structures of the Co/Cu type have been considered
in [83].

the phase of the microwave field

6. Asymmetric oscillatory modes in structures
with a weak indirect exchange interaction

The noncollinearity of the equilibrium ordering of magnetic
moments of neighboring layers allows using a weak in-plane
microwave field to excite ‘acoustic’ and ‘optical’ oscillating
modes [75, 79, 84] corresponding to two normal types of
oscillations of a multilayer structure. For the practical use of
such structures, an efficient control of the precession regimes
and the realization of structurally nonuniform precession
regimes are important [75, 85].

The normal modes of the resonance precession of a
structure with two magnetic subsystems are associated with
the values of the high-frequency magnetic susceptibility y
with the oscillation phase difference of the magnetic moments
of neighboring layers = 0 and m. The zero phase difference,
i.e., the in-phase oscillations of the magnetic moments of both
subsystems, corresponds to the ‘acoustic’ normal mode
excited by the transverse component of the in-plane high-
frequency field /i, = hsin¢g,, where ¢, is the angle that

determines the orientation of the field h. The antiphase
character of oscillations (« = m) corresponds to the ‘optical’
mode excited by the longitudinal field component
hyy = hcos @;,. The positions of maxima in the frequency
dependence of the magnetic susceptibility modulus of a
multilayer structure | x| at fixed values of the magnetizing
field correspond to the resonance branches of the w (H)
dependence. Taking this into account, we can write the
magnetic susceptibilities of the system for the acoustic and
optical modes as [85]

2M? cos @, ~ 2M*sing,

= 21
A-D o M= 4ip (21)

La =

where the parameters 4 and D are analogous to the
corresponding parameters in system (20) because ¢, =
@y = —@q, 1s the azimuthal angle (we consider the case
where the orientational angle of the magnetizing field is
¢y =0, and the equilibrium angles are ¢,; = £n/2 at
H = 0). Here, we assume that ¢, = nt/2 for the susceptibility
of the acoustic mode y,, and ¢, = 0 for the susceptibility of
the optical mode y,,.

Using the conditions for the maximum of the imaginary
part of the magnetic susceptibility of the system
(014 o/0w = 0 and 3%y /8% < 0) in the case of a noncol-
linear orientation of the magnetic moments, we express the
resonance frequencies of the acoustic and optical normal
modes of the structure as

02, = of (V4212 +asmiztopt),

where 3V =1+ nw§2(3n)~2 —pDy?) and p=0 for the
acoustic and optical modes. It follows from these expres-
sions that the acoustic mode frequency is affected by the
exchange interaction only through the equilibrium angles of
the magnetic moments. In the case of saturation, a codirec-
tional orientation of the magnetic moments of the subsys-
tems along the magnetizing field (¢, = 0), and a uniform
microwave field, the spectrum contains only the acoustic
mode and the related frequencies are independent of the
magnitude of the interlayer exchange interaction. The case of
a nonuniform ac field was considered in [75]; the multiphase
character of the resonance precession in layered structures
was considered in [86].

The value of the magnetizing field H;,, corresponding to
the intersection of the branches of the two modes is
determined from the solution of the equation w, = w,. A
numerical analysis shows that with increasing the coupling
constant, the Hj, field monotonically increases and that its
dependence on the parameter J is nearly linear. The high-
frequency magnetic susceptibilities y, , of the system
obtained from Eqns (21) monotonically decrease with
increasing the coupling constants. Therefore, to obtain
greater amplitudes of the precession of the magnetic sub-
systems, structures with lower values of the exchange
interaction constant should be taken.

When the high-frequency field is oriented at an angle
¢, # 0, /2, both oscillating modes are excited, but only one
of them can be in resonance (either the acoustic or the optical
mode). An exception is the case where the values of the
parameters of the system and applied magnetic fields are
sufficiently close to those at which the corresponding
resonance branches intersect. A similar situation is character-

(22)
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istic of two-sublattice antiferromagnets; when the orientation
of the magnetizing field lies in the easy plane, no ‘repulsion’ of
the two branches of the antiferromagnetic resonance is
observed, and a frequency-related degeneracy of the two
precession modes occurs at the point of their intersection [24].

Based on a numerical solution of the dynamic equations,
we now consider the regimes of the precession of magnetic
moments of both subsystems in the region of the intersec-
tion of the optical and acoustic resonance branches  (H).
To decrease the indirect exchange coupling, a trilayer
structure of the ‘sandwich’ type can be used instead of
multilayer structures [72, 75]. In this case, the quantities J in
Eqns (15)—(18) and (20) must be replaced by J; = J/2. The
other parameters of the Fe/Cr/Fe structure are assumed to
remain unaltered.

For the coupling constant Js = 0.4 erg cm~2 (where
Jo = Jid), Fig. 9 shows the variation of the precession
amplitude 0im = @;(#)ax — @i(t)min (( = 1, 2 labels the mag-
netic layer) of the magnetic moments M; (solid curves) and
M, (dashed curves) as functions of the microwave field
orientation at @ = 5.9 x 10'" s~!, the microwave field ampli-
tude 2 =1 Oe, and H = 1625, 1628, 1633, 1634, 1635, and
1639 Oe (curves I—6, respectively). It can be seen from the
figure that near the magnetizing field and the ac field
frequency values corresponding to the intersection of the
optical and acoustic branches, a substantial difference in the
amplitudes ¢, and 0, and a2y, can be obtained by adjusting
the in-plane angle ¢,. However, the d;,(¢,,) dependence has a
different type at some values of H: when the orientational
angle of the ac field reaches a certain critical value, a phase
transition occurs leading to an abrupt change in the magnetic
susceptibility of the system; this change is different in each of
the layers (curve 5). It is also important that the transition
from one type of the dm(¢,) dependence to another (see
curves 4 and 5), which occurs upon a change in H, is also a
phase transition.

Curve 5 in Fig. 9 was calculated in the case of a
unidirectional variation (in particular, increase) of the
angle ¢,. But in this situation, because of the development
of a dynamic bistability of the system, a dynamic hysteresis
appears: upon a reverse variation (decrease) of ¢,,, the phase

transition occurs at a different, somewhat smaller value of
the angle. A similar dynamic hysteresis is also observed in
the case of a change in the magnetizing field at certain
values of the orientational angle ¢, of the microwave field.

Figure 10 shows the variation of the precession angles of
the magnetic moments M (Figs 10a, ¢) and M, (Figs 10b, d)
as functions of the magnetizing field H (¢) slowly changing as
H=H) = H02(1 — l/‘L’),WhCI'eH()l = 1633 Oe, Hypy = 5 Oe,
and 7 = 40 ns. The dependences shown in Figs 10a and 10b
correspond to a decreasing field H, and those shown in
Figs 10c and 10d to an increasing field H. The parameters
used are as follows: the coupling constant J; = 0.4 erg cm™2;
the amplitude of the microwave field # = 1 Oe; its frequency
o = 5.9 x 10! s7!; and its direction ¢, = 35°. It can be seen
from Fig. 10 that the precession amplitudes of the two
magnetic moments are different and that the difference in
these amplitudes at the given parameters can strongly depend
on the direction of the change in the magnitude of the
magnetizing field, i.e., on the previous state of the magnetic
system. The width of the hysteresis loop in this case is
sufficiently small (AH ~ 5 Oe), which can be used to obtain
complex precession regimes by applying an additional long-
itudinal (with respect to H) ac field.

A significant change in the field H (see curves / and 6 in
Fig. 9) leads to a convergence of the d,(¢p,) dependences
corresponding to various magnetic layers. A similar effect
arises upon deviation of the frequency from the value
corresponding to the intersection of the resonance branches.
Thus, at the frequencies @ = 5.7 x 10'% and 6.2 x 109 7!, a
different character of the dependence of the precession
amplitude of the two magnetic moments on the orientation
of the microwave field is still retained, but the maximum
difference between 01, and 0, turns out to be small.

Along with the above-considered asymmetric modes
corresponding to the region of intersection of the acoustic
and optical branches, precession regimes of a beating type are
realized. Figure 11 displays (for the coupling constant
Js = 0.4 erg cm~2, the magnetizing field H = 1628 Oe, and
the amplitude and frequency of the microwave field 2 = 1 Oe
and w = 6.05 x 10'° s7!) dot diagrams in which each dot
corresponds to a difference J;, between the neighboring

0 30 60 90

Ph> deg

P> dEg

Figure 9. Dependences of the precession amplitude J;, of the magnetic moments M; (solid curves) and M, (dashed curves) on the orientations of the
microwave field at A = 1625, 1628, 1633, 1634, 1635, and 1639 Oe (curves /—6, respectively), o = 5.9 x 10 s=! i =1 Oe, and J = 0.4 erg cm~2.
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Figure 10. Dependence of the precession angles of the magnetic moments M (a, ¢) and M, (b, d) on the field H(¢) varying as H = Hy; + Hp (1 — t/7),
where Hy; = 1633 Oe, Hyy = 5 Oe, J, = 0.4 ergem ™2, i =1 Oe, » = 5.9 x 10" 57!, and ¢, = 35°.

maximum @;(),,,, and minimum ¢,(¢),;, values of the
precession of magnetic moments M; at a given orientational
angle of the microwave field. It can be seen from these
diagrams that at the chosen parameters, there are two
intervals of the angle ¢, corresponding to regimes in which
the amplitude of the precession of magnetic moments not
only is asymmetric with respect to the different layers of the
structure but also varies in time. The greater density of dots in
these intervals indicates that the precession amplitude
changes sufficiently smoothly and that the period of this
change is very large compared with the period of the
microwave field.

Figure 12 displays the time dependence of the precession
of both magnetic moments (for the angles ¢, = 32°, 39.2°,
and 42° and for the parameters corresponding to the above
diagrams). The value of the orientational angle ¢, = 32° falls
into the first of the above-mentioned intervals; the value
@;, = 42° belongs to the second interval. In the case shown in

Fig. 12a, a precession with small beating amplitudes is
realized, with the beating period two orders of magnitude
greater than that of the microwave field (7 = 1307},). The
dynamics of one of the magnetic moments in this case only
weakly differs from the dynamics of the other. In the case
shown in Fig. 12c, the amplitudes of the arising beatings are
close to the maximum precession amplitudes and their period
increases more than twofold (7 ~ 2707}); in this case, the
beatings of the different magnetic moments strongly differ in
shape. Between the intervals of the angle ¢, corresponding to
the development of beatings, there exists an interval corre-
sponding to asymmetric precession regimes, which are
characterized by precession amplitudes that are different for
the different magnetic moments but are stationary, i.e., do not
vary in time (Fig. 12b). We note that in all the cases where
asymmetric modes are realized, the difference between the
phases of the first and second magnetic moments is inter-
mediate between 0 and .

12
L b
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| | | |
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Figure 11. Diagrams of the microwave-field-orientation dependences of the differences d;, between the maxima ¢;(¢),,,, and the corresponding nearest

minima @;(#)in
h=10e,and J, = 0.4 ergcm2.

of the precession of the magnetic moments M; (a) and M, (b) passing to a stationary regime at H = 1628 Oe, » = 6.05 x 10'0 s~




808 D I Sementsov, A M Shutyi

Physics— Uspekhi 50 (8)

¢;, deg

t, ns

54 + b

¢, deg

(=]
w2
(=
(o)
(=]

?is deg

(=]

80 160
1, s

Figure 12. Time dependence of the precession of the magnetic moments of

the structure for the orientational angles ¢, = 32° (a), ¢, = 39.2° (b), and

@, =42° (c) at H=1628 Oe, o =6.05x 105! s =10e, and

Jo=0.4ergem2.

The above results are generally also valid for the
structures in which the biquadratic exchange coupling is
substantial, along with a bilinear indirect exchange coupling
between the magnetic moments of the layers [87]. The density
of the free energy of the system is then given by

n
F= Z [Fi+ i (L +Lpmg)] (23)

i=1

where J; and J, are the constants of the respective bilinear
and biquadratic coupling caused by the indirect interaction of
neighboring magnetic moments. The equilibrium orientation
of the magnetic moments is determined by the set of equations

2HM sin (@y; — @p)+Ki sin4gy;

—2Jysin ((Po/'— @03—,‘) —2Jpsin2 (900‘/ - ¢o3f/) =0,
(24

)
HM cos (¢y; — @) + 2K cos4g,;

—J1¢08 (@g; — Po3—;) — 2J2¢082 (pg; — Pg3_;) > 0.

In the case of the development of a biquadratic coupling, the
parameter D in Eqns (20) and (21) takes the form

D = Jy cos (9o — o) + 2J2¢082(0g; — @p) - (25)
The nature of the biquadratic exchange coupling, the
methods of measurements of the constants, and the observed
relation have been discussed in [72, 88, 89]. In [53, 89], an
explanation of the biquadratic coupling effect, i.e., of a
noncollinear magnetic ordering in metallic sublattices, was
suggested based on the mechanism of the formation of a
short-range antiferromagnetic order with a spin-density wave
in chromium near the Fe— Cr interface.

7. Amplitude bifurcations
and dynamic bistability in iron— garnet films

The resonance values of the ac field frequency and of the
applied dc magnetic field magnitude corresponding to the
maximum amplitude of the excited oscillations of magnetiza-
tion in the films under consideration are adequate notions
only for sufficiently small amplitudes and large frequencies of
the ac field. For low frequencies of the microwave range, the
nonlinear character of the precession motion leads to the
appearance of a resonance region of the system parameters in
which, along with the well-known effects of frequency
doubling and detection, bifurcations of various types are
realized, which lead to a change in the dynamic regimes and
to the development of dynamic bistability. The most char-
acteristic of these are the above-considered regimes (see
Sections 2 and 3) related to orientational jumps from some
equilibrium orientations to others under the effect of an ac
magnetic field, as well as large-amplitude stochastic and
regular regimes caused by the existence of bistable states.
Figure 13 demonstrates bifurcation diagrams for (111)
films (Fig. 13a) and (100) films (Fig. 13b) in the plane (m1,,,
), where each of the chosen frequency values of the ac
magnetic field corresponds to an extremal value of the y
component of the normalized magnetic moment (172, nax and
Mymin) Precessing in a stationary regime at the ac field
amplitude 7 =1 Oe, the orientational angle ¢, =0, the
growth-induced anisotropy constant K, = —10° erg cm™3,
and magnetizing field magnitudes H =277 Oe (Fig. 13a)
and 390 Oe (Fig. 13b); the magnetocrystalline anisotropy
constant is hereinafter assumed to be K; = —10% ergcm ™. In
these diagrams, bifurcations are seen to lead to changes in
both the amplitudes of motion (including sharp changes) and
the shape of the magnetization precession trajectory. In the
region of large-amplitude dynamic regimes, the precession
amplitude is mainly determined by the equilibrium orienta-
tions of the magnetization; in a sufficiently wide range of the
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Figure 13. Bifurcation diagrams: frequency dependences of the extrema of the y component of the magnetization precession trajectory for (111) films at

H =277 Oe (a) and (100) films at H = 390 Oe (b); h = 1 Oe, ¢, =0, K

— -3

—10% ergem ™, and K, = —103 ergcm

parameters of the ac field (or the magnitude of the dc field),
the precession amplitude is only weakly dependent on these
parameters. In the zones where the two trajectories alternate
(the branches acquire a ‘dashed’ character), a dynamic
bistability is developed, i.e., two stationary precession
regimes exist at the same parameters of the system; the
development of a particular regime is affected by the initial
conditions of the motion. As a rule, the dynamic bistability
has hysteretic properties; in the case of a quasi-stationary
decrease in the ac field frequency (or the magnetizing field
magnitude), one of the precession branches is realized; as the
frequency increases, the other branch is realized. Thus, to
excite a large-amplitude precession regime, the magnetization
vector should be moved from the zone of attraction of the
low-amplitude regime, e.g., by its initial shift by using an
additional magnetizing field or by the application of an ac
field with a somewhat greater amplitude at the first stage of
the excitation of the regime. But at the edges of the bistability
region, there usually exist narrow zones in which the
establishment of a given stationary regime can be affected
by fluctuations of the various parameters of the system, in
particular, of the initial phase of the ac magnetic field.
Figures 14a and 14b display the yz projections of the
trajectories of the magnetization vector in stationary preces-
sion regimes that are realized under conditions of dynamic
bistability. For (111) films (Fig. 14a), the following para-
meters were chosen: h=10e, o/2n=7x 107 Hz,
H =277 Oe, and K, = —10% erg cm—> (curves 7, 2), and
H =728 Oe and K, = —5 x 103 erg cm 3 (curves 3, 4); and
for the (100) films (Fig. 14b): h = 2 Oe, w/2n = 13 x 107 Hz,
and H=13200e (curves I, 2) and #h=1 Oe,
/21 = 9.6 x 10" Hz, and H = 1420 Oe (curves 3, 4) at
K, = —10* erg cm 3. The dynamic regimes corresponding
to curves / and 2 and to curves 3 and 4 are realized at the same
parameters of the system, but the establishment of one of the
two precession regimes (sometimes strongly differing in
amplitude) is strongly affected by the initial phase { of the ac
magnetic field ({ =0 for curves / and 3, and { =n/2 for
curves 2 and 4). It also follows from the figure that the large-
amplitude regimes shown (which are simplest in their
trajectories) are characterized by a significant contribution
to the dynamics of magnetization from the third harmonic of
the precession frequency for the (111) film and from the

fourth harmonic for the (100) film; the contributions of these
harmonics increase as the amplitude of the ac field increases
[32, 59].

Apart from the amplitude bifurcations leading mainly to
changes in the magnetization precession amplitude, bifurca-
tions in the sharp changes and a complication of the trajectory
of the dynamic regime were revealed. In (111) films, the
precession period is often equal to a multiple of the ac field
period 7' = 2n//w, where /is an integer, whereas in the case of
(100) films, the period of the complex trajectory is typically
equal to the ac field period: during half the period, the
magnetization vector executes several turns about two
equilibrium positions, then approaches two other equili-
brium positions, and passes around them one or several
times during the second half of the period. The curves
shown in Fig. 14c correspond to stationary periodic motions
of the magnetization with /=3 (solid curve) and /=2
(dashed curves) in the (111) film. In the first case, & = 2 Oe,
/21 = 4x10" Hz, H=1502.8 Oe, and K, = —3x 10’ ergecm™;
in the second case, #=10e, w/2n=3x10"Hz, H=
728 Oe, and K, = —5x 10° erg cm—>. Figure 14d illustrates
a relatively rare situation where the period of a complex
trajectory in a (100) film is two times that of the ac field
(I = 2); the parameters of the system were taken as follows:
h=20e, w/2n =5 x 10° Hz, H = 297 Oe, and K, = 0. We
note that the bifurcations leading to dynamic regimes with a
complex trajectory are frequently preceded by stochastic
regimes, which are considered in Section 8.

The observed substantial effect of the orientation of
crystallographic axes and growth-induced anisotropy on the
character of the large-amplitude precession in iron—garnet
films allows significantly expanding the variety of dynamic
regimes realized in them and the possibilities of their practical
application.

8. Stochastic precession in iron—garnet films

In recent years, progressively greater attention is being paid
to the investigation of various oscillatory systems character-
ized by dynamic regimes, along with regular stochastic
regimes. This is related not only to the necessity of
suppressing chaos and the transfer of initially chaotic
systems into a desired regular dynamic regime under the



810

D I Sementsov, A M Shutyi

Physics— Uspekhi 50 (8)

0.8
0.4
i my,
0.4
0
—-04
—-04
0.8
04
my,
m,
0.4
0
04
041 | | |

Figure 14. Projections of the trajectories of precessional regimes realized in (111) films (a, ¢) and (100) films (b, d): (a, b) under conditions of dynamic
bistability at the initial phase of the microwave field { = 0 (curves /, 3) and nt/2 (curves 2, 4); and (c, d) with the the period that is a multiple of the exciting

ac field period.

effect of relatively weak actions [90] but also to the
possibility of using controlled chaos in advanced technolo-
gies. In particular, the results of such investigations have a
direct relation to the problems of information processing
(recording, coding, and decoding) [91].

An analysis of the dynamics of analogous systems is
possible based on considering their phase trajectories, of
which the most common are stochastic or quasi-stochastic
attractors [92]. Stochastic attractors are a mathematical
counterpart of an observed developed chaotic behavior of a
physical system with the mixing property [93]. The over-
whelming majority of attractors of chaotic dynamic systems
belongs to the quasi-stochastic type. Apart from saddle-point
limit cycles, such attractors contain stable limit cycles, whose
period is sufficiently large and the attraction region is very
small. Among the invariants that describe the properties of
chaotic systems, there are characteristic Lyapunov exponents
and the dimensionality of the strange attractor [94—96].

In the literature, there are reports on the direct observa-
tion of bifurcation diagrams and strange attractors during
nonlinear oscillations [97] and the results of an experimental
study of bifurcation diagrams, including the development of
chaos through period doubling in investigations of nonlinear
oscillations in semiconductor p—n junctions [98]. The
occurrence of regular precession regimes with a doubled, as

well as tripled, period with subsequent bifurcations resulting
in the period doubling, which are accompanied by a ‘quasi-
chaotization’ (regimes with weakly ‘smeared’ attractors) and
which arise upon an increase in the amplitude of the ac
magnetic field, was shown in [25]. For such regimes,
Vyr1(V,) diagrams were constructed based on a large
amount of experimental data, where V, is the signal
proportional to the rate of change in the transverse magneti-
zation in the sample. The phase portraits and bifurcation
diagrams arising in solving the Landau— Lifshitz equations
simultaneously with magnetostatic equations for thin films
with an insignificant magnetocrystalline anisotropy in an ac
field with a circular polarization in the plane perpendicular to
the film were analyzed in [99]. The auto-oscillation and
stochastic regimes of the magnetization precession in iron—
garnet films were typically investigated in the case of the
development of spin-wave instabilities [7, 25, 100, 101].

The stochastic and quasi-periodic dynamics of the
uniformly precessing magnetization, which is established in
crystals with a uniaxial anisotropy in weak magnetizing fields
at frequencies that are less than the linear resonance
frequency, have been considered in [31]

To study the stochastic dynamic regimes and the transi-
tions between them in more detail and to analyze the regular
regimes in uniformly magnetized structures under the above-
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mentioned conditions, we consider (111) and (100) films [102].
The simultaneous consideration of films of two types allows
revealing the effect of the magnetocrystalline anisotropy of
the material on the establishment of these regimes and
analyzing their common features.

The most complete information on the character of
dynamic regimes in the structure under consideration can be
obtained in a wide range of values of a given parameter from a
bifurcation diagram [103, 104]. Figure 15 shows the bifurca-
tion diagrams on the (m,,, H) plane for (111) films
(Figs 15a, b) and (100) films (Figs 15c, d). It follows from
these diagrams that at a fixed value of H, there are two points
corresponding to a regular oscillatory regime with one
maximum (71, max) and one minimum (71, y;n), Whose non-
linear character manifests itself only in a nutational motion;
the greater but finite number of points corresponds to a more
complex oscillation, and the set of closely located points
corresponds to the stochastic dynamics of the magnetiza-
tion. For a numerical analysis, we took the range of the
magnetizing field near the value corresponding to linear
resonance at relatively small frequencies of the ac field. The
following parameters of the system were used in the calcula-
tions: the transverse ac field amplitude # = 1 Oe (Figs 15a, b)
and h=20e (Figs 15c, d); the ac field frequency
/2n = 4 x 107 Hz; and the magnetocrystalline and growth-
induced anisotropy constants K; = —10%erg cm > and K, =

—3 x 10% erg cm™3. The investigations showed that for the
(111) films, the stochastic dynamics occurs at frequencies
w/2n ~ (2—50) x 10° Hz. At frequencies above this range,
only regular precession of magnetization is established; at
frequencies below this range, regimes of switching between
equilibrium orientations arise. The stochastic precession in
(100) films is also realized at significantly lower frequencies.
We see from Fig. 15 that in approaching the zone of
stochastic dynamics from the side of larger values of the
magnetizing field, an increase in the amplitude of regular
precession (in some cases accompanied by a complication of
the precession trajectory) is first observed. After the develop-
ment of stochasticity (with a further decrease in H), the
precession amplitude continues increasing and the corre-
sponding attractors are gradually modified. From the side
of the smaller values of the magnetizing field, the zone of
stochastic regimes is bounded by low-amplitude regular
oscillations. In this case, a sharp decrease in the precession
amplitude occurs. In the stochasticity zone, the regions of
stochastic regime typically alternate with much narrower
regions corresponding to regular regimes. However, no
qualitative changes were found in the attractor of stochastic
oscillations after passing through the region of regular
precession in these structures. The greatest precession
amplitude, i.e., the lower boundary of the zone under
consideration, may correspond to both stochastic and
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Figure 15. Bifurcation diagrams: field dependences of the extremal values of the y component of the precessing magnetization for (111) films (a, b) and
(100) films (c, d) at h = 1 Oe (a, ¢) and 1 = 2 Oe (b, d); w/2n = 4 x 10" Hz, K; = —10% ergem™, and K, = —3 x 10° ergcm 3.
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regular regimes. An increase in the ac field amplitude leads to
an expansion of the stochasticity zone and its complication;
an increase in both the number and width of regions
corresponding to complex precession regimes is observed.
Analysis also shows that in contrast to (100) films, the
stochastic regimes in (111) films are established at smaller
values of the magnetizing field, and the stochasticity zone is
smaller by almost an order of magnitude; in (111) films, this
zone lies in an interval about AH ~ 1 Oe wide, whereas for
(100) films, this interval is AH ~ 10 Oe. With increasing the
growth-induced anisotropy field, the realization of stochastic
regimes in (111) films stops much earlier than in (100) films.
Thus, at K, = —103 erg cm ™3, the ac field with the amplitude
h =1 Oe excites the stochastic dynamics of magnetization
only in the second case.

For clarity, it is convenient to represent the phase
trajectories corresponding to stochastic dynamics in the
form of a set of points obtained in time intervals equal to the
period or half-period of the ac field (an analog of Poincaré
diagrams [95, 103]). Figure 16 shows discrete representations
(with the time step Ar=m/w) of yz projections of the
magnetization trajectories for (111) films (Figs 16a, b) and
(100) films (Figs 16c, d) at different values of the magnetizing
field H (indicated in the figure caption), the ac field amplitude
h =2 Oe, and the other parameters corresponding to Fig. 15.
The attractors shown are fractals with different fractal

dimensions. The stochasticity in this case can involve various
angular intervals of precession. As a result, the degree of
chaos in the corresponding dynamic regimes is also different;
it is determined by the largest Lyapunov exponent and is
controlled by changing the magnetizing field magnitude (or
parameters of the ac magnetic field).

In the above cases, the stochastic regimes are developed
from a regular precessional dynamics with a large contribu-
tion from the nutation motion in the third and fourth
harmonics of the precession frequency, because we are
considering single-crystal films with a cubic magnetocrystal-
line anisotropy. The stochastic dynamics in structures with a
uniaxial anisotropy were investigated in [31, 55]. In particu-
lar, the authors of [55] considered the development of
stochasticity in a thin polycrystalline nanoelement under the
effect of a spin-polarized current. In this case, the stochastic
attractor was developed from the magnetization trajectory
with a large contribution of nutation motion at the doubled
precession frequency.

9. Stochastic oscillations of magnetization
in metallic sublattices

Investigations of nonlinear regular and stochastic dynamic
magnetization regimes (and transitions between them) in
magnetically coupled systems, such as multilayer or multi-

—-0.4 0 0.4
m;

m;

Figure 16. Discrete representation (with the time step A7 = 1t/w) of the yz projections of the magnetization trajectories for (111) films (a, b) and (100) films

(c, d) at H = 496, 503, 600, and 660 Oe (Figs 16a—d, respectively); 7 = 2 Oe.
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domain structures or systems with coupled modes of spin and
magnetostatic waves, are presently important from both
theoretical and practical standpoints. In [105], a numerical
analysis was used to study transitions between stochastic and
regular oscillations in an open nonconservative system of two
plane coplanar magnetized bodies possessing moments of
inertia; however, the authors used essential simplifications
(such as the approximation of the in-plane motion of
magnetic moments and dipole—dipole interaction of two
magnetized layers), which do not necessarily adequately
reflect the nonlinear dynamics of real structures. The
development of chaotic motion in a system of two interacting
magnetic moments in an external magnetic field was analyzed
within classical and quantum approaches in [106], where
strange attractors were constructed for various applied fields
and a suggestion was made regarding the development of
more pronounced chaos in coupled ferromagnetic lattices.
The nonlinear (in particular, stochastic) dynamics of a
periodic system of interacting domain walls in magnetic
films described in terms of the Poincaré plane were analyzed
in [107]. The authors noted that the results of calculations
have a universal character for uniaxial highly anisotropic
ferromagnetic films with a stripe-domain structure, because
the results obtained can simply be recalculated for materials
with different magnetic characteristics. Universal chaotic
phenomena, in particular, the development of chaos through
a cascade of period doublings, were revealed in the case of
interaction of two spin-wave modes in a thin metallic
film [108]. In [109], the chaotization of spin waves in a two-
layer magnetically coupled structure at a high level of
excitation by a spin-polarized current was investigated.

We now consider transitions between nonlinear regular
and stochastic precessional regimes that are realized under the
effect of a longitudinal ac magnetic field in a multilayer
metallic nanostructure (Fe/Cr), with an antiferromagnetic
interlayer exchange coupling [110, 111].

As shown in Section 5, at small values of the coupling
constant J in sublattices with an antiferromagnetic interac-
tion, a change in the magnitude of the magnetizing field is
accompanied by the development of loops of orientational
hysteresis and related bistability states. With increasing
coupling constants, the hysteresis loop becomes narrower
and collapses at J = J,;,, where J,p is found from the equality
Hy, = H, [see Eqns (17)]. At the values of H corresponding to
the middle of the hysteresis loop, the application of a
longitudinal high-frequency field (h || H) with the amplitude
close to the hysteresis width (h > H, — Hy) leads to the
development of various high-amplitude auto-oscillating and
stochastic regimes in the system of magnetic moments of the
layers. Thus, as regards the possibility of the realization of
various dynamic regimes, systems with narrow hysteresis
loops are of special interest.

Figure 17 displays a bifurcation diagram (with the ac field
frequency plotted along the abscissa axis and the correspond-
ing extremal values of the angles of the magnetic moments of
the first subsystem along the ordinate axis) for the exchange
coupling constant J = 0.24 ergcm™> (close to the value
Jan~0.244ergcm—2), the magnetizing field H = 2227.4 Oe
(at which a collinear equilibrium state with angles ¢,; = 0 is
realized), and the ac field amplitude /% = 0.2 Oe, which
exceeds the value H, — Hy =~ 0.144 Oe. The oscillations of
the magnetic moments of the two subsystems are always in
antiphase and the equality ¢,(f) = —¢, (¢) is satisfied with a
great accuracy in both regular and stochastic regimes. As the

, 108 571

Figure 17. Frequency dependence of the maximum and minimum values of
the angle ¢, (bifurcation diagram) at /1 = 0.2 Oe, J = 0.24 erg cm~2, and
H =22274 Oe.

frequency changes, the transformation of one set of regular
oscillation regimes into others is seen to be realized, as a rule,
through the passage of frequency intervals corresponding to
the stochastic dynamics of magnetic moments. Among
regular regimes, both symmetric and asymmetric (with
respect to the axis with a zero value of the azimuthal angle)
regimes exist.

If we investigate the diagram from the side of greater
frequencies, we see that the system is initially unsusceptible to
the effect of an ac field. Then, after a Hopf bifurcation [103], a
limit cycle arises with an amplitude that increases with
decreasing the frequency. Further, after a period-doubling
cascade, a stochastic oscillatory regime is developed in the
system. When the amplitude of stochastic oscillations
becomes sufficiently large, the magnetic moments enter the
zone of attraction of an attractor, which represents a high-
amplitude limit cycle; this leads to a new bifurcation and the
establishment of an auto-oscillating regime. Large-amplitude
oscillations can also arise at higher frequencies, but in the case
of a different initial orientation of magnetic moments, i.e.,
dynamic bistability arises in a certain frequency range. At
large ac field amplitudes (e.g., 7 =1 Oe), the stochastic
dynamics have no time to develop, because the value of the
deviation angle ¢; in the case of a low-amplitude limit cycle
arising after the Hopf bifurcation is sufficiently large for the
magnetic moments to be attracted by the attractor of the
auto-oscillating regime [110].

The amplitude of the auto-oscillating regime only weakly
depends on the ac field frequency and in all cases significantly
exceeds the difference between the angles of the magnetic
moments in the hysteresis loop (¢, ~ 6°). Although the
oscillation amplitude depends on /4, this dependence is
sufficiently weak; a fivefold increase in /2 leads to an increase
in the amplitude of the angle ¢, by only one-third. However,
the frequency region corresponding to a given regular regime
significantly expands with an increase in the ac field and is
shifted toward higher frequencies.

As the frequency decreases, the regular oscillations again
change into stochastic ones. At a sufficiently small deviation
from the frequencies corresponding to the regular dynamics,
the amplitude of oscillations is bounded in a certain range of
angles, which leads to a smearing of the limit cycle phase
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Figure 18. Discrete representation (with the time step A7 = n/w) of the phase trajectories of the magnetic moment at & = 0.2 Oe: w = 5.0 x 108 ¢!
(@), w=9.95x%x10% ¢! (b), » = 11.0 x 10® ¢! (c), and w = 13.1 x 10® ¢! (d); the insets show the ¢, (¢) dependences.

trajectory. With a further decrease in frequency, the stochas-
ticity becomes more pronounced and the attractor of
oscillations becomes thicker, involving the entire range of
oscillations of the magnetic moment angle at the frequency
o = 11 x 10% s7!; the stochastic regime in this case exhibits
‘laminar’ regions, which alternate with bursts of ‘turbulence’
[95].

Along with wide frequency regions corresponding to
stochastic oscillations, the diagram contains narrow fre-
quency intervals (Aw ~ 107 s~1) in which stochastic regimes
are realized, with regular large-amplitude regimes observed
outside these intervals. As the frequency decreases, stochastic
regimes are established after a cascade of period-doubling
bifurcations; the passage of the system into an auto-oscillat-
ing regime with the period equal to that of the ac field occurs
after a single bifurcation. The regular regimes at frequencies
below and above the frequency interval corresponding to the
stochastic dynamics can be both very close and significantly
different in their phase trajectories.

Apart from frequency intervals corresponding to stochas-
tic and regular oscillations, there also exist frequency intervals
of dynamic insusceptibility (e.g., at 7= 0.2 Oe near the
frequency o = 6.5 x 108 s7!), which narrow and finally

vanish with increasing 4. At small frequencies (o ~ 107 s71),
regular dynamic regimes exist that are characterized by the
presence of time intervals with a zero angle and fast
oscillations related to the magnetization reversal.

Figure 18 shows discrete images (constructed using time
steps equal to half the ac field period) of phase portraits of
stochastic dynamics of the magnetic moment at & = 0.2 Oe
and various values of w; the insets show corresponding ¢, (7)
dependences. The dynamic regime near the frequency
®=5.0x10% s7! (Fig. 18a) arises as a result of a passage
through the [100] intermittence, but the ‘laminar’ phases
(large-amplitude oscillations of the angle in either the
positive or negative half-plane) include only a few periods.
The phase portrait of this regime is given by a combination of
two funnel-type attractors between which the transition
occurs in the central region of the phase plane.

The regime corresponding to the frequency
w = 1.1 x 10° s~ (Fig. lc) also has ‘laminar’ phases, which
alternate with bursts of ‘turbulence’ and are characterized by
a certain angular interval of the spread in the oscillation
amplitude. With increasing the frequency, the turbulence
bursts disappear and a stochastic regime with an attractor
that does not touch the central region of the phase plane is
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established. In Fig. 18b, the stochasticity manifests itself only
in the smallness of the interval of the magnetic moment
azimuthal angle and its first derivative, i.e., in a small
smearing of the limit cycle trajectory. This regime has an
asymmetric attractor and is realized in a narrow frequency
interval (see Fig. 17). In Fig. 18d, the stochastic dynamics
were developed as a result of a period-doubling cascade and
after the reverse cascade [95] corresponding to the merging of
‘noise’ intervals of the angle ¢,; therefore, the stochasticity
involves the entire angular range of oscillations of the
magnetic moment.

The attractors corresponding to the stochastic dynamics
of magnetization have regions of a strong contraction or folds
and regions of expansion. This makes the phase trajectories
sensitive to the initial conditions. Figure 19 presents, for the
cases shown in Fig. 18, the time dependences of the logarithm
of the relative spacing In (6/dy) between two points of phase
trajectories of the magnetic moment M; chosen in the plane
(91, ¢,) located closely to one another at the initial instant
(0 = dp at t = 0). The curves given are shifted along the time
axis, because for each of them its own initial time was chosen
for convenience. It can be seen from the dependences shown
that the distance between the points first increases on average
in accordance with the exponential law 6 = ¢ exp (1), where
£ is the largest Lyapunov exponent equal to the slope of the
straight line approximating the divergence of the phase
trajectories (dashed line intersecting curve 7). After reaching
the scales of the attractor, ¢ begins oscillating about the value
determined by the size of the attractor. An analysis of the
phase portraits of the corresponding regimes shows that with
an expansion of the attractor, i.e., with increasing ‘noise’
intervals, the Lyapunov exponent increases. When the
attractor includes the central region of the phase plane
(curves a, b, ¢), the divergence rate of the closely located
trajectories becomes significantly greater than the stochasti-
city and manifests itself only in a smearing of the limit cycle
trajectory (curve b). At w =11 x 108 s=! (curve c¢), the
divergence rate of the trajectories is determined by two
rates: the small rate in the laminar phase and the high
rate during the bursts of ‘turbulence.” As the frequency
increases, the duration of the laminar phases increases, and
therefore the rate decreases and the (¢) dependence becomes
smoother. In the cases considered, (= 12.7 x 107 s~!

In(8/0)
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Figure 19. Time dependences of the spacing between two phase points
closely located at the initial instant.

(curve a), 3.8 x 107 s7! (curve b), 9.8 x 10”7 s~! (curve c),
and 15.2 x 107 s~! (curve d).

The period-doubling cascade for structures with two
interacting subsystems has some specific features. The
bifurcation diagram of this subharmonic cascade shown in
Fig. 20 (with parameters corresponding to Fig. 17) is divided
into three frequency regions; in regions I and I11, the magnetic
moments of both subsystems oscillate symmetrically with
respect to the zero value of the azimuthal angle and,
consequently, the angular ranges in which the ¢,(¢) depen-
dence is realized are equal for M; and M;; in region II, the
oscillations of the magnetic moments are asymmetric and the
above ranges are different [the branches corresponding to the
first (j = 1) and second (j = 2) subsystems are marked by /
and 2]. We see from the diagram that a Hopf bifurcation (the
generation of a limit cycle from fixed point in the phase plane)
is the first to appear; however, the next bifurcation, arising at
® = 13.83 x 103 s7!, does not lead to a period doubling (as in
the case of a subharmonic cascade in many other systems) but
causes a shift of the angular intervals of the magnetic moment
oscillations, i.e., to the appearance of an asymmetry in their
dynamics. For the vector of the total magnetization of the
structure M = M, 4+ My, this bifurcation is a Hopf bifurca-
tion, because in the region preceding it, the variable
components of the magnetization of the two subsystems of
layers compensate each other.

A further decrease in the frequency leads to a cascade of
bifurcations corresponding to period doubling in the
dynamics of each of the magnetic moments and to the
appearance of stochastic oscillations. At the beginning of
the reverse cascade, the asymmetry of the dynamics of
magnetic moments is retained: for different magnetic sub-
systems, the extrema of the ¢,(7) dependence are located in
different angular ranges. At the frequency w =~ 13.42x
108 s71, a bifurcation occurs due to which the stochastic
oscillations of the magnetization of both subsystems begin
to include equal angular ranges located symmetrically with
respect to the zero value. Thus, in the structure under
consideration, the application of a longitudinal ac magnetic
field in a subharmonic cascade prior to the appearance of
period doubling bifurcations leads to the generation of an
additional bifurcation related to a symmetric shift of the

o B
[9) .

"OA 0 j—
H :
s

"
11 1
13.0 13.5 140 16.018.0

Figure 20. Bifurcation diagram of the frequency dependence of the
extremal values of the angles ¢; for a period-doubling cascade.
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angular range of magnetic moment oscillations. During the
reverse cascade, bifurcations that induce a jumplike increase
in the stochasticity of the dynamics are realized.

Asregards various features of the formation of chaos after
a period doubling cascade, we note paper [108], whose
authors studied spin-wave dynamics and obtained chaotic
regimes lying in the bifurcation diagram in the region between
two subharmonic cascades directed to the opposite sides with
respect to the magnitude of the control parameter.

For practical applications, the problem of transition
between regular and stochastic dynamic regimes caused by
various external effects on the system is greatly important.
The analysis performed shows that as the ac field amplitude
changes, the transformation of the regular oscillating regime
from one type to another is typically realized via the field %
passage through the regions corresponding to the stochastic
dynamics of magnetic moments. Among regular regimes,
there exist regimes that are either symmetric or asymmetric
with respect to the axis with a zero value of the azimuthal
angle. Thus, when the stochastic oscillating regime in the
system is realized via a sufficiently small change in the
amplitude of & (Ah < 0.1 Oe), as well as in the case of a
small change in the ac field frequency, the system can be
brought into one of the regular dynamic regimes. The various
transitions between regular and stochastic regimes also occur
upon changes in the magnitude of the magnetizing field.

With the relations 4nM? > 2K, and 1 < yM, which are
satisfactorily fulfilled for metallic magnetic films, the set of
equations of motion for magnetic moments (1) can be reduced
to [24]

. ). or : ?;
(pj+4nij+4m26_q)»:0’ l//j:_4n1j\4,-' (26)
j :

In the case of a symmetric orientation of the magnetizing and
high-frequency fields with respect to the axes of the
magnetocrystalline and growth-induced anisotropy and with
the antiferromagnetic character of the coupling between
magnetic moments of neighboring layers, their precession
angles are antisymmetric (Y, = =Y, =¥, @, = —@, = @). As
a result, the set of four equations (26) reduces to two
equations for ¢ and . A further simplification is related to
the smallness of the angles of the deviation of the magnetic
moments from the in-plane position (for the system para-
meters used, thisangleis ()., ~ 0.01°). Because i ~ 0, the
derivative OF/0¢ loses its dependence on ; in analyzing the
azimuthal motion, this allows replacing the spatial precession
of magnetic moments by their in-plane oscillation. As a result,
we obtain the following equation for the azimuthal angle:

¢ + 4mip + 4my? [(H + hsin wt) M cos @

+ (K1 cos2¢p — J)sin2¢| =0. (27)

A comparative analysis shows that the use of approximate
equation (27) for describing the precession dynamics of
magnetic moments of magnetically coupled multilayer
systems leads to solutions that differ substantially from
those above in some frequency ranges. Nevertheless, many
auto-oscillating and stochastic regimes were obtained by
solving a single equation for the angle ¢.

The above-considered model of a multilayer structure is
simplified. Apart from the roughness of the interlayer
interfaces, real structures also involve deviations of the

coupling coefficients and magnetizations from their mean
values, which occur, in particular, due to the existence of
structure defects and the finite number of layers in the system.
In addition, the character of the interlayer coupling can differ
from the bilinear exchange interaction [72]. Taking all these
factors into account can substantially complicate the analysis
of the nonlinear regular and stochastic dynamics of magnetic
moments and lead to a significant increase in the variety of the
arising dynamic regimes. Nevertheless, the results presented
above correctly reflect the main features of the dynamic
behavior of real multilayer systems under conditions where
narrow hysteresis loops are realized; these results are also
valid for bilayer systems of the ‘sandwich’ type with the
antiferromagnetic coupling.

10. Conclusions

The results of investigations of the nonlinear precession
dynamics of magnetization in thin-film magnetic structures
given in this review can be summarized as follows. The
nonlinear character of the precessional motion causes the
appearance of regions of the system parameters in which
various types of bifurcations are realized, leading to a
changeover of a dynamic regime and to the occurrence of a
dynamic bistability. The most common of these are large-
amplitude auto-oscillating and stochastic regimes related to
the existence of bistability states and orientational jumps or
more complex precessional motions of the magnetization
vector between several equilibrium positions, which are
realized under the effect of an ac magnetic field. The
amplitude of these precession regimes in a sufficiently wide
range of parameters of the ac field only weakly depends on
these parameters. The arising stochastic regimes differ
strongly in both the degree of stochasticity and the fractal
dimensionality of the attractor, which can easily be con-
trolled; in addition, transitions between regular and stochas-
tic dynamic regimes can be effected by changing the
parameters of external magnetic fields.

In normally magnetized ferrite films with a cubic
magnetocrystalline anisotropy, the auto-oscillating and
stochastic regimes of the magnetization precession are
established under conditions corresponding to the develop-
ment of orientational bistability at frequencies that are much
lower than that of the linear resonance. The amplitude of
these regimes is mainly determined by the orientations of the
magnetization in equilibrium. A change in the orientation of
the magnetocrystalline anisotropy axes qualitatively changes
the arising dynamic regimes (the shape of the attractors and
related frequency ranges) and also affects the possibility of
controlling the nonlinear (including stochastic) regimes with
the help of external fields.

In metallic multilayer structures with the antiferromag-
netic coupling at the parameters corresponding to the edge of
the orientational hysteresis loop in a transverse microwave
field, a dynamic magnetization reversal of the system is
realized; in this case, frequency intervals depending on the
magnetic field appear, which correspond to a precession
bistability, i.e., to a state with two possible strongly differing
precession regimes. In systems with a narrow hysteresis loop,
various types of large-amplitude auto-oscillating and stochas-
tic regimes are established under the effect of a longitudinal ac
magnetic field. At magnetizing fields and microwave field
frequencies close to values corresponding to the intersection
of the ‘acoustic’ and ‘optical’ resonance branches, an



August, 2007

Nonlinear regular and stochastic dynamics of magnetization in thin-film structures 817

asymmetric oscillating regime is realized that is characterized
by a strong difference in the magnetic moment amplitudes of
oscillation of neighboring layers and can easily be controlled
by changing the in-plane angle of the ac field.

To conclude, we note that this review is one of the first
attempts at generalizing the various nonlinear precession
regimes that are realized in thin-film magnetic structures
and are characterized by dynamics that are homogeneous
over the sample. But presenting the available results was by
no means the only purpose of the review. It is known that the
absence of a generalizing analysis always hinders an efficient
scientific search and the available generalizations are always
insufficient. Therefore, one of the aims of this review was also
to stimulate further investigations in this field.
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