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Abstract. Nonlinear generation of odd harmonics of the electro-
magnetic pumping field in a fully ionized plasma is briefly
surveyed. Two threshold bifurcation properties of the harmo-
nics are discussed, viz. the splitting of the peak of their intensity
as a function of the degree of circular polarization of the
pumping field and, at a somewhat higher threshold, the emer-
gence of nonzero-intensity harmonics with complete circular
polarization in a pumping field with a partial circular polariza-
tion.

1. Introduction

The heating of electrons in a fully ionized plasma due to
inverse bremsstrahlung absorption involves the energy
transfer from ordered electromagnetic-field wave motion to
the ordered motion of plasma electrons and the subsequent
occurrence of random thermal motion of electrons due to
chaotic electron—ion collisions, which is responsible for the
electron heating. Such a plasma-heating process implies
energy losses by the heating radiation in the plasma.
Partially, this energy is emitted in the form of bremsstrah-
lung due to collisions between heated electrons and ions; in
particular, under the action of the heating radiation, this
results in a competition between the energy losses and the
energy that can be released in the thermonuclear reactor [1].

Here, we concentrate on nonlinear optical phenomena
that develop in a fully ionized plasma subjected to the
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electromagnetic radiation that oscillates at a frequency w
and gives rise to the ordered oscillatory motion of electrons.
In reality, such motion proves to be nonlinear, e.g., in the
sense that it nonlinearly depends on the strength of the electric
field driving the electron motion and on the electromagnetic-
field polarization [2]. The nonlinear motion of the electrons
results, via electron—ion collisions, in the emission of a new
(bremsstrahlung) electromagnetic field whose frequencies are
multiples of the pumping-field frequency @ in plasma. We
describe here the properties of the harmonics generated by the
pumping field. In the Introduction, we will also touch upon
some results that are not directly related to phenomena in
fully ionized plasmas because the properties of these
phenomena are not adequately interpreted.

The nonlinear optical phenomenon of the generation of
higher electromagnetic-field harmonics in fully ionized
plasmas was originally considered a fundamental phenom-
enon, irrespective of its possible applications. The more so as
discussing practical applications at that time made publishing
difficult and the applications themselves hardly realizable.
However, the very possibility of substantial increases in the
frequencies raised the problem of finding media with
transparency bands for which high-frequency radiation
sources might not correspond to then available sources. As a
result, a quarter of a century after the publication of article
[2], not only a theoretical but also an experimental science
arose that was targeted at the problem of the generation of
pumping-field harmonics, not only in plasmas but also in
gases [3]. The field of research extended dramatically. To note
several studies reflecting the scenario of such an evolution, let
us mention Refs [3—12]. Among the reasons for such quick
development was the passage to femtosecond pulses, which
made it possible to increase the energy-flux density without
constructing high-energy lasers. This led to a deeper insight
into the properties of the generated harmonics, including the
properties controlled by the generation process. In our view,
some of these properties could be referred to as harmonic-
generation-specified properties. One of these properties was
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experimentally revealed in Ref. [13] while studying the
generation of the third harmonic of the pumping-laser field.
The essence of the phenomenon is as follows. If a gas is
directly exposed to intense radiation sufficient for ionization,
the efficiency of generation proves to be very low; a
subsequent laser pulse emitted after a virtually complete
disappearance of ionization in the gas ensures, under
otherwise identical conditions, an efficiency of generation of
the third harmonic being almost two orders of magnitude
higher than that of the first pulse. In the case of Ref. [13], this
phenomenon was assigned to the fact that long-lived excited
states are present in the gas plasma and, under certain
conditions, they persist even after a virtually complete
neutralization of the plasma. A theoretical model of hydro-
genlike atom [14] demonstrated the extremely important role
of such separately excited states, which substantially
enhances the efficiency of generation of harmonics. In
Ref. [15], the reasons for the /-degeneracy breaking were not
discussed but rather an expressive example of manifestations
of such a breaking was given.

Another effect [16] that has not yet been accounted for
experimentally is the peak position of the harmonic-genera-
tion efficiency as a function of the degree of circular
polarization of the pumping field at a certain finite value of
the degree of circular polarization, rather than in the linear
polarization limit. An explanation became possible after
issuing Refs [11, 12]. However, more extensive experimental
data are still needed to achieve adequate understanding of the
phenomenon. By and large, it can be said that the harmonic-
generation phenomenon calls for closer attention and more
comprehensive fundamental research. Our review, which
relies on a relatively simple model of the phenomenon, is
aimed at interesting the reader in launching precisely such
fundamental studies.

Below, we consider — and discuss from the standpoint of
experimental research — the nonlinear bifurcation properties
of the harmonics generated in plasmas.

In this context, the plasma constitutes the working body
of a radiation oscillator in which the electromagnetic
pumping field of frequency w is transformed into the field of
odd harmonics (2n + 1)w, where n are positive integers. Such
a situation is realized if the amplitude Vg of electron-velocity
oscillations in the pumping field is small compared to the
speed of light ¢:

le|Ey
ma

E= < ¢, (l)
where e is the elementary charge, m is the electron mass, and
E; is the amplitude of the pumping-electric-field strength. In
such a case of nonrelativistic motion of the electrons, the
interaction between the pumping field and the electrons can
be described in a dipole approximation. This corresponds to
the possibility of neglecting both the spatial nonuniformity of
the pumping field and the emerging magnetic field as factors
affecting the electron motion.

2. General starting relationships

Since we restrict ourselves to a dipole approximation, the
electrons can be described in terms of the kinetic equation of
the form
of e
I lg
ot m

9 _
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where f is the electron distribution function, V is the electron
velocity, and J. = Jee + Joi 1s the sum of the electron—
electron and electron —ion collision integrals, Je. and J;.
To describe the electric field, which we assume to be
transversal (div E = 0), we use the equation
o’E oj

g 9E_, 0
c¢“AE a2 4n % (3)

a consequence of the Maxwell equations, where the electric-
current density is given by

j= eJdVVf. (4)

In our treatment, the polarization of radiation plays an
important role. We will describe it following a classical book
by Landau and Lifshitz [17]. Thus, the strength of the electric
field at a given point in space is specified as

Ey(?) exp (—iwt) + Ejexp (iwt) .
The polarization properties of such a field are characterized

by the polarization tensor

EO&ES/;
EOE(*)
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It can be written down as
1 ( 1+& & —ifz>
1-& )7

Pap =2\ & +i6
where the parameters &;, &, and ¢&; (called the Stokes
parameters) run from —1 to +1, & = A4 is the degree of
circular polarization of the field, and (Elz —1—622)1/2 is the
degree of linear polarization.

In our consideration of the effect produced by the
electromagnetic pumping field, we will use below the
notation A(1) = A4 for its degree of circular polarization. We
will denote the degrees of circular polarization of the
harmonics as A[2n + 1, 4, x], which corresponds to a non-
linear function of three arguments, viz. 2n + 1, the number of
the harmonic; A4, the degree of circular polarization of the
pumping field, and x = Vg/2Vr, the dimensionless strength
of the electric pumping field, where Vi = \/kgT/m is the
thermal velocity of electrons with a temperature 7.

3. The pumping field

We will assume that the electron collision rate is much smaller
than the pumping-field frequency and will neglect the
collisions in describing this field. Then, according to Eqn (2),
the kinetic equation for the electron distribution function f;
in the pumping field E; assumes the simple (collisionless)
form

o | e

ot m

o

Ly =0 (5)

A solution to this equation has the form

fitV, 1) =F(V —u(), (6)
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where we use the Maxwellian distribution as the arbitrary

function F:

my?
FV)=— - . 7
A (2n)3/2V%exp< 2V%> @)

Here, N, is the number density of electrons.
According to Eqns (4) and (6), one has

ji =eNeu(t). (8)

It follows from Eqn (5) that u(¢) is the electron velocity in the
pumping field; it is governed by the equation

%_L’E]

= } 9
dt m ©)
Accordingly, Eqn (3) assumes the form
oK,
¢?AE; — TR =i E, (10)

where wr. = \/4ne2N,/m is the electron Langmuir fre-
quency.

Next, we use the solution to Eqn (10) in the form
E] (El.,‘»7 Ely7 0), Wlth

E\ = exEcos (ot — kz) (11)
E\, = —e,Esin (ot — kz),
where e, and e, are the polarization basis vectors
(el +e; = 1). Of particular interest to us is the degree of
circular polarization of the pumping field, which has the
following form in the case of Eqn (11):

A= —2ece,. (12)
Then, according to Eqn (9), one finds

uy = —exVgsin (ot — kz) , (13)
u, = —e,Vpcos (ot —kz).

These expressions are the velocity-vector components of the
nonrelativistic oscillatory motion of the electron in the
pumping field (11) in the absence of electron —ion collisions.

4. The field of harmonics

In our presentation, we will utilize the same approach as in
Refs[2, 11, 12, 18 —20] and some results obtained therein. The
efficiency of an approach for considering the generation of
pumping harmonics via the bremsstrahlung mechanism was
also demonstrated in Ref. [21] using a theoretical technique
differing from ours.

In our treatment, the field of the generated harmonics is
weak compared to the pumping field, as the corresponding
perturbation of the electron distribution function is small
compared to the distribution function relating to the pumping
field. Therefore, the total electric field and the total distribu-
tion function can be written down as

E=E +8E, f=fi+05f.

Moreover, kinetic equation (2) can be linearized if f is
replaced with f] in the collision integrals:

08/ ¢, 08 eSEOfi '
o v oy = Al

(14)

(15)

As can be seen from Eqn (3), there is no need to solve Eqn (15),
and it is sufficient to multiply it by the electron charge and
velocity and integrate with respect to velocity. Then, in view
of the momentum conservation law for electron—electron
collisions, which yields [dV VJ.[f] =0, we obtain from
Eqn (15):

38j >N . agj"

e EJdVeVJei[fl}. (16)
We took into account here that
Jdel = JdV,f: Ne, §j= JeV dfdV. (17)

Equation (16) makes it possible to write, according to
Eqn (3), the following equation for the field of harmonics:

o%E 05§ ")

2 _
ABE — =~ — 0 8E = dn —

JdV VIalfi].
(18)

This reduces the derivation of the equation for the field of
harmonics to taking the integral on the right-hand side of
Eqn (18), which represents the source of the fields of the
harmonics generated due to electron—ion collisions.

To describe such collisions, we employ the Landau
collision integral

2nelelNid D V2o —
m? ov; V3

ViVi ©
— — F(V
aVA ( )

Jei [F(V)] = (19)

where ¢; is the ion charge, N; is the number density of ions,
and A is the Coulomb logarithm. We use Eqns (17), (6), and
(7) to obtain

470§ 2e2e2 AN; —u)?
7 0j :—4neNe\/—e%[dVlexp _u .
ot NN 202
(20)
Since

V [ dq 4=n .
7= ‘J o qexp (—iqV),
we can rewrite Eqn (20) in the form
47§ 2e%e2 AN;
= idneN, ————
ot 2
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To represent the left-hand side of this formula as a harmonic
expansion, we note that

(1)

—qu(?) = g Visin0[(ex + ey) sin (of — kr + ¢)

+ (ex — ¢) sin (ot —kr — )], (22)
and, accordingly, one has
exp [—iqu(s i Z J;(ngsmf) ‘+e‘)
I=—o0k=—00
X J/((VEqsm@ ;e )
x exp [i(l+ k)(wt — kr)] exp [i(/ — k)] . (23)
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These relationships, together with Eqn (7), enable (see
Appendix) writing the x projection of the right-hand side of
Eqn (21) as

4ndj")
ot

— e Ew {eLZ [(2n + 1)(wt — kz)]

fol )l )]
2

where p* = el —e? > 0. Similarly, according to Eqns (21)
and (A.8), we obtain

e,Eai, —— W(E Zcos (2n+ 1)(wt — kz)]

n=

)l )

Here, the following notation was used:

Ai(p?x) = %L de /i exp (—1) Iip1), (26)
and
T 326-2 i
() SEACEAN, o

m2v;

is the rate of electron—ion collisions in a strong pumping
field, for Vg > Vr, and [(z) is the Bessel function of
imaginary argument [22].

The field equation (18) and expressions (24) and (25) can
be utilized to write down the field of harmonics as

o0
SE, — ZE(zwl) sin [(2n + 1)(owt — kz)] (28)
n=0
8E, =Y EP"cos [(2n+ 1)(wt — kz)] , (29)
n=0
where
E  V(E) Vi Ve
gl &= VB A p? | — A, 2 =
x dnn+1) o Py, o))
(30)
E  v(E) Vi Vi
gl = &= NA) Ay p% = |+ 4,
Y 4n(n+ 1) ) 1% ’2VT + +1 2V
(31)

It is convenient in many cases to use the effective rate ve; of
electron—ion collisions for a weak pumping field with
Vi < V. Then, one finds

4\/2me’el AN;
=T %)
Formulas (30) and (31) thus assume the form

E 37 v 1

E(.2n+l) = Ex ¥ = An 2 - An 2 )
X n(n+ l) 16 o [ (P ,.X) +l(p ,X)] X3 )
(33)

ey E 3\/T vei 1
ECntl) — €y Yei [ 4 (p2. 5 A 2, '

y n(n+1) 16 [ n(p aY)+ n+l(p 7":)] Yg
(34)

The formulas obtained in this section will be employed below
in considering the properties of the harmonics controlled by
the circular polarization of the pumping field 4, including
bifurcation phenomena. Accordingly, we will use the relation-
ship

An(p?,x) — A,(V1 = A2, x) . (35)

5. Efficiency of the generation of harmonics

By the efficiency of the generation of harmonics we mean the
time-averaged square of the harmonic-electric-field strength
divided by the time-averaged square of the pumping-electric-
field strength, namely

<[8E)€2n+l)}2 + [8E~J€2n+l)]2>
([En) + [EW))

(2)1+l)
eff

(36)

Here, the angle brackets denote averaging over the corre-
sponding oscillation period. First of all, let us note that,
according to Eqn (12), we have

<[Elx]2 + [Ely}2> = % E?.

(37)
Next, Eqns (28), (29), (33), and (34), with due account of
Eqn (35), can be invoked to write down Eqn (36) in the
following form

2
n&*Y = Dan+ 1, x, 4] <Vw> , (38)
where
9n
D[Zn—&-l,x,A]z—
256n2(n + 1)*x6
x [A,(V1 =42, x) + A5, (VI - 42, x)
—2\/1—A2A,,(\/1—A2,x)An+1( L—4%,x)]. (39)

We will analyze the phenomena described by formulas (38)
and (39) using the diagrams for some harmonics with
frequencies (2n + 1)w.

For the third harmonic, Fig. 1 represents the surface
corresponding to the function D[3, x, 4]. It can be seen from
this figure that the efficiency of generation of the third
harmonic, which is determined by Eqn (39) as a function of
the dimensionless pumping-electric-field strength x, first
grows at relatively small x values and then, at larger values,
decreases. Furthermore, as the degree A4 of circular polariza-
tion of the pumping field approaches the limits 4 = +1 and
A = —1 of complete circular polarization, the generation
efficiency for the third harmonic vanishes. However, the
detailed pattern of the dependence of the function D[3, x, A]
on the degree of circular polarization of the pumping field
proves to be relatively interesting, although it cannot be
clearly seen from Fig. 1. To distinguish fine details, we first
consider Fig. 2, which shows a portion of the same surface
D[3,x, A] representing the variations in the dimensionless
pumping-electric-field strength at relatively large x, from 8
to 10. Here, the scale change compared to Fig. 1 reveals the
trenching of this surface, which cannot be distinguished in
Fig. 1.

It is natural to wonder at which x values such a trenching
can emerge. An answer can be gotten from Fig. 3, where four
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Figure 3. Four curves of a cross section of the D|3, x, 4]-function surface at
various values of the dimensionless pumping field: x = 1 (dotted curve),
x = 1.8042 (solid curve), x = 3 (long-dashed curve), and x = 4 (short-
dashed curve).

Figure 1. Surface representing the function D[3, x, 4], which characterizes
the efficiency of generation of the third harmonic depending on the

dimensionless pumping-electric-field strength x = Vg/2Vr and the de-
gree A of circular polarization of the pumping field.
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Figure 2. A portion of the D[3, x, 4] surface demonstrating the emergence
of trenching.

cross sections of the surface D[3,x, A] are shown for x = 1
(dotted curve), x = 1.8042 (solid curve), x = 3 (long-dashed
curve), and x = 4 (short-dashed curve). It is the solid curve
that separates the region where x> | = 1.8042 > x and all
curves of the cross section of the surface D[3, 4, x] are single-
peaked from the region where xi‘rﬂ'?pol =~ 1.8042 < x and all
curves of the cross section of the surface D[3,4,x]| are
double-peaked. These peaks are weakly pronounced in
Fig. 3 because of the relatively rapid drop of the function
D[3,x, A] with an increase in the dimensionless pumping-
electric-field strength. To clearly distinguish the peak
doubling in the curves of the cross section of the function
DI[3, x, A], we present here Figs 4 and 5 for x = 6 and x = 10,
respectively. It can be seen that the relative depth of the
depression between the two peaks increases with x. We
designate the emergence of two equal maxima of the
function as the bifurcation phenomenon in the intensity of
generation of the (2n + 1)th harmonic as a function of the
degree of circular polarization of the pumping field. The
corresponding dimensionless pumping-electric-field strength
xi‘nhf;(jl, above which the doubling of maxima of the
D(2n+1,x,A) function arises, will be referred to as the
bifurcation threshold of the intensity of the (2n+ 1)th

harmonic.
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Figure 4. Cross-section curve of the surface of the function D[3, x, 4] at
x=06.
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Figure 5. Cross-section curve of the surface of the function D[3, x, 4] at
x = 10.

The generality of the phenomenon under discussion can
be recognized even in the case of the fifth harmonic. Our Figs 6
and 7 are qualitatively similar to Figs 1 and 2, thus reflecting
the general trenching properties of the DI5, x, A]-function
surface. The four cross sections of the D[5,x, A] surface
shown in Fig. 8 correspond to x = 3.2 (dotted curve),
x = 3.41257 (solid curve), x = 4.5 (long-dashed curve), and
x = 6 (short-dashed curve); they illustrate the division into



734

V P Silin, P V Silin

Physics— Uspekhi 50 (7)

SN
N \\\\\\\
W

AN
1..1, R s

AL K
ERRLLITTA
N LRI TP LIILE
Q Y

QOO R

%
%
1
i
o
N
o
3

%
0
.'Ol

S

e

o
%
X5
5
s
i

%
%
20
5
:'"
1%
)
o
0
%

(¥
</
£
'/
I/'l
'
gt

%

N
LB

005

0%
%
2

ol
R
ot
LR
Y

N

y,

)

b

)

I

ol

.,
b
ottty

%5
'orls
%
o

o

0
e
',"

%

J

N '."'
TR
0

hy

Z>
2
44

s

&
23
o

o,

by
%/
o
o
0
.
Y
L
y
¥4
0
,."
o,

D[5,x, A]
(3]
X
S

K]

Ny
i

%

o

LT
T
BT
LA AT IS ARZTS
B s St
2 R

Figure 6. Surface of the function D[5, x, 4] characterizing the efficiency of
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Figure 8. Four curves of a cross section of the D[5, x, 4]-function surface at
various values of the dimensionless pumping field: x = 3.2 (dotted curve),
x = 3.41257 (solid curve), x = 4.5 (long-dashed curve), and x = 6 (short-
dashed curve).
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Figure 7. A portion of the surface of the D[5, x, A] function demonstrating
the emergence of trenching.

the below-threshold (x < x> | = 3.41257) and above-
threshold (x > xi‘nhl‘épm) regions. In the latter, the doubling of
the DIS, x, A]-function peaks occurs. Since the peaks of the
curves are not clearly distinguishable in Fig. 8, we also present
here Fig. 9 which corresponds to the cross sections of the
DI[5, x, A] surface at x = 8 (dotted curve) and x = 10 (solid
curve). Here, the doubling of the cross-section peaks is
obvious.

The peak-doubling phenomenon in the variation of the
harmonic generation intensity at a given pumping-field
strength can be clearly seen in the case of the seventh
harmonic, which is demonstrated by Figs 10 and 11.
However, we note first and foremost that, according to
Fig. 10, the region of small values of the plotted function
D[7,x, A] at small x is now substantially broader compared to
both the fifth (Fig. 6) and especially third (Fig. 1) harmonics.
The formation of trenches at relatively large pumping-
electric-field strengths (8 < x < 10) can be clearly recog-
nized from Fig. 11. The trenching threshold, which corre-
sponds to the doubling of the peaks of the cross-section curves
of the D[7, x, A] surface, can be seen from Fig. 12, where three
such cross-section curves are depicted. The dotted curve
corresponds to x = 4, the solid curve to the threshold of the
bifurcation peak doubling at xiﬁ‘t'l7pol = 4.8777, and the short-
dashed curve to the above-threshold value x = 6, at which

D[s] x 1078
“ iz | “- .

0.1

—0.5 0 0.5 1.0

-1.0 y

Figure 9. Two curves of a cross section of the D[5, x, A]-function surface
clearly demonstrating the doubling of the generation-efficiency maxima
for the fifth harmonic: dotted curve, x = 8; solid curve, x = 10.

two peaks can already be distinguished. Figure 13 shows
double-peaked curves in the above-threshold region for x = 6
(short-dashed curve), x = 7 (heavy solid curve), and x =9
(light solid curve).

The set of figures presented here for the third, fifth, and
seventh harmonics can easily be extended to higher pumping-
field harmonics. Their common property is the broadening of
the region of small x values at which D[2n+1,x, 4] is
especially small. As the number of the harmonic is increased
further, the peak value of D[2n+ 1,x, 4] decreases. In
particular, the following peaks were evaluated:

D(3)pux ©32%x 1074, D(5),,., ~55%x107°,
D(T)pax 38 %1077, D(9)0 ~ 5.8 x 1078,
D(11),,, =43 x 107, D(13),,,, ~2.56 x 107

These values are realized in the below-threshold region, for
x < x{h211 The above-presented analysis shows that the
threshold field xi‘nh[lzggql grows with the number of the
harmonic. In particular, we obtained a threshold field of
1.8042 for the third harmonic, 3.4126 for the fifth, 4.8777 for
the seventh, 6.325 for the ninth, 7.594 for the eleventh, and
9.1913 for the thirteenth. Thus, as the pumping-field strength
increases, the maximum efficiency of generation of the given
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Figure 10. Surface of the function D[7, x, 4] characterizing the generation
efficiency of the seventh harmonic.
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Figure 11. A portion of the surface of the D[7, x, 4] function for relatively
high pumping-field strengths, which demonstrates the emergence of
trenching.

harmonic is first achieved at 4 = 0 and then, with a further
growth of x and a decrease in the generation efficiency, the
corresponding bifurcation value of the field is reached; as it is
exceeded, two equal maxima of the generation efficiency of
the harmonic develop at mutually opposite values of the
degree of polarization of the pumping field. They are clearly
pronounced if x substantially exceeds the bifurcation thresh-
old of the generation efficiency of the harmonic. Naturally, if
there are two maxima in the intensity of harmonic generation,
the relative minimum corresponds to a zero value of the
pumping-field polarization.

The influence of the circular polarization of the pumping
field on the generation of harmonics in a gas was experimen-
tally investigated in Ref. [16], and it could be believed that the
gas was ionized at a certain stage of irradiation in these
experiments. Whereas in previous studies of the same research
group the efficiency of generation monotonically decreased
with the growth of the degree of circular polarization of the
pumping field, a substantially nonmonotonic behavior with a
maximum at 4 # 0 was revealed in Ref. [16]. To account for
this phenomenon, the mechanism whose theory was pre-
sented above had been invoked in Ref. [12].

We note finally that, in the framework of the model based
on the Fock distribution function for electrons [23], the
bifurcation-intensity threshold for the third harmonic was

D[7] x 1077
2.5,

-1.0

Figure 12. Three cross-section curves of the D[7, x, A]-function surface at
various values of the dimensionless pumping field: x = 4 (dotted curve},
x = 4.8777 (solid curve), and x = 6 (short-dashed curve).

L
-1.0

Figure 13. Three double-peaked cross-section curves of the D[7,x, A]-
function surface for x = 6 (dashed curve), x = 7 (heavy solid curve), and
x =9 (light solid curve).

considered in Ref. [24] and, using a slightly different
approach, in Ref. [12].

6. Bifurcation phenomenon in the degree
of circular polarization of harmonics

To a certain extent, the phenomena discussed in this section
were already revealed in Ref. [12], although they and, in
particular, their threshold nature did not receive much
attention there. A fairly detailed consideration and discus-
sion of these phenomena were presented in Refs [25, 26],
which were concerned with the polarization properties of the
third harmonic; this harmonic is generated due to brems-
strahlung in a plasma produced by ionizing hydrogenlike
atoms. The electron distribution function of such a fully
ionized plasma was modelled by the distribution function of
electrons resided on the nth energy level of the hydrogen
atom, with the /-degeneracy of their states taken into account.
Such a distribution function was obtained by Fock [23] and
later on, independently, in Refs [27, 28]. The hypothesis for
the universal nature of the bifurcation phenomenon discussed
in Refs [25, 26] was put forward in the latter works and
confirmed in Refs [18, 19], where a regular Maxwellian
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distribution was used instead of the Fock distribution. We
will present below a theoretical view of the bifurcation
phenomenon in the degree of circular polarization of
harmonics using the results obtained earlier in Section 4.

The above-derived expressions (28)—(35), which describe
the field of harmonics, make it possible to write down the
polarization tensor of the field of harmonics in terms of the
Stokes parameters (see above) and to obtain the following
expression for A[2n + 1, x, A], the degree of circular polariza-
tion of the (2n + 1)th harmonic:

A2n+1,x, 4]
= A[(AVT=22,])" = (i [VT = 42, ])7]
X [ (An[VT=22,x])" + (A [VT = £2,])°
— VT = A2 A, [VT = A%, x] Ay [mgc]r.

(40)

The diagrams presented below and based on this formula
make it possible to understand the dependences of the degree
of circular polarization on the pumping field, the strength of
its electric field, and the degree of its circular polarization; in
particular, the bifurcation phenomenon of the degree of
circular polarization of harmonics will be demonstrated.

In this section, we start our consideration with the case of
the third harmonic. First of all, let us obtain an expansion of
function (40) at small x, the dimensionless strength of the
pumping electric field. We restrict ourselves to the terms of
order x?, thus obtaining

5

A[3,x,A]%A{lJr—(lfAz)szr...}. (41)

14
It can be seen from here that the complete circular polariza-
tion of the third harmonic, |4(3)| = 1, is possible only if the
circular polarization of the pumping field is complete: 4> = 1.
However, as evident from the figures in the preceding section,
harmonics are not generated in this limiting case. Moreover,
we can state that 4 = +£1 are the limiting values of the
pumping-field-polarization degree in the sense that the
intensities of the third and other harmonics vanish in this
limit. Due to the bremsstrahlung mechanism, this is a general
property of the harmonic-generation process. However, the
properties of harmonics become substantially richer at
sufficiently strong pumping electric fields. This can be
inferred from a careful observation of Fig. 14, which gives a
three-dimensional representation of the surface of 4[3, x, 4],
the degree of circular polarization of the third harmonic as a
function of the dimensionless pumping-electric-field strength
x and the degree A4 of circular polarization of the pumping
field. It may be seen (although with some difficulty) that the
third harmonic proves to be completely polarized not only in
the limits of 4 = £1 but also at |4| smaller than unity. To
make this feature better distinguishable and to grasp the
particularities of the behavior of the degree of circular
polarization of the harmonic at sufficiently high degrees of
circular polarization of the pumping field, we present here
Fig. 15, in which four cross sections of the surface 4[3, x, A]
are shown for x = 1 (dotted curve), x = 2.02 = xglffj%pol (solid
curve corresponding to the bifurcation), x = 5 (long-dashed
curve), and x = 8 (short-dashed curve).

We speak here of the circular-polarization bifurcation of
the third harmonic and, in relation to the bifurcation curve,
mean that Xtta?f.3pol is the circular-polarization-bifurcation
threshold of the third harmonic. By such a bifurcation, we

..1';’,' T
e T T TR
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Figure 14. Surface corresponding to the function A[3, x, 4] that describes
the degree of circular polarization of the third harmonic depending on the
dimensionless strength x and the degree A of circular polarization of the
pumping electric field.

understand a nonlinear phenomenon that manifests itself in a
threshold manner as the pumping-electric-field strength is
increased. Specifically, at small x, as follows from formula
(41) and the dashed curve in Fig. 15, the degree of circular
polarization of the third harmonic, A[3, x, A], assumes unity
magnitude and the circular polarization becomes complete
only if the modulus of the degree of circular polarization of
the pumping field, | 4|, goes to unity. According to Figs 1 and
3, however, the intensity of the third harmonic vanishes in this
limit. In other words, this property of A4[3,x,+£1] at x not
exceeding the threshold value xI:3  is a limiting property for
the complete circular polarization of the third harmonic.

The situation changes in the above-threshold region,
where x > xglff?pol. As the dashed curves in Fig. 15 indicate,
the complete circular polarization of the third harmonic
corresponds not only to the limiting values for |4| — 1 but
also to a pair of values — a positive and a negative one — of
the degree of circular polarization of the pumping field, which
are smaller than unity in magnitude. Therefore, in the cross-
section curves of the function A4[3, x, 4], the doubling effect
occurs in the values of the degree of circular polarization of
the pumping field, at which the circular polarization of the
harmonic is complete. This phenomenon, which we called the
phenomenon of bifurcation doubling of the positions of
complete circular polarization [25, 26], was discovered in
plasmas with electron distributions differing from that
assumed here. However, we already suggested then that this
phenomenon is universal.

For plasmas with Maxwellian electron distributions, this
suggestion was confirmed in Refs [18, 19] and partially
considered in this section of our article for the third
harmonic. We have shown [18] that the phenomenon of
circular-polarization bifurcation also occurs for the fifth and
seventh harmonics. Now, we will emphasize certain results of
Ref. [18].

It should be noted here that Fig. 14 constructed for the
third harmonic is also qualitatively correct for higher
harmonics. We will not display here such graphs. Instead, let
us consider analogs of Fig. 15. In particular, for the fifth
harmonic, Fig. 16 shows four cross sections of the surface
corresponding to the function 4[5, x, A], for four values of the
dimensionless strength x of the pumping electric field.
Specifically, the dotted curve corresponds to x = 1 and refers
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Figure 15. Four cross sections of the surface of the function A4[3, x, A] for
several values of the dimensionless pumping-electric-field strength: dotted
curve, x = 1;solid (bifurcation) curve, x = 2.02; long-dashed curve, x = 5
and short-dashed curve, x = 8.

Figure 16. Four cross sections of the surface of the function A5, x, 4]
describing the degree of circular polarization of the fifth harmonic: dotted
curve, x = 1;solid curve, x = 2.39 (the threshold field); long-dashed curve,
x = 6, and short-dashed curve, x = 10.

to the below-threshold region; the solid curve to x =
2.39 = xé‘i}"spol, i.e., to the threshold field intensity that
separates the below-threshold and above-threshold regions
— this curve can thus be called the bifurcation curve; the long-
dashed curve to x = 6, and the short-dashed curve to x = 10.
The last two curves lie in the above-threshold region. They
demonstrate the origin of the completely polarized fifth
harmonic at relatively low magnitudes of the degree of
circular polarization of the pumping field. For each above-
threshold-cross-section curve there are two such degrees. This
is a general property of the phenomenon of bifurcation
doubling of the positions of complete circular polarization.
Even a comparison between Figs 15 and 16 leads us to the
conclusion that both the third and fifth harmonics are almost
completely — to a high accuracy — circularly polarized over a
fairly wide range of variation in A, the degree of circular
polarization of the pumping filed. This also applies to the
seventh harmonic, as evident from Fig. 17 representing four
cross-section curves of the surface corresponding to the
function A[7,x, A]. Here, the dotted curve refers to x =1,
and the solid curve to x = 2.7, the bifurcation threshold of the
degree of circular polarization of the seventh harmonic; the
latter curve can thus be called the bifurcation curve. The two
remaining curves (long-dashed curve for x =5 and short-
dashed curve for x = 8) relate to the above-threshold region.
Both have a pair of points corresponding to complete circular

1.0 - r o S———
A7) |
/!
0.5 1t/

~10 -05 0.5 1.0

Figure 17. Four cross sections of the surface of the function A[7, x, 4]
describing the degree of circular polarization of the seventh harmonic and
demonstrating the bifurcation phenomenon in the degree of complete
circular polarization with some related features: dotted curve, x = 1; solid
curve, x =2.7 (the bifurcation threshold of the degree of circular
polarization of the seventh harmonic); long-dashed curve, x =5, and
short-dashed curve, x = 8.

polarization at small magnitudes of the degree of circular
polarization. As in the cases of the third and fifth harmonics,
the circular polarization of the seventh harmonic can be
considered nearly complete (A[7,x, A] is close to unity in
magnitude) over a fairly wide range.

Lastly, Figs 15, 16, and 17 all indicate that the sign-
reversal region of the degree of polarization of the almost
completely circularly polarized harmonic shrinks with
increasing x, the dimensionless pumping-field strength.

Since we are looking for a generality of the bifurcation
phenomenon of the circular polarization of harmonics, let us
dwell on the general equation describing the thresholds of this
phenomenon for the (27 + 1)th harmonic. To this end, it is
natural to apply the equation

(A, (VT =4%,%))" = (4ps (VI = 42,%))°

+l1=4
B[2n+ 1,x, A]

where the sign of the right-hand side coincides with that of the
degree A of circular polarization of the pumping field, and

BRn+1,x,4] = [4Z(VI= 4, %) + 42, (VI = 42, )
— VT A, (VT = A2, x) Ay (VT = A2,5)

To find the threshold x value for the (21 + 1)th harmonic, we
need to consider the consequences of Eqn (42) near |A\2 =1.
To this end, we use the relationship

ST 3
An<WvX>,;)fdrm+fc+uy<"+2+2k7x23’>

where I'() is the Euler function, and y(«, x) is the incomplete
Euler function. With the aid of Eqn (43), we can write down a
first approximation to Eqn (42) as

e (1 3/2, %)+ 5/2, 37\
(1-4%) ( r'(n+1) I'in+2) )*0' (44)

The solution 4> =1 to this equation corresponds to zero
values of the harmonics. Near the value of 4% =1 but for
A? # 0, we obtain an equation for the bifurcation threshold
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Figure 18. Loci of the complete circular polarization of the harmonics. The
upper half of the diagram corresponds to A[2n + 1, x, A] = +1, and the
lower half to 4[2n + 1,x, A] = —1. The dashed horizontal straight lines
A(l)=A=1 and A(1) = 4= —1 are the limiting sets for which the
tendency to complete circular polarization is accompanied by the tendency
to vanishing intensity of the harmonics. The points of the six curves relate
to the x and A values at which the circular polarization of the harmonics is
complete and their intensity differs from zero in the general case. The
dotted curves correspond to the third harmonic, the dash-and-dot curves
to the fifth harmonic, and the dashed curves to the seventh harmonic (cf.
Ref. [7]).

of the complete circular polarization of the (2n+ 1)th
harmonic. It has the form

3 o 1 5 o2
V<n+§a (xl;?f?p(jl ) = 1 +n ')/<I’l+§ ) (xtl)?f.zp;il) ) . (45)

Numerical solutions of Eqn (45) for some harmonics are as
follows:

Yol =202, xp =239, X =270,
O 207, B0 —32, x4,

bitpol = 361, xyirpat =380, xypo) =397,
ool =414, ool =439, X =445,
ool =459, oo =473, Xyl =487,
Xoi pat = 50-

It can be seen from these solutions that, up to fairly high
harmonics, the threshold fields are located within a relatively
narrow range of x values.

It should be noted that the existence of the general
equation (45) and the solutions to it indicate that the
phenomenon under discussion is universal in the framework
of the adequacy of the theory applied.

Let us offer another illustration of the bifurcation
phenomenon that follows from relationship (40) and solu-
tions to Eqn (45). Specifically, we will present here the curves
of the dependences that relate the degree A4 of circular
polarization of the pumping field to the dimensionless
strength x of the pumping electric field for the complete
circular polarization of the third, fifth, and seventh harmo-
nics. Figure 18 displays six curves; the upper three curves
correspond to A[2n+1,x,A4] =1, and the lower three to
A[2n+1,x,A] = —1. The dashed straight line at the top
corresponds to the limiting value A[2n + 1,x, 4] = 1; in the
bottom, to A[2n + 1, x, A] = —1. The branching points in the
dashed straight lines correspond to threshold x values. The

dotted curves suit the third harmonic, the dash-and-dot
curves the fifth harmonic, and the dashed curves the seventh
harmonic. The branching of the curves of complete circular
polarization, represented in Fig. 18, is among the simple
properties of the bifurcation phenomenon discussed here.

7. Conclusions

The content of this article gives an idea of the properties of a
nonlinear optical phenomenon, viz. the plasma bremsstrah-
lung due to a monochromatic pumping electromagnetic field.
For nonrelativistic plasmas and nonrelativistic speeds of the
electrons oscillating in the pumping field, the bremsstrahlung
is represented by odd harmonics of the monochromatic
pumping field. The theory of the considered bremsstrah-
lung, briefly presented above and in more detail in the
Appendix, makes it possible to study the nonlinear proper-
ties of the harmonics depending on both the amplitude of the
pumping-electric-field strength E and the degree of polariza-
tion of this field. We have demonstrated the following fact.
Assume that the given pumping field is relatively weak and
the intensity of the generated harmonics as a function of the
degree of circular polarization of the pumping field reaches its
maximum in the case of a linear polarization of this field
(4 = 0). In this case, if a certain threshold value x> of the
pumping-field strength is exceeded, a pair of maxima arise at
two values of the degree of circular polarization of the
pumping field, equal in their magnitude and opposite in
sign. We call this phenomenon the intensity bifurcation of
the bremsstrahlung in the pumping-field harmonics; it
manifests itself in a doubling of the intensity maxima of the
harmonics.

As the pumping intensity increases, another bifurcation
property of harmonics becomes notable. At relatively low
pumping intensities, the complete circular polarization of the
harmonics corresponds to their zero intensity. In other words,
if the polarization of the harmonics tends to become circular
at such intensities, their intensity vanishes. This property is
also present at high pumping-field intensities and is described
by the straight lines 4 = 1 and 4 = —1 (Fig. 18). However, as
the dimensionless pumping-field strength reaches its thresh-
old value xi;}’t"z";[ ! for the given harmonic, curves branch off
such straight lpines; these curves correspond to the complete
circular polarization of the (2n + 1)th harmonic and to the
degrees of circular polarization at which the intensity of the
harmonics differs from zero.

In addition to such a bifurcation of the degrees of
polarization of the pumping field that lead to the complete
circular polarization of the harmonics, the following fact
should be noted. For the generated harmonics, fairly wide
ranges of the degrees of circular polarization of the pumping
field (close to either 4 = +1 or 4 = —1) emerge, in which the
complete polarization of the harmonics is, to a high accuracy,
virtually circular. At the same time, the region of the
transition from negative to positive degrees of circular
polarization of the harmonics shrinks with the increase in
the dimensionless pumping-field strength. These properties
appear to accompany the bifurcation phenomenon of the
complete circular polarization of the harmonics.

Let us present here a formula that expresses the pumping
energy flux density ¢ in terms of the parameter x:

. Yz(kBT V]

53 )(hw eV])® x 1.7 x 10 W em™2, (46)
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where the temperature is measured in units of 25 eV, and the
pumping-field frequency in electron-volts. If the threshold of
the position bifurcation in the third-harmonic intensity is
x = 1.8042, formula (46) yields

th(3) _ <kBT [eV]

2 -
int. pol = T) (hw [eV])” x 5.5 x 10" W cm™2.

Accordingly, for the bifurcation threshold of the degree of
circular polarization of the third harmonic, with x = 2.02, we
obtain

th(3) (kBT[CV]

Dif. pol = T o5

)(hw eV])® x 6.9 x 104 W em™2.
The excess of the second threshold over the first one is a
general property of the harmonics generated in fully ionized
plasmas due to collisions between the electrons oscillating in
the pumping field and ions.

We note that the steadfast interest in the generation of
harmonics partially stems from the fact that progress on the
problem of harmonic generation leads to the possibilities of
creating short pulses; they, as is known, result in high
radiation energy flux densities at relatively low energies of
the laser pulse after its shortening.
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8. Appendix

We use the relationship

exp (izsin @) = f: Ji(2) exp (iko)

k=—00

to take the integral
; . 1
I = qu % exp (—lqu -3 qzV%)

00 T 2n
:J dg gexp <flq2V%>J sin20d0J decos ¢
0 0 0

2
+00 +00
X Z Z Ji(qVEasin®) J,(qVE fsin0)
l=—ocon=—0o0

x exp [i(/ + n)(wt — kz)] exp [i(/ — n)¢]

= TEJ dggexp (,quV%>J sin” 0 do
0 2 0

+0o0
X Z Ji(qVEasin0)

l=—00
x [JM (qVe Bsin0) exp [i(2 + 1)(wt — k=)]
+Ji1(qVe Bsin0) exp [i(21 — 1) (ot — kz)]] ,
where

_ex+ey )
ocfiz , p= 5

Further, the relationship

i exp [i(2/+ 1) (wt — kz)]
|=—00

X [Ji(A) Jix1 (B) + i1 (A) Ji(B)]

=2i f: sin [(20 4 1)(wt — kz)]
=0

can be used to write down Eqn (A.1) in the form

2 A . I 1 d d
I, = V%;SIH [(2]+ 1)(6{)[ - kZ)] |:&+B_ a - @]
T x| a0 Vi
X . XX . exp —m Ji(ox) Ji(fx) .
(A.2)

In view of the identity [22]
xV2

/2 XVT
ddexp(———T ) —gll-a ,
oo (giam) =l ()]

where

&(z) = \/i_J dt exp (—12)

TJo

is the probability integral, we can represent Eqn (A.2) as

4’2 SN [ 1 d d
I, = 7 ;sm [214 1) (ot — kz)] {& +B i @}
X J dr[ dxxexp (—x?t?) Jy(xa) Ji(fx). (A.3)
Vr/V2VE 0
We note that [10]

JOO dx xexp (—x212)J)(ox) J;(Bx)

0
1 a2+ p2 aff
:ﬁ‘”‘p(‘ ae ) 13a)

where I,(x) is the Bessel function of the second kind, and
substitute the last expression into Eqn (A.2) to obtain, by
means of simple rearrangements, the following relationship

N Mg—gﬁisin [(204 1) (ot — kz)]
=0

V V.
X |:Al<p27 2—VET) - A/+1 (PZ» 2—VE;_):| .

Here, we employed the notation

I,=e

(A4)

2

A(p?,x) = \/iT_CJ(: dt/t exp (—1) [I/(pzz) - I/H(pzl)] .
(A.5)
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Formulas (A.4), (A.5), and (21) can be utilized to write down
the x projection of the right-hand side of Eqn (18) [see
formula (24)].

We now carry out a relevant treatment of the y component
of the right-hand side of Eqn (19). To this end, we consider

) 1
qu = exp (—1qu —3 qzV%>

0 1 2n
:J dg gexp <—§ qzV%> [ sin 0d0[ dpsin @
0 0

+00 +00
X Z Z Ji(qVEasin0) J,(¢VE fsin0)
|=—c0ohn=—x

x exp [i(l 4 n)(wt — kz)] exp [i(/ — n)g]

:—I—TCZJ de d()exp(—I/T—x)
Vido 0 2V}sin® 0

+00

X Z exp [i(2/ 4 1)(wt — kz)]

[=—c0
X [Ji(xer) T (xB) — Jpgr (ox) Ji(Bx)] -

Next, we use the relationship

(A.6)

+0o0

Z exp [i(2/+ 1) (wr —

[=—00

x [Ji(A4) Ji1(B) —

{éfﬁ % a |1 ).

kz)]

J1+l( )JI(B)}

1) (wt — kz)]

with a parallel recast of the integral with respect to 0 in
Eqn (A.6), yielding the representation

4 3/2 o0
I, = 1; Zcos (204 1) (wt — kz)]
1=0

2
E

1 a4 d

p o da dp

><J dTJ dx xexp (—x212) Jy(xa) Ji(x) .
Vr/V2VE 0

(A.7)

Since this expression is largely analogous to Eqn (A.3), we can
carry out rearrangements similar to that done in considering
Eqn (A.3), thus arriving at

I, =e,

ﬂi cos [(2/+ 1)(wt — kz)]

2
VE =0

Ve Ve
A A 2.
[ l<p 72V ) + I+1 <P 72VT):|

According to Eqn (21), this relationship makes it possible to
obtain expression (25).

(A.8)
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