
Abstract. The current theoretical and experimental situations
are reviewed for low-dimensional insulating systems with a low
magnetic transition temperature TM and pronounced short-
range magnetic order above this temperature. Both the stan-
dard and self-consistent spin-wave theories are shown to be
insufficient to quantitatively describe the experimental data on
these systems. Field-theoretical approaches taking into account
the contribution of the spin-fluctuation excitations (neglected in
the spin-wave theories) to the thermodynamic properties of
ferro- and antiferromagnets are discussed.

1. Introduction

The investigation of low-dimensional magnetism is an
important problem of modern solid-state physics. The
experimental interest to this problem is related to the unusual

magnetic properties of layered perovskites such as Rb2MnF4,
K2NiF4 [1, 2], K2MnF4 [2, 3] (easy-axis anisotropy), K2CuF4,
NiCl2, BaNi2(PO4)2 [4] (easy-plane anisotropy), organic
compounds [5, 6], ferromagnetic films, multilayers, and
surfaces [7, 8]. In recent years, interest to low-dimensional
compounds increased because of investigations of the
magnetic properties of copper ± oxygen planes in high-
temperature superconductors such as La2CuO4 [9].

Another interesting class of low-dimensional magnetic
systems with local moments comprises quasi-one-dimen-
sional compounds containing chains of magnetic atoms with
a weak interchain magnetic exchange. In particular, such
experimentally well-studied compounds as KCuF3 [10] and a
number of recently studied systems on the basis of strontium,
e.g., Sr2CuO3 (S � 1=2) [11, 12], and cesium, e.g., CsNiCl3
(S � 1) [13] and CsVCl3 (S � 3=2) [14] can be referred to this
class. A related class of compounds is represented by recently
synthesized systems with `spin ladders' consisting of a limited
number of chains of magnetic atoms coupled via exchange
interaction [15].

Contrary to the three-dimensional systems, the possibility
of magnetic ordering in low-dimensional systems is signifi-
cantly restricted because of the strong fluctuations in the
magnetic-order parameter. As is well known, the magnetic
order in purely one-dimensional and two-dimensional iso-
tropic systems is absent at finite temperatures. According to
the Mermin ±Wagner theorem, two-dimensional isotropic
ferro- and antiferromagnets possess long-range order in the
ground state only, and the exact results for one-dimensional
isotropic antiferromagnets indicate the absence of long-range
magnetic order even at T � 0. Real compounds exhibit a
finite magnetic-transition temperature TM 5 jJ j (where J is
the magnitude of the exchange interaction in the chains or in
the plane) which is caused by a weak interchain (interplane)
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exchange and (or) anisotropy. The smallness of the transition
temperature gives rise to a number of specific features of these
systems. In particular, the short-range magnetic order at
temperatures above the magnetic-transition point is not
completely destroyed (in the two-dimensional case it is
retained at temperatures up to T � jJ j), so that there exists
a wide temperature range T > TM with a strong short-range
order [3, 9].

Substantial progress in the understanding of the proper-
ties of the ground state and the thermodynamics of one-
dimensional and two-dimensional structures has been
achieved owing to the use of numerical methods (for
instance, the quantum Monte Carlo method). At the same
time, these methods do not supersede analytical approaches
which permit one to describe thermodynamic properties of
layered systems in awide temperature range and are useful for
both the theoretical understanding of the physical properties
of these systems (which are by nomeans always obvious from
numerical calculations) and for the practical purposes of
describing real compounds.

The simplest method for analytically investigating low-
dimensional magnets is based on the standard spin-wave
theory [16 ± 18], which is applicable only at low temperatures
T5TM. This theory neglects the interaction between spin
waves, which leads, in particular, to a strong overestimation
of the phase-transition temperatures for low-dimensional
compounds. The problem of interaction of spin waves in
ferromagnets was investigated for the first time byDyson [17],
who constructed a consistent theory of the thermodynamic
properties of these systems at low temperatures. Later on,
these results were reproduced byMaleev [18] who proposed a
nonlinear boson representation of spin operators. The
Dyson ±Maleev formalism consistently takes into account
the dynamic interaction of spin waves. This approach was
applied to the description of three-dimensional [19] and two-
dimensional antiferromagnets; special attention in papers [19,
20] was paid to the calculation of spin-wave damping which
proved to be small within a wide region of momentum space
at sufficiently low temperatures. In papers [21], nonanalytical
corrections to the spectrum of spin waves and heat capacity of
low-dimensional systems, arising as a result of dynamic
interactions of magnons, were investigated.

At temperatures that are not small compared to the
magnetic transition temperature, the kinematic interaction
of spin waves, which arises due to constraints imposed on the
number of bosons at a site, begins to play a substantial role. A
representation that permits one to explicitly take into account
the kinematic interaction of spin waves was suggested by
Bar'yakhtar et al. [22, 23]. The introduction of auxiliary
fermions in this representation removes the necessity of
considering an additional constraint on the number of
bosons at a site.

However, the spin-wave picture of excitations at not-too-
low temperatures becomes completely inadequate and non-
spin-wave excitations should be taken into account to
correctly describe the thermodynamics of the system. To
some extent, this situation is similar to that in the theory of
itinerant-electron magnetism, where the Stoner (mean-field)
theory proved to be inconvenient to adequately describe
thermodynamic properties, which stimulated the develop-
ment of spin-fluctuation theories [24]. Whereas the effects of
non-spin-wave excitations on the thermodynamic properties
of localized magnets were discussed many years ago in the
context of a phenomenological theory [25, 26], the corre-

sponding microscopic approach was developed only recently
on the basis of the so-called 1=N-expansion [27], where N is
the number of spin components (N � 3 for the Heisenberg
model). This approach proved to be very successful in the
description of the thermodynamic properties of two-dimen-
sional [27] and quasi-two-dimensional [28] ferro- and anti-
ferromagnets.

Unlike two-dimensional magnets, the spectrum of excita-
tions in one-dimensional antiferromagnets strongly depends
on the spin S. Starting from the works of H Bethe, who
constructed an exact wave function (the Bethe ansatz) for the
one-dimensional antiferromagnetic chain, it is known that
these systems do not possess long-range magnetic order even
in the ground state.

Modern theoretical approaches to one-dimensional
systems are based on Haldane's idea [29, 30] which reduces
the problem of a chain to a nonlinear sigma model.
According to Haldane, the cases of an integer and half-
integer spin differ qualitatively. In the case of a half-integer
spin, the so-called topological term appears in the effective
action, which leads to an unusual magnetic behavior in such
chains.

For a single chain with S � 1=2 (the same situation takes
place at any half-integer spin), the ground state exhibits a
`quasi-long-range order' at which the spin correlations at long
distances fall off according to power rather than exponential
law. The spectrum of excitations in this case is gapless,
although the magnetization is equal to zero (which resembles
the classical two-dimensional xy model) at temperatures
below the Berezinskii ±Kosterlitz ± Thouless point TBKT. At
the same time, the spectrum of excitations for integer values
of spin S contains the so-called Haldane gap on the order of
exp �ÿpS�, and the structure of the excitation spectrum is
close to that predicted by the spin-wave theory (SWT).

Because of their `exotic' behavior, chains with a half-
integer spin cannot be investigated in the context of the SWT;
to consider them, fundamentally new physical approaches are
required. For the limiting quantum case of S � 1=2 (which is
also the most important from the practical viewpoint), there
was developed a bosonization method which uses the
Jordan ±Wigner representation of spin operators through
fermion operators with a subsequent transformation to
boson operators that describe collective (non-spin-wave)
magnetic excitations. This approach also proved to be
successful in the investigation of spin ladders [15, 31, 32].

To investigate quasi-one-dimensional systems, techniques
combining bosonization (and/or the Bethe ansatz) with the
renormalization-group method [33 ± 35], as well as the
interchain mean-field approach [36], have been developed.
These methods predict a finite value of the magnetic-
transition temperature TN � jJ 0j at any infinitely small
magnitude of the interchain interaction J 0. Whereas the
renormalization-group method does not permit one to
obtain quantitative estimates of TN, the interchain mean-
field approximation neglects spin correlations at different
chains, which leads to a strong overestimation of the N�eel
temperatures as compared to their experimental values. Thus,
the theory of interchain mean field leads to the same
difficulties in describing quasi-one-dimensional magnets as
the SWT does in describing quasi-two-dimensional magnets.

We see that substantially new approaches are required for
the description of quasi-two-dimensional and quasi-one-
dimensional magnets, and their consideration constitutes the
chief aim of this review.
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2. Quasi-two-dimensional magnets
with an easy-axis anisotropy

To consider quasi-one-dimensional and quasi-two-dimen-
sional magnets with localized magnetic moments, we avail
ourselves of the Heisenberg model

H � ÿ J

2

X
i; d��d?; djj�

Si Si�d �H3D �Hanis ; �2:1�

H3D � ÿ J 0

2

X
i; d?

Si Si�d? ;

Hanis � ÿ JZ
2

X
i; djj

Sz
i S

z
i�djj ÿ jJ jz

X
i

�Sz
i �2 ;

�2:2�

where J is the in-plane exchange integral (J > 0 for ferro-
magnets, and J < 0 for antiferromagnets); H3D corresponds
to the Hamiltonian of the interchain (interplane) interaction;
J 0 � 2aJ is the exchange parameter between the chains
(planes) (for definiteness, we consider the case of a > 0); djj
and d? correspond to the nearest neighbors within a single
chain (plane) and for different chains (planes), respectively;
Hanis is the anisotropic part of the interaction, which arises as
a result of the effect of the crystalline field of surrounding
ions, and Z and z > 0 are the exchange and single-ion
anisotropy parameters, respectively.

2.1 Nonlinear boson representations in the theory of
quasi-two-dimensional ferromagnets and antiferromagnets
At very low temperatures T5TM, the elementary excitations
are spin waves. To describe these excitations, it is suitable to
pass from spin to boson operators. Various representations of
such type are used, in particular, a Dyson ±Maleev represen-
tation [17, 18, 23] which is convenient for the description of a
magnetically ordered phase:

S�i �
������
2S
p

bi ; Sz
i � Sÿ b

y
i bi ; �2:3�

Sÿi �
������
2S
p �

b
y
i ÿ

1

2S
b
y
i b
y
i bi

�
;

where b
y
i and bi are the magnon Bose operators. The boson

operators in representation (2.3) should satisfy the constraint
on the occupation number at a site: b

y
i bi < 2S, which leads to

the so-called kinematic interaction of spin waves. In order to
simplify the consideration of this interaction, Bar'yakhtar et
al. [22, 23] introduced the following representation:

S�i �
������
2S
p

bi ; Sz
i � Sÿ b

y
i bi ÿ �2S� 1� cyi ci ; �2:4�

Sÿi �
������
2S
p �

b
y
i ÿ

1

2S
b
y
i b
y
i bi

�
ÿ 2 �2S� 1�������

2S
p b

y
i c
y
i ci ;

which contains, apart from the boson operators, auxiliary
pseudofermion operators c

y
i and ci, which take into account

the kinematic interaction of spin waves. In the case of an
antiferromagnet with two sublattices, representation (2.4)
and a conjugate representation are used for each sublattice.
The excitation energy of pseudofermions is on the order of
jJ j, so that at low temperatures their contribution to the
thermodynamic quantities is exponentially small and can be
neglected. At the same time, the kinematic interaction of spin
waves becomes substantial at temperatures T � jJ j.

Another useful representation of spin operators is a
representation in terms of Schwinger bosons [37 ± 39]:

Si � 1

2

X
ss 0

s
y
i srss 0sis 0 ; �2:5�

where r are the Pauli matrices, and s, s 0 �", #, so that

Sz
i �

1

2
�syi "si " ÿ s

y
i #si #� ; S�i � s

y
i "si # ; S

ÿ
i � s

y
i #si " : �2:6�

The condition

s
y
i "si " � s

y
i #si # � 2S �2:7�

restricts the number of spin states and should be fulfilled at
each lattice site. Since the simultaneous change in the phases
of the si " and si # bosons, si s ! sis exp �ifi�, does not affect
the physical results, the Schwinger-boson representation
possesses gauge symmetry. This fact can be used for establish-
ing the relation between the Schwinger-boson representation
and the well-known Holstein ± Primakoff representation [40].
To do this, we fix the gauge by assuming a Hermitian
character of one of the operators si s, for example, si "; then,
we have from formula (2.7) that

si " �
����������������������
2Sÿ s

y
i #si #

q
: �2:8�

Substituting Eqn (2.8) into Eqn (2.6), we obtain the
Holstein ± Primakoff representation. Thus, the Schwinger-
boson representation and the Holstein ± Primakoff represen-
tation are equivalent. This equivalence can, however, be
violated in approximate approaches. Unlike the Holstein ±
Primakoff (or Dyson ±Maleev) representation, the Schwin-
ger-boson representation can easily be extended to an
arbitrary number of boson species (N5 2), which leads to a
model with SU�N�=SU�Nÿ 1� symmetry and makes it
possible to construct a 1=N-expansion [38]. At the same
time, there exists no natural way to introduce Fermi
operators into this representation to take into account the
kinematic interaction. As in the Dyson ±Maleev representa-
tion, in the case of an antiferromagnet we should pass to a
local coordinate system using the substitutions [39]

si " ! ÿsi # ; si # ! si "

in one of the two sublattices.

2.2 Self-consistent spin-wave theory of
quasi-two-dimensional magnets
The interaction of magnons in the lowest (Born) approxima-
tion is considered in the so-called self-consistent spin-wave
theory (SSWT). Many years ago this theory was first applied
to the three-dimensional Heisenberg model [41]; the same
results were later obtained in the context of the variational
approach for the isotropic [42] and anisotropic [43] Heisen-
berg models. Similar ideas have recently been used for the
description of two-dimensional magnets in the `mean-field'
theory for boson operators [38, 39, 44], based on the
representation of spin operators through Schwinger bosons,
and in the `modified spin-wave theory' [45] based on the
Dyson ±Maleev representation. The results of these two
theories agree well with those of the renormalization-group
calculations [46, 47] and with available experimental data for
the excitation spectrum of low-dimensional systems [4]. The
SSWT was also applied to quasi-two-dimensional [48 ± 51],
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frustrated two-dimensional [52 ± 56], and three-dimensional
[53] antiferromagnets.

To derive the SSWT equations, we use the Dyson ±
Maleev representation (2.3). After substituting the represen-
tation of spin operators through boson operators into the
Hamiltonian, it contains the terms of second and fourth
power of boson operators. Whereas the contributions from
the quadratic terms describe the propagation of free spin
waves, the fourth-power terms are responsible for their
interaction. Taking into account the interaction of spin
waves in the lowest approximation, i.e., decoupling the
fourth-power forms of boson operators using the Wick
theorem, we arrive at a quadratic SSWT Hamiltonian

H �
X
i; d

Jdgd �byi bi ÿ b
y
i�dbi� ÿ m

X
i

b
y
i bi ; �2:9�

where

gd? � g � �S� hbyi bi�d?i ; gdjj � g 0 � �S� hbyi bi�djj i �2:10�

are the short-range order parameters satisfying the equations

g � �S�
X
k

Nk cos kx ; g 0 � �S�
X
k

Nk cos kz : �2:11�

To extend the theory to the case of a disordered phase, we
introduced the chemical potential m of bosons into Eqn (2.9);
this makes it possible to satisfy the condition for a total
number of bosons for T > TC [39, 45] (for T < TC, we have
m � 0, so that the number of bosons is not limited). The
calculation of spin correlation functions shows [45] that the
chemical potential directly determines the correlation length
xd in the direction d according to the relationship

xÿ1d �
����������������
ÿ m
jJdgdj

r
: �2:12�

The quantities g and g 0 define spin correlation functions at
neighboring sites:��hSi Si�di

�� � g 2d : �2:13�

Themagnetization of a ferromagnet is determined by the total
number of bosons:

�S � Sÿ
X
k

Nk ; �2:14�

where Nk � N �Ek� is the Bose function, with the spin-wave
spectrum having the form

E SSWT
k � Gk�0 ÿ Gk � Dÿ m ; �2:15�

Gk � 2S
�
g jJ j�cos kx � cos ky� � g 0jJ 0j cos kz

�
;

D � jJ j
�
�2Sÿ 1� z� 4ZS 2

g

�� �S

S

�2

:

For an antiferromagnet, the SSWT equations take the
form [50, 51]

g � �S�
X
k

Gk

2Ek
cos kx coth

Ek

2T
; �2:16�

g 0 � �S�
X
k

Gk

2Ek
cos kz coth

Ek

2T
;

�S � S� 1

2
ÿ
X
k

Gk�0 � Dÿ m
2Ek

coth
Ek

2T
;

where

g � �S� haibi�d?i; g 0 � �S� haibi�djj i; �2:17�

ai and bi are the operators of the Dyson ±Maleev representa-
tion in each of the sublattices, and the dispersion of spin
waves is written as follows:

E SSWT
k � ��Gk�0 � Dÿ m�2 ÿ G 2

k

�1=2
: �2:18�

As in the case of ferromagnets, the chemical potential m of
bosons, which is nonzero at temperatures above the mag-
netic-transition point, determines the correlation length
according to Eqn (2.12).

In the ground state of a ferromagnet, we have �S0 � S and
g0 � g �T � 0� � 1; however, the sublattice magnetizations
and the short-range order parameter of a two-dimensional
antiferromagnet differ from these values because of the
quantum zero-point spin fluctuations:

�S0 � Sÿ 1

2

X
k

�
1��������������

1ÿ f 2
k

q ÿ 1

�
� Sÿ 0:1966 ; �2:19�

g0 � 1� 1

2S

X
k

h
1ÿ

��������������
1ÿ f 2

k

q i
� 1� 0:0790

S
; �2:20�

wherefk � �cos kx � cos ky�=2. The sublatticemagnetization
at S � 1=2 is equal to 40% of the result of the ferromagnetic
case and coincides with its magnitude in the SWT [16], while
the renormalization of the in-plane exchange parameter
reaches 15%. As in the standard SWT, the spectrum of spin
waves in the ordered phase in the absence of anisotropy
(D � 0) is gapless and at small wave vectors k has the form
Ek � Dk;2 in ferromagnets (FMs), and Ek � ck in antiferro-
magnets (AFMs). Here, D is the spin-wave stiffness, and c is
the spin-wave velocity. In the SSWT, these parameters are
expressed through the parameters g and S according to the
relationship

D � JS ; c �
���
8
p
jJ j gS : �2:21�

The spin stiffnesses of ferromagnets and antiferromagnets,
determined from an analysis of transverse susceptibility, are
expressed as

rs �
JS 2 �FM� ;
jJ j gS �S0 �AFM� :

�
�2:22�

The renormalized (observed) parameters of interplane
exchange and anisotropy, found from the excitation spec-
trum, are written down as

fr � D
gjJ jS �

1

gS

�
�2Sÿ 1� z� 4ZS

g

�� �S

S

�2

; �2:23�

ar � 2g 0

g
� a �S

S
: �2:24�

Note that, unlike the in-plane exchange parameter, the
renormalized parameters a, Z, and z are proportional to the
magnetization and, therefore, exhibit a strong temperature
dependence.

At finite temperatures in the absence of interplane
exchange and anisotropy (J 0 � 0, D � 0), no long-range
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order exists in accordance with the Mermin ±Wagner
theorem, so that �S � 0, m < 0 (solutions with �S 6� 0 and
m � 0 do not exist because of the divergence of the integrals
in Eqns (2.11) and (2.16) forT > 0 and m � 0). Themagnitude
of the chemical potential m of bosons is determined by
Eqn (2.13) for a ferromagnet, and by the last of the equations
(2.16) with �S � 0 for an antiferromagnet. At low tempera-
tures (T5 jJ jS 2), the absolute value of the chemical potential
is exponentially small, so that the correlation length
x � ����������������ÿjJgj=mp

is exponentially large (the so-called renorma-
lized classical regime):

x �
CF

x

����
J

T

r
exp

�
2prs
T

�
�FM� ; �2:25�

CAF
x

�
J

T

�
exp

�
2prs
T

�
�AFM� ; �2:26�

8>>><>>>:
where CF

x and CAF
x are the spin-dependent constants.

Relations (2.25) and (2.26) agree with the results of the one-
loop renormalization-group (RG) approach [46, 47]. A two-
loop RG analysis changes only the preexponential factor
which in the AFM case becomes a temperature-independent
constant [46], whereas in the FM case it is proportional to
�T=J �1=2 (see Ref. [47]). In the presence of interplane
exchange and at not-too-high temperatures (T < TM; the
temperature TM of magnetic ordering will be calculated
below), a long-range magnetic order occurs; in this case,
Eqns (2.11) and (2.16) have solutions with �S > 0. Although
the SSWT can only be substantiated at temperatures T5TM

(at which a pronounced long-range order exists and the spin-
wave interaction is small), we extrapolate the SSWT results to
higher temperatures (T � TM), which will make it possible to
compare the SSWT results with those of more intricate
theories, which will be considered in Section 3.

At low temperatures (T5 jJ 0jS ) and at arbitrary J 0=J, the
corrections to the magnetization of the ground state of a
ferromagnet are proportional to T 3=2, whereas the short-
range order parameters exhibit a weaker T 5=2-dependence;
for antiferromagnets, the corresponding dependences are
proportional to T 2 and T 4, respectively [51]. For T > TM,
we again have �S � 0 and m < 0, as in the two-dimensional
case at finite T.

To study numerically the temperature dependence of
magnetization and short-range order parameters at not-too-
small magnitudes of interplane exchange, it is convenient to
apply the approximation of an effective short-range order
parameter, using the substitution [51]X

d

Ji; i�d gd �byi bi ÿ b
y
i bi�d�! geff

X
d

Ji; i�d �byi bi ÿ b
y
i bi�d�:

�2:27�

The temperature dependences of magnetization and the
short-range order parameter of a ferromagnet for different
J 0=J are shown in Figs 1 ± 3. At small positive Tÿ TM, we
have ÿm / �Tÿ TM�2 (see Fig. 3 for the ferromagnetic case;
the same situation takes place in antiferromagnets), so that
according to Eqn (2.12) the critical exponent for the
correlation length is n � 1. Since the magnetization varies
linearly near TM, the critical exponent for the magnetization
is b � 1. The effect of corrections of higher orders in 1=S on
themagnitude of critical exponents is discussed in Sections 2.4
and 2.5. In the classical limit (S!1), the SSWT equations
are simplified and for T < TM (m � 0) the averaged (over

nearest neighbors) short-range order parameter

geff�T � �
4Jg� 2J 0g 0

J0
�2:28�

(but not the magnetization!) satisfies the standard mean-field
equation

geff
S
� B1

�
J0geffS

T

�
; �2:29�

where B1�x� � cothxÿ 1=x is the Langevin function (the
Brillouin function in the classical limit). The temperature T �,
at which geff�T �� � 0, proves to be higher than the magnetic-
transition temperature TM, so that geff�TM� > 0 and the
behavior of geff for T > TM becomes more complex than
that described by Eqn (2.29).

At small values of the interplane exchange (J 0=J5 1) and
of the anisotropy (Z, z5 1), analytical results for the
temperature dependence of magnetization in a wide tempera-
ture range can be obtained [48, 51]. In this case, the SSWT
leads to different results for magnetization in the so-called
`quantum' and `classical' temperature regimes. It turns out
that these regimes are not related directly to the cases of
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Figure 1. Temperature dependence of the magnetization of quasi-two-

dimensional ferromagnets at different ratios between interplane and in-

plane exchange integrals, J 0=J (S � 1=2).

0 0.4 0.8 1.2 1.6
0.5

0.6

0.7

0.8

0.9

g=J

T=J

J 0=J � 1:00
J 0=J � 0:30
J 0=J � 0:01

Figure 2. Temperature dependence of the short-range order parameter g at
the same values of parameters as in Fig. 1.
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quantum (S � 1) and classical (S4 1) spins (although the
classical regime is realized only for S4 1), since the appro-
priate criteria also contain temperature (see below).

In the quantum regime, which takes place at not-too-low
temperatures:

J 0S5T5 JS �FM� ;

�JJ 0�1=2S5T5 jJ jS �AFM�;
�2:30�

the magnetization (sublattice magnetization) is written out as
follows:

�S �
Sÿ T

4pJS
ln

T

J 0g 0S
�FM�;

�S0 ÿ T

4p jJ j gS ln
T 2

8JJ 0gg 0S 2
�AFM� :

8>>><>>>: �2:31�

The short-range order parameters are determined by the
relations g � g0 and

g 0 �
Sÿ T

4pJS

�
ln

T

J 0g 0S
ÿ 1

�
�FM�;

�S0 ÿ T

4p jJ j gS
�
ln

T 2

8JJ 0gg 0S 2
ÿ 1

�
�AFM� ;

8>>><>>>: �2:32�

so that g 00 � �S0. Note that in the quantum regime (2.30) the
integrals with respect to quasimomenta in the SSWT
equations are determined by the contribution from quasi-
momenta q that are smaller than q0, where

q0 �

�
T

JS

�1=2

�FM�;

T

c
�AFM�;

8>>><>>>: �2:33�

rather than by the quasimomenta in the entire Brillouin zone.
For critical temperatures in the quantum regime (2.30), we
obtain

TC � 4pJS 2

ln �T=J 0g 0cS �
; �2:34�

TN � 4p jJ j gc �S0

ln �T 2=8JJ 0gcg 0cS 2� ;

where gc � g0 and g 0c are the renormalized exchange para-
meters for TM � TC (TM � TN); the parameter g 0c found from
formulas (2.32) is written as

g 0c �
TM

4p
jJ j gcS 2 J 0 : �2:35�

The renormalization of the interplane exchange interaction in
formula (2.34) leads to a substantially lower value of theCurie
(N�eel) temperature as compared to its value in the SWT, since
gcg
0
c=JJ

0 � TM=4pJS 2 5 1.
At large S (classical limit), we obtain for ferromagnets and

antiferromagnets for T4 jJ jS the following expressions

�S � Sÿ T

4p jJ jS ln
q 2
0 J

J 0g 0
; �2:36�

g 0 � Sÿ T

4p jJ jS
�
ln

q 2
0 J

J 0g 0
ÿ 1

�
: �2:37�

In contrast to the results obtained in the quantum case, the
expressions for the magnetization in this limit are nonuniver-
sal, since they depend on the type of lattice through the cut-off
parameter q 2

0 (q 2
0 � 32 for a square lattice). The correspond-

ing expression for the critical temperature of a classical
magnet with 15 ln �q 2

0 J=J
0�5 2pS has the form

TM � 4p jJ jS 2

ln �q 2
0 J=J

0g 0c�
; �2:38�

where g 0c � TM=4p jJ jS, and the critical temperature is the
same for classical ferromagnets and antiferromagnets. In this
case, the results obtained in the SWT, in which g 0c=S! 1, are
reproduced with a logarithmic accuracy.

As in the case of weak interplane exchange interaction, the
separation of logarithmic contributions at small anisotropies
leads to the following relations

�S � Sÿ T

4pJS
ln

T

D
�FM�; �2:39�

�S � �S0 ÿ T

4p jJ j gS ln
T 2

8gJSD
�AFM�:

Unlike the quasi-two-dimensional case, a nonphysical result
D �TM� � 0 arises here, since the gap in themagnetic spectrum
is proportional to � �S=S� 2 (in fact, the finite magnitude of the
gap at T � TM is related to topological excitations, namely,
`domain walls' which are not taken into account in the SWT).
Thus, the SWT is unable to describe the temperature
dependence of the gap D �T � near TM. Introducing formally
Dc � D �TM�, the critical temperature for 2pS5 ln �1=D�
becomes

TC � 4pJS 2

ln �T=Dc� ; �2:40�

TN � 4p jJ jS �S0gc
ln �T 2=8JgcSDc� :

In the limit of large S, we find for both ferromagnets and
antiferromagnets:

�S � Sÿ T

4p jJ jS ln
jJ jSq 2

0

D
: �2:41�

The magnetization (2.41) vanishes at a temperature

TM � 4p jJ jS 2

ln
ÿjJ jSq 2

0 =Dc

� �2:42�
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Figure 3. Temperature dependence of the gap in the spectrum of bosons at

the same values of parameters as in Fig. 1.
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corresponding to the critical temperature for a classical
magnetwithan easy-axis anisotropy

�
15 ln �jJ j q 2

0 =D�52pS
�
.

Equations (2.34) and (2.38) can be compared with the
results of the Tyablikov approximation for the magnetic-
transition temperature of layered compounds [28, 57]:

TM � 4p jJ jS 2

ln
ÿjJ j q 2

0 =J
0� �2:43�

at q 2
0 � 32. The result (2.43) is smaller than that obtained in

the SSWT [see Eqn (2.34)] and, therefore, better describes the
experimental data (see Section 2.6). However, Eqn (2.43)
coincides with the result obtained using the spherical model
(which is adequate only in the classical limit S!1 [64]) and
with the result obtained in the spin-wave approximation in
the classical regime. This implies that the Tyablikov approx-
imation near the critical temperature does not take into
account quantum fluctuations which are important at small
values of S. Thus, the Tyablikov approximation can be to
some extent satisfactory from the practical but not from the
theoretical viewpoint.

Although all the above-mentioned approaches lead
(within logarithmic accuracy) to the same value of the N�eel
temperature, this accuracy is insufficient for a quantitative
description of experimental data. In addition, spin-wave
theories incorrectly describe critical behavior. Formally, the
SSWT corresponds to the limit N!1 in the
SU�N �=SU�Nÿ 1� generalization of the Heisenberg model
[38]. To improve the description of the critical region and to
more exactly calculate the Curie (N�eel) temperature, we
should consider fluctuation corrections to the SWT results
with a higher accuracy than in the SSWT. The calculation of
first-order corrections in 1=N in the SU�N �=SU�Nÿ 1�
model makes it possible to describe the region of low and
intermediate temperatures T9TM, but cannot ensure a
correct description of the critical behavior [58]. The restric-
tions of this approach in the critical region are related to the
fact that excitations of a non-spin-wave character in the
above-mentioned generalization of the Heisenberg model
are represented through bound states of spin waves [59] and
their consideration is quite difficult in terms of the 1=N
expansion. Therefore, approaches which make it possible to
describe both the region of intermediate temperatures and the
critical region should be developed. Such approaches will be
considered in Sections 2.3 ± 2.5.

2.3 Field-theoretical description of quasi-two-dimensional
magnets with localized moments
To correctly describe thermodynamic properties of magnets
in a wide temperature range, we should perform summation
of the leading contributions to the thermodynamic quantities
in all orders of the perturbation theory in magnon ±magnon
interaction. In this case, the kinematic interaction of spin
waves becomes important in a wide temperature range only
for systems in which TM is not small as compared to jJ jS 2

(e.g., in three-dimensional systems). For layered systems, the
kinematic interaction is not very important because of the
smallness of the magnetic-transition temperature:
TM 5 jJ jS 2 (in fact, this interaction only plays a role in a
small critical vicinity of TM).

At the same time, the correct treatment of dynamic
magnon interaction is critically important. In summing
diagrams that describe the effect of this interaction beyond
the lowest-order perturbation theory, the RG analysis can be

used, which has successfully been employed for the descrip-
tion of classical and quantum isotropic magnets in spaces
with a dimension of d � 2 [46, 60] and d � 2� e [61, 62]. In
these cases, the excitation spectrum only weakly differs from
the spin-wave one. Thus, at d � 2� e, the corrections to the
spectrum of spin waves are dEk � jJ je ln k. In this case, the
relationship TM=

ÿjJ jS 2
� � e is valid for the magnetic-

transition temperature and the standard technique of the
e-expansion can be applied [61, 62]. The corresponding results
of the RG analysis coincide with the results obtained in terms
of the 1=N expansion in the SU�N �=SU�Nÿ 1� general-
ization of the Heisenberg model [58].

In the case of quasi-two-dimensional magnets with a weak
interplane exchange interaction and/or weak easy-axis type
anisotropy, the magnetic-transition temperature is also small
compared to jJ jS 2, but the excitation spectrum can substan-
tially differ from the spin-wave spectrum. In particular, three
temperature regimes can be distinguished [63].

At low temperatures (T5TM, first regime), the SWT
alone is applicable. At intermediate temperatures (T � TM,
outside the critical region, second regime), the interaction of
spin waves becomes substantial, but the spin fluctuations are
of a two-dimensional isotropic character (for which reason
this regime is called below the `two-dimensional Heisenberg
regime'); the RG method can be applied when describing
magnetic properties in this regime. Finally, in a narrow
critical range near TM there occurs a change from the above-
mentioned two-dimensional Heisenberg regime to a three-
dimensional Heisenberg critical regime in which fluctuations
of a non-spin-wave character are essential (third regime). In
the presence of anisotropy, the fluctuations in the critical
regime are due to topological excitations such as domain
walls, i.e., they are `two-dimensional Ising' excitations. In
both cases, the picture of spin waves becomes completely
inadequate in a sufficiently narrow critical region. Thus, this
region should be considered with account for the non-spin-
wave excitations.

To consider excitations of this type, it is suitable to use,
instead of the initial Heisenberg model, the so-called
O�N �=O�Nÿ 1� model with a large number N of spin
components, which makes it possible to formally introduce
a small parameter into the theory [27]. AsN!1, this model
is equivalent to the sphericalmodel [64]; at finiteN, it properly
takes into account corrections related to spin ± spin interac-
tions, since it is not based on the spin-wave picture of the
excitation spectrum. This circumstance leads to important
advantages at temperatures comparable to the phase
transition temperature, but meets some difficulties at low
and intermediate temperatures, at which the excitations are
of a purely spin-wave nature. Thus, the RG approach and
1=N-expansion in the O�N �=O�Nÿ 1� model have advan-
tages in different temperature regions and mutually supple-
ment one another. Whereas the first well describes the two-
dimensional regime which is realized at intermediate tem-
peratures, the 1=N-expansion technique satisfactorily
describes the critical region.

The application of the RG approach and the 1=N-
expansion implies a reformulation of the initial problem of
calculating the thermodynamic properties of the model with
Hamiltonian (2.1) in terms of a path integral [65, 66]. In this
formalism, the model is characterized by the generating
functional Z �h� which represents the partition function of
the system in an external nonuniformmagnetic field h, so that
the magnetization and the correlation functions are deter-
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mined by the logarithmic derivatives of Z �h� with respect to
the field. The generating functional is derived on the basis of
coherent states [65, 66]

jnii � exp �ÿijiS
z
i � exp �ÿiyiS y

i �j0i ; �2:44�

which are parametrized by vectors ni with a unit length and
polar coordinates (yi, ji) that are determined for each lattice
site i, and j0i is the eigenstate of the operator Sz

i with a
maximum spin projection: Sz

i j0i � S j0i. The advantage of
states (2.44) lies in the fact that the average value of spin
operators over them has a simple form

hnijSm
i jnii � Snm

i ; �2:45�

i.e., the coherent states correspond to `quasiclassical' spin
states. It can be shown that for coherent states (2.44) the
generating functional can be written down as

Z �
�
Dn exp

��1=T
0

dt
�X

i

A�ni� qniqt
ÿ hn jH j ni

��
;

�2:46�
where the first term in the exponent takes into account the
dynamics of spins related to their quantum character, and the
second term describes the spin interaction; integration in
formula (2.46) is performed over the angular variables of the
vector ni at each site and for each imaginary time t, and A�n�
is the vector potential of a unit magnetic monopole which
satisfies the relation n rotA�n� � 1. The contribution to the
action with a time derivative corresponds to the Berry phase
[29].

The average over coherent states of Hamiltonian (2.1) can
easily be calculated using relationship (2.45), which leads to
the following expression for generating functional of the
model (2.1):

Z �h� �
�
DnDl exp

�
JS 2

2

� 1=T

0

dt
X
i; d

�
2i

JS
A�ni� qniqt

� ni ni�djj �
a
2
ni ni�d? � Z nz

i n
z
i�djj

� ~z�nz
i �2 � hnz

i � ili�n 2
i ÿ 1�

��
; �2:47�

where ~z � 2z�1ÿ 1=2S�. Functional (2.47) is a generalization
of the well-known generating functional of the two-dimen-
sional isotropic Heisenberg model [66] to the presence of
interplane exchange (the term proportional to a) and
anisotropy (the terms proportional to Z and ~z). The last term
under the summation sign is due to the restriction n 2

i � 1, and
li are corresponding Lagrange multipliers. Functional (2.47)
contains two scales of length:

xJ 0 �
a

max �a;~z; Z�1=2
4 a ; �2:48�

and

Lt �
a

������
JS

T

r
(FM) ,

c

T
(AFM) ,

8><>: �2:49�

where a is the lattice parameter. These scales have different
physical meaning. The xJ 0 scale corresponds to a change in the

type of fluctuations: the two-dimensional isotropic fluctua-
tions change to three-dimensional isotropic or two-dimen-
sional anisotropic fluctuations, depending on which of the
parameters dominates in the denominator of Eqn (2.48),
anisotropy or interplane exchange. At the same time, the
quantity Lt determines the role of quantum spin fluctuations:
Lt 5 a corresponds to the classical fluctuations at which the
spin dynamics can be neglected, and Lt > a corresponds to
the quantum fluctuations.

Generating functional (2.47) can now be reduced to a
form suitable for concrete calculations; the result is deter-
mined by the temperature regime for which the calculations
are performed. In the classical regime (T4 JS), we have
Lt 5 a. Neglecting the dynamics of the field n (i.e., its
dependence on imaginary time) yields a functional

Zcl�h� �
�
DnDl exp

�
r 0
s

2T

X
i

�
ni ni�djj �

a
2
ni ni�d?

� Znz
i n

z
i�djj � ~z �nz

i �2 � hnz
i � ili�n 2

i ÿ 1�
��

�2:50�

with a `bare' spin stiffness r 0
s � jJ jS 2. To derive expression

(2.50) for the antiferromagnetic case, we should make
substitutions ni ! ÿni, and li ! ÿli for one of the two
sublattices. In the classical case, the results for Z are identical
for ferromagnets and antiferromagnets. In the continuum
limit, action (2.50) coincides with the action for the classical
nonlinear sigma model [66]. However, the continuum limit
cannot be used in a wide temperature range (not only in the
critical region), since not only long-wavelength but also short-
wavelength excitations contribute to the thermodynamic
properties.

In the quantum case, we can pass to the continuum limit
for each layer in view of the condition xJ 0 4Lt. For a
ferromagnet, it is convenient to use the representation [65, 66]

A�n� � z� n

1� �zn� ; �2:51�

where z is the unit vector along the z-axis, and to introduce a
two-component vector field p � nÿ �nz� z describing fluctua-
tions of the order parameter. For a quantum antiferro-
magnet, we should apply the Haldane procedure [29] (see
also Ref. [66]) which permits integration over `fast' compo-
nents of the fields ni. To do this, the vector ni is represented in
the form ni � Li � �ÿ1�i ri, where Li and ri are uniform
(`fast') and sublattice (`slow') components of the vector, with
Liri � 0. To separate the `fast' and `slow' components at
temperatures below the transition point, we use the parameter
xJ 0 4 a instead of the standard correlation length equal to
infinity. Using this procedure, we obtain the following
generating functional of the quantum nonlinear sigmamodel:

ZAF�h� �
�
DsDl exp

�
ÿ r 0

s

2

� 1=T

0

dt

�
�
d2r
X
iz

�
1

c 20
�qtsiz�2 � �Hsiz�2 �

a
2
�siz�1 ÿ siz�2

ÿ f �s z
iz
�2 � hs z

iz
� il�s 2

iz
ÿ 1�

��
; �2:52�

where siz is the three-component field of unit length, iz is the
order number of the layer, and c0 �

���
8
p

JS is the bare spin-
wave velocity. Model (2.52) is a generalization of the
quantum nonlinear sigma model for the case where inter-
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plane exchange and anisotropy are present. Previously, this
model was applied to describing two-dimensional isotropic
antiferromagnets in the vicinity of quantum critical points
[46]; its classical analog was used for the estimation of the
Curie or N�eel temperatures of isotropic classical magnets in
a space of dimension d � 2� e and for the determination of
corresponding critical exponents [62]. In spite of the
continuum character of model (2.52), in the case of
quantum magnets, as shown in Sections 2.4 and 2.5, the
Curie (N�eel) temperature can be expressed through the
parameters of the ground state, since in this case only
excitations with a wave vector k < �T=J �1=2 5 1 play an
essential role (see Section 2.2).

In the absence of anisotropy and an external magnetic
field, model (2.52) corresponds to the O�3�=O�2� symmetry
group corresponding to the possibility of rotation of one of
the three base vectors in the three-dimensional space [O�2� is
the group of rotations in the basal plane, which do not change
the chosen base vector]. Unlike model (2.47), the model (2.52)
can be extended to the case of an N-dimensional spin space
O�N �=O�Nÿ 1� with an arbitrary N by introducing a field
si � fs1; . . . ; sNg and using a substitution s z ! sN.

2.4 Description of the intermediate temperature regime in
the context of the renormalization group approach
In the intermediate two-dimensional Heisenberg regime, the
interaction of spin waves is significant, but the spin-wave
excitations are well defined. The existence of such a regime
is a specific feature of quasi-two-dimensional systems with
small interplane exchange and anisotropy. As was already
seen from the results of spin-wave approaches (Section 2.2),
logarithmic divergences, which depend on the parameters
ln �xJ 0=Lt� in the quantum case and ln �xJ 0=a� in the classical
case, exist in this regime in the magnetization (sublattice
magnetization).

In order to go beyond the perturbation theory and
determine the evolution of thermodynamic properties with
increasing temperature, we should sum these divergences. The
most efficient tool here is the RG approach [46, 60 ± 63] which
introduces a renormalized model containing no logarithmic
divergences and considers the evolution of its parameters with
changing scales of length. This model allows a description in
terms of the perturbation theory (in the case under considera-
tion, in terms of the SWT).

We first consider the case of a quantum antiferromagnet.
As effective parameters in this case, we should consider the
sublattice magnetization and the phase transition tempera-
ture; it is suitable to express these quantities through the
observed parameters of the ground state: magnetization �S0,
spin stiffness rs, spin-wave velocity c, interplane exchange ar,
and anisotropy fr � �D=rs� �S0, where D is the gap in the
energy spectrum. At the first step of the RG transformation,
parametersZi � fZ1;2;3;Zc;Zsg of quantum renormalization
are introduced according to the expressions

�S0 � ZsS; g0 � gZ1; c0 � cZc ;

f � frZ2; a � arZ3;

which relate the observed parameters g, c, ar, and fr of the
ground state to the (bare) parameters g0, c0, a, and f of the
initial model, where g � c=rs and g0 � c0=r 0

s are the
dimensionless renormalized and bare coupling constants of
the model (2.52), respectively.

The renormalization constants Zi are nonuniversal, i.e.,
they depend on the details of the crystal structure, and,
therefore, can be determined only from the consideration of
the initial lattice (noncontinuum) version of the generating
functional (2.47). The above parameters can be calculated
using SWT, which is in fact an expansion into a series in g
(g � 1=S for large S). For an antiferromagnet with a square
lattice, the results of Section 2.2 yield the relations

Zs � 1

Z1
� Z2 � Z

1=2
3 � 1ÿ 0:197

S
; �2:53�

Zc � 1� 0:079

S

to first-order terms in 1=S [16, 38 ± 45]. To take into account
quantum renormalizations, it is convenient to have an
equivalent of relations (2.53) determined in terms of the
continuum model (2.52). In the first order in g, we find

Zs � 1ÿ �Nÿ 1� gL
4p
�O �g 2�;

Z1 � 1ÿ �Nÿ 2� gL
4p
�O �g 2�; Zc � 1�O �g 2�; �2:54�

Z2 � 1� gL
2p
�O �g 2�; Z3 � 1� 3gL

4p
�O �g 2�;

where L is the ultraviolet cut-off parameter necessary for the
regularization of divergences that arise upon calculation of
the ground-state parameters. After following the procedure
of quantum renormalization (2.54), the theory becomes
completely universal, so that the thermodynamic properties
in it are independent of the cut-off parameter L.

The resulting theory, however, contains logarithmic
divergences ln �xJ 0=Lt� which are the consequence of the
two-dimensional character of spin fluctuations in the
temperature regime under consideration. To sum these
divergences in the framework of the RG approach, a
formal infrared cut-off parameter LR is introduced in the
second step of the RG transformation, so that the
divergences are replaced by ln �1=�LRLt��. Below, we will
consider temperature-dependent renormalization para-
meters ~Zi introduced according to the field-theoretical RG
formulation [61, 67],

g � gR ~Z1; ur � uR ~Zu;

p � pR ~Zs; h � hR
~Z1����
~Z

p
s

;

fr � fR ~Z2; ar � aR ~Z3 ; �2:55�
which are functions of LR and are determined from the
condition of the absence of logarithmic divergences in the
renormalized theory; the subscript R corresponds to quan-
tum- and temperature-renormalized quantities, and
ur � c=T. As in the case of the classical nonlinear sigma
model [61], the introduction of five renormalization para-
meters for five independent parameters of themodel proves to
be sufficient to eliminate all divergences (see also Ref. [67]).

An infinitely small change in LR generates a renormaliza-
tion group transformation. For our purposes, it is required to
take into account singular two-loop contributions in the
diagrams for the renormalized quantities. The correspond-
ing results for the effective temperature t � g=�4pu� �
T=�4prs� and for the sublattice magnetization in the renor-
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malized theory are written down in the form

LR
d lnZ2

dLR
� ÿ2t�O �t 2� ; �2:56�

LR
d lnZ3

dLR
� ÿt�O �t 2� : �2:57�

In the renormalization of the parameters of interplane
exchange and anisotropy, it is sufficient to consider singular
contributions from the diagrams with a single loop, which
yields

LR
d lnZ2

dLR
� ÿ2t�O �t 2� ; �2:58�

LR
d lnZ3

dLR
� ÿt�O �t 2� : �2:59�

Equations (2.56) ± (2.59) determine the evolution of themodel
parameters upon RG transformation with the scaling para-
meterLR; the final value of the parameterLR � max �a; f 1=2�
is determined by the absence of logarithmic divergences in the
effective model.

Solving Eqns (2.58) ± (2.59) makes it possible to obtain
temperature renormalization of the parameters of interplane
exchange and anisotropy:

ft
fr
� �s 4=�Nÿ1�

r

�
1�O

�
tr

�s 1=b2
r

��
; �2:60�

at
ar
� �s 2=�Nÿ1�

r

�
1�O

�
tr

�s 1=b2
r

��
; �2:61�

where �sr is the relative sublattice magnetization; it is
determined by the solution to Eqns (2.56) ± (2.57), which has
the form [63]

�s 1=b2
r � 1ÿ tr

2

�
�Nÿ 2� ln 2

u 2
r D � ft; at�

� 2

b2
ln

�
1

�sr

�
� 2 �1ÿ �s 1=b2

r � �O

�
tr

�s 1=b2
r

��
; �2:62�

where

D � f; a� � f� a�
�����������������
f 2 � 2af

p
�2:63�

is a universal function of anisotropy and interplane exchange.
The quantity

b2 �
Nÿ 1

2 �Nÿ 2� �2:64�

is the limit of the critical exponent b2�e of magnetization in
the space of dimension d � 2� e [61] as e! 0; in the
physically important case of N � 3, we have b2 � 1. The
leading logarithmic term in brackets in expression (2.62)
corresponds to the SSWT result (2.31), whereas the other
two terms describe corrections to this theory. The expressions
(2.60) ± (2.62) at N � 3 coincide with the SSWT results (2.23)
and (2.24).

As was already mentioned above, the N�eel temperature
cannot be calculated directly in the RG approach, since
contributions from non-spin-wave excitations are important
near TM; this leads to the necessity of allowing for diagrams
with an arbitrary number of loops. However, we can derive a

general expression for the N�eel temperature as follows. Let us
first consider the crossover temperature t �r to the critical
regime. In terms of the RG analysis, this temperature is
determined by the condition of the crossover into the regime
of strong coupling, i.e., by the condition t � 1 (which is
equivalent to t �r � �s 1=b2

r ). In the further RG transformation,
the three-dimensional Heisenberg (or two-dimensional Ising)
fluctuations can affect only the constant (nonsingular) term
O �tr=�s 1=b2

r �, which is replaced by the universal function
FAF�ar=fr� � 1. Thus, for the N�eel temperature we find the
expression

tN � 2

�
�Nÿ 2� ln 2

u 2
r D � fc; ac�

� 2 ln
2

tN
� FAF

�
ar
fr

��ÿ1
;

�2:65�

where ac and fc are the parameters of interplane exchange
interaction and anisotropy at the magnetic-transition point,
respectively, namely

fc � frt
2=�Nÿ2�
N ; ac � art

1=�Nÿ2�
N ; �2:66�

with t � T=�2prs�, and ur � c=T. The second term in brackets
in formula (2.65), which represents the correction to the
SSWT, is on the order of ln ln�2T 2

N=a� and substantially
reduces the N�eel temperature as compared to its value in the
SSWT. The function F is determined by the non-spin-wave
excitations and cannot be found in the context of the RG
approach. In the quasi-two-dimensional case, the function F
can be calculated using the 1=N-expansion (see Section 3); a
more general case requires numerical analysis, for example,
applying the quantumMonte Carlo method.

The ferromagnetic case can be considered similarly to the
antiferromagnetic one. In this case, the renormalizations
caused by quantum fluctuations are absent, so that we can
restrict ourselves to temperature renormalizations. In order
to construct a perturbation theory for the generating
functional (2.47), it is convenient to pass from real fields px
and py to cyclic components

p� � px � ipy : �2:67�

The bareGreen's functions of the fields p�, and pÿ are written
down as

G �0��k; ion� � 1

g
�ion � k 2 � a �1ÿ cos kz� � f� h�ÿ1;

�2:68�
where g � 1=S. Since the quantum renormalization is absent
(Zi � 1), the subscripts `r' on the parameters of the ground
state can be omitted. Themultipliers ~Zi have the same form as
in the antiferromagnetic case with N � 3. For the relative
magnetization �s � �S=S � �S � hSzi� and for the Curie tem-
perature, we obtain Eqns (2.62) and (2.65) with substitutions
u 2
r ! u and tr ! t, respectively [63].

In the classical case, the bare Green's function of the field
p � nÿ �nz�z has the form

G �0��k� � 1

2pt

�
2 �2ÿ cos kxaÿ cos kya�

� a �1ÿ cos kza� � f� h
�ÿ1

; �2:69�
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where a is the lattice parameter. The renormalization
constants in this case can be represented as

Zi �t; a� � ZLi�t� ~Zi �tL; a� ; �2:70�
where tL � tZÿ1L1 , and ZLi contain all nonlogarithmic con-
tributions which remain unchanged upon the RG transfor-
mation and are determined from the perturbation theory; the
subscript `L' labels nonuniversal renormalization parameters;
~Zi contain all other contributions determined by the structure
of a concrete lattice. An equation for the magnetization in the
two-loop RG approach for a classical magnet can be derived,
as in the quantum case; to do this, substitutions u 2

r ! 1=64
and tr ! tL should be made [63] in Eqns (2.62) and (2.65) for
�s and TM.

Thus, the RG approach is sufficient for calculating
magnetization at temperatures that are not too close to the
magnetic-transition temperature, at which spin-wave excita-
tions play an important role; this approach also makes it
possible to calculate the Curie (N�eel) temperatures; the
resulting expressions contain, however, an unknown con-
stant which is universal in the quantum case.

2.5 Description of the critical regime and the calculation
of the N�eel temperature in quantum quasi-two-dimensional
antiferromagnets
The treatment of non-spin-wave excitations, which are
necessary for a correct description of the critical region and
complete calculation of the N�eel temperature, is possible in
the framework of the 1=N-expansion. This expansion, based
on a simplification of the initial model in the limit N!1,
was first used for the calculation of critical exponents in thef4

model (see, e.g., Ref. [68]). Later on, the 1=N-expansion was
successfully employed for describing the properties of the
quantum Heisenberg model near the quantum critical point
[27].

For the Heisenberg model, the limit N!1 coincides
with the so-called spherical model [64] which neglects the
connection between various spin components. In this case, the
physical condition S 2

i � S �S� 1� is replaced by the condi-
tion for the average taken over sites:X

i

S 2
i � NS �S� 1� : �2:71�

Such an approximation leads to a significant simplification of
the model and allows its exact solution. The further correc-
tions calculated using expansion in the vicinity of the saddle
point lead to successive improvement in approximation (2.71)
with respect to the 1=N parameter.

Let us consider the application of the 1=N-expansion to
the calculation of the Curie (N�eel) temperatures for quasi-
two-dimensional magnets [28]. In the quantum case, an
extension of the Heisenberg model to the model (2.52) with
an O�N�=O�Nÿ 1� symmetry is used. We first consider the
isotropic case. In view of the presence of long-range order for
T < TM, we perform a field shift s � ~s� �s, where �s is the
relative sublattice magnetization �S=S. The diagonal elements
(the only nonzero elements) of Green's functions of the field ~s
are written in the form

Gmn�k; kz;on� � r 0
s

�
dt
D
T
�
~sm
k; kz
�t� ~s n

ÿk;ÿkz�0�
�E
; �2:72�

Gmn�k; kz;o� � r 0
s

S 2
wmm�k�Q; kz � p;o�dmn ; �2:73�

where Q � �p; p� is the wave vector of the antiferromagnetic
structure in the plane; forN � 3, they are proportional to the
nonuniform dynamic spin susceptibility

wab�k; kz;o� �
X
i

exp
�
i �kRi � kzR

z
i �
�
hS a

0 jS b
i i
�
o ;

�2:74�

where S a
i are the spin operators; a, b � x; y; z, and Ri is the

radius vector of the ith site. For certainty, we below assume
that the sublattice magnetization is oriented along the Nth
direction, i.e., �sm � �sdmN. Then, G

NN corresponds to long-
itudinal Green's function Gl, whereas the other diagonal
components correspond to transverse Green's functions Gt.
The condition S 2

i � S �S� 1� in these notations is written out
as

1ÿ �s 2 � T

r0s

X
n

X
m

�
d2k

�2p�2
�
dkz
2p

Gmm�k; kz;on�: �2:75�

After integration over ~s, the generating functional takes
the form

Z �h� �
�
Dl exp

ÿ
NSeff�l; h�

�
; �2:76�

Seff �l; h� � 1

2
ln det Ĝ0 � 1

2g
�1ÿ �s 2� Sp�il�

� 1

2g
Sp

��
il�sÿ h

r0s

�
Ĝ0

�
il�sÿ h

r0s

��
; �2:77�

where

Ĝ0 �
�
q2t
c 20
� H 2 � aDz

�ÿ1
; �2:78�

Dzsiz�r; t� � siz�1�r; t� ÿ siz�r; t�:

Since N enters into action (2.77) only as a multiplier in the
exponent, the limit N!1 [spherical model (2.71)] corre-
sponds to the saddle-point approximation of the functional
Seff �l; h�, which neglects the fluctuations in the field l. For
T < TN, the saddle point has the coordinates il � 0 and
�s 2 6� 0. In this case, for the transverse spin Green's function
we have

G0�k; kz;on� �
�
o 2

n � k 2 � a �1ÿ cos kz�
�ÿ1

: �2:79�

The N�eel temperature found from Eqn (2.75) is equal to

T 0
N �

4prN�1
s

N ln �2T 2
N=ac 2�

; �2:80�

where rN�1
s � N �1=gÿ 1=gc� is the spin-wave stiffness in the

zero-order in 1=N, and gc � 2p2=L is a formal parameter of
the theory. The value obtained from formula (2.80) is smaller
by a factor of N=�Nÿ 2� than those obtained in terms of the
SSWT (2.34) and RG approach (2.62). This difference is due
to the disadvantage of the spherical-model approximation
which considers various spin components to be independent
of one another.

In the first order in 1=N, only the lowest corrections to
condition (2.71) are taken into account, which are caused by
the single exchange of the l-field excitation, which allows for
the coupling between various spin components at the site. The
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general form of the equation for the magnetization for
T4 a 1=2 and ln �2T 2

N=ac
2�4 1 in the first order in 1=N is

given in Ref. [28]. For temperatures not too close to the
magnetic-transition point, where

�Nÿ 2�T
4prs

5
�s 2

�s 2
0

; �2:81�

the equation for the magnetization reads as�
�s
�s0

�1=b2�
1ÿ I2�xs�

�
� 1ÿ NT

4prs

��
1ÿ 2

N

�
ln

2T 2

ar
� 3

N
ln

�s 2
0

�s 2

ÿ 2

N

ln �2T 2=ar�
ln �2T 2=ar� � xs

ÿ I1�xs�
�
: �2:82�

Here, I1;2�xs� are some functions (see Ref. [28]) of the variable

xs � 4prs
�Nÿ 2�T

�s 2

�s 2
0

; �2:83�

�s0 and rs are the sublattice magnetization and spin stiffness of
the ground state in the nonlinear sigma model of a quantum
two-dimensional antiferromagnet [27]:

�s 2
0

rs
� g

N

�
1ÿ 8

3p 2N
ln

NL
16rs

�
; �2:84�

rs � rN�1
s

�
1� 32

3p 2N
ln

NL
16rs

�
; �2:85�

and ar is the renormalized parameter of interplane exchange:

ar � a
�
1ÿ 8

3p 2N
ln

NL
16rs

�
: �2:86�

As in the RG approach, the sublattice magnetization
expressed in terms of quantum-renormalized quantities rs,
�s0, and a is independent of the cut-off parameter L, i.e., is a
universal quantity. The result (2.82) obtained for magnetiza-
tion differs from that of the RG approach (2.62) only in the
coefficient of the subleading term ln ��s0=�s� (6=N instead of
3=b2), which is beyond the accuracy of the first-order
approximation in 1=N. Equation (2.82) not only qualita-
tively correctly describes the two-dimensional regime, but
also allows a description of the sublattice magnetization in the
regime that is transient to critical.

The critical regime is governed by the condition which is
inverse to inequality (2.81):

�s 2

�s 2
0

5
�Nÿ 2�T

4prs
; �2:87�

such that xs 5 1. In this regime, the result of a 1=N -expansion
for the sublattice magnetization is as follows:

�s
�s0
�
�

4prs
�Nÿ 2�TN

��b3=b2ÿ1�=2� 1

1ÿ A0

�
1ÿ T

TN

��b3
; �2:88�

where b3 is the critical exponent of the magnetization:

b3 �
1

2

�
1ÿ 8

p2N

�
; �2:89�

and A0 � 2:8906=N. At N � 3, we have b3 � 0:36, which
coincides with the result of the 1=N-expansion in the f 4

model [68] at d � 3, in agreement with the hypothesis of
universality. The equation for the N�eel temperature TN has
the form

TN�4prs

�
�Nÿ 2� ln 2T 2

N

ar
� 3 ln

4prs
�Nÿ2�TN

ÿ 0:0660

�ÿ1
:

�2:90�
The results for the magnetization in the low-temperature
[Eqn (2.82)] and critical [Eqn (2.88)] regions are smoothly
joined with one another (see Section 2.6).

The excitation spectrum at the point of the magnetic
phase transition is determined by the self-energy part
S�k; kz; 0� at T � TM. For a1=2 5 k5TN, the corresponding
Green's function (G � Gt � Gl) is written as

G �k; kz; 0� � 1

k 2

� �Nÿ 2�TN

4prs
ln

2k 2

a

�1=�Nÿ2�
�Nÿ 1

N

�
1ÿ Z ln

NL
16rs

�
: �2:91�

This equation differs from the previously considered results
of the SWT by the nontrivial logarithmic dependence of
G �k; kz; 0�. The multiplier Nÿ 1 in expression (2.91) has a
simple physical meaning: this is the number of the Goldstone
modes in the N-component model. For k5 a1=2 and kz 5 1,
the momentum dependence of Green's function changes to
become

Gÿ1�k; kz; 0� � �1� A1� aZ=2
c

�
k 2 � ac

2
k 2
z

�1ÿZ=2
; �2:92�

k5 a 1=2; kz 5 1;

where

A1 � Z ln
NL
16rs

� 1

N
ln ln

2T 2

a
� 0:4564

N
; �2:93�

and Z is the three-dimensional critical exponent in the first
order in 1=N for the asymptotics of the correlation function at
the transition point:

Z � 8

3p2N
: �2:94�

In this regime, as is seen from formula (2.92), the excitations
have a three-dimensional nature and are characterized by the
critical exponent Z (Z � 0:09 at N � 3). The other critical
exponents can be found from scaling relationships which are
retained in the framework of the regular 1=N-expansion [68].
The quantity

ac � a�1� A2�
1� A1

; �2:95�

where A2 � ÿ0:6122=N, can be interpreted as a renormalized
parameter of interplane exchange at T � TN.

Using formula (2.95), the relationship between the
renormalized parameters of exchange at low temperatures
and at T � TN is written as

ac � ar

�
1� 1:0686

N

�� �Nÿ 2�TN

4prs

�1=�Nÿ2�
: �2:96�
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As in the case of the SSWT (see Section 2.2), the renormalized
value of the parameter of interplane exchange at T � TN is
lower than its low-temperature value, but the result obtained
on the basis of the 1=N-expansion at N � 3 differs from the
SSWT result by a numerical factor approximately equal to
1.3.

In the presence of a weak easy-axis anisotropy, the
spectrum of excitations in the zeroth order in 1=N, which is
determined by the poles of the unperturbed longitudinal and
transverse Green's functions, contains a gapD � D �ar; fr� for
all the components of sm except for sN:

G 0
t �k;on� �

�
k2 � o2

n � 2a �1ÿ cos kz� � D
�ÿ1

;

G 0
l �k;on� �

�
k2 � o2

n � 2a �1ÿ cos kz�
�ÿ1

:
�2:97�

For sufficiently low temperatures

T4 f 1=2
r ; �Nÿ 2�T ln �T 2=fr�

4prs
5

�s 2

�s 2
0

�2:98�

we obtain for the magnetization in the first order in 1=N the
result (2.39) of the spin-wave theory. For intermediate
temperatures

T �Nÿ 2� ln �T
2=fr�

4prs
4

�s 2

�s 2
0

4
T �Nÿ 2�

4prs
; �2:99�

we have�
�s
�s0

�1=b2
� 1ÿ T

4prs

�
�Nÿ 2� ln T 2

frc 2
� B2 ln

�s 2
0

�s 2

ÿ 2� 2
�s 2

�s 2
0

�O

�
NT

4prs

�s 2
0

�s 2

��
; �2:100�

where

B2 � 3� fr���������������������
f 2r � 2ar fr

p : �2:101�

The temperature-dependent anisotropy parameter can be
found from the relation�

Gt�k; 0�
�ÿ1 � �G 0

t �k; 0�
�ÿ1 � St�k; 0� ÿ Sl�0; 0�
/ k 2 � f �T �; �2:102�

from which we obtain

f �T �
fr
�
�

�s
�s0

�4=�Nÿ2�
: �2:103�

In the critical region determined by the inequality
�s 2=�s 2

0 5T �Nÿ 2�=4prs, the magnetization exhibits an
Ising behavior and the 1=N-expansion is inapplicable. This
manifests itself, in particular, in the derivative q�s=qT
diverging at a certain temperature eTM. However, the
corresponding critical region is very small (as is the critical
region for three-dimensional fluctuations in the isotropic
quasi-two-dimensional case). Therefore, the N�eel tempera-
ture can be estimated as TN � eTM.

Let us summarize the results of the RG approach and
1=N-expansion for the practically important case ofN � 3. In

the spin-wave and two-dimensional regions, i.e., for

�sr 4
T

4prs
; G4D ; �2:104�

the RG result for the relative (sublattice) magnetization is
written as follows:

�sr � 1ÿ T

4prs

�
ln

2G�T �
D � ft; at� � 2 ln

1

�sr
� 2 �1ÿ �sr�

�
;

�2:105�

here, the function D� f; a� is defined by formula (2.63), the
temperature-renormalized values of the interplane exchange
and anisotropy parameters are related as

ft
fr
�
�
at
ar

�2

� �s 2
r ; �2:106�

and the quantities G�T �, �sr, fr, ar, and rs are listed in Table 1.
The equation for TM is written out as

TM � 4prs

�
ln

2G�TM�
D � fc; ac� � 2 ln

4prs
TM
� F

�
f

a

��ÿ1
; �2:107�

where F�x� is a certain (universal in the quantum case)
function which takes on values on the order of unity, and fc
and ac are the parameters of interplane exchange and
anisotropy at T � TM, respectively, which are related as

fc
fr
�
�
ac
ar

�2

�
�

TM

4prs

�2

: �2:108�

Since TM=4prs � 1= ln �1=D�5 1, temperature renormaliza-
tions are important for a correct description of experimental
data. In particular, the interplane exchange and anisotropy
parameters measured at different temperatures can differ
quite significantly. The results (2.31) ± (2.40) obtained in
terms of the SSWT in the limit of zero anisotropy (zero
interplane exchange) differ from Eqns (2.105) and (2.107) in
the coefficients of ln �1=�sr� and ln �4prs=TM� in the second
term in brackets, which are equal to 2 (1) in the SSWT, and
4 (3) in the 1=N-expansion, respectively (with allowance for
the temperature dependences of the parameters of interplane
exchange and anisotropy). Thus, the role of corrections to the
SSWT is more important in a two-dimensional anisotropic
magnet than in an isotropic quasi-two-dimensional one.

The result obtained using the 1=N-expansion in the O�N�
model outside the critical region or, to be exact, for

�s 2
r >

T

4prs
; G4D �2:109�

in the first-order expansion in 1=N is written down as

�sr � 1ÿ T

4prs

�
ln

2G �T �
D � ft; at� � 2B2 ln

1

�sr
� 2 �1ÿ �s 2

r �
�
:

�2:110�

Table 1. Parameters of equations for the sublattice magnetization (2.105)
and the magnetic-transition temperature (2.107) for various cases.
ZL1 � ZL2 � ZL3 � 1ÿ T=8pr0s .

G �T � �sr rs fr ar

Quantum AFM
Quantum FM
Classical FM, AFM

T 2=c 2

T=JS

32

�S= �S0

�S=S
�S=S

gS �S0

r0s
r0sZL1

f �S
2
0 =S

2

f

f Zÿ1L2

a �S0=S

a
aZÿ1L3
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In the particular cases of a � 0 and f � 0, the coefficient of the
second term in brackets in expression (2.110) is twice as large
as in the RG result (2.105), which ensures a more correct
description of the temperatures close to the critical region and
in the critical region itself. The equations for TM have the
form (2.107), identical in both approaches. In the isotropic
case ( f � 0), the result of the 1=N-expansion for the sublattice
magnetization in the critical region is given by

�sr �
�
4prs
TN

��b3ÿ1�=2� 1

1ÿ A0

�
1ÿ T

TN

��b3
; �2:111�

where A0 � 0:9635, and b3 � 0:6.

2.6 Theoretical description of experimental data on the
magnetization and N�eel temperatures of layered systems
Now we consider the application of field-theoretical methods
for an analysis of experimental data. One of the well-studied
layered compounds is La2CuO4 [9, 69]. The value of the
renormalized exchange parameter for this compound,
g jJ j � 1850 K, can be determined from the experimental
data for the spin-wave spectrum at low temperatures [70],
whereas the value of the interplane exchange parameter
(ar � 10ÿ3) can be found from a comparison of the magneti-
zation in the SSWT with the experimental dependence �sr�T �
at low temperatures [28, 63]. Figure 4 displays the experi-
mental temperature dependence of the sublattice magnetiza-
tion in La2CuO4 [69] and the results of spin-wave approxima-
tions (SWT, SSWT, and Tyablikov theory), as well as of the
RG approach and 1=N-expansion method for this com-
pound. The result for the N�eel temperature obtained in the
first-order 1=N-expansion (TN � 345 K) is significantly
lower than those obtained in all spin-wave approximations,
but agrees well with the experimental value T exp

N � 325 K.
The RG approach correctly describes the �sr�T � depen-

dence in the spin-wave region (T < 300 K) and in the region
of two-dimensional fluctuations (which is quite narrow at the

above-given small value of ar), whereas at higher tempera-
tures this approach yields overestimated values of �sr. The
curve obtained in terms of the 1=N-expansion is closest to
experimental data and correctly describes the critical beha-
vior. The results of the numerical solution of Eqn (2.110) in
the temperature region (2.109) and of the dependence (2.111)
in the critical region coincide at the pointT � 330 K, which is
marked by a cross in Fig. 4. The difference between the
theoretical and experimental curves in the range
320 < T < 340 K can be due to the anisotropy effect. At a
fixed D in formula (2.110) and B2 determined from the best
coincidence with experimental data at intermediate tempera-
tures (see Fig. 4), we find the following values: ar � 10ÿ4, and
fr � 5� 10ÿ4. Thus, the approach under consideration
permits us to estimate the relative role of the interplane
exchange and magnetic anisotropy in layered compounds.
Note that in Ref. [71] an alternative explanation of the
difference between the theoretical and experimental results,
based on the consideration of four-spin interaction, was
suggested.

In layered perovskites such as K2NiF4, Rb2NiF4, and
K2MnF4, magnetic anisotropy is known to be more impor-
tant than the interplane exchange. The K2NiF4 compound
has a spin S � 1; the neutron scattering data yield jJ j �
102 K and T exp

N � 97:1 K [4]. Figure 5 displays the experi-
mental �s �T � dependence [1] and the results of spin-wave
approaches, the RG approach, and a numerical solution to
Eqn (2.110). The value fr � 0:0088 was obtained from a
comparison of the results obtained in the context of the
SSWT with the experimental data at low temperatures (this
value agrees well with the experimental evidence: fr � 0:0084
[4]. In the spin-wave and two-dimensional-fluctuation tem-
perature ranges (2.104) (T < 80 K), the curves corresponding
to the 1=N-expansion and the RG approach are located
somewhat higher than the experimental data points, since
the T 2=frc

2 values in this region are small. At the same time,
the 1=N-expansion curve quantitatively agrees well with
experimental evidence. The procedure of extrapolation to
the Ising critical behavior yields TN � 91:4 K, with the width
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1=N

1=N 0

300 400 500

T, K
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�sr
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RG analysis
1=N-expansion

SSWT
Tyablikov
theory

Figure 4. Theoretical temperature dependences of the relative sublattice

magnetization �sr in various approximations (spin-wave theories, RG

approach (2.105), and 1=N-expansion in the O�N� model [Eqns (2.110)

and (2.111)]) and experimental data points (circles) for La2CuO4 [3]. The

RG curve is plotted up to the temperature at which the derivative q�sr=qT
diverges. The curve designated as 1=N 0 lies closer to experimental data in

the transition temperature region owing to the inclusion of anisotropy

determined from the condition of the equality of TM to its experimental

value (see discussion in the main text).
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Figure 5. Relative sublattice magnetization �sr�T � for K2NiF4 (circles) as

compared to the relative magnetization obtained in the context of the

standard SWT (dashed curve), the SSWT (dot-and-dash curve), and the

RG approach, and by solving Eqn (2.110) in the intermediate temperature

region (solid curve). Dotted line shows the extrapolation of the results of

the 1=N-expansion to the Ising critical region. The boundary between the

region with fluctuations of the two-dimensional type and the behavior that

is transient to critical is indicated by an arrow.
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of the critical Ising region being 1K. Note that the allowance
for the terms of order 1=xs in expression (2.110) leads to a
value of TN � 92:7 K. In the region (80 < T < 90 K) that is
transient to the critical behavior, the theoretical O(3) curve
for K2NiF4, in contrast to the curve for La2CuO4, lies
somewhat lower than the experimental curve. This fact can
be ascribed to the interplane exchange effect. The determi-
nation of the corresponding parameters in the transition
region yield ar � 0:0017 and fr � 0:0069, which correspond
to TN � 97 K and the bare parameters a jJ j � 0:1 K, and
z jJ j � 0:76 K. The appropriate experimental results for a are
absent and, therefore, the comparison with experiment in this
case is difficult.

The Rb2NiF4 compound exhibits strong magnetic aniso-
tropy: according to Ref. [4], we have jJ j � 82 K, jJ j fr �
3:45 K, and T exp

N � 94:5 K. A comparison of the experi-
mental �sr�T � dependence with the SSWT results at low
temperatures yields a magnitude of the anisotropy para-
meter fr � 0:046, which agrees well with the above-given
experimental value. Equation (2.107) yields TN � 95:5 K,
which is also close to the experimental data for the N�eel
temperature.

The K2MnF4 compound has a spin S � 5=2; therefore, it
can be used to demonstrate a situation intermediate between
the quantumand classical cases. The exchange and anisotropy
parameters jJ j�8:4 K and jJ j fr � 0:13 K can be found from
the neutron-scattering data [4]. Figure 6 compares the results
of different approaches with experimental data for this
compound. It can be seen that the 1=N-expansion leads to

the results that describe well the experimental situation in the
entire temperature range. At the same time, the experimental
points are located between the quantum curve and the
classical RG curve, with the quantum approximation being
more satisfactory. This confirms the quantum character of
the corrections to the magnetization even at a relatively large
magnitude of spin. In the case under consideration, the
SSWT, which correctly allows for excitations on the scale
of an order of the lattice parameter, yields better results as
compared to those of the RG approach. Thus, an accurate
consideration of systems with large spins in the framework
of continual models requires a numerical calculation of
integrals over momenta and summation over Matsubara
frequencies.

Figure 7 displays a comparison of the SSWT and RG-
approach results for the magnetization of a classical magnet
with the results calculated by theMonte Carlo method [72]. It
can be seen that, except for a small critical region, the RG
curve is sufficiently exact, although topological excitations
were neglected when constructing it. The range of applic-
ability of the RG approach in the classical case is wider than
in the quantum case, so that there is no need in the use of the
1=N-expansion to describe the transient and critical regions.

The results of a comparison of theoretical and experi-
mental data for layered perovskites (see Table 2) show that
the RG approach and the 1=N-expansion in the O�N� model
lead to quantitatively correct results which agree well with the
experimental evidence for the magnetic-transition tempera-
tures and magnetization of these systems.

200
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0.6

0.4

0.2

6040
T, K

�sr

SSWT
quantum RG
classical RG
1=N-expansion

Figure 6. Experimental temperature dependence �sr�T � for K2MnF4

(circles) as compared to the results obtained in terms of the SSWT

(dashed line), the quantum RG analysis (double-dot-and-dash line), and

the classical RG analysis (dot-and-dash line), and by solving Eqn (2.110)

in the intermediate temperature region (solid curve).
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Figure 7.Results obtained in the context of the RG approach (solid curve)

and SSWT (dashed line) for the relative magnetization �s of a classical

anisotropic two-dimensional magnet (z � 0, Z � 0:001) as compared to

those calculated by the Monte Carlo method [72]. The RG and SSWT

curves are plotted to the temperature at which q�s=qT � 1.

Table 2. Experimental parameters and magnetic-transition temperatures for layered magnets and corresponding theoretical values of TM in the standard
spin-wave theory (SWT), self-consistent spin-wave theory (SSWT), and 1=N-expansion approach.

Compound S J, K J 0, K Z TSWT, K TSSWT, K T1=N, K Texp, K

La2CuO4

K2NiF4

Rb2NiF4

K2MnF4

CrBr3

1/2
1
1
5/2
3/2

1600
102
82
8.4
12.4

0.8
0
0
0
1

0
0.0088
0.046
0.015
0.024

672
160
180
74.8
79.2

537
125
118
52.1
51.2

343
90.0
88.4
42.7
39.0

325
97.1
94.5
42.1
40.0
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3. Quasi-two-dimensional magnets with
an easy-plane anisotropy

Another important class of low-dimensional systems com-
prises two-dimensional systems with an easy-plane aniso-
tropy. The classical two-dimensional xy model correspond-
ing to the limiting case of strong easy-plane anisotropy was
studied in much detail in earlier works [73 ± 75]. It was
demonstrated in these works that the elementary excitations
in the xymodel are topological vortex-like structures and that
there exists a transition (called the Berezinskii ±Kosterlitz ±
Thouless transition) which is related to the dissociation of
vortex pairs at the temperature

TBKT � p
2
jJ jS 2: �3:1�

At the same temperature, the power-law dependence of the
correlation function of spins on the distance is replaced by an
exponential dependence (the situation is more complex in the
quantum xy model, since not only transverse but also
longitudinal spin components should be taken into account).

A physically more realistic situation is, however,
described by the two-dimensional Heisenberg model (2.1)
with a weak easy-plane anisotropy (Fig. 8), i.e., for Z, z < 0,
and jZj, jzj, a5 1. In this case, the temperature dependence of
the (sublattice) magnetization is mainly determined by spin-
wave excitations at low temperatures. As in the case of an
easy-axis anisotropy, at temperatures that are not too low
compared to the magnetic-phase-transition temperature a
correct allowance for the dynamic interaction of spin waves
is required.

However, the Berezinskii ±Kosterlitz ± Thouless transi-
tion precedes the magnetic phase transition in the case of
weak easy-plane anisotropy. In this case, owing to the
existence of a quasi-long-range order for T < TBKT, the
introduction of an arbitrarily weak interplane exchange
leads to the occurrence of a magnetic transition for
T > TBKT. The simple expression for the Berezinskii ±
Kosterlitz ± Thouless temperature, obtained in the limit of
small anisotropy, has the form [76]

TBKT � 4p jJ jS 2

ln�p2=Z� �3:2�

(for convenience, hereinafter in this section we make the
substitutions Z! ÿZ and z! ÿz ). As in the case of
isotropic and easy-axis magnets, formula (3.2) is insufficient
to quantitatively describe the experimental data.

As is the case with easy-axis magnets, we can expect that
the thermodynamic properties of these systems, except for a
small vicinity of TBKT, are determined by spin-wave excita-
tions and to take into account the interaction effect of spin
waves at temperatures that do not belong to the critical region
we also can apply the RG method [77].

The RG analysis again is performed on the basis of
functional (2.47). In the classical case (i.e., when neglecting
the dynamic part of the action, which contains the time
derivative) there are two types of excitations, namely, the
field ny which describes gapless in-plane excitations, and the
field nz which describes excitations with a spin rotation at
right angles to the plane, with a gap in their energy spectrum.
Expanding functional (2.47) in terms of ny; z [it is assumed that
the axis of quantization of (sublattice) magnetization is
oriented along the x-axis] results, in the leading order in
1=S, in the action

Lst � 1

2
S 2

�1=T
0

dt
X
k

��J0 ÿ Jk� py;k py;ÿk

� �J0 ÿ Jk ÿ ZJk� pz; k�Q pz;ÿkÿQ
�
; �3:3�

whereQ is the wave vector of the magnetic structure, and the
vector n is represented as nk�t� �

�
sk�t�; py;k�t�; pz; k�t�

	
.

At not-too-small temperatures, the logarithmic contribu-
tions to the magnetization (sublattice magnetization) occur;
their summation is a subject of the RG approach. The
characteristic energy scales of py and pz excitations, unlike
those in the easy-axis case, are different. In this connection,
two types of logarithmic contributions occur in the magneti-
zation: logarithms of anisotropy, and logarithms of inter-
plane exchange. The situation where there exist two types of
excitations with different characteristic scales is typical of
systems demonstrating a crossover between two regimes with
different types of fluctuations [67]. In the model under
consideration, this corresponds to the crossover from
Heisenberg (almost isotropic) behavior to xy behavior.

To describe correctly this crossover, anisotropy should be
introduced into all renormalization parameters [67]. Because
of the anisotropic character of the model, there are two
renormalization parameters of the field p: Zxy and Zz, which
are determined by the relationships pxR=px � pyR=py � Zxy

and pzR=pz � Zz. For these parameters, as well as for the
effective temperature and anisotropy, we find the following
set of RG equations which determine changes in the
temperature, parameters of anisotropy and interplane
exchange, and renormalization parameters of the field p
with a change in scale [77]:

LR
d�1=tLR

�
dLR

� �1� tLR
� f �ZLR

;LR� �O�t 2LR
� ;

LR
d lnZxy

dLR
� tLR

�
1� f �ZLR

;LR�
��O�t 3LR

� ;

LR

d ln ZLR

dLR
� 2tLR

f �ZLR
;LR� �O�t 2LR

� ;

LR
d ln aLR

dLR
� ÿtLR

�O�t 2LR
� ; �3:4�

where LR is the scaling parameter, f �ZLR
;LR� �

ZLR
L2

R=�ZLR
L2

R � Z�, tLR
is the effective temperature, and

Zz � 1.
Similar to Eqns (2.56) ± (2.59), the equations (3.4) describe

the evolution of parameters of the renormalized model that

Ising (2D)

Ising (3D) 3D-xy

2D-xy

Ising (quasi-2D) quasi-2D-xy

H+EA H+ EPH

c1 c2

Figure 8. A schematic of RG trajectories in layered magnets. On the left-

hand side: crossover from the two-dimensional Heisenberg model with an

easy-axis anisotropy (H+EA) to the two-dimensional Ising model [Ising

(2D)]. On the right-hand side: crossover from the two-dimensional

Heisenberg model with an easy-plane anisotropy (H+EP) to the two-

dimensional xy model. The inflection points c1 and c2 mark transition

regions. Dotted lines correspond to quasi-two-dimensional models.
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occur with a change in scale. The expression for the effective
temperature in this model has the following form:

1

tLR

� 1

t
� 1

2
ln

L2
Rt

2
LR
� t 2Z

L2
0t

2
LR
� t 2Z

� ln
t

tLR

� F �LR� ; �3:5�

where t is the dimensionless temperature:

t �
T

2pJS 2
(FM),

T

2prs
(AFM),

8>><>>: �3:6�

rs � S �S� 0:079�jJ j is the spin stiffness constant, the
function F �LR� � O�tLR

� corresponds to higher-order con-
tributions, andL0 � q0 is the initial scale: q0 �

�����������
T=JS

p
in the

FM case, and q0 � T=c in the AFM case. In the two-
dimensional Heisenberg regime (LR 4

���
Z
p

), the effective
temperature tLR

is small, so that

t

tLR

� 1

t
� ln

LRt

L0tLR

: �3:7�

At the same time, for LR 5
���
Z
p

we find

1

tLR

� 1

t
ÿ ln

L0���
Z
p � 2 ln

t

tLR

� F �LR� : �3:8�

In this regime, tLR
depends on LR only through the function

F �LR�. The quantity 1=Z1=2 is the characteristic scale of the
transition (crossover) from the Heisenberg behavior to xy
behavior, so that formula (3.8) describes the behavior of the
effective temperature tLR

in the xy regime. Similar to the
temperature of the magnetic transition for magnets with an
easy-axis anisotropy, the Berezinskii ±Kosterlitz ± Thouless
temperature can be estimated from the condition for the
transition to the regime of strong coupling, tLR

� 1:

tBKT �
�
ln

L0���
Z
p � 2 ln

2

tBKT
� C

�ÿ1
; �3:9�

where C is the universal constant.
Result (3.9) can also be obtained from a comparison of

expression (3.8) with the solution to the RG equations for the
effective classical xymodel [74, 75]. Indeed, even if the initial
model is quantum, the effective xy model is classical on the
scales of order LR 5

���
Z
p

5Lÿ1t , since Lt defines a character-
istic scale separating quantum fluctuations from classical
ones. Therefore, the standard set of RG equations of the
two-dimensional classical xy model [73 ± 75]:

LR
d�1=tLR

�
dLR

� 32p2y 2
LR
;

LR
dyLR

dLR
� ÿyLR

�
2ÿ 1

2tLR

�
�3:10�

can be used for the description of the RG transformation in
the xy regime. Note that the coupling constant for the system
of vortices is y � exp �ÿE0=T � (whereE0 is the vortex energy)
rather than t (as in the case of spin waves). By choosing
L0R 5

���
Z
p

as the scale on which the passage from Eqns (3.6) to
(3.10) occurs, and using the equation of the separatrix:

8py1 � 1

t1
ÿ 4 ; t � tBKT ; �3:11�

which separates the low-temperature and high-temperature
phases (t1 � tL0R , y1 � yL0R ), we can reproduce result (3.9) for
the Berezinskii ±Kosterlitz ± Thouless temperature.

Equations (3.4) also make it possible to determine the
temperature dependence of the correlation length at tempera-
tures exceeding the Berezinskii ±Kosterlitz ± Thouless tem-
perature. In the critical region, for t > tBKT, i.e., for

1

8p
�tÿ1BKT ÿ tÿ1�5 1 ; �3:12�

the expression for the correlation length takes the form

x � 1���
Z
p exp

�
A

2
����������������������
tÿ1BKT ÿ tÿ1

q �
�3:13�

(where A is a constant), which is similar to the result for the
classical xymodel. Under the condition which is the reverse of
inequality (3.12), there takes place standard Heisenberg
behavior [46]:

x � Cx

L0
t exp

1

t
: �3:14�

In the presence of interplane exchange interaction and at
sufficiently low temperatures, a magnetic order arises.
Because of topological effects, the transition temperature in
the case of small interplane exchange tends, however, toTBKT

rather than to zero. The description of theRG transformation
at temperatures close to the critical region is difficult because
of the complex geometry of vortex loops in a three-dimen-
sional space. Instead of the direct calculation of RG
trajectories, the same arguments can be used as in the easy-
axis case. The transition temperature is determined from the
requirement that the correlation length of the model without
interplane exchange (a � 0) be coincident with the character-
istic scale of the transition from the two-dimensionalxymodel
to three-dimensional model. Then, for the critical tempera-
ture tc � TC=�2pJS 2� [or TN=�2prs�] with the proviso that
a5 Z we find [77]

tc �
�
ln

L0���
Z
p � 2 ln

2

tBKT
� Cÿ A 2

ln2�Z=a�

�ÿ1
: �3:15�

The last term in brackets in formula (3.15) determines the
difference between tc and tBKT. Since this term is not small, no
expansion of Eqn (3.15) in this term is performed.

The result (3.15) is qualitatively correct up to a values of
order Z (in this case, the last term in brackets in formula (3.15)
leads only to a renormalization of the constant C). In the
inverse limit, a4 Z, the corrections to the RG result for quasi-
two-dimensional magnets are determined, because of the
presence of an easy-plane anisotropy, as

tc �
�
ln

L0���
a
p � 2 ln

2

tc
� C 0 �O

�
Z 1=c

a 1=c

��ÿ1
; �3:16�

where c � n3�2ÿ gZ� is the critical exponent for the crossover
region between isotropic and anisotropic behavior, n3 is the
appropriate critical exponent of the three-dimensional Hei-
senberg model, and gZ is the anomalous dimension of the
anisotropy parameter in the three-dimensional Heisenberg
model. The result of an e-expansion in the anisotropic f 4

model with a dimension of 4ÿ e at e � 1 is c � 0:83 [67]. For
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an antiferromagnet, the constant C � ÿ0:066 by relation
(2.90). The last term on the right-hand side of formula
(3.16), unlike the last term in formula (3.15), exhibits a
power-law dependence on the anisotropy parameter. This is
a consequence of the fact that the correlation length in the
three-dimensional Heisenberg model has a power-law tem-
perature dependence near the magnetic-phase-transition
temperature. For this reason, the correction in formula
(3.16) is small and can be neglected in the case of small
anisotropy.

Now, we turn to the experimental situation. The most
thoroughly experimentally studied system with an easy-plane
anisotropy is the K2CuF4 compound which is a ferromagnet
with a spin S � 1=2, TBKT � 5:5 K, TC � 6:25 K, and the
parameters J � 20 K, Z � 0:04, and a � 6� 10ÿ4 [4]. By
inserting these values into formulas (3.9) and (3.15), we
obtain C � ÿ0:5 and A � 3:5. These values of the constants
can be verified using other systems.

Another example of a quasi-two-dimensional ferromag-
net with an easy-plane anisotropy is NiCl2 with S � 1.
According to Ref. [4], its parameters are J � 20 K,
Z � 8� 10ÿ3, and a � 5� 10ÿ5. Using the values of A and
C found for K2CuF4, we arrive at TBKT � 17:4 K and
TC � 18:7 K, which agree with the experimental data (both
values of TBKT and TC lie in the range of 18 ± 20 K). At the
same time, the calculations with a leading logarithmic
accuracy according to expression (3.2) yield TBKT � 35:3 K,
which is twice as large as the experimental value.

The BaNi2(PO4)2 compound is, according to Ref. [4], an
antiferromagnet with S � 1, jJ j � 22:0 K, and anisotropy
Z � 0:05, a � 10ÿ4. The calculations performed in Ref. [78]
yield TBKT � 23:0 K coinciding with the experimental value,
and TN � 24:3 K, which also agrees well with T exp

N �
�24:5� 1� K. Although TBKT � jJ jS for this compound,
this case should also be considered to be quantum according
to the criterion �T=JS �2 5 32 (see Section 2.2) for the
quantum regime.

4. Quasi-one-dimensional isotropic
antiferromagnets

4.1 The model and its bosonization
Although the physical situation for quasi-one-dimensional
magnets differs substantially from that in the quasi-two-
dimensional case, a theoretical description of quasi-one-
dimensional magnets can also be made on the basis of the
Heisenberg model (2.1). Below, we consider the simplest case
of isotropic antiferromagnets (Z � x � 0) with a spin S � 1=2
and small interchain exchange: jJ 0j5 J. In this case, it is
convenient to write down the Hamiltonian of the system as
follows:

H � J
X
n; i

Sn; i Sn�1; i � 1

2
J 0
X
n; hi ji

Sn; i Sn; j ; �4:1�

where n is the order number of a site in the chain; i and j are the
indices of the chains, and J > 0 and J 0 are the intrachain and
interchain exchange integrals, respectively.

When studying elementary excitations of the model, the
spin operators in each chain can be represented in terms of the
Bose operators ji�x� (the so-called `bosonization'). In the
bosonization method, the spin operators are first represented
through the Fermi operators with the aid of the so-called

Jordan ±Wigner transformation (see, e.g., Ref. [79]). This
transformation makes it possible to reduce the Heisenberg
model to a system of interacting fermions. In this case, the
transverse part of spin exchange leads to a Hamiltonian of
free fermions, while the longitudinal part is responsible for
their interaction. In turn, the Fermi operators are represented
through newBose operatorsji via relationships which permit
the reproduction of commutation relations between the initial
Fermi operators. As a result, we obtain formulas for the
initial spin operators expressed in terms of the Bose operators
[79]:

Sn; i � Ji �x� � �ÿ1�n ni �x� ; �4:2�

where

Jz
i �x� �

b
2p

qxji �x� ;

J�i �x� �
L
p
exp

�� ibyi�x�
�
cos bji�x� �4:3�

are the so-called homogeneous components of spin operators;

nz
i �x� �

L
p
cos bji �x� ;

n�i �x� �
L
p
exp

�� ibyi�x�
� �4:4�

are appropriate sublattice components; L is a constant of an
order of the inverse lattice parameter; b � ������

2p
p

, and yi
satisfies the relation qxyi � ÿPi, where Pi is a momentum
canonically conjugate to ji.

Hamiltonian (4.1) written in terms of Bose operators
ji�x� has the form

H � v

2

X
i

�
dx
�
P 2

i � �qxji�2
�� gu

X
i

�
dx cos 2bji

ÿ J 0L2

2p 2

X
i; d?

�
dx
�
cos�bji� cos�bji�d?�

� cos b�yi�d? ÿ yi�
�
; �4:5�

where v � pJ=2. The first two terms on the right-hand side of
Eqn (4.5) correspond to a system of isolated chains and
represent the Hamiltonian of the standard sine-Gordon
model. The first term describes the free Bose system, and the
second term describes the interaction of bosons along the
chains. The last interaction arises as a result of umklapp
scattering (which is accompanied by the process of electron
flip) in the system of fermions introduced via the Jordan ±
Wigner transformation; this interaction is marginal from the
RG viewpoint and is responsible for logarithmic corrections
to thermodynamic quantities [36, 80 ± 84]. Numerical estima-
tions (see Refs [36, 80]) yield gu=�2p� � 0:25. The last sum in
Eqn (4.5) describes the interaction of spins of different chains.

4.2 Interchain mean-field approximation for a bosonized
Hamiltonian
The simplest way to consider interchain exchange interaction
is the use of the so-called interchain mean-field approxima-
tion [36]. By decoupling the interaction term:

cos �bji� cos �bji�d?� ! 2


cos �bji�d?�

�
cos �bji� ; �4:6�
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we arrive at

HMF � v

2

X
i

�
dx
�
P 2

i � �qxji�2
�

� gu
X
i

�
dx cos �2bji� ÿ

L
p
hMF

X
i

�
dx cos �bji�;

�4:7�

where

hMF �
z?J 0L



cos �bji�

�
p

; �4:8�

and z? is the number of nearest neighbors in the direction
perpendicular to the chain (z? � 4 for the tetragonal lattice).
Approximation (4.6) makes it possible to reduce the problem
of many chains to the problem of a single chain in an effective
sublattice magnetic field. By introducing a function

B �h;T � � L
p



cos �bji�

�
h

�4:9�

calculated in the presence of a magnetic field [the last term in
Eqn (4.7)], we obtain a self-consistent equation for the
sublattice magnetization �S:

�SMF � B �z?J 0 �SMF;T � : �4:10�

Although the Hamiltonian HMF describes a single-chain
interaction, the calculation of the function B �h;T � (which is
an analog of the Brillouin function in the conventional mean-
field theory of Heisenberg magnets) at arbitrary temperatures
is a sufficiently difficult problem. According to the dimen-
sional estimate B �h;T � � h1=3f �h2=3=T �, with a certain
function f �x�: f �x� � x as x! 0, and f �1� � const. At
gu � 0 (in which case we have the standard sine-Gordon
model or the massive Thirring model, which is equivalent),
B�h;T � was determined using the Bethe ansatz [85]. As
h! 0, we have

B �h;T � � hw0�T � ; �4:11�

where w0�T � is the sublattice susceptibility of the system in the
absence of the field h [36, 84]:

w0�T � �
~w0
T

L

�
LJ
T

�
; ~w0 �

G 2�1=4�
4G 2�3=4� � 2:1884 ; �4:12�

L

�
LJ
T

�
� C

�
ln

LJ
T
� 1

2
ln ln

LJ
T
�O�1�

�1=2
; �4:13�

whereG is the gamma-function. The constantsC andL can be
determined numerically [86]: C � 0:137, and L � 5:8.

The result (4.11) makes it possible to calculate TN in the
context of the mean-field theory, since hMF ! 0 as T! TN.
The equation for the N�eel temperature takes the form [36]

TMF
N � z?J 0 ~w0L

�
LJ
TMF
N

�
: �4:14�

Thus, according to the interchain mean-field theory, we have
TN / jJ 0j; the sublattice magnetization of the ground state,
�S0 /

������������jJ 0j=Jp
, also depends on J 0 according to a power law,

which means the development of long-range order at

arbitrarily small jJ 0j. At the same time, the standard spin-
wave theory makes no distinction between integer and half-
integer values of spins and predicts a finite critical value
J 0c � J exp�ÿpS� [30, 53], so that for jJ 0j < J 0c the sublattice
magnetization �S0 vanishes; for jJ 0j > J 0c, we have

�S0 / ln

���� J 0J 0c
����; TN / �S0

�������
jJ 0j

p
: �4:15�

This contradiction was removed using the RG method [33 ±
35], which showed that the standard spin-wave theory is
indeed applicable on the scale of the inverse length L4 J 0c=J
and the renormalization factor for magnetization is
Z
ÿ1=2
L / lnL. At the same time, for half-integer spins and

L5 J 0c=J we obtain the dependence Z
ÿ1=2
L / L1=2 [33, 34]

whichmeans the validity of the results of the interchainmean-
field theory for jJ 0j5 J 0c.

The values of the N�eel temperature in the interchain
mean-field theory turn out to be overestimated compared to
experimental data, since this theory does not take into
account the correlation effects between spins located on
different chains. In particular, the value of the N�eel
temperature given by formula (4.14) is insensitive to the
spatial dimensionality of the system; although in the two-
dimensional case, the N�eel temperature should be TN � 0,
and in the three-dimensional case the values of TN turn out to
be overestimated compared to experimental data.

The correlations between spin positions on different
chains manifest themselves in the existence of collective
excitations which make contributions to the thermodynamic
properties. In this case, the disadvantages of the interchain
mean-field theory are similar to the disadvantages of the
Stoner theory for itinerant-electron magnets that neglects the
contribution of collective excitations which later have been
taken into account in the Moriya theory [24]. As in the
Moriya theory, the collective excitations in the Heisenberg
theory can be considered in terms of the random-phase
approximation (RPA) in which they are determined by the
poles of spin susceptibilities [36, 81]:

w��kz;o� � w�0 �kz;o�
1ÿ J 0�kx; ky� w�0 �kz;o�=2

; �4:16�

w zz�kz;o� � w zz
0 �kz;o�

1ÿ J 0�kx; ky� w zz
0 �kz;o�

; �4:17�

where for the tetragonal lattice we have

J 0�kx; ky� � 2J 0�cos kx � cos ky� ; �4:18�

and w0 �k;o� is the dynamic sublattice susceptibility in model
(4.7). As h! 0, the susceptibility w0 �k;o� is also determined
by simple analytical expressions [83, 84]:

w0 �kz;o� �
1

T
L

�
L
T

�
~w0

�
kz
T
;
o
T

�
;

~w0 �q; r� �
1

4

G �1=4� ik��G �1=4� ikÿ�
G �3=4� ik��G �3=4� ikÿ� ; k� � r� q

4p
;

�4:19�
where w zz

0 �kz;o� � w�0 �kz;o�=2 � w0�kz;o�, with w0 �0; 0��
w0 �T �.

To determine corrections to the interchain mean-field
theory, related to the contribution of collective excitations,
the 1=z?-expansion can be applied (z? is the number of
nearest neighbors in the directions perpendicular to the
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chains) [78]. This approach, which is similar to the 1=z-
expansion (or the expansion in terms of the inverse radius of
interaction) used many years ago to improve the standard
mean-field theory of Heisenberg magnets [87, 88], makes it
possible to determine the N�eel temperature in quasi-one-
dimensional systems to a greater accuracy than in the case of
interchain mean-field approximation.

4.3 Corrections of first order in 1=z? to the interchain
mean-field approximation
Now, we consider the perturbation theory in
J 0=max �hMF; T � � 1=z?, which is an analog of the expan-
sion in terms of J=max�hMF;T � � 1=z for three-dimensional
Heisenberg magnets [88]. To expand the sublattice magneti-
zation

�S � L


cos �bji�

�
h

p
�4:20�

into a series in terms of J 0, it is convenient to use the
expression for �S in the formalism of a continuum integral:

�S � L
p

�
Dj cos

ÿ
bji �0�

�
exp

ÿÿ L �j���
Dj exp

ÿÿ L �j�� ; �4:21�

where L �j� is the Lagrangian function corresponding to
Hamiltonian (4.5). In the zero order in J 0 (i.e., at J 0 � 0), we
have

�S0 � B �h;T � ; �4:22�
where the function B is defined by formula (4.9). By
expanding expression (4.21) into a series in J 0, we find that
each term can be represented by a certain diagram; the
diagrammatic technique in this case coincides with that used
for spin operators [87, 88].

Some elements of this technique are shown in Fig. 9. All
the diagrams are classified according to their order in
J 0=max�hMF;T � � 1=z?. The diagrams displayed in Fig. 10
are of zero order in 1=z?. Summation of these diagrams leads
to a shift of the external magnetic field by the magnitude of
the mean field:

h! ~h � h� hMF ; hMF � z?J 0 �S �4:23�

[the same result can be obtained by excluding the contribution
of the mean field directly from expression (4.21)]. The
diagrams that are of first order in 1=z? (Fig. 11a) contain
one line of RPA interaction, which is a sum of the irreducible
diagrams shown in Fig. 11b. In the analytical form, this
interaction is defined as follows:

V�ÿ; zz�k;o� � J 0�kx; ky�
1� dÿ J 0�kx; ky� w�; zz0 �kz;o�

; �4:24�

where

w zz
0 �kz;o� �

L 2

p2

�
d2x



cos bji�0� cos bji�x�

�
0; irr

� exp �ÿikzx� iont� ;

w�0 �kz;o� �
L 2

p2

�
d2x



exp

�
ib
�
yi�0� ÿ yi�x�

�	�
0

� exp �ÿikzx� iont� ; �4:25�

and hAB iirr is the irreducible average of two operators:

hAB iirr � hAB i ÿ hA ihB i : �4:26�
As in the Moriya theory [24], a correction d �
z?J 0w�0 �0; 0� ÿ 1 was introduced into the denominator of
expression (4.24) in order to satisfy the Goldstone theorem
which requires the presence of a pole of effective interaction at
k � 0, o � 0, and for T4TN.

Taking into account formula (4.24), we arrive at the result
for the sublattice magnetization

�S � 1

T
hMF~w0L

�
L
T

��
1� p2

2T~w0
L

�
L
T

��
d2rV �r�

�
�
1

8
F �r� � 1

2
G �r�

��
; �4:27�

where

V �r�
�
�1
ÿ1

dkz
2p

X
n

X
kx; ky

cos kx � cos ky
2~w0 ÿ �cos kx � cos ky� ~w0 �kz; 2pin�

� exp �ikzrÿ 2pint� ; �4:28�

~w0 �
p
2

�
d2z

1��sinh �pz��� � 2:1184 ; �4:29�

= hS zi = hS z
i S

z
i iirr

= J 0i j

= hS z
i S
�
i S
ÿ
i iirr

Figure 9. Some elements of the diagrammatic technique for spin operators

(for details, see Ref. [88]).

�S
MF

= + ++

+ . . .+

+= + . . .

Figure 10.Diagrams for sublattice magnetization in the zero order in 1=z?
(mean-field approximation).

+=

= +

b

a

Figure 11. (a) Diagrams in the first order in 1=z? for sublattice magnetiza-

tion. (b) Equations for RPA lines of interaction.
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and the functions F �r� and G �r� were defined in Ref. [78].
Using the relation (4.23) between the mean field and
sublattice magnetization, the result for the N�eel temperature
in the first order in 1=z?, after gathering all corrections into
the denominator, takes the form

TN � rJ 0z?~w0L
�
LJ
TN

�
: �4:30�

Equation (4.30) differs from the result of the mean-field
theory (4.14) by a factor r which depends on the structure of
the lattice in the direction perpendicular to the chains. The
numerical calculation for a tetragonal lattice yields r � 0:70.
Thus, a decrease in TN due to fluctuation effects is 25% of its
mean-field value, which agrees well with the results of the
numerical analysis performed in Ref. [89]. In the two-
dimensional case, we find r � 0, so that TN � 0.

The corrections to the sublattice magnetization of the
ground state can be calculated in a similar way [78]. For the
dynamic susceptibility of a single chain at T � 0, we have [36,
81]

w�ÿ0 � 1

4 jJ 0j
D 2

o2 � v 2k2 � D2
; �4:31�

w zz
0 �

Z 0=Z
4 jJ 0j

D2

o2 � v 2k2 � 3D2
; �4:32�

where D � 6:175 jJ 0j is the gap in the spectrum of spin
excitations; Z and Z 0 are the spectral weights of longitudinal
and transverse one-magnon excitations, respectively
(Z 0=Z � 0:49), and �S0 � 1:017 jJ 0j is the sublattice magneti-
zation in the ground state.

Using again the RPA for the interaction potential (4.27)
between excitations at different chains, we find

�S � �SMF ÿ D
4p

qD
qhMF

I ;

I �
X
k

��
1ÿ Gk

2

�
ln

1

1ÿ Gk

�
�
3ÿ Z 0Gk

2Z

�
ln

1

1ÿ Z 0Gk=�3Z�
�
; �4:33�

where hMF � z?J 0 �S0, Gk � cos k for the two-dimensional
lattice, and Gk � �cos kx � cos ky�=2 for the tetragonal
lattice. Numerical integration yields [78]

�S0 � �0:677ÿ I � h 1=3
MF : �4:34�

The last term in the parentheses in formula (4.34) represents a
1=z?-correction to the magnetization of the ground state:

I � 0:011 (3D) ,
0:060 (2D) .

�
�4:35�

It follows from relationship (4.34) that the ground-state
magnetization decreases by almost 10% as compared to its
value in themean-field theory for the two-dimensional lattice,
and only by 2% for the three-dimensional lattice. Thus, the
fluctuation corrections for the sublattice magnetization of the
ground state are much less important compared to the
corrections for the N�eel temperature and, therefore, can be
neglected in the three-dimensional case.

4.4 Comparison with experimental data
Let us consider the application of the theoretical results to the
description of experimental data for magnetic quasi-one-
dimensional systems. The most thoroughly studied quasi-
one-dimensional compound is KCuF3 with a spin S � 1=2.
From neutron-scattering experiments [10] for this compound,
it follows that the parameter of magnetic exchange along the
chains equals J � 406 K and the ground-state magnetization
is �S0=S � 0:25. As was discussed in Ref. [36], this magnitude
of �S0=S corresponds to J 0=J � 0:047, so that J 0 � 19:1 K.
The interchain mean-field approximation (4.14) with these
parameters yields TN � 47 K, which is somewhat higher than
the experimental value TN � 39 K [10]. At the same time, the
value obtained using the 1=z?-expansion (4.30), namely
TN � 37:7 K, is much closer to the experimental evidence.
Thus, the approach under consideration slightly overesti-
mates fluctuation effects but significantly improves the
interchain mean-field approximation. The contribution
from the double-logarithmic term to formula (4.13), which is
equal to approximately 5% of the N�eel temperature,
improves the agreement with experimental data.

Another compound with S � 1=2 that has been widely
discussed in the literature, Sr2CuO3, possesses the following
parameters [11, 12]: J � 2600 K, and TN � 5 K. The reliable
experimental data for J 0 are absent, but using Eqn (4.30) and
the experimental value ofTN, we obtain J 0 � 1:85 K. Then, it
follows from formula (4.34) that �S0=S � 0:042, which agrees
with experimental data ( �S0=S90:05).

For the Ca2CuO3 compound, the experimental para-
meters are as follows [11, 12]: S � 1=2, J � 2600 K, and
TN � 11 K, from which we obtain J 0 � 4:3 K and
�S0=S � 0:062, which also agrees well with experimental data
[12]: �S0 �Ca2CuO3�= �S0 �Sr2CuO3� � 1:5� 0:1. Thus, result
(4.30) is sufficient for a quantitative description of realistic
quasi-one-dimensional magnetic systems.

5. Conclusions

Quasi-one-dimensional and layered magnets represent an
example of systems with strong fluctuations and an unusual
behavior of thermodynamic and magnetic properties. The
investigation of these systems is a nontrivial problem from the
viewpoint of theoretical physics. The ordinary spin-wave
theory (SWT), and even its improved self-consistent version
(SSWT), although leading to a correct result for themagnetic-
transition temperature TM in the leading logarithmic approx-
imation, prove to be quantitatively applicable only for
temperatures T5TM. At higher temperatures, dynamic
interaction of spin waves should be taken into account,
which is beyond the framework of the lowest (Born) approx-
imation and of substantially non-spin-wave excitations.

The problem of the description of the thermodynamic
properties of quasi-one-dimensional and layered magnets has
been substantially developed in terms of field ± theoretical
methods that were applied to the widely common model of
magnetism of these systemsÐ the Heisenberg model. The use
of such approaches makes it possible to obtain simple
analytical results for the temperature dependence of the
magnetization and for the quantity TM, which can be used
in processing experimental data. In quasi-two-dimensional
magnets in a wide temperature range below TM, the spin-
wave picture of the excitation spectrum is adequate; the
interaction of spin waves leads to the appearance of
correction terms in the expressions for the magnetization
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and inverse transition temperature 1=TM, which significantly
improves the agreement with experimental data. The small
critical region near TM can be described, allowing for non-
spin-wave excitations, e.g., in terms of the 1=N-expansion. In
quasi-one-dimensional magnets, the consideration of the
Bose (non-spin-wave) excitations makes it possible to con-
struct a systematic expansion in inverse coordination number
of the lattice in the directions perpendicular to chains.

Thus, from the theoretical viewpoint a good understand-
ing of the physical picture of the spectrum and properties of
low-dimensional magnets has been achieved in a wide
temperature range, which gives a basis for a quantitative
description of the properties of real systems, and one of our
aims was to attract the attention of experimentalists to this
fact. At the same time, for a detailed analysis of concrete
compounds the consideration of the dipole interactions,
relativistic interactions (such as Dzyaloshinski ±Moriya
interactions), and some others is required. Although the first
attempts at describing the systems with such interactions in
terms of the self-consistent spin-wave and field-theoretical
approaches have already beenmade [90, 91], this problem still
awaits further development. Note also that some compounds
with a complex crystal structure, which have been intensively
studied recently, as well as systems such as thin films and
multilayers, which were considered earlier in the context of
the SWT [92], require a more thorough study in the frame-
work of the above-considered approaches.

Interesting problems arise upon the description of systems
with frustrated magnetic structures on a two-dimensional
square lattice with due regard for exchange interactions
between next-nearest neighbors [93 ± 97], as well as on a two-
dimensional triangular lattice [98 ± 103], Kagome lattices,
pyrochlore systems [104, 105], etc. The presence of spin
frustrations in such systems leads, as in low-dimensional
compounds, to the suppression of long-range magnetic
order (with some short-range order having been retained)
and, consequently, to very unusual thermodynamic proper-
ties. Frustrated systems were also considered in the context of
spin-wave theories [106 ± 111].

One more problem, which is important, in particular,
upon the investigation of high-temperature superconductiv-
ity and has not been touched in this review, is the interaction
of charge carriers with magnetic moments. The specificity of
low-dimensional systems (strong short-range magnetic order)
leads to corresponding features in their electron spectrum
[112, 113]. Strong electron ± electron interaction under these
conditions is an additional factor leading to the formation of
incoherent electron states and to the possibility of metal ±
insulator transition. In this connection, intense theoretical
and experimental investigations of conducting low-dimen-
sional systems near such a transition point are being widely
performed [114 ± 116] now. These investigations require the
development of substantially new approaches in which,
however, the theoretical methods of description of a sub-
system of localized moments, considered in this review, can
successfully be used.
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