
Abstract. This review discusses the construction of a theory and
the analysis of phenomena occurring in strongly correlated
Fermi systems such as high-Tc superconductors, heavy-fer-

mion metals, and quasi-two-dimensional Fermi systems. It is
shown that the basic properties and the universal behavior of
strongly correlated Fermi systems can be described in the
framework of the Fermi-condensate quantum phase transition
and the well-known Landau paradigm of quasiparticles and the
order parameter. The concept of fermion condensation may be
fruitful in studying neutron stars, finite Fermi systems, ultra-
cold gases in traps, and quark plasma.

1. Introduction

The Landau theory of the Fermi liquid has a long history and
remarkable results in describing a multitude of properties of
the electron liquid in ordinary metals and Fermi liquids of the
3He type. The theory is based on the assumption that
elementary excitations determine the physics at low tempera-
tures. These excitations behave as quasiparticles, have a
certain effective mass, and, judging by their basic properties,
belong to the class of quasiparticles of a weakly interacting
Fermi gas. Hence, the effective massM � is independent of the
temperature, pressure, and magnetic field strength and is a
parameter of the theory.
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A recently discovered new class of strongly correlated
Fermi systems, such as metals with heavy fermions, high-Tc

superconductors, and quasi-two-dimensional Fermi liquids,
exhibit a vast variety of physical properties [1 ± 5]. The
properties of these materials differ dramatically from those
of ordinary Fermi systems. For instance, in the case of metals
with heavy fermions, the strong correlation of electrons leads
to a renormalization of the effective mass of quasiparticles,
which may exceed the ordinary, `bare,' mass by several orders
of magnitude or even become infinitely large. The effective
mass strongly depends on the temperature, pressure, or
applied magnetic field. Such metals exhibit anomalous
behavior and unusual power laws of the temperature
dependence of the thermodynamic properties at low tempera-
tures similar to the laws for the Landau anomalous Fermi
liquid.

The Landau Fermi-liquid theory fails to explain the
results of experimental observations related to the depen-
dence ofM � on the temperature T, magnetic fieldB, pressure,
etc.; this has led to the conclusion that quasiparticles do not
survive in strongly correlated Fermi systems and that the
heavy electron does not retain its identity as a quasiparticle
excitation [6 ± 11].

1.1 Quantum phase transitions
and the anomalous behavior of correlated Fermi systems
The unusual properties and anomalous behavior observed in
high-Tc superconductors and metals with heavy fermions are
assumed to be determined by various magnetic quantum
phase transitions [3]. Since a quantum phase transition
occurs at the temperature T � 0, the control parameters are
the composition, the electron (hole) number density x, the
pressure, the magnetic field strength B, etc. A quantum phase
transition occurs at a quantum critical point, which separates
the ordered phase that emerges as the result of the quantum
phase transition from the disordered phase. It is usually
assumed that magnetic (e.g., ferromagnetic and antiferro-
magnetic) quantum phase transitions are responsible for the
anomalous behavior. The critical point of such a phase
transition can be shifted to absolute zero by varying the
above parameters.

Universal behavior can be expected only if the system
under consideration is very close to a quantum critical point,
e.g., when the correlation length is much longer than the
microscopic length scale, and critical quantum and thermal
fluctuations determine the anomalous contribution to the
thermodynamic functions of the metal. Quantum phase
transitions of this type are so widespread [2 ± 4] that we call
them ordinary quantum phase transitions. In this case, the
physics of the phenomenon is determined by thermal and
quantum fluctuations of the critical state, while quasiparticle
excitations are destroyed by these fluctuations.

The absence of quasiparticle excitations is considered the
main reason for the anomalous behavior of heavy-fermion
metals and high-Tc superconductors [2 ± 4]. This approach
faces certain difficulties, however. Critical behavior in
experiments with metals containing heavy fermions is
observed at high temperatures comparable to the effective
Fermi temperature Tk. For instance, the thermal expansion
coefficient a�T �, which is a linear function of temperature for
the normal Landau Fermi liquid (LFL), a�T � / T, demon-
strates the temperature dependence a / ����

T
p

in measurements
involving CeNi2Ge2 as the temperature varies by two orders
of magnitude (as it decreases from 6K to at least 50 mK) [12].

Such behavior can hardly be explained in the framework of
the critical point fluctuation theory. Obviously, such a
situation is possible only as T! 0, when the critical
fluctuations make the leading contribution to the entropy
and when the correlation length is much longer than the
microscopic length scale. At a certain temperature T5Tk,
this macroscopically large correlation length must be
destroyed by ordinary thermal fluctuations and the corre-
sponding universal behavior must disappear.

Another difficulty is in explaining the restoration of the
Landau Fermi-liquid behavior under a magnetic field B, as
observed in metals with heavy fermions and in high-
temperature superconductivity [1, 13, 14]. For the Landau
Fermi liquid as T! 0, the electric resistivity r�T � �
r0 � AT 2, the heat capacity C�T � � gT, and the magnetic
susceptibility w � const. It turns out that the coefficientA�B�,
the Sommerfield coefficient g�B�, and the magnetic suscept-
ibility w�B� depend on the magnetic field strength B such that
A�B� / g 2�B� and A�B� / w 2�B�, which implies that the
Kadowaki ±Woods relation K � A�B�=g 2�B� [15] is B-inde-
pendent and is preserved [13]. Such universal behavior, quite
natural with quasiparticles playing the main role, can hardly
be explained in the framework of the approach that pre-
supposes the absence of quasiparticles, which is characteristic
of ordinary quantum phase transitions in the vicinity of a
quantum critical point.

For instance, the Kadowaki ±Woods relation does not
agree with the spin density wave scenario [13] and with the
results of research in quantum criticality based on the
renormalization-group approach [16]. Moreover, measure-
ments of charge and heat transfer have shown that the
Wiedemann ±Franz law holds in some high-Tc superconduc-
tors [14, 17] and heavy-fermion metals [18, 19]. All this
suggests that quasiparticles do exist in such metals, and this
conclusion is also corroborated by photoemission spectro-
scopy results [20, 21].

The inability to explain the behavior of heavy-fermion
metals while staying within the framework of theories based
on ordinary quantum phase transitions implies that another
important concept introduced by Landau, the order para-
meter, also ceases to operate (e.g., see Refs [8 ± 11]). Thus, we
are left without the most fundamental principles of many-
body quantum physics [22], andmany interesting phenomena
associated with the anomalous behavior of strongly corre-
lated Fermi systems remain unexplained.

1.2 Limits and goals of the review
In this review, we show that diverse systems such as high-Tc

superconductors, heavy-fermion metals, and quasi-two-
dimensional strongly correlated Fermi liquids exhibit com-
mon universal behavior, which can be described within a
single approach based on the fermion-condensation theory
[23, 24]. However, in view of the lack of space, we do not
discuss the specific features of strongly correlated systems in
full; instead, we focus on the universal behavior of such
systems. For instance, we ignore the physics of Fermi
systems such as neutron stars, atomic clusters and nuclei,
quark plasma, and ultracold gases in traps, in which a Fermi
condensate can exist [25 ± 29]. Ultracold gases in traps are
interesting because the easy tuning of traps allows selecting
the values of the parameters required for observations of the
quantum critical point and the fermion condensate.

Experimental studies of the properties of quantum phase
transitions and their critical points are very important for
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understanding the physical nature of high-Tc superconduc-
tivity and heavy-fermion metals. The experimental data that
refer to different strongly correlated Fermi systems comple-
ment each other. In the case of high-Tc superconductivity, no
such experiments have been conducted, because the respective
critical points are in the superconductivity range at low
temperatures and the physical properties of the respective
quantum phase transition are altered by superconductivity.
But such experiments can be conducted for heavy-fermion
metals. Recent experimental research has provided data on
the behavior of heavy-fermion metals, shedding light on the
nature of critical points and phase transitions (e.g., see
Refs [13, 14, 17 ± 21]). Hence, a key issue is the simultaneous
study of high-Tc superconductivity and the anomalous
behavior of heavy-fermion metals.

To avoid difficulties associated with the anisotropy
generated by the crystal lattice of solids, its special features,
defects, etc., we study the universal behavior of electron (hole)
high-Tc superconductors, heavy-fermion metals, and quasi-
two-dimensional Fermi systems at low temperatures using the
model of a homogeneous heavy-electron (fermion) liquid.
The model is quite meaningful because we consider the
universal behavior exhibited by these materials at low
temperatures, a behavior related to power-law divergences
of quantities such as the effective mass, the heat capacity, the
thermal expansion, etc. These divergences, or the critical
exponents that characterize them, are determined by momen-
tum transfers that are small compared to momenta of the
order of the reciprocal lattice length, whose contributions
have no effect on the dynamics of the systems under
investigation, the dynamics related to small momentum
transfer, and can therefore be ignored, as is usually done in
the fluctuation theory of critical exponents [22]. Similarly, we
can ignore the difficulties and specific features associatedwith
a high-Tc superconductor or a heavy-fermion metal.

We analyze the universal properties of strongly correlated
Fermi systems using the fermion-condensation theory [23, 24,
30], because the behavior of heavy-fermion metals already
suggests that their unusual properties can be associated with
the quantum phase transition related to the unlimited
increase in the effective mass at the critical point. For
instance, the effective-mass divergence has been observed at
the quantum critical point induced by a magnetic field [6, 13,
18, 19, 31]. Such a quantum phase transition is a Fermi-
condensate quantum phase transition, leading to a Fermi
condensate. The main feature of a Fermi-condensate quan-
tum phase transition is the divergence of the effective mass
M � at its quantum critical point [23, 24, 30]. We assume from
now on that a heavy-electron liquid exists either near such a
transition or already after the critical point.

2. A Fermi liquid with a Fermi condensate

One of the most complex problems of modern condensed-
matter physics is the problem of the structure and properties
of Fermi systems with large interparticle coupling constants.
A theory of the Fermi liquid, later called `normal,' was first
proposed by Landau as a means for solving such problems by
introducing the concepts of quasiparticles and amplitudes
that characterize the effective quasiparticle interaction [22,
32]. The Landau theory can be regarded as an effective low-
energy theory with the high-energy degrees of freedom
eliminated by introducing amplitudes that determine the
quasiparticle interaction instead of the strong interparticle

interaction. The stability of the ground state of the Landau
Fermi liquid is determined by the Pomeranchuk stability
conditions: stability is violated when at least one Landau
amplitude becomes negative and reaches its critical value [22,
33]. We note that the new phase in which stability is restored
can also be described, in principle, by the Landau Fermi-
liquid theory.

2.1 Landau theory of the Fermi liquid
We begin by recalling the main ideas of the Landau Fermi-
liquid theory [22, 32]. The theory is based on the concept of
quasiparticles, which are elementary weakly excited states of
the Fermi liquid and are therefore specific excitations that
determine the low-temperature thermodynamic and trans-
port properties of the Fermi liquid. In the case of the electron
liquid, the quasiparticles are characterized by the electron
quantum numbers and the effective mass M �. The ground-
state energy of the system is a functional of the quasiparticle
occupation numbers (or the quasiparticle distribution func-
tion) n�p;T �, and the same is true of the free energy
F
�
n�p;T ��, the entropy S

�
n�p;T ��, and other thermody-

namic functions. We can find the distribution function from
the minimum condition for the free energy F � Eÿ TS:

d�Fÿ mN�
dn�p;T � � e�p;T � ÿ m�T � ÿ T ln

1ÿ n�p;T �
n�p;T � � 0 ; �2:1�

where m is the chemical potential and

e�p;T � � dE
�
n�p;T ��

dn�p;T � �2:2�

is the quasiparticle energy. This energy is a functional of
n�p;T �, in the same way as the energy E is: E

�
n�p;T ��. The

entropy S
�
n�p;T �� is given by the well-known expression [22,

32]

S
�
n�p;T �� � ÿ2 ��n�p;T � ln ÿn�p;T ��
� ÿ1ÿ n�p;T �� ln ÿ1ÿ n�p;T ��� dp

�2p�3 ; �2:3�

which follows from combinatorial reasoning.
Equation (2.1) is usually written in the standard form of

the Fermi ±Dirac distribution,

n�p;T � �
�
1� exp

e�p;T � ÿ m
T

�ÿ1
: �2:4�

As T! 0, Eqns (2.1) and (2.4) have the standard solution
n� p;T! 0� ! y� pF ÿ p�, with y� pF ÿ p� the step function
and e� p � pF� ÿ m � pF� pÿ pF�=M �

L, where M �
L is the

effective mass of the Landau quasiparticle,

1

M �
L

� 1

p

de� p;T � 0�
dp

����
p� pF

: �2:5�

It is assumed that M �
L is positive and finite on the Fermi

surface. As a result, the temperature-dependent corrections to
M �

L, to the quasiparticle energy e�p�, and to other quantities
begin with the term proportional to T 2. The effective mass is
given by the well-known Landau equation

1

M �
L

� 1

M
�
X
s1

�
pFp1
p 3
F

Fs; s1�pF; p1�
qns1�p1;T �

qp1

dp1

�2p�3 ;
�2:6�
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where Fs;s1�pF; p1� is the Landau amplitude, which depends
on the momenta p and pF and the spins s, andM is the `bare'
electron mass. For simplicity, we ignore the spin dependence
of the effective mass, because M �

L is almost completely spin-
independent in the case of a homogeneous liquid and weak
magnetic fields.

Equation (2.6) at T � 0, combined with the fact that
n�p;T � 0� becomes y� pF ÿ p�, yields the well-known result
[34]

M �
L

M
� 1

1ÿN0F 1� pF; pF�=3 ;

where N0 is the density of states of a free Fermi gas and
F 1� pF; pF� is the p-wave component of the Landau interac-
tion amplitude. Because x � p 3

F=3p
2 in the Landau Fermi-

liquid theory, the Landau interaction amplitude can be
written as F 1� pF; pF� � F 1�x�. We assume that at a certain
critical point xFC, the denominator �1ÿN0F

1� pF; pF�=3�
tends to zero, i.e.,�

1ÿN0F
1�x�
3

�
/ �xÿ xFC� � a�xÿ xFC�2 � . . .! 0 :

As a result, we find that [35, 36]

M �
L�x�
M

� A� B

xÿ xFC
/ 1

r
; �2:7�

where A and B are constants and r � �xÿ xFC�=xFC is the
`distance' from the quantum critical point xFC at which
M �

L�x! xFC� ! 1.
The behavior of M �

L�x� described by formula (2.7) is in
good agreement with the results of experiments [37, 38] and
calculations [39 ± 41] (see also Section 6). In the case of
electron systems, Eqn (2.7) holds for x > xFC, when r > 0
[24, 42]. Such behavior of the effective mass is observed in
heavy-fermion metals, which have a fairly flat and narrow
conductivity band corresponding to a large effective mass
M �

L�x � xFC�, with a strong effective correlation and the
effective Fermi temperature Tk � p 2

F=M
�
L�x� of the order of

several dozen degrees kelvin or even lower (e.g., see Ref. [1]).

2.2 The Fermi-condensate quantum phase transition
It was shown recently that the Pomeranchuk stability
conditions do not encompass all possible types of instability
and that at least one was overlooked [23]. This type of
instability corresponds to a situation where the effective
mass, the most important characteristic of the Landau
quasiparticles, can become infinitely large. As a result, the
quasiparticle kinetic energy is infinitely small near the Fermi
surface and the function n�p� is determined by the potential
energy. This leads to the formation of a new class of strongly
correlated Fermi liquids with a Fermi condensate [23, 24, 43],
separated from the normal Fermi liquid by a Fermi-
condensate quantum phase transition [44, 45].

It follows from Eqn (27) that at T � 0 and as r �
�xÿ xFC� ! 0, the effective mass diverges, M �

L�r� ! 1.
Beyond the critical point xFC, the distance r becomes
negative and, correspondingly, so does the effective mass.
To avoid an unstable and physically meaningless state with a
negative effective mass, the system must undergo a quantum
phase transition at the critical point x � xFC, which, as we see
shortly, is a Fermi-condensate quantum phase transition [44,

46]. Because the kinetic energy of quasiparticles that are near
the Fermi surface is proportional to the inverse effectivemass,
the potential energy of the quasiparticles near the Fermi
surface determines the ground-state energy as x! xFC.
Hence, a phase transition reduces the energy of the system
and transforms the quasiparticle distribution function;
beyond the phase transition point, the quasiparticle distribu-
tion is determined, for x4 xFC, by the ordinary equation for
a minimum of the energy functional [23]:

dE
�
n�p��

dn�p;T � 0� � e�p� � m ; pi 4 p4 pf : �2:8�

Equation (2.8) yields the quasiparticle distribution function
n0�p� that minimizes the ground-state energy E. This function
found from Eqn (2.8) differs from the step function in the
interval from pi to pf, where 0 < n0�p� < 1, and coincides with
the step function outside this interval. Equation (2.8) also
suggests that the single-particle spectrum is absolutely `flat'
within this interval. A possible solution n0�p� of Eqn (2.8) and
the corresponding single-particle spectrum e�p� are depicted
in Fig. 1. Quasiparticles with momenta within the interval
� pi; pf� have the same single-particle energies equal to the
chemical potential m and form a Fermi condensate, while the
distribution n0�p� describes the new state of the Fermi liquid
with a Fermi condensate [23, 24, 43]. In contrast to the
Landau, marginal, or Luttinger Fermi liquids, which exhibit
the same topological structure of the Green's function, in
systems with a Fermi condensate, where the Fermi surface
spreads into a strip, the Green's function belongs to a
different topological class [28, 29, 43]. The topological class
of the Fermi liquid is characterized by the invariant [43]

N � tr

�
C

dl

2pi
G�io; p� qlGÿ1�io; p� ; �2:9�

where `tr' denotes the trace over the spin indices of the
Green's function and the integral is taken along an arbitrary
contour C encircling the singularity of the Green's function.
The invariant N in (2.9) takes integral values even when the
singularity is not of the pole type, cannot vary continuously,
and is conserved in a transition from the Landau Fermi
liquid to marginal liquids and under small perturbations of

1

pi

n0�p�

e�p�

pF pf

Figure 1. The quasiparticle distribution function n0� p� and the

single-particle spectrum e� p�. Because n0� p� is a solution of

Eqn (2.8), we have n0� p < pi� � 1, 0 < n0� pi < p < pf� < 1,

n0� p > pf� � 0, and e� pi < p < pf� � m. The Fermi momentum pF
satisfies the condition pi < pF < pf.
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the Green's function. As shown by Volovik [28, 29, 43], the
situation is quite different for systems with a Fermi
condensate, where the invariant N becomes a half-integer
and the system with a Fermi condensate transforms into an
entirely new class of Fermi liquids with its own topological
structure.

With Fermi-condensate quantum phase transitions (as
well as with other phase transitions), we have to deal with
strong particle interaction, and there is no way in which a
theoretical investigation based on first principles can provide
an absolutely reliable solution. Hence, the only way to verify
that a Fermi condensate exists is to study this state by exactly
solvable models and to examine the experimental facts that
could be interpreted as direct confirmation of the existence of
a Fermi condensate.

Exactly solvable models unambiguously suggest that
Fermi systems with a Fermi condensate exist (e.g., see
Refs [47 ± 50]). Taking the results of topological investiga-
tions into account, we can state that the new class of Fermi
liquids with a Fermi condensate is nonempty, actually exists,
and represents an extended family of new states of Fermi
systems [28, 29, 43].

We note that the solutions n0�p� of Eqn (2.8) are new
solutions of the well-known equations of the Landau Fermi-
liquid theory. Indeed, atT � 0, the standard solution given by
a step function, n�p;T! 0� ! y� pF ÿ p�, is not the only
possible one. Anomalous solutions e�p� � m of Eqn (2.1) can
exist if the logarithmic expression on its right-hand side is
finite. This is possible if 0 < n0�p� < 1 within a certain
interval pi 4 p4 pf. Then, this logarithmic expression
remains finite within this interval as T! 0, the product
T ln

�ÿ
1ÿ n0�p�

�
=n0�p�

���
T! 0
! 0, and we again arrive at

Eqn (2.8).
Thus, as T! 0, the quasiparticle distribution function

n0�p�, which is a solution of Eqn (2.8), does not tend to the
step function y� pF ÿ p� and, correspondingly, in accordance
with Eqn (2.3), the entropy SNFL�T � of this state tends to a
finite value S0 as T! 0:

SNFL�T! 0� ! S0 : �2:10�

The question of how the Nernst theorem works in systems
with a Fermi condensate is discussed in Section 3.1, and the
behavior of the entropy is considered in Section 8.

We assume that as the density decreases (or as the
interaction force increases), we reach the point x � xFC
at which a Fermi condensate is formed. This means
that pi ! pf ! pF and that the deviation dn�p� �
n0�p� ÿ y� pF ÿ p� is small. Expanding the function E

�
n�p��

in a Taylor series in dn�p� and keeping only the leading terms,
we can use Eqn (2.8) to obtain the following relation that is
valid within the interval pi 4 p4 pf:

m � e�p� � e0�p� �
�
F�p; p1� dn�p1�

dp1

�2p�2 ; �2:11�

where F�p; p1� � d2E=dn�p�dn�p1� is the Landau amplitude.
Both quantities, the amplitude and the single-particle energy
e0�p�, are calculated at n�p� � y� pF ÿ p�. Equation (2.11)
has nontrivial solutions for densities x4 xFC if the corre-
sponding Landau amplitude, which is density-dependent, is
positive and sufficiently large for the potential energy to be
higher than the kinetic energy. For instance, such a state is
realized in a low-density electron liquid. The transformation

of the Fermi step function n�p� � y� pF ÿ p� into a smooth
function determined by Eqn (2.11) then becomes possible
[23, 24, 42].

A system with a Fermi condensate can be considered a
strongly correlated Fermi liquid at densities x < xFC. It
follows from Eqn (2.11) that the quasiparticles of a Fermi
condensate form a collective state, because their state is
determined by the macroscopic number of quasiparticles
with momenta pi < p < pf. The shape of the single-particle
spectrum related to the Fermi condensate is independent of
the Landau interaction, which is in general determined by the
properties of the system as a whole, including the collective
states, irregularities of structure, the presence of impurities,
and composition. The length of the interval from pf to pi
where a Fermi condensate exists is the only characteristic
determined by the Landau interaction; of course, the
interaction must be strong enough for a Fermi-condensate
quantum phase transition to occur. Therefore, we conclude
that spectra related to a Fermi condensate have a universal
shape.

In Sections 2.3 and 3.1 we show that these spectra are
dependent on the temperature and the superconducting gap
and that this dependence is also universal. The existence of
such spectra can be considered a characteristic feature of a
`quantum protectorate,' in which the properties of the
material, including the thermodynamic properties, are deter-
mined by a certain fundamental principle [51, 52]. In our case,
the state of matter with a Fermi condensate is also a quantum
protectorate, since the new type of quasiparticles of this state
determines the special universal thermodynamic and trans-
port properties of the Fermi liquid with a Fermi condensate.

2.3 The `shadow' of the Fermi condensate
at finite temperatures
According to Eqn (2.1), the single-particle energy e�p;T � is
linear in T for T5Tf within the interval � pi; pf� [53].
Expanding ln

�ÿ
1ÿ n�p��=n�p�� in a series in n�p� at p � pF,

we can write the expression

e�p;T � ÿ m�T �
T

� ln
1ÿ n�p�
n�p� � 1ÿ 2n�p�

n�p�
����
p� pF

; �2:12�

where Tf is the temperature above which the effect of the
Fermi condensate is insignificant [54]:

Tf

eF
� p 2

f ÿ p 2
i

2MeF
� OFC

OF
; �2:13�

withOFC being the volume occupied by the Fermi condensate,
eF being the Fermi energy, and OF being the volume of the
Fermi sphere. We note that for T5Tf, the occupation
numbers n�p� obtained from Eqn (2.8) are almost perfectly
independent of T. At finite temperatures, according to
Eqn (2.12), the dispersionless plateau e�p� � m shown in
Fig. 1 is slightly rotated counterclockwise in relation to m.
As a result, the plateau is slightly tilted and rounded off at its
end points. According to Eqns (2.5) and (2.12), the effective
mass M �

FC that refers to the Fermi-condensate quasiparticles
is given by

M �
FC � pF

pf ÿ pi
4T

: �2:14�

In deriving Eqn (2.14), we approximated the derivative as
dn� p�=dp � ÿ1=� pf ÿ pi�.
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Equation (2.14) clearly shows that for 0 < T5Tf, the
electron liquid with a Fermi condensate behaves as if it were
placed at a quantum critical point, since the electron effective
mass diverges as T! 0. Actually, the system is on the
quantum critical line x < xFC, because critical behavior is
observed for all x4xFC as T! 0. In Sections 5 and 8, we
show that the behavior of such a system differs dramatically
from that of a system at a quantum critical point.

Recalling that pf ÿ pi 5 pF and using Eqns (2.13) and
(2.14), we estimate the effective massM �

FC as

M �
FC

M
� N�0�

N0�0� �
Tf

T
; �2:15�

where N0�0� is the density of states of a noninteracting
electron gas and N�0� is the density of states on the Fermi
surface.

Equations (2.14) and (2.15) yield the temperature depen-
dence of M �

FC. Multiplying both sides of Eqn (2.14) by
pf ÿ pi, we obtain an expression for the characteristic energy,

E0 � 4T ; �2:16�
which determines the momentum interval � pi; pf� with the
low-energy quasiparticles characterized by the energy��e�p� ÿ m

��4E0=2 and the effective massM �
FC. The quasipar-

ticles that do not belong to this momentum interval have an
energy

��e�p� ÿ m
��5E0=2 and an effective mass M �

L that is
weakly temperature-dependent [44, 45, 55]. Equation (2.16)
shows that E0 is independent of the condensate volume. We
conclude from Eqns (2.14) and (2.16) that for T5Tf, the
single-electron spectrum of Fermi-condensate quasiparticles
has a universal shape and has the features of a quantum
protectorate.

Thus, a system with a Fermi condensate is characterized
by two effective masses, M �

FC and M �
L. This fact manifests

itself in a break or an abrupt change in the quasiparticle
dispersion law, which for quasiparticles with energies
e�p�4m can be approximated by two straight lines intersect-
ing at E0=2 � 2T. Figure 1 shows that at T � 0, the straight
lines intersect at p � pi. This break occurs at finite tempera-
tures Tc 4T5Tf, where Tc is the critical temperature of the
superconducting phase transition, which agrees with the
experimental data in [56] and, as we see in Section 3, this
behavior agrees with the experimental data atT4Tc [56, 57].
At T > Tc, the quasiparticles are well-defined, because their
width g is small compared to their energy and is proportional
to the temperature, g � T [20, 54]. The quasiparticle excita-
tion curve (see Section 4) can be approximately described by a
simple Lorentzian [55], which also agrees with the experi-
mental data [58].

We estimate the density xFC at which the Fermi-
condensate quantum phase transition occurs. We show in
Section 6 that an unlimited increase in the effective mass
precedes the appearance of a density wave or a charge density
wave formed in electron systems at rs � rcdw, where
rs � r0=aB, r0 is the average distance between electrons, and
aB is the Bohr radius. Hence, a Fermi-condensate quantum
phase transition certainly occurs at T � 0 when ra reaches its
critical value rFC corresponding to xFC, with rFC < rcdw [42].
We note that the increase in the effective mass as the electron
number density decreases was observed in experiments
involving 2D metallic electron systems at rs � 7:5 [38]; the
same effect was observed in experiments involving 3He 2D
systems as the electron number density increased [59]. On the

other hand, charge density waves can also exist in lightly
doped high-Tc superconductors [60, 61], leading to the
formation of a Fermi condensate.

Thus, the formation of a Fermi condensate can be
considered a general property of different strongly correlated
systems rather than an exotic phenomenon corresponding to
the anomalous solution of Eqn (2.8) [42]. Beyond the Fermi-
condensate quantum phase transition point, the condensate
volume is proportional to rs ÿ rFC, with Tf=eF �
�rs ÿ rFC�=rFC, at least when �rs ÿ rFC�=rFC 5 1. This implies
that

rs ÿ rFC
rFC

� pf ÿ pi
pF

� xFC ÿ x

xFC
: �2:17�

Because a state of a system with a Fermi condensate is
highly degenerate, the Fermi condensate serves as a stimu-
lator of phase transitions that could lift the degeneracy of the
spectrum. For instance, a Fermi condensate can stimulate the
formation of spin density waves, an antiferromagnetic state,
etc., thus generating new properties of the systems. The
presence of a Fermi condensate strongly facilitates a transi-
tion to the superconducting state, because both phases have
the same order parameter (see Section 3, in which we examine
the properties of a superconducting state in the presence of a
Fermi condensate). Thus, superconductivity lifts the degen-
eracy of the spectrum and `wins the race' with other phase
transitions at temperatures up to the critical temperature Tc.

3. The superconducting state
with a Fermi condensate

In this section we discuss the superconducting state of a 2D
liquid of heavy electrons, since high-Tc superconductors are
represented mainly by 2D structures. On the other hand,
our study can easily be generalized to the 3D case. To show
that there is no fundamental difference between the 2D and
3D cases, we derive Green's functions for the 3D case in
Section 3.2.

3.1 The superconducting state at T � 0
The ground-state energy Egs

�
k�p�; n�p�� of a 2D electron

liquid is a functional of the superconducting state order
parameter k�p� and of the quasiparticle occupation numbers
n�p�. This energy is determined by the well-known Bardeen ±
Cooper ± Schrieffer (BCS) equations and in the weak-cou-
pling superconductivity theory is given by [62, 63]

Egs

�
k�p�; n�p��
� E

�
n�p��� l0

�
V�p1; p2� k�p1� k ��p2�

dp1 dp2

�2p�4 ; �3:1�

where E
�
n�p�� is the Landau functional that determines the

energy of a normal Fermi liquid and

n�p� � v 2�p� ; k�p� � v�p� u�p� ; �3:2�

where u�p� and v�p� are normalized parameters such that
v 2�p� � u 2�p� � 1 and k�p� � �n�p�ÿ1ÿ n�p���1=2. It is
assumed that the constant l0, which determines the magni-
tude of the pairing interaction l0V�p1; p2�, is small. We define
the superconducting gap as

D�p� � ÿl0
�
V�p; p1� k�p1�

dp1
4p2

: �3:3�
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Minimizing Egs in v�p� and using (3.3), we arrive at equations
that relate the single-particle energy e�p� to D�p� and E�p�:

e�p� ÿ m � D�p� 1ÿ 2v 2�p�
2k�p� ;

D�p�
E�p� � 2k�p� ; �3:4�

where the single-particle energy e�p� is determined by Landau
equation (2.2):

E�p� �
�����������������������������
x 2�p� � D 2�p�

q
; �3:5�

with x�p� � e�p� ÿ m. Substituting the expression for k�p�
from (3.4) in Eqn (3.3), we obtain the well-known equation
of the BCS theory for D�p�:

D�p� � ÿ l0
2

�
V�p; p1�

D�p1�
E�p1�

dp1
4p2

: �3:6�

As l0 ! 0, the maximum value of D1 of the superconducting
gap D�p� tends to zero and each equation in (3.4) reduces to
Eqn (2.8):

dE
�
n�p��

dn�p� � e�p� ÿ m � 0 �3:7�

if 0 < n�p� < 1, or k�p� 6� 0, in the interval pi 4 p4 pf.
Equation (3.7) shows that for x < xFC, the function n�p� is
determined from the solution to the standard problem of
finding the minimum of the functional E

�
n�p�� [23, 54].

Equation (3.7) specifies the quasiparticle distribution func-
tion n0�p� that ensures the minimum of the ground-state
energy Egs

�
k�p�; n�p�� as l0 ! 0. We can now study the

relations between the state specified by Eqn (3.7) or (2.8)
and the superconducting state.

At T � 0, Eqn (3.7) determines the specific state of a
Fermi liquid with a Fermi condensate, the state for which
the absolute value of the order parameter

��k�p��� is finite in
the momentum interval pi 4 p4 pf as D1 ! 0. Such a state
can be considered superconducting with an infinitely small
value of D1. Hence, the entropy of this state at T � 0 is zero.
Obviously, the quantum state with a Fermi condensate that
emerged as a result of a Fermi-condensate quantum phase
transition disappears at finite temperatures [44, 45]. Any
quantum phase transition that occurs at absolute zero is
controlled not by the temperature but by other parameters,
such as the pressure, the magnetic field strength, or the
density x of mobile charge carriers. In the case of a Fermi
condensate, as shown in Section 2, the controlling para-
meter may be the density x of the system, which determines
the value of the Landau amplitude. As we saw in Section 2,
the Fermi-condensate quantum phase transition occurs at
the quantum critical point x � xFC. For x > xFC, the system
is on the disordered side of the Fermi-condensate quantum
phase transition; for x < xFC, it is on the ordered side, and
the order parameter k�p� is finite in the interval
pi < pF < pf.

Solutions n0�p� of Eqn (3.7) constitute a new class of
solutions of the BCS equations and Landau Fermi-liquid
equations. In contrast to the ordinary solutions of the BCS
equations [62], the new solutions are characterized by an
infinitely small superconducting gap D1 ! 0, with the order
parameter k�p� remaining finite. On the other hand, in
contrast to the standard solution of the Landau Fermi-liquid
theory, the new solutions n0�p� determine the state of a heavy-

electron liquid with a finite entropy S0 as T! 0 [see
Eqn (2.10)].

We arrive at an important conclusion that the solutions of
Eqn (3.7) can be interpreted as the general solutions of the
BCS equations and the Landau Fermi-liquid theory equa-
tions, while Eqn (3.7) itself can be derived either from the BCS
theory or from the Landau Fermi-liquid theory. Thus, both
states of the system coexist as T! 0. As the system passes
into a state with an order parameter k�p�, the entropy
suddenly vanishes, with the system undergoing a first-order
transition near which the critical quantum and thermal
fluctuations are suppressed and the quasiparticles are well-
defined excitations (see also Section 8). It follows from
Eqn (2.9) that a Fermi-condensate quantum phase transition
is related to a change in the topological structure of the
Green's function and belongs to Lifshits's topological phase
transitions, which occur at absolute zero [43]. This fact
establishes a relation between Fermi-condensate quantum
phase transitions and quantum phase transitions under which
the Fermi sphere splits into a sequence of Fermi layers [64]
(see Section 5). We note that in the state with the order
parameter k�p�, the system entropy S � 0 and the Nernst
theorem holds in systems with a Fermi condensate.

If l0 6� 0, the gap D1 becomes finite, leading to a finite
value of the effective massM �

FC, which may be obtained from
Eqn (3.4) by taking the derivative with respect to the
momentum p of both sides and using Eqn (2.5) [44, 45, 55]:

M �
FC � pF

pf ÿ pi
2D1

: �3:8�

As regards the energy scale, it is determined by the parameter
E0:

E0 � e�pf� ÿ e�pi� � pF
pf ÿ pi
M �

FC

� 2D1 : �3:9�

3.2 Green's function of the superconducting state
with a Fermi condensate at T � 0
We write two equations for the 3D case, the Gor'kov
equations [65], which determine the Green's functions
F��p;o� andG�p;o� of a superconductor (e.g., see Ref. [22]):

F� � ÿ l0X �ÿ
oÿ E�p� � i0

�ÿ
o� E�p� ÿ i0

� ;
�3:10�

G � u 2�p�
oÿ E�p� � i0

� v 2�p�
o� E�p� ÿ i0

:

The gap D and the function X are given by

D � l0jXj ; iX �
��1
ÿ1

F��p;o� do dp

�2p�4 : �3:11�

We recall that the function F��p;o� has the meaning of the
wave function of Cooper pairs and X is the wave function of
the motion of these pairs as a whole and is just a constant in a
homogeneous system [22]. It follows from Eqns (3.4) and
(3.11) that

iX �
�1
ÿ1

F�0 �p;o�
do dp

�2p�4 � i

�
k�p� dp

�2p�3 : �3:12�
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Taking Eqns (3.11) and (3.4) into account, we can write
Eqns (3.10) as

F� � ÿ k�p�
oÿ E�p� � i0

� k�p�
o� E�p� ÿ i0

;

�3:13�
G � u 2�p�

oÿ E�p� � i0
� v 2�p�
o� E�p� ÿ i0

:

As l0 ! 0, the gap D! 0, but X and k�p� remain finite if the
spectrum becomes flat, E�p� � 0, and Eqns (3.13) become

F��p;o� � ÿk�p�
�

1

o� i0
ÿ 1

oÿ i0

�
;

�3:14�
G�p;o� � u 2�p�

o� i0
� v 2�p�
oÿ i0

in the interval pi 4 p4 pf. The parameters v�p� and u�p� are
determined by the condition that the spectrum be flat:
e�p� � m. If we take Landau equation (2.2) into account, this
condition again reduces to Eqns (2.8) and (3.7) for determin-
ing the minimum of the functional E

�
n�p��.

We construct the functions F��p;o� and G�p;o� in the
case where the constant l0 is finite but small, such that v�p�
and k�p� can be found on the basis of the Fermi-condensate
solutions of Eqn (2.8). Then X, D, and E�p� are given by
Eqns (3.12), (3.11), and (3.4). Substituting the functions
constructed in this manner into (3.13), we obtain F��p;o�
and G�p;o� [66]. We note that Eqns (3.11) imply that the gap
D is a linear function of l0 under the adopted conditions.

3.3 The superconducting state at finite temperatures
We assume that the region occupied by the Fermi condensate
is small: � pf ÿ pi�=pF 5 1 and D1 5Tf. Then, the order
parameter k�p� is determined primarily by the Fermi
condensate, i.e., the distribution function n0�p� [44, 45]. To
be able to solve Eqn (3.6) analytically, we adopt the BCS
approximation for the interaction [62]: l0V�p; p1� � ÿl0 if��e�p� ÿ m

��4oD and the interaction is zero outside this
region, with oD being a certain characteristic energy. As a
result, the superconducting gap depends only on the tempera-
ture, D�p� � D1�T �, and Eqn (3.6) becomes

1 � NFCl0

� E0=2

0

dx�����������������������
x 2 � D 2

1 �0�
q �NLl0

� oD

E0=2

dx�����������������������
x 2 � D 2

1 �0�
q ;

�3:15�

where we introduce the notation x � e�p� ÿ m and the density
of states NFC in the interval � pi; pf� or in the E0-energy
interval. It follows from Eqn (3.8) that NFC �
� pf ÿ pF� pF=2pD1�0�. Within the energy interval
�E0=2;oD�, the density of states NL has the standard form
NL �M �

L=2p. As E0 ! 0, Eqn (3.15) becomes the BCS
equation. On the other hand, assuming that E0 4 2oD and
discarding the second integral on the right-hand side of
Eqn (3.15), we obtain

D1�0� � l0pF� pf ÿ pF�
2p

ln
ÿ
1�

���
2
p �

� 2beF
pf ÿ pF

pF
ln
ÿ
1�

���
2
p �

; �3:16�

where eF � p 2
F=2M

�
L is the Fermi energy and b � l0M �

L=2p is
the dimensionless coupling constant. Using the standard
value of b for ordinary superconductors, e.g., b � 0:3, and
assuming that � pf ÿ pF�=pF � 0:2, we obtain a large value
D1�0� � 0:1eF from Eqn (3.16); for ordinary superconduc-
tors, this gap has a much smaller value: D1�0� � 10ÿ3eF.With
the integral discarded earlier taken into account, we find that

D1�0� � 2beF
pf ÿ pF

pF
ln
ÿ
1�

���
2
p �� D1�0�b ln 2oD

D1�0� :
�3:17�

On the right-hand side of Eqn (3.17), the value of D1 is given
by (3.16). As E0 ! 0 and pf ! pF, the first term on the right-
hand side of Eqn (17) is zero, and we obtain the ordinary BCS
result. The correction related to the second integral in (3.15) is
small because the second term on the right-hand side of
Eqn (3.17) contains the additional factor b. In what follows,
we show that 2Tc � D1�0�. The isotopic effect is small in this
case, becauseTc depends onoD logarithmically, but the effect
is restored as E0 ! 0.

AtT � Tc, Eqns (3.8) and (3.9) are replaced byEqns (2.14)
and (2.16), which also hold for Tc 4T5Tf:

M �
FC � pF

pf ÿ pi
4Tc

; E0 � 4Tc for T � Tc ; �3:18�

M �
FC � pF

pf ÿ pi
4T

; E0 � 4T for T5Tc : �3:19�

Equation (3.15) is replaced by its standard generalization
valid for finite temperatures:

1 � NFCl0

� E0=2

0

dx�����������������
x 2 � D 2

1

q tanh

�����������������
x 2 � D 2

1

q
2T

�NLl0

� oD

E0=2

dx�����������������
x 2 � D 2

1

q tanh

�����������������
x 2 � D 2

1

q
2T

: �3:20�

Because D1�T! Tc� ! 0, Eqn (3.20) implies a relation that
closely resembles the BCS result [5],

2Tc � D1�0� ; �3:21�

where D1�T � 0� is found from Eqn (3.17). Comparing (3.8)
and (3.9) with (3.18) and (3.19), we see that bothM �

FC and E0

are temperature-independent for T4Tc.

3.4 Bogoliubov quasiparticles
Equation (3.6) shows that the superconducting gap depends
on the single-particle spectrum e�p�. On the other hand, it
follows from (3.4) that e�p� depends on D�p� if (3.7) has a
solution that determines the existence of a Fermi condensate
as l0 ! 0. We assume that l0 is so small that the pairing
interaction l0V�p; p1� leads only to a small perturbation of the
order parameter k�p�. Equation (3.8) implies that the effective
mass and the density of statesN�0� /M �

FC / 1=D1 are finite.
Thus, in contrast to the spectrum in the standard super-

conductivity theory, the single-particle spectrum e�p� depends
strongly on the superconducting gap, and Eqns (2.2) and (3.6)
must be solved by a self-consistent method.

We suppose that Eqns (2.2) and (3.6) have been solved
and the effective mass M �

FC has been found. This means that
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we can find the quasiparticle dispersion law e�p� by
choosing the effective mass M � equal to the obtained
value of M �

FC and then solve Eqn (3.6) without taking
(2.6) into account, as is done in the standard BCS super-
conductivity theory [62]. Hence, the superconducting state
with a Fermi condensate is characterized by Bogoliubov
quasiparticles [67] with dispersion (3.5) and the normal-
ization condition v 2�p� � u 2�p� � 1 for the coefficients v�p�
and u�p�. Moreover, quasiparticle excitations of the super-
conducting state in the presence of a Fermi condensate
coincide with the Bogoliubov quasiparticles characteristic of
the BCS theory, and superconductivity with a Fermi
condensate resembles the BCS superconductivity, which
points to the applicability of the BCS formalism to the
description of the high-Tc superconducting state [68]. At the
same time, the maximum value of the superconducting gap
set by Eqn (3.17) and other exotic properties are determined
by the presence of the Fermi condensate. These results are
in good agreement with the experimental facts obtained for
the high-Tc superconductors Bi2Sr2Ca2Cu3O10�d [69].

In constructing the superconducting state with a Fermi
condensate, we returned to the foundations of the Landau
Fermi-liquid theory, from which the high-energy degrees of
freedom have been eliminated by the introduction of
quasiparticles. The main difference between the Landau
Fermi liquid, which forms the basis for constructing the
superconducting state, and the Fermi liquid with a Fermi
condensate is that in the latter case we must increase the
number of low-energy degrees of freedom by introducing a
new type of quasiparticle with the effective massM �

FC and the
characteristic energy E0 given by (3.9). Hence, the dispersion
law e�p� is characterized by two types of quasiparticles with
the effective massesM �

L andM �
FC and the scale E0. These new

quasiparticles determine the properties of the superconduc-
tor, including the lineshape of quasiparticle excitations [44,
45, 70], while the dispersion of the Bogoliubov quasiparticles
has the standard form.

We note that for T < Tc, the effective mass M �
FC and the

scale E0 are temperature-independent [70]. For T > Tc, the
effective mass M �

FC and the scale E0 are given by Eqns (2.14)
and (2.16). Obviously, we cannot directly relate these new
quasiparticles (excitations) of the Fermi liquid with a Fermi
condensate to excitations (quasiparticles) of an ideal Fermi
gas, as is done in the standard Fermi-liquid theory, because
the system is beyond the Fermi-condensate quantum phase
transition point. Nevertheless, the main principles of the
Landau Fermi-liquid theory can be applied at the Fermi-
condensate quantum phase transition: the concept of the
order parameter is retained and low-energy excitations of a
strongly correlated liquid with a Fermi condensate are
represented by quasiparticles. The properties and dynamics
of these new quasiparticles are closely related to the proper-
ties of the superconducting state and are of a collective nature,
formed by the Fermi-condensate quantum phase transition
and determined by the macroscopic number of Fermi-
condensate quasiparticles with momenta in the interval
� pi; pf�. Such a system cannot be perturbed by scattering on
impurities and lattice defects and, therefore, has the features
of a quantum protectorate and demonstrates universal
behavior [44, 45, 51, 52].

Several remarks concerning the quantum protectorate
and the universal behavior of superconductors with a Fermi
condensate are in order. Similarly to the Landau Fermi
liquid theory, the theory of high-Tc superconductivity based

on the Fermi-condensate quantum phase transition deals
with quasiparticles that are elementary low-energy excita-
tions. The theory provides a qualitative general description
of the superconducting and the normal states of a super-
conductor. Of course, with phenomenological parameters
(e.g., the pairing coupling constant) chosen, we can obtain a
quantitative description of superconductivity, in the same
way as this can be done in the Landau theory when
describing a normal Fermi liquid, e.g., 3He. Hence, any
theory capable of describing a Fermi condensate and
compatible with the BCS theory gives the same qualitative
picture of the superconducting and normal states as the
picture based on the Fermi-condensate quantum phase
transition. Obviously, both approaches may be coordinated
on the level of numerical results by choosing the appropriate
parameters. For instance, because the formation of a Fermi
condensate is possible in the Hubbard model [50], it allows
reproducing the results of the theory based on the Fermi-
condensate quantum phase transition. It is appropriate to
note here that the corresponding description restricted to the
case T � 0 has been obtained in the framework of the
Hubbard model [71, 72].

3.5 The pseudogap
We discuss some features of the superconducting state with a
Fermi condensate [73, 74]. We consider two possible types of
the superconducting gap D�p� determined by Eqn (3.6) and
the interaction l0V�p; p1�. If the interaction is caused by
attraction, occurring, for instance, as a result of an exchange
of phonons or magnetic excitations, the solution of Eqn (3.6)
with an s-wave or �s� d�-mixed waves has the lowest energy.
If the pairing interaction l0V�p1; p2� is a combination of an
attractive interaction and a strongly repulsive interaction, d-
wave superconductivity may occur (e.g., see Refs [75, 76]).
However, both the s- and d-wave symmetries lead to
approximately the same result for the size of the gap D1 in
Eqn (3.17) [70]. Hence, d-wave superconductivity is not a
universal and necessary property of high-Tc superconductors.
This conclusion agrees with the experimental evidence
described in Refs [77 ± 81].

We can define the critical temperature T � as the
temperature at which D1�T �� � 0. For T5T �, Eqn (3.20)
has only the trivial solution D1 � 0. On the other hand, the
critical temperature Tc can be defined as the temperature at
which superconductivity disappears and the gap occupies
only a part of the Fermi surface. Thus, there are two different
temperatures Tc and T �, which may not coincide in the case
of the d-wave symmetry of the gap. As shown in Refs [55, 73],
in the presence of a Fermi condensate, Eqn (3.20) has
nontrivial solutions at Tc 4T4T �, when the pairing
interaction l0V�p1; p2� consists of attraction and strong
repulsion, which leads to d-wave superconductivity. In this
case, the gap D�p� as a function of the angle f, or
D�p� � D� pF;f�, has new nodes at T > Tnode, as shown in
Fig. 2 [55].

Figure 2 shows the ratio D� pF;f�=T � calculated for three
temperatures: 0:9Tnode, Tnode, and 1:2Tnode. In contrast to
curve 1, curves 2 and 3 have flat sections. Clearly, the
flattening occurs because of the two new zeros that emerge
at T � Tnode. As the temperature increases, the region yc
between the zeros (indicated by arrows in Fig. 2) increases in
size. It is also clear that the gap D is very small within the
interval yc. It was found in [82, 83] that the magnetism and the
superconductivity affect each other, which leads to suppres-
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sion of the magnetism at temperatures below Tc. In view of
this, we can expect suppression of superconductivity due to
magnetism.

Thus, we may conclude that the gap in the vicinity of Tc

can be destroyed by strong antiferromagnetic correlations (or
spin density waves), impurities, and sizable inhomogeneities
existing in high-Tc superconductors [84]. Because the super-
conducting gap is destroyed in a macroscopic region of the
phase space, yc, superconductivity is also destroyed, and
therefore Tc � Tnode. The exact value of Tc is determined by
the competition between the antiferromagnetic state (or spin
density waves) and the superconductivity in the interval yc.
The behavior and the shape of the pseudogap closely resemble
the similar characteristics of the superconducting gap, as
Fig. 2 shows. The main difference is that the pseudogap
disappears in the segment yc of the Fermi surface, while the
gap disappears at isolated nodes of the d-wave. Our estimates
show that for small values of the angle c, the function yc�c�
rapidly increases, yc�c� �

����
c

p
. These estimates agree with the

results of numerical calculations of the function
yc
ÿ�Tÿ Tc�=Tc

�
(Fig. 3). Hence, we may conclude that Tc is

close to Tnode.
Thus, the pseudogap state appears at T5Tc � Tnode and

disappears at temperatures T5T � at which Eqn (3.20) has

only the trivial solution D1 � 0. Obviously, D1 determines T �

and notTc, with the result that Eqn (2.15) should be rewritten
as

2T � � D1�0� : �3:22�

The temperature T � has the physical meaning of the
temperature of the BCS transition between the state with an
order parameter k 6� 0 and the normal state.

At temperatures below Tc, the quasiparticle excitations of
the superconducting state are characterized by the presence of
sharp peaks. When the temperature becomes high �T > Tc�
and D�y� � 0 in the interval yc, normal quasiparticle excita-
tions with a width g appear in the segments yc of the Fermi
surface. A pseudogap exists outside the segments yc, and the
Fermi surface is occupied by excitations of the BCS type in
this region. Excitations of both types have widths of the same
order of magnitude, transferring their energy and momenta
into excitations of normal quasiparticles.

We estimate the value of g. If the entire Fermi surface were
occupied by the normal state, the width g would be
g � N 3�0�T 2=e 2�T � with the density of states N�0� �
M ��T � � 1=T [see Eqn (2.14)]. The dielectric constant
e�T � � N�0� and, hence, g � T [54]. However, only a part of
the Fermi surface within yc is occupied by normal excitations
in our case. Therefore, the number of states accessible for
quasiparticles and quasiholes is proportional to yc, and the
factor T 2 is replaced by the factor T 2y 2

c . Taking all this into
account yields g � y 2

c T � T�Tÿ Tc�=Tc � Tÿ Tc. Here, we
ignored the small contribution provided by excitations of
the BCS type. It is precisely for this reason that the width g
vanishes at T � Tc. Moreover, the resistivity of the normal
state r�T � / T, because g � Tÿ Tc. Obviously, at tempera-
tures above T �, the relation r�T � / T remains valid up to
T � Tf, and Tf may be as high as the Fermi energy if the
Fermi condensate occupies a significant part of the Fermi
volume.

The temperature Tnode is determined mainly by the
repulsive interaction, which is part of the pairing interac-
tion l0V�p1; p2�. The value of the repulsive interaction, in
turn, may be determined by the properties of the materials,
such as composition or doping. Because superconductivity
is destroyed at Tc � Tnode, the ratio 2D1=Tc may vary within
broad limits and strongly depends on the properties of the
material [55, 73, 74]. For instance, in the case of
Bi2Sr2CaCu2O6�d it is assumed that superconductivity and
the pseudogap are of common origin: 2D1=Tc � 28, while
2D1=T

� � 4, which agrees with the experimental data
obtained in measurements involving other high-Tc super-
conductors [75].

We note that Eqn (3.22) also provides a good descrip-
tion of the maximum value of the gap D1 in the case of d-
wave superconductivity, because different regions with the
maximum density of states may be considered unrelated
[76]. We may also conclude that without a strong repulsion,
with which s-wave pairing is possible, there can be no
pseudogap. Thus, the transition from the superconducting
gap to the pseudogap may proceed only in the case of d-
wave pairing, when superconductivity is destroyed at
Tc � Tnode and the superconducting gap gradually trans-
forms into a pseudogap, which closes at a certain tempera-
ture T � > Tc [55, 73, 74]. The fact that there is no
pseudogap in the case of s-wave pairing agrees with the
experimental data (e.g., see Ref. [81]).
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Figure 2. The gap D� pF;f� as a function of f calculated for three values of

the temperature expressed in units of Tnode � Tc. The solid curve (1)

represents the function D� pF;f� calculated for the temperature 0:9Tnode.

The dashed curves (2) represents the same function at T � Tnode, and the

dotted curve (3) depicts the function calculated at T � 1:2Tnode. The
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two zeros as a function of �Tÿ Tc�=Tc.
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3.6 Dependence of the critical temperature Tc

of the superconducting phase transition on doping
We examine the maximum value of the superconducting gap
D1 as a function of the number density x of mobile charge
carriers, which is proportional to the degree of doping. Using
Eqn (2.17), we can rewrite Eqn (3.16) as

D1

eF
� b
�xFC ÿ x�x

xFC
; �3:23�

where we took into account that the Fermi level eF / p 2
F and

that the number density x � p 2
F=�2M �

L�, with the result that
eF / x. It is realistic to assume that Tc / D1, because the
curve Tc�x� obtained in experiments with high-Tc super-
conductors [2] must be a smooth function of x. Hence, we
can approximate Tc�x� by a smooth bell-shape function [85]:

Tc�x� / b�xFC ÿ x�x : �3:24�

To illustrate the application of the above analysis, we
examine the main features of a superconductor that can
hypothetically exist at room temperature. Such a super-
conductor must be a two-dimensional structure, just as high-
Tc superconducting cuprates are. Equation (3.16) implies that
D1 � beF / b=r 2s . Bearing in mind that a Fermi-condensate
quantum phase transition occurs at rs � 20 in 3D systems and
at rs � 8 in 2D systems [42], we can expect that in 3D systems
D1 amounts to 10% of the maximum size of the super-
conducting gap in 2D systems, which in our case amounts to
60 mV for lightly doped cuprates with Tc � 70 K [86]. On the
other hand, Eqn (3.16) implies that D1 may be even larger,
D1 � 75 mV. We can expect that Tc � 300 K in the case of s-
wave pairing, as the simple relation 2Tc � D1 implies. Indeed,
we can take eF � 500 mV, b � 0:3, and � pf ÿ pi�=pF � 0:5.

Thus, the hypothetical superconductor at room tempera-
ture must be an s-wave superconductor in order to eliminate
the pseudogap effect, which dramatically decreases the
temperature Tc at which superconductivity is destroyed. We
note that the number density x of mobile charge carriers must
satisfy the condition x4 xFC and must be varied to reach the
optimum degree of doping xopt � xFC=2.

3.7 The gap and heat capacity near Tc

We now calculate the gap and heat capacity at temperatures
T! Tc. Our analysis is valid if T � � Tc, since otherwise the
discontinuities in the heat capacity considered below are
smeared over the temperature interval between T � and Tc.
To simplify matters, we calculate the leading contribution to
the gap and heat capacity related to the Fermi condensate.We
use Eqn (3.20) to find the function D1�T! Tc� simply by
expanding the first integral on its right-hand side in powers of
D1 and dropping the contribution from the second integral.
This procedure leads to the equation [70]

D1�T � � 3:4Tc

��������������
1ÿ T

Tc

r
: �3:25�

Therefore, the gap in the spectrum of single-particle excita-
tions behaves in the ordinary manner.

To calculate the heat capacity, we can use the standard
expression for the entropy S [62]:

S�T � � ÿ2
��

f �p� ln f �p� � ÿ1ÿ f �p�� ln ÿ1ÿ f �p��� dp

�2p�2 ;

�3:26�

where

f �p� �
�
1� exp

E�p�
T

�ÿ1
;

E�p� �
������������������������������������������ÿ
e�p� ÿ m

�2 � D 2
1 �T �

q
:

The heat capacity C is given by

C�T � � T
dS

dT
� 4

NFC

T 2

� E0

0

f �E�ÿ1ÿ f �E��
�
�
E 2 � TD1�T � dD1�T �

dT

�
dx

� 4
NL

T 2

� oD

E0

f �E�ÿ1ÿ f �E���E 2 � TD1�T � dD1�T �
dT

�
dx :

�3:27�
In deriving Eqn (3.27), we again used the variable x, the above
notation for the density of states, NFC and NL, and the
notation E � �x 2 � D 2

1 �T �
�1=2

. Equation (3.27) describes a
jump in heat capacity, dC�T � � Cs�T � ÿ Cn�T �, where
Cs�T � andCn�T � are the heat capacities of the superconduct-
ing and normal states atTc; the jump is determined by the last
two terms in the square brackets on the right-hand side of this
equation. Using Eqn (3.25) to calculate the first term on the
right-hand side of Eqn (3.27), we find [70]

dC�Tc� � 3

2p2
� pf ÿ pi�pn

F ; �3:28�

where n � 1 in the 2D case and n � 2 in the 3D case. This
result differs from the ordinary BCS result, according to
which the discontinuity in the heat capacity is a linear
function of Tc. The jump dC�Tc� is independent of Tc

because, as Eqn (3.19) shows, the density of state varies in
inverse proportion to Tc. We note that in deriving Eqn (3.28)
we took the leading contribution of the Fermi condensate into
account. This contribution disappears as E0 ! 0, and the
second integral on the right-hand side of Eqn (27) yields the
standard result.

As we show in Section 8 [see Eqn (8.4)], the heat capacity
of a system with a Fermi condensate behaves as
Cn�T � /

�����������
T=Tf

p
. The jump in the heat capacity given by

Eqn (3.28) is temperature-independent. As a result, we find
that

dC�Tc�
Cn�Tc� �

������
Tf

Tc

r
pf ÿ pi
pF

: �3:29�

In contrast to the case of normal superconductors, in which
dC�Tc�=Cn�Tc� � 1:43 [22], in our case Eqn (3.29) implies
that the ratio dC�Tc�=Cn�Tc� is not constant and may be very
large when Tf=Tc 4 1.

4. The dispersion law and lineshape
of single-particle excitations

The recently discovered break in the dispersion of quasipar-
ticles at energies between 40 and 70 mV, resulting in a change
in the quasiparticle speed at this energy [56 ± 58], can hardly
be explained by the marginal Fermi-liquid theory, because
this theory contains no additional energy scales or parameters
that would allow taking the break into account [67, 88]. We
could assume that the break, which leads to a new energy
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scale, occurs because of the interaction of electrons and
collective excitations, but then we would have to discard the
idea of a quantum protectorate, which would contradict the
experimental data [51, 52].

As shown in Sections 2 and 3, a system with a Fermi
condensate has two effective masses:M �

FC, which determines
the single-particle spectrum at low energies, and M �

L, which
determines the spectrum at high energies. The fact that there
are two effective masses manifests itself in the form of a break
in the quasiparticle dispersion law. The dispersion law can be
approximated by two straight lines intersecting at a binding
energy E0=2 [see Eqns (2.16) and (3.9)]. The break in the
dispersion law occurs at temperatures much lower than Tf,
when the system is in the superconducting or normal state.
Such behavior is in good agreement with the experimental
data [56]. It is pertinent to note that at temperatures belowTc,
the effective massM �

FC is independent of the momenta pF, pf,
and pi, as shown by Eqns (3.8) and (3.16):

M �
FC �

2p
l0

: �4:1�

This formula implies thatM �
FC is only weakly dependent on x

if a dependence of l0 on x is allowed. This result is in good
agreement with the experimental facts [89 ± 91]. The same is
true of the dependence of the Fermi velocity vF � pF=M

�
FC on

x because the Fermi momentum pF �
���
n
p

is weakly depen-
dent on the electron number density n � n0�1ÿ x� [89, 90];
here, n0 is the single-particle electron number density at half-
filling.

Because l0 is the coupling constant that determines the
magnitude of the pairing interaction, e.g., the electron ±
phonon interaction, we can expect the break in the quasipar-
ticle dispersion law to be caused by the electron ± phonon
interaction. The phonon scenario could explain the constancy
of the break at T > Tc because phonons are temperature-
independent. On the other hand, it was found that the
quasiparticle dispersion law distorted by the interaction with
phonons has a tendency to restore itself to the ordinary single-
particle dispersion lawwhen the quasiparticle energy becomes
higher than the phonon energy [92]. However, there is no
experimental evidence that such restoration of the dispersion
law actually takes place [56].

The quasiparticle excitation curve L�q;o� is a function of
two variables. Measurements at a constant energy o � o0,
where o0 is the single-particle excitation energy, determine
the curve L�q;o � o0� as a function of the momentum q. We
established above that M �

FC is finite and constant at
temperatures not exceeding Tc. Hence, at excitation energies
o4E0, the system behaves as an ordinary superconducting
Fermi liquid with the effective mass determined by Eqn (3.8)
[44, 45, 55]. At Tc 4T, the effective mass M �

FC is also finite
and is given byEqn (2.14). In other words, at energieso < E0,
the system behaves as a Fermi liquid whose single-particle
spectrum is well defined and the width of the single-particle
excitations is of the order of T [44, 45, 55]. Such behavior has
been observed in experiments in measuring the quasiparticle
excitation curve at a fixed energy [20, 58, 93].

The quasiparticle excitation curve can also be described as
a function of o, L�q � q0;o�, at a constant momentum
q � q0. For small values of o, the behavior of this function
is similar to that described above, with L�q � q0;o� having a
characteristic maximum and width. For o5E0, the con-
tribution provided by quasiparticles of mass M �

L becomes

significant and leads to an increase in the function
L�q � q0;o�. Thus, L�q � q0;o� has a certain structure of
maxima and minima [94] directly determined by the existence
of two effective masses, M �

FC and M �
L [44, 45, 55]. We

conclude that, in contrast to Landau quasiparticles, these
quasiparticles have a more complicated spectral lineshape.

We use the Kramers ±Kronig transformation to calculate
the imaginary part of the self-energy part S�p; e�. But we
begin with the real part ReS�p; e�, which determines the
effective massM � [95],

1

M � �
�
1

M
� 1

pF

qReS
qp

��
1ÿ qReS

qe

�ÿ1
; �4:2�

where M is the `bare' mass. The corresponding momenta p
and energies e satisfy the inequalities j pÿ pFj=pF 5 1 and
e=eF 5 1.We takeReS�p; e� in the simplest form possible that
ensures the variation of the effective mass at the energy E0=2,

ReS�p; e� � ÿe M
�
FC

M
�
�
eÿ E0

2

�
M �

FC ÿM �
L

M

�
�
y
�
eÿ E0

2

�
� y
�
ÿeÿ E0

2

��
; �4:3�

where y�e� is the step function. To ensure a smooth transition
from the single-particle spectrum characterized byM �

FC to the
spectrum characterized by M �

L, we must replace the step
function with a smoother function. Substituting (4.3) in
Eqn (4.2), we see that M � �M �

FC within the interval
�ÿE0=2;E0=2�, while M � �M �

L outside this interval. Apply-
ing the Kramers ±Kronig transformation to ReS�p; e�, we
express the imaginary part of the self-energy as [70]

ImS�p; e� � e 2
M �

FC

eFM
�M �

FC ÿM �
L

M

�
"
e ln
���� 2e� E0

2eÿ E0

����� E0

2
ln

���� 4e 2 ÿ E 2
0

E 2
0

����
#
: �4:4�

Clearly, with e=E0 5 1, the imaginary part is proportional to
e 2; at 2e=E0 � 1, we have ImS � e, and for E0=e5 1, the
main contribution to the imaginary part is approximately
constant.

It follows from Eqn (4.4) that as E0 ! 0, the second term
on its right-hand side tends to zero and the single-particle
excitations become well-defined, which resembles the situa-
tion with a normal Fermi liquid, while the pattern of minima
and maxima eventually disappears. On the other hand, the
quasiparticle renormalization factor a�p� is given by the
equation [95]

1

a�p� � 1ÿ qReS�p; e�
qe

: �4:5�

It follows from Eqns (4.4) and (4.5) that for T4Tc, the
amplitude of a quasiparticle on the Fermi surface increases
as the characteristic energy E0 decreases. Equations (3.9) and
(3.24) imply that E0 � �xFC ÿ x�=xFC. When T > Tc, it
follows from (4.3) and (4.5) that the quasiparticle amplitude
increases as the effective mass M �

FC decreases. It follows
from Eqns (2.14) and (2.17) that M �

FC � � pf ÿ pi�=pF �
�xFC ÿ x�=xFC. As a result, we conclude that the amplitude
increases with the doping level and the single-particle
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excitations are better defined in heavily doped samples. As
x! xFC, the characteristic energy E0 ! 0 and the quasipar-
ticles become normal excitations of the Landau Fermi liquid.
We note that such behavior has been observed in experi-
ments with heavily doped Bi2212, which demonstrates high-
Tc superconductivity with a gap of about 10 mV [96]. The
size of the gap suggests that the region occupied by a Fermi
condensate is small because E0=2 � D1. For x > xFC and low
temperatures, the heavy-electron liquid behaves as the
Landau Fermi liquid (see Section 7). Experimental data
show that, as expected, the Landau Fermi liquid exists in
super-heavily doped nonsuperconducting La1.7Sr0.3CuO4

[97, 98].

5. An electron liquid with a Fermi condensate
in magnetic fields

In this section, we discuss the behavior of a heavy-electron
liquid with a Fermi condensate in a magnetic field.

We assume that the coupling constant is nonzero, l0 6� 0,
but is infinitely small. We found in Section 3 that at T � 0 the
superconducting order parameter k�p� is finite in the region
occupied by the Fermi condensate and that the maximum
value of the superconducting gap D1 / l0 is infinitely small.
Hence, any weak magnetic field B 6� 0 is critical and destroys
k�p� and the Fermi condensate. Simple energy arguments
suffice to determine the type of rearrangement of the Fermi-
condensate state. On the one hand, because the Fermi-
condensate state is destroyed, the gain in energy DEB / B 2

tends to zero asB! 0. On the other hand, the function n0�p�,
which occupies the finite interval � pi; pf� in the momentum
space and is specified by Eqn (2.8) or (3.9), leads to a finite
gain in the ground-state energy compared to the ground-state
energy of a normal Fermi liquid [23].

Thus, in weak magnetic fields, the new ground state
without a Fermi condensate must have almost the same
energy as the state with a Fermi condensate. Such a state is
formed by multiply connected Fermi spheres resembling an
onion, for which a smooth distribution function of quasipar-
ticles, n0�p�, is replaced in the interval � pi; pf� with the
distribution function [64, 99]

n�p� �
Xn
k� 1

y� pÿ p2kÿ1� y� p2k ÿ p� ; �5:1�

where the parameters pi 4 p1 < p2 < . . . < p2n 4 pf are cho-
sen such that they satisfy the normalization condition and the
condition needed for the conservation of the number of
particles:� p2k�3

p2kÿ1
n�p� dp

�2p�3 �
� p2k�3

p2kÿ1
n0�p� dp

�2p�3 :

Figure 4 shows the corresponding multiply connected
distribution. For definiteness, we present the most interest-
ing case of a three-dimensional system. The two-dimensional
case can be examined similarly.We note that the possibility of
the existence of multiply connected Fermi spheres was noted
in [100, 101].

We assume that the thickness of each inner slice of the
Fermi sphere, dp � p2k�1 ÿ p2k, is determined by the
magnetic field B. Using the well-known rule for estimating
errors in calculating integrals, we find that the minimum
loss of the ground-state energy due to slice formation is

approximately �dp�4. This becomes especially clear if we
account for the fact that the continuous Fermi-condensate
functions n0�p� ensure the minimum value of the energy
functional E

�
n�p��, while the approximation of n�p� by steps

of width dp leads to a minimal error of the order of �dp�4.
Recalling that the gain due to the magnetic field is propor-
tional to B 2 and equating the two contributions, we obtain

dp /
����
B
p

: �5:2�

Therefore, as T! 0, with B! 0, the slice thickness dp also
tends to zero and the behavior of a Fermi liquid with a
Fermi condensate is replaced with that of the Landau Fermi
liquid with the Fermi momentum pf. Equation (3.7) implies
that pf > pF and the electron number density x remains
constant, with the Fermi momentum of the multiply
connected Fermi sphere p2n � pf > pF (see Fig. 4). We see
in what follows that these observations play an important
role in studying the behavior of the Hall coefficients RH�B�
as a function of B in heavy-fermion metals at low
temperatures.

To calculate the effective massM ��B� as a function of the
applied magnetic fieldB, we first note that atT � 0 the fieldB
splits the Fermi-condensate state into Landau levels, sup-
presses the superconducting order parameter k�p�, and
destroys the Fermi-condensate state, which leads to restora-
tion of the state characteristic of a Landau Fermi liquid [30,
102]. The Landau levels near the Fermi surface can be
approximated by separate slices whose thickness in momen-
tum space is dp. Approximating the quasiparticle dispersion
lawwithin a single slice, e� p� ÿ m � � pÿ pf � dp�� pÿ pf�=M,
we find the effective mass M ��B� �M=�dp=pf�. The energy
increment DEFC caused by the transformation of the Fermi-
condensate state can be estimated based on the Landau
formula [22]

DEFC �
�ÿ
e�p� ÿ m

�
dn�p� dp

�2p�3 : �5:3�

The region occupied by the variation dn�p� has the thickness
dp, with e�p� ÿ m � � pÿ pf� pf=M ��B� � dp pf=M ��B�. As a
result, we find that DEFC � p 3

f dp
2=M ��B�. On the other

hand, there is the addition DEB � �BmB�2M ��B� pf caused
by the applied magnetic field, which decreases the energy and
is related to the Zeeman splitting. Equating DEB and DEFC

and recalling that M ��B� / 1=dp in this case, we obtain the

0

1

. . .

p2 p3 p4

n�p�

p2np2nÿ1p1

Figure 4. The function n�p� for the multiply connected distribution that

replaces the function n0�p� in the region � pi; pf� occupied by the Fermi

condensate. The momenta satisfy the inequalities pi < pF < pf, where pF is

the momentum of the Landau normal Fermi liquid. The outer Fermi

surface at p � p2n � pf has the shape of a Fermi step, and therefore the

system behaves like a Landau Fermi liquid at T < T ��B�.
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chain of relations

dp 2

M ��B� /
1ÿ

M ��B��3 / B 2M ��B� ; �5:4�

which implies that the effective massM ��B� diverges as

M ��B� / 1����������������
Bÿ Bc0

p ; �5:5�

where Bc0 is the critical magnetic field, which places the
heavy-fermion metal at the magnetic-field-tuned quantum
critical point and nullifies the respective NeÂ el temperature,
TN�Bc0� � 0 [30]. In our simple model of a heavy-electron
liquid with a Fermi condensate, the quantity Bc0 is a
parameter determined by the properties of the specific metal
with heavy fermions.We note that in some casesBc0 � 0, e.g.,
the heavy-fermion metal CeRu2Si2 has no magnetic order,
exhibits no superconductivity, and does not behave like a
Landau Fermi liquid even at the lowest temperatures [103].

Formula (5.5) and Fig. 4 show that application of a
magnetic field B > Bc0 brings the Fermi-condensate system
back to the Landau Fermi-liquid state with the effective mass
M ��B� that depends on the magnetic field. This means that
the following dependences characteristic of the Landau Fermi
liquid are restored: C=T � g0�B� /M ��B� for the heat
capacity and w0�B� /M ��B� for the magnetic susceptibility.
The coefficient A�B� determines the temperature-dependent
part of the resistivity, r�T � � r0 � Dr, where r0 is the
residual resistivity and Dr � A�B�T 2. Because this coeffi-
cient is directly determined by the effective mass,
A�B� / ÿM ��B��2 [104], Eqn (5.5) yields

A�B� / 1

Bÿ Bc0
: �5:6�

We note that the empirical Kadowaki ±Woods relation [15]
K � A=g 20 � const is valid in our case. Furthermore, K may
depend on the degree of degeneracy of the quasiparticles.
With this degeneration, the Kadowaki ±Woods relation
provides a good description of the experimental data for a
broad class of heavy-fermion metals [105]. In the simplest
case, where the heavy-electron liquid is formed by spin-1=2
quasiparticles with the degeneracy degree 2, the value of K
turns out to be close to the empirical value [104] known as the
Kadowaki ±Woods ratio [15]. Hence, under a magnetic field,
the system returns to the state of a Landau Fermi liquid and
the constancy of the Kadowaki ±Woods relation holds.

At finite temperatures, the system remains in the Landau
Fermi liquid state, but when T > T ��B�, the behavior of a
heavy Fermi liquid with a Fermi condensate and entropy S0

[see (2.10)] is restored. As regards finding the function T ��B�,
we note that the effective mass M � characterizing the single-
particle spectrum cannot change at T ��B� because no phase
transition occurs at this temperature. To calculate T ��B�, we
equate the effective mass M ��T � in Eqn (2.14) to M ��B� in
(5.5),M ��T � �M ��B�,

1

M ��T � / T ��B� / 1

M ��B� /
����������������
Bÿ Bc0

p
; �5:7�

whence

T ��B� /
����������������
Bÿ Bc0

p
: �5:8�

At temperatures T5T ��B�, the system returns to the
behavior of a heavy Fermi liquid with the entropy S0 and
the effective mass M � specified by Eqn (2.14). Thus,
expression (5.8) determines the line in the T vs. B phase
diagram that separates the region where the effective mass
depends on B and the heavy Fermi liquid behaves like a
Landau Fermi liquid from the region where the effective mass
is temperature-dependent. At T ��B�, the temperature depen-
dence of the resistivity ceases to be quadratic and becomes
linear.

It follows from (5.8) that at a certain temperature
T ��B�5Tf, the heavy-electron liquid acquires the properties
of a Landau Fermi liquid in strong magnetic fields,
Bÿ Bc0 /

ÿ
T ��B��2. At temperatures below T ��B�, the

heavy-electron liquid demonstrates an increasingly metallic
behavior as the magnetic field B increases, because the
effective mass decreases [see Eqn (5.5)]. Such behavior of the
effective mass can be observed, for instance, in measurements
of the heat capacity, magnetic susceptibility, resistivity, and
Shubnikov ± de Haas oscillations. From the T vs. B phase
diagram constructed in this manner, it follows that a unique
possibility emerges where a magnetic field can be used to
control the variations in the physical nature and type of
behavior of the electron liquid with a Fermi condensate.

We briefly discuss the case where the system is extremely
close to a Fermi-condensate quantum phase transition on the
ordered size of this transition, and hence
dpFC � � pf ÿ pi�=pF 5 1. Because dp /M ��B�, it follows
from Eqns (5.2) and (5.5) that

dp
pF
� ac

�����������������
Bÿ Bc0

Bc0

r
; �5:9�

where ac is a constant of the order of unity, ac � 1. As the
magnetic field B increases, dp=pF becomes comparable to
dpFC, and the distribution function n�p� disappears, being
absorbed by the ordinary Zeeman splitting. As a result, we are
dealing with a heavy-electron liquid `located' on the dis-
ordered side of the Fermi-condensate quantum phase transi-
tion. We show in Section 8 that the behavior of such a system
differs markedly from that of a system with a Fermi
condensate. Equation (5.9) implies that the relatively weak
magnetic field

Bcr � �dpFC�2 � Bÿ Bc0

Bc0
� Bred ; �5:10�

where Bred is the reduced field, takes the system from the
ordered side of the phase transition to the disordered if
dpFC 5 1.

5.1 The Landau Fermi liquid in high-Tc superconductors
Observations have shown that in the normal state obtained by
applying a magnetic field whose strength is higher than the
maximum critical field Bc that destroys superconductivity,
the heavily doped cuprate Tl2Ba2CuO6�d [14] and the
optimally doped cuprate Bi2Sr2CuO6�d [17] exhibit no
significant violations of the Wiedemann ±Franz law. Studies
of the electron-doped superconductor Pr0.91LaCe0.09CuO4ÿy
(Tc � 24 K) revealed that when a magnetic field destroyed
superconductivity in this material, the spin ± lattice relaxation
constant 1=T1 obeyed the relation T1T � const, known as the
Korringa law, down to temperatures about 0.2 K [106, 107].
At higher temperatures and in magnetic fields up to 15.3 T
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perpendicular to the CuO2 plane, the ratio 1=T1T remains
constant as a function of T for T4 55 K. In the temperature
range from 50 to 300 K, the ratio 1=T1T decreases as the
temperature increases [107]. Measurements involving the
heavily doped nonsuperconducting material La1.7Sr0.3CuO4

have shown that r varies with T as T 2 and that the
Wiedemann ±Franz law holds [97, 98].

Because the Korringa and Wiedemann ±Franz laws
strongly indicate the presence of a Landau Fermi liquid,
experiments show that the observed elementary excitations
cannot be distinguished from Landau quasiparticles in high-
Tc superconductors. This places severe restrictions on models
describing hole- or electron-doped high-Tc superconductors.
For instance, for a Luttinger liquid [108], for spin ± charge
separation [7], and in some tÿJ models [109], a violation of
theWiedemann ±Franz law was predicted, which contradicts
experimental evidence and points to limited applicability of
these models.

If the constant l0 is finite, then the heavy-electron liquid
with a Fermi condensate is in the superconducting state. We
examine the behavior of the system in magnetic fields B > Bc.
In this case, the system becomes the Landau Fermi liquid
induced by the magnetic field, and the elementary excitations
become quasiparticles that cannot be distinguished from
Landau quasiparticles, with the effective mass M ��B� given
by Eqn (5.5). As a result, theWiedemann ±Franz law holds as
T! 0, which agrees with the experimental facts [14, 17]. The
low-temperature properties of the system depend on the
effective mass; in particular, the resistivity r�T � behaves as
r�T � � r0 � A�B�T 2, with A�B� / ÿM ��B��2. Assuming
that Bc0 � 0 in the case of high-Tc superconductors, we
deduce from Eqn (5.5) that

g0
����
B
p
� const ; �5:11�

where g0 � C=T, with C being the heat capacity. Taking
Eqns (5.6) and (5.11) into account, we find that

g0 � A�B�
����
B
p

: �5:12�

At finite temperatures, the system remains a Landau Fermi
liquid, but for T > T ��B� the effective mass becomes
temperature-dependent, M � / 1=T, and the resistivity
becomes a linear function of the temperature, r�T � / T
[44, 45, 99]. Such behavior of the resistivity has been
observed in the high-Tc superconductor Tl2Ba2CuO6�d
(Tc < 15 K) [110]. At B � 10 T, r�T � is a linear function of
the temperature in the range from 120 mK to 1.2 K, and at
B � 18 T the temperature dependence of the resistivity can
be written in the form r�T � / AT 2 in the same temperature
range [110].

In a Landau Fermi liquid, the spin ± lattice relaxation
parameter 1=T1 is determined by the quasiparticles near the
Fermi level, whose population is proportional to M �T,
whence 1=T1T /M �, and is a constant quantity [106, 107].
When the superconducting state disappears as a magnetic
field is applied, the ground state can be regarded as a field-
induced Landau Fermi liquid with a field-dependent effective
mass. As a result, T1T � const, which implies that the
Korringa law holds. According to Eqn (5.5), the ratio
1=T1T /M ��B� decreases as the magnetic field increases at
T < T ��B�, whereas in the case of a Landau Fermi liquid it
remains constant, as noted above. On the other hand, at
T > T ��B�, the ratio 1=T1T is a decreasing function of the

temperature, 1=T1T /M � / 1=T. These results are in good
agreement with the experimental facts [107]. Because T ��B� is
an increasing function of themagnetic field [see Eqn (5.8)], the
Korringa law remains valid even at higher temperatures and
in stronger magnetic fields. Hence, at T0 4T ��B0� and high
magnetic fields B > B0, the system demonstrates distinct
metallic behavior, because the effective mass decreases as B
increases [see Eqn (5.5)] [111].

The existence of a Fermi-condensate quantum phase
transition can also be verified in experiments, because at
number densities x > xFC or beyond the Fermi-conden-
sate quantum phase transition point, the system must
become a Landau Fermi liquid at sufficiently low
temperatures [102]. Experiments have shown that such a
liquid indeed exists in the heavily doped nonsupercon-
ducting compound La1.7Sr0.3CuO4 [97, 98]. It is remarkable
that for T < 55 K, the resistivity exhibits a T 2-behavior
without an additional linear term and the Wiedemann ±
Franz law holds [97, 98]. At temperatures above 55 K,
experimenters have observed significant deviations from the
behavior of the Landau Fermi liquid. We predict that the
system can again be returned to a state with the Landau
Fermi-liquid behavior by applying sufficiently strong mag-
netic fields (see Section 7).

6. Emergence of a Fermi-condensate
quantum phase transition in Fermi systems

We say that Fermi systems that approach the Fermi-
condensate quantum transition point from a disordered
state are highly correlated systems in order to distinguish
them from strongly correlated systems (or liquids) that are
already beyond the Fermi-condensate quantum transition
point. A detailed description of the properties of a highly
correlated electron liquid is given in Section 7, and the
properties of a strongly correlated electron liquid are
discussed in Section 8. In the present section, we discuss the
behavior of the effective massM � as a function of the density
x of the system as x! xFC.

The experimental facts for high-density 2D 3He [37, 59,
112] show that the effective mass becomes divergent when the
value of the density at which the 2D liquid 3He begins to
solidify is reached [59]. Also observed was a sharp increase in
the effective mass in the metallic 2D electron system as the
density x decreases and tends to the critical density of the
metal ± insulator transition [38]. We note that there is no
ferromagnetic instability in the Fermi systems under con-
sideration and the corresponding Landau amplitudeF a

0 > ÿ1
[38, 59], which agrees with the model of nearly localized
fermions [34].

We examine the divergence of the effective mass in 2D and
3D highly correlated Fermi liquids at T � 0 as the density x
approaches the Fermi-condensate quantum phase transition
point of the disordered phase. We begin by calculatingM � as
a function of the difference xÿ xFC for a 2D Fermi liquid.
For this, we use the equation forM � derived in [42], where the
divergence of M � related to the generation of a density wave
in various Fermi liquids was predicted. As x! xFC, the
effective massM � can be approximately written as

1

M�
� 1

M
� 1

4p2

� 1

ÿ1

� g0

0

y dy dg�������������
1ÿ y2

p v
ÿ
q�y���

1ÿ R
ÿ
q�y�; g� w0ÿq�y���2 :

�6:1�
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We here use the notation pF
�����������������
2�1ÿ y�p � q�y�, where q�y� is

the momentum transfer, v�q� is the pair interaction, the
integral with respect to the coupling constant g is taken from
zero to the actual value g0, w0�q;o� is the linear response
function for the noninteracting Fermi liquid, and R�q;o� is
the effective interaction, with both functions taken at o � 0.
The quantities R and w0 determine the response function for
the system,

w�q;o; g� � w0�q;o�
1ÿ R�q;o; g� w0�q;o�

: �6:2�

Near the instability related to the generation of a density wave
at the density xcdw, the singular part of the response function w
has the well-known form (e.g., see Ref. [2])

wÿ1�q;o; g� � a�xcdw ÿ x� � b�qÿ qc�2 � c�g0 ÿ g� ; �6:3�

where a, b, and c are constants and qc � 2pF is the density-
wave momentum. Substituting Eqn (6.3) in (6.1) and
integrating, we can represent the equation for the effective
massM � as [35, 36]

1

M ��x� �
1

M
ÿ C������������������

xÿ xcdw
p ; �6:4�

where C is a positive constant. It follows from Eqn (6.4) that
M ��x� diverges as a function of the difference xÿ xFC and
M ��x� ! 1 as x! xFC [35, 36]:

M ��x�
M

� A� B

xÿ xFC
; �6:5�

where A and B are constants. We note that Eqns (6.4) and
(6.5) do not explicitly contain the interaction v�q�, although
v�q� affects A, B, and xFC. This result agrees with Eqn (2.7),
which determines the same universal type of divergence (i.e., a
divergence that is independent of the interaction). Hence,
both equations (6.4) and (6.5) can be applied to 2D 3He, the
electron liquid, and other Fermi liquids. We also see that the
Fermi-condensate quantum phase transition precedes the
formation of density waves (or charge-density waves) in
Fermi systems.

We note that the difference xÿ xFC must be positive in
both cases, since the density x approaches xFC when the
system is on the disordered side of the Fermi-condensed
quantum phase transition with an effective mass M ��x� > 0.
In the case of 3He, the Fermi-condensate quantum phase
transition occurs as the density increases, when the potential
energy begins to contribute to the ground-state energy. Thus,
for the 2D 3He liquid, the difference xÿ xFC on the right-
hand side of Eqn (6.5) must be replaced with xFC ÿ x.
Experiments have shown that the effective mass indeed
diverges at high densities in the case of 2D 3He and at low
densities in the case of 2D electron systems [38, 59].

The effectivemass as a function of the electron density x in
a silicon MOSFET (Metal Oxide Semiconductor Field Effect
Transistor), approximated by Eqn (6.4), is shown in Fig. 5.
The approximation parameters are xcdw � 0:7� 10ÿ11 cmÿ2,
C � 2:14� 10ÿ6 cmÿ1, and xFC � 0:9� 10ÿ11 cmÿ2 [35]. We
see that Eqn (6.4) provides a good description of the
experimental results. The divergence of the effective mass
M ��x� discovered in measurements involving 2D 3He [37, 59]
is illustrated by Fig. 6. Figures 5 and 6 show that the

description provided by Eqns (6.4), (6.5), and (2.7) is in
good agreement with the experimental data.

In the case of 3D systems, as x! xFC, the effectivemass is
given by the expression [42]

1

M � �
1

M
� pF
4p2

� 1

ÿ1

� g0

0

v
ÿ
q�y��y dy dg�

1ÿ R
ÿ
q�y�; g� w0ÿq�y���2 : �6:6�

Comparison of Eqns (6.1) and (6.6) shows that there is no
essential difference between them, although they describe
different cases, 2D and 3D. In the 3D case, we can derive
equations similar to (6.4) and (6.5) just as we did in the 2D
case, but the numerical coefficients are different, because they
depend on the number of dimensions. The only difference
between 2D and 3D electron systems is that the Fermi-
condensate quantum phase transition occurs in 3D systems
at densities much lower than those corresponding to 2D
systems. No such transition occurs in massive 3D 3He
because the transition is absorbed by the first-order liquid ±
solid phase transition [37, 59].
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Figure 5. The ratio M �=M in a silicon MOSFET as a function of the

electron number density x. The black squares mark the experimental data

on the Shubnikov ± de Haas oscillations. The data obtained by applying a

parallel magnetic field are marked by black circles [38, 113]. The solid line

represents the function (6.4).

1 2 3 4 5

0

2

4

6

8

10

12

14

x, nmÿ2

M
� =
M

Figure 6. The ratio M �=M in 2D 3He as a function of the density x of the
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experimental data are marked by black squares [37, 59], and the solid line
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B � 1:68 nmÿ2, and xFC � 5:11 nmÿ2.
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7. A highly correlated Fermi liquid
in heavy-fermion metals

As noted in the introduction, universal behavior becomes
observable in ordinary quantum phase transitions only when
the electron system of a heavy-fermion metal is very close to
the quantum critical point, e.g., when the correlation length is
much larger than the microscopic length scale. Under this
condition, the physics of the phenomenon is determined by
the thermal and quantum fluctuations of the critical state,
characterized by the absence of quasiparticles. But theories
based on ordinary quantum phase transitions cannot explain
the results of experimental observations related to the
divergence of the effective mass M � in a magnetic field, the
specific behavior of the spin susceptibility and its scale
properties, the behavior of thermal expansion, the constancy
of the Kadowaki ±Woods relation, etc. [6, 8, 9, 12, 13, 18, 31,
103, 114 ± 120].

7.1 Dependence of the effective mass M �

on the magnetic field
When a Fermi system approaches a Fermi-condensate
quantum phase transition from the disordered side, it
remains a Landau Fermi liquid with an effective mass M �

that strongly depends on the distance r � �xÿ xFC�=xFC, the
temperature T, and the magnetic field B. This state of the
system with M � that strongly depends on T, r, and B
resembles the state of a strongly correlated liquid described
in Section 2. But in contrast to a strongly correlated liquid, the
system in question involves no energy scale E0 specified by
Eqn (2.16) and at low temperatures becomes a Landau Fermi
liquid with an effective mass M � / 1=r [see Eqns (2.7) and
(6.5)]. Such a liquid can be called a highly correlated liquid; as
we see shortly, it exhibits unusual properties that differ from
those of strongly correlated Fermi systems [36, 121].

We use the Landau equation to study the behavior of the
effective massM ��T;B� as a function of the temperature and
the magnetic field. For a homogeneous liquid at finite
temperatures and magnetic fields, this equation acquires the
form [22]

1

M ��T;B� �
1

M
�
X
s1

�
pFp

p 3
F

Fs; s1�pF; p�
qns1�p;T;B�

qp
dp

�2p�3 ;

�7:1�
where Fs; s1�pF; p� is the Landau amplitude dependent on the
momenta pF and p and spin s. Because heavy-fermion metals
are predominantly three-dimensional, we assume that the
heavy-electron liquid is also a 3D liquid. To simplify matters,
we ignore the spin dependence of the effective mass, because
M ��T;B� is nearly independent of the spin in weak fields. The
quasiparticle distribution function can be expressed as

ns�p;T � �
�
1� exp

e�p;T � ÿ ms
T

�ÿ1
; �7:2�

where e�p;T � is determined by Eqn (2.2). In our case, the
single-particle spectrum depends on the spin only weakly, but
the chemical potential may depend on spin due to the Zeeman
splitting. When this is important, we specifically indicate the
spin dependence of physical quantities. We write the
quasiparticle distribution function as

ns�p;T;B� � dns�p;T;B� � ns�p;T � 0;B � 0� :

Equation (7.1) then becomes

M

M ��T;B� �
M

M ��x� �
M

p 2
F

X
s1

�
pFp1
pF

� Fs;s1�pF; p1�
qdns1�p1;T;B�

qp1

dp1

�2p�3 : �7:3�

We assume that the highly correlated electron liquid is close
to the Fermi-condensate quantum phase transition and the
distance r is small, and therefore M=M ��x�5 1, as follows
from Eqn (2.7). For normal metals, where the electron
liquid behaves like a Landau Fermi liquid with the effective
mass of several `bare' electron masses M=M ��x� � 1, at
temperatures near 1000 K, the second term on the right-
hand side of Eqn (7.3) is of the order of T 2=m 2 and is much
smaller than the first term. The same is true, as can be
verified, when a magnetic field B9 100 T is applied. Thus,
at M=M ��x� � 1, the system behaves like a Landau Fermi
liquid with an effective mass that is actually independent of
the temperature or magnetic field, while r�T � / T 2. This
means that the corrections to the effective mass determined
by the second term on the right-hand side of Eqn (7.3) are
proportional to �T=m�2 or �mBB=m�2, where mB is the Bohr
magneton.

Near the critical point xFC, with M=M ��x! xFC� ! 0,
the behavior of the effective mass changes dramatically
because the first term on the right-hand side of Eqn (7.3)
vanishes, the second term becomes dominant, and the
effective mass is determined by the homogeneous version of
(7.3) as a function of B and T.

We now qualitatively analyze the solutions of Eqn (7.3) at
x � xFC and T � 0. Application of a magnetic field leads to
Zeeman splitting of the Fermi surface, and the distance dp
between the Fermi surfaces with spin up and spin down
becomes dp � p "F ÿ p #F � mBBM

��B�=pF. We note that the
second term on the right-hand side of Eqn (7.3) is propor-
tional to �dp�2 / ÿmBBM ��B�=pF

�2
, and therefore Eqn (7.3)

reduces to [30, 102, 122]

M

M ��B� �
M

M ��x� � c

ÿ
mBBM

��B��2
p 4
F

; �7:4�

where c is a constant. We also note thatM ��B� depends on x
and that this dependence disappears at x � xFC. At this point,
the term M=M ��x� vanishes and Eqn (7.4) becomes homo-
geneous and can be solved analytically [36, 102, 122]:

M ��B� / 1

�Bÿ Bc0�2=3
; �7:5�

where Bc0 is the critical magnetic field, regarded as a
parameter [see the remarks after Eqn (5.5)].

Equation (7.5) specifies the universal power-law behavior
of the effective mass, irrespective of the interaction type. For
densities x > xFC, the effective mass M ��x� is finite and we
deal with ordinary Landau quasiparticles if the magnetic field
is so weak that

M ��x�
M ��B� 5 1 ;

withM ��B� given by (7.5). The second term on the right-hand
side of Eqn (7.4), which is proportional to

ÿ
BM ��x��2, is only
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a small correction. In the opposite case, where

M ��x�
M ��B� 4 1 ;

the electron liquid behaves as if it were at the quantum critical
point. In the Landau Fermi-liquid mode, the main thermo-
dynamic and transport properties of the system are deter-
mined by the effective mass, and it therefore follows from
Eqn (7.5) that we have the unique possibility of controlling
this mass by varying the magnetoresistance, resistivity, heat
capacity, magnetization, thermal bulk expansion, etc. It must
be noted that a large effective mass leads to a high density of
states, which causes the emergence of a large number of
competing states and phase transitions [123]. We believe that
such states can be suppressed by applying an external
magnetic field, and we examine the thermodynamic proper-
ties of the system without considering such competition.

7.2 Dependence of the effective mass M �

on the temperature and the damping of quasiparticles
For a qualitative examination of the behavior of M ��T � as
the temperature increases, we simplify Eqn (7.3) by dropping
the variable B and by imitating the effect of an external
magnetic field by a finite effective mass in the denominator of
the first term on the right-hand side of Eqn (7.3). Then the
effective mass becomes a function of the distance r, M ��r�,
determined also by themagnitude of themagnetic fieldB. In a
zero magnetic field, r � �xÿ xFC�=xFC. We integrate the
second term on the right-hand side of Eqn (7.3) with respect
to the angular variables, then integrate by parts with respect
to p, and replace pwith z � ÿe� p� ÿ m

�
=T. In the case of a flat

and narrow band, we can use the approximation where
e� p� ÿ m � pF� pÿ pF�=M ��T �. The result is

M

M ��T � �
M

M ��r� � a
�1
0

F
ÿ
pF; pF�1� az��dz

1� exp z

ÿ a
� 1=a

0

F
ÿ
pF; pF�1ÿ az�� dz

1� exp z
; �7:6�

where we use the notation F � M d�F 1p 2�=dp, a �
TM ��T �=p 2

F � TM ��T �=ÿTkM
��r��, and Tk � p 2

F=M
��r�,

and the Fermi momentum is defined by the condition
e� pF� � m.

We first consider the case where a5 1. Then, discarding
terms of the order exp �ÿ1=a�, we can set the upper limit in the
second integral on the right-hand side of Eqn (7.6) to infinity,
with the result that the sum of the second and third terms is an
even function of a. The resulting integrals are typical
expressions involving the Fermi ±Dirac function in the
integrand and can be evaluated by a standard procedure
(e.g., see Ref. [124]). Because we need only an estimate of the
integrals, we write Eqn (7.6) as

M

M ��T � �
M

M ��r� � a1

�
TM ��T �
TkM ��r�

�2

� a2

�
TM ��T �
TkM ��r�

�4

� . . . ;

�7:7�

where a1 and a2 are constants of the order of unity.
Equation (7.7) is a typical equation of the Landau

Fermi-liquid theory. The only exception is the effective
mass M ��r�, which depends strongly on the distance r and
diverges as r! 0. Nevertheless, Eqn (7.7) implies that as

T! 0, the corrections to M ��r� begin with terms of the
order T 2 if

M

M ��r� 4
�
TM ��T �
TkM ��r�

�2

� T 2

T 2
k

�7:8�

and the system behaves like a Landau Fermi liquid. Condi-
tion (7.8) implies that the behavior inherent in the Landau
Fermi liquid disappears as r! 0 and M ��r� ! 1. Then the
free term on the right-hand side of Eqn (7.6) is negligible,
M=M ��r� ! 0, and Eqn (7.6) becomes homogeneous and
determines the universal behavior of the effective mass
M ��T �.

At a certain temperature T1 5Tk, the value of the sum on
the right-hand side of Eqn (7.7) is determined by the second
term and relation (7.8) becomes invalid. Keeping only the
second term in Eqn (7.7), we arrive at an equation for
determining M ��T � in the transition region [122, 125]:

M ��T � / 1

T 2=3
: �7:9�

The temperature dependence of the Tÿ2=3 type in (7.9)
merits a remark. Equation (7.9) holds if the second term in
Eqn (7.7) is much larger than the first,

T 2

T 2
k

4
M

M ��r� ; �7:10�

and, at the same time, much larger than the third,

T

Tk
5

M ��r�
M ��T � � 1 : �7:11�

Obviously, both inequalities (7.10) and (7.11) are satisfied if
M=M ��r�5 1 and T is finite. The temperature range within
which Eqn (7.9) is valid collapses to zero as r! 0 because
Tk ! 0.

Thus, if the system is very close to the quantum critical
point, x! xFC, the behavior of the effectivemass specified by
Eqn (7.9) is possible within a broad temperature range only if
M ��r� is significantly reduced due to a magnetic field applied
to the system. We can say that the distance r becomes large
because of the magnetic field B. When B is finite, the Tÿ2=3-
dependence may be observed at a relatively high temperature
T > T1�B�.

As regards an estimate of the transition temperature
T1�B� at which the effective mass becomes temperature-
dependent, we note that the effective mass is a continuous
function of the temperature and the magnetic field:M ��B� �
M ��T1�. With Eqns (7.5) and (7.9), we obtain T1�B� / B.

As the temperature increases, the system transfers into
another mode. The coefficient a is then of the order of unity,
a � 1, the upper limit in the second integral in Eqn (7.6)
cannot be set to infinity, and odd terms begin to play a
significant role. As a result, Eqn (7.7) breaks down and the
sum of the first and second integrals on the right-hand side of
Eqn (7.6) becomes proportional to M ��T �T. Ignoring the
first term M=M ��r� and approximating the sum of integrals
byM ��T �T, we obtain from (7.6) that

M ��T � / 1����
T
p : �7:12�

We therefore conclude that as the temperature increases
and the condition x � xFC is satisfied, the system demon-
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strates regimes of three types: (i) the behavior of the Landau
Fermi liquid at a5 1, when Eqn (7.8) is valid and the
behavior of the effective mass is described by Eqn (7.5);
(ii) the behavior defined by Eqn (7.9), when M ��T � / Tÿ2=3

and S�T � /M ��T �T / T 1=3; and (iii) the behavior at a � 1,
when Eqn (7.12) is valid, M ��T � / 1=

����
T
p

, the entropy
S�T � /M ��T �T / ����

T
p

, and the heat capacity C�T � �
T
ÿ
qS�T �=qT � / ����

T
p

.
We illustrate the behavior of S�T � by calculations based

on the model Landau functional [24, 123]

E
�
n� p�� � � p2n�p�

2M

dp

�2p�3 �
1

2

�
V�p1 ÿ p2�n�p1�n�p2�

dp1 dp2

�2p�6
�7:13�

with the interparticle interaction

V�p� � g0
exp

ÿÿb0jpj�
jpj : �7:14�

We normalize the effective mass toM, i.e.,M � �M �=M, and
the temperature T0 to the Fermi energy e 0F, i.e., T � T0=e 0F,
and use the dimensionless coupling constant g � g0M=�2p2�
and also b � b0pF. The Fermi-condensate quantum phase
transition occurs when these parameters reach the critical
values b � bc and g � gc. On the other hand, a transition of
this kind occurs asM � ! 1. This condition allows deriving a
relation between bc and gc [24, 123]:

gc
b 3
c

�1� bc� exp �ÿbc��bc cosh bc ÿ sinh bc� � 1 :

This relation implies that the critical point of the Fermi-
condensate quantum phase transition can be reached by
varying g0 if b0 and pF are fixed, by varying pF if b0 and g0
are fixed, etc. For definiteness, we vary g to reach the Fermi-
condensate quantum phase transition or to study the proper-
ties of the system beyond the critical point. Calculations of
M ��T �, S�T �, and C�T � based on model functional (7.13)
with the parameters g � gc � 6:7167 and b � bc � 3 show
that M ��T � / 1=

����
T
p

, S�T � / ����
T
p

, and C�T � / ����
T
p

. The
temperature dependence of the entropy in this case is
depicted in Fig. 7.

We now estimate the quasiparticle damping g�T �. In the
Landau Fermi-liquid theory, g is given by [22]

g � jGj2�M ��3T 2 ; �7:15�

whereG is the particle ± hole amplitude. In the case of a highly
correlated system with a high density of states caused by the
enormous effective mass, G cannot be approximated by the
`bare' interaction between particles but can be estimated
within the `ladder' approximation, which yields jGj �
1=
ÿ
pFM

��T �� [54]. As a result, we find that g�T � / T 2 in
the Landau Fermi-liquid regime, g�T � / T 4=3 in the Tÿ2=3-
regime, and g�T � / T 3=2 in the 1=

����
T
p

-regime.We note that in
all these cases, the width is small compared to the character-
istic quasiparticle energy, which is assumed to be of the order
of T, and hence the quasiparticle concept is meaningful.

The conclusion that can be drawn here is that when the
electron liquid is localized near the quantum critical point of
the Fermi-condensate quantum phase transition and is on the
disordered side, its low-energy excitations are quasiparticles
with the effective massM ��B;T �.

We note that as x! xFC, the quasiparticle renormaliza-
tion factor a�p� remains approximately constant and the
divergence of the effective mass that follows from Eqn (2.7)
is not related to the fact that a�p� ! 0 [126]. Therefore, the
quasiparticle concept remains valid and it is these quasipar-
ticles that determine the transport and thermodynamic
properties of the highly correlated electron liquid.

7.3 Electric resistivity of metals with heavy fermions
The electric resistivity

r�T � � r0 � Dr1�B;T �
is directly determined by the effective mass, because
Dr1�B;T � � A�B;T �T 2 / ÿM ��B;T �T �2 [104], and there-
fore the temperature dependences of the effective mass
discussed above can be observed in measurements of the
resistivity of heavy-fermion metals. At temperatures
T5T1�B�, the system is in the Landau Fermi-liquid regime,
the behavior of the effective mass as x! xFC is described by
Eqn (7.5), and the coefficient A�B� can be represented as

A�B� / 1

�Bÿ Bc0�4=3
: �7:16�

In this regime, the resistivity behaves as Dr1 �
c1T

2=�Bÿ Bc0�4=3 / T 2. The second regime, a highly corre-
lated Fermi liquid determined by Eqn (7.9), is characterized
by the resistivity dependence Dr2 � c2T

2=�T 2=3�2 / T 2=3.
The third regime at T > T1�B� is determined by Eqn (7.12)
and Dr3 � c3T

2=� ����Tp �2 / T. Here, c1, c2, and c3 are con-
stants.

We note that all temperature dependences corresponding
to these regimes have been observed in measurements
involving the heavy-fermion metals CeCoIn5 and YbAgGe
[18, 31, 116, 118]. By examining the ratio Dr2=Dr1 /��Bÿ Bc0�=T

�4=3
, we can arrive at the very interesting

conclusion that this ratio is a function of only one variable,
�Bÿ Bc0�=T, which agrees with the experimental facts [31].

7.4 Magnetic susceptibility
The magnetic susceptibility is proportional to the effective
mass, w /M �, where M � is given by Eqns (7.5), (7.9), and
(7.12). When T5T1, the effective mass is given by (7.5) and
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the susceptibility is

w�B� /M ��B� / �Bÿ Bc0�ÿ2=3 : �7:17�

The static magnetization is

MB�B� / BM ��B� / �Bÿ Bc0�1=3 : �7:18�

At T � T1�B�, as Eqn (7.9) shows, (7.17) becomes

w�T � /M ��T � / Tÿ2=3 : �7:19�

For the temperature T4T1�B�, as Eqn (7.12) shows, (7.17)
becomes

w�T � /M ��T � / Tÿ1=2 : �7:20�

The behavior of w�B�, MB�B�, and w�B;T � obtained by
solving (7.3) (Fig. 8) is in good agreement with the results of
measurements involving CeRu2Si2 with the critical field
Bc0 � 0 [103]. In Fig. 8, the temperature is normalized to TP

(the temperature at which the susceptibility reaches its peak
value), the susceptibility is normalized to the peak value
w�B;TP�, and the magnetization is normalized to
MB�B;T! 0�, for each value of the field.

We examine the state of the system as r! 0. The
properties of this state are determined by the magnetic field
B and the temperature T. At the transition temperature
T � T1�B�, the effective mass depends on T and B; at
T5T1�B�, the system is a Landau Fermi liquid with the
effective mass determined by Eqn (7.5); and atT0T1�B�, the
effective mass is given by Eqn (7.9). Instead of solving
Eqn (7.3), we can construct a simple interpolation formula
describing the behavior of the effective mass for T9T1:

M ��B;T � � c1�Bÿ Bc0�2 � c2T
2

c3�Bÿ Bc0�8=3 � c4T 8=3
; �7:21�

where c1, c2, c3, and c4 are certain constants. Dividing both
sides of Eqn (7.21) by M ��B;T � 0� and introducing the
notation y � T=�Bÿ Bc0�, we obtain

M ��B;T �
M ��B� �

1� �c2=c1�y 2

1� �c4=c3�y 8=3
: �7:22�

Equation (7.22) shows that the behavior of the effective mass
can be described by a universal function of a single variable, y.
If we use (7.22) and the definition of susceptibility
w�B;T � � qMB�B;T �=qB, we can conclude that the suscepti-
bility and magnetization also demonstrate scaling behavior
and can be represented by a universal function of the single
variable y, if they are respectively normalized to susceptibility
(7.17) and magnetization (7.18). We note that the suscept-
ibility w�y� has a peak, while the magnetization has no peak
[30, 122, 125]. It follows from Eqn (7.21) that the scaling
behavior of the normalized susceptibility and magnetization
is destroyed when T4T1�B�, because the behavior of the
effective mass at such temperatures is given by formula (7.12).
Figure 8 shows that the above scaling behavior of the
normalized susceptibility and magnetization agrees with the
experiments involving CeRu2Si2, with the scaling behavior of
the experimental points disappearing at T4 1, which
corresponds to temperatures T4TP � T1�B� [103].

We see fromFig. 8 that at finite field strengthsB, the curve
describing w�B;T �=w�B;TP� has a peak (more like a hump) at
a certain temperature TP, whileMB�B;T �=MB�B;TP� has no
such peak. This behavior agrees well with experimental results
[103]. We note that such behavior of susceptibility is not
typical of ordinary metals and cannot be explained within the
scope of theories that take only ordinary quantum phase
transitions into account [103].

7.5 Magnetoresistance
We now examine the behavior of the magnetoresistance

rmr�B;T � �
r�B;T � ÿ r�0;T �

r�0;T � �7:23�

of a highly correlated electron liquid as a function of the
magnetic field B and the temperature T [121]. The resistivity
r�B;T � � r0 � Dr�B;T � � Drmr�B� is measured in a mag-
netic field B at a temperature T. We assume that the
contribution Drmr�B� determined by the magnetic field can
be considered in the weak-field approximation based on the
well-known Kohler rule:

Drmr�B�
r�0;T � � l?

�
Br�0;YD�
B0r�0;T �

�2

; �7:24�
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Figure 8. The normalized magnetic susceptibility w�B;T�=w�B;TP� (a) and normalized magnetizationMB�B;T �=MB�B;TP� (b) for CeRu2Si2 in magnetic
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where YD is the Debye temperature, B0 the characteristic
magnetic field strength, and l? a constant. We note that
Drmr�B�5 r�0;T � � r�T � is assumed in the weak-field
approximation.

We suppose that the temperature is not very low,
r0 4Dr�B � 0;T �, and B5Bc0. Substituting (7.24) in
(7.23), we find that

rmr�B;T � �
Drmr�B�
r�0;T � � cT 2

ÿ
M ��B;T ��2 ÿ ÿM ��0;T ��2

r�0;T � ;

�7:25�
where c is a constant determined by the temperature
dependence of the resistivity: c

ÿ
M ��B;T ��2T 2 � Dr�B;T �.

We examine the magnetoresistance described by
Eqn (7.25) as a function of B at a certain temperature
T � T0. In weak magnetic fields, when T0 > T1�B� / B, the
leading contribution to the magnetoresistance is made by the
term Drmr�B�, because the effective mass is temperature-
independent. Hence,

��M ��B;T � ÿM ��0;T ���=M ��0;T �5 1
and the leading contribution is made by Drmr�B�. As a result,
the magnetoresistance is an increasing function of B. When B
becomes so high that T1�B� � T0, the difference
M ��B;T � ÿM ��0;T � becomes negative and the magnetore-
sistance as a function of B reaches its maximum value at
T1�B� > T0. AsB increases still further, whenT1�B� > T0, the
effective massM ��B;T � becomes a decreasing function of the
magnetic field, as follows from Eqn (7.5). As B increases,

M ��B;T � ÿM ��0;T �
M ��0;T � ! ÿ1

and the magnetoresistance, being a decreasing function of B,
is negative.

We now study the behavior of magnetoresistance as a
function of T at a certain value B0 of the magnetic field
strength. At low temperatures T5T1�B0�, it follows from
Eqns (7.5) and (7.12) that

M ��B0�
M ��T � 5 1 ;

and the magnetoresistance is determined by r�0;T �. We note
that B0 must be relatively high to guarantee that
M ��B0�=M ��T �5 1. Hence, rmr�B0;T � � ÿ1, because
Drmr�B�=r�0;T �5 1. As the temperature increases, the
magnetoresistance increases, remaining negative. At
T � T1�B0�, the magnetoresistance is approximately zero,
because M ��B0� �M ��T � and r�B0;T � � r�0;T � at this
point. This allows concluding that the change of the
temperature dependence of resistivity r�T � from quadratic
to linear manifests itself in the transition from negative
magnetoresistance to positive. At T5T1�B0�, the leading
contribution to the magnetoresistance is made by Drmr�B0�
and the magnetoresistance reaches its maximum. At
T1�B0�5T, the magnetoresistance is a decreasing function
of the temperature, because��M ��B;T � ÿM ��0;T ���

M ��0;T � 5 1

and Drmr�B0�=r�T �5 1 is a decreasing function of T.
Both transitions (from positive magnetoresistance to

negative magnetoresistance with increasing B at a fixed
temperature T and from negative magnetoresistance to

positive magnetoresistance with increasing T at a fixed value
of B) have been detected in measurements of the resistivity of
CeCoIn5 in amagnetic field [31]. Thus, the described behavior
of magnetoresistance is in good agreement with the experi-
mental results.

8. Metals with a strongly correlated
electron liquid

At T5Tf, the function n0�p� given by Eqn (2.8) determines
the entropy SNFL�T � of a heavy-electron liquid on the
ordered side of the Fermi-condensate quantum phase transi-
tion. As follows from Eqn (2.10), the entropy contains a
temperature-independent contribution,

S0 � pf ÿ pi
pF

� jrj ;

where r � �xÿ xFC�=xFC. Another specific contribution is
related to the spectrum e�p�, which ensures a link between the
dispersionless region � pi; pf� occupied by the Fermi con-
densate and the normal quasiparticles in the regions p < pi
and p > pf. This spectrum has the form e�p� /
� pÿ pf�2 � � pi ÿ p�2. Such a shape of the spectrum, corro-
borated in exactly solvable models for systems with a Fermi
condensate, leads to a contribution to the heat capacity
C � �����������

T=Tf

p
[23]. Therefore, for 0 < T5Tf, the entropy can

be approximated by the function

SNFL�T � � S0 � a

������
T

Tf

r
� b

T

Tf
; �8:1�

where a and b are constants. The third term on the right-hand
side of Eqn (8.1), which emerges because of the contribution
of the temperature-independent part of the spectrum e�p�,
yields a relatively small addition to the entropy. As we see
shortly, the temperature-independent term S0 determines the
universal transport and thermodynamic properties of a
heavy-electron liquid with a Fermi condensate, which we
call a strongly correlated Fermi liquid. The properties of this
liquid differ dramatically from those of highly correlated
systems. As a result, we can think of the Fermi-condensate
quantum phase transition as a phase transition that separates
highly correlated and strongly correlated Fermi liquids.
Because a highly correlated liquid behaves like a Landau
Fermi liquid as T! 0, the Fermi-correlated quantum phase
transition separates the Landau Fermi liquid from a strongly
correlated Fermi liquid.

Figure 9 shows the temperature dependence S�T �
calculated on the basis of model functional (7.13). The
calculations were done with g � 7, 8, and 12 and b � bc � 3.
We recall that the critical value of g is gc � 6:7167. We see in
Fig. 9 that S0 increases as the system moves away from the
Fermi-condensate quantum phase transition. Obviously, the
term S0 on the right-hand side of Eqn (8.1), which is
temperature-independent, contributes nothing to the heat
capacity, but the second term in (8.1) makes a contribution,
and the heat capacity behaves anomalously, C�T � / ����

T
p

, a
fact corroborated by our calculations.

8.1 Entropy, linear expansion, and GruÈ neisen's law
The unusual temperature dependence of the entropy of a
strongly correlated electron liquid specified by Eqn (8.1)
determines the unusual behavior of the liquid. The existence
of a temperature-independent term S0 can be illustrated by
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calculating the thermal expansion coefficient a�T � [127, 128],
which is given by [22]

a�T � � 1

3

�
q�logV �

qT

�
P

� ÿ 1

3V

�
q�S=x�
qP

�
T

; �8:2�

where P is the pressure and V is the volume. We note that the
compressibility K � dm=d�Vx� does not develop a singularity
at the Fermi-condensate quantum phase transition and is
approximately constant in systems with a Fermi condensate
[129]. Substituting (8.1) in Eqn (8.2), we find that

aFC�T � � a0 �M �
FCT

p 2
FK

; �8:3�

where a0 � qS0=qP is temperature-independent. In (8.3), we
took only the leading contribution related to S0 into account.
We recall that

C�T � � T
qS�T �
qT

� a

2

������
T

Tf

r
: �8:4�

As a result, the GruÈ neisen ratio G�T � diverges as

G�T � � a�T �
C�T � � 2

a0
a

������
Tf

T

r
; �8:5�

fromwhichwe conclude thatGruÈ neisen's law does not hold in
strongly correlated Fermi systems.

We now see how the behavior of the effective mass
described by Eqns (2.14) and (7.12) is related to the results
of experimental observation. The thermal expansion coeffi-
cient a�T � measured for the paramagnet CeNi2Ge2 behaves
as

����
T
p

as the temperature varies from 6 K to 50 mK [12]. The
same behavior a�T � / ����

T
p

was detected in measurements
involving the ferromagnet CePd1ÿxRhx [130] (Fig. 10).

Figure 10 shows that at the critical point x � 0:90 at which
the critical temperature of the ferromagnetic phase transition
vanishes, the thermal expansion coefficient is well approxi-
mated by the dependence a�T � / ����

T
p

as the temperature
varies by almost two orders of magnitude, but even a small
deviation of the system from the critical point destroys the
correspondence between this approximation and the experi-
mental data.

We note that it is possible to describe the critical behavior
of two entirely different heavy-fermion metals (one is a

paramagnet and the other a ferromagnet) by the function
a�T � � c1

����
T
p

with only one fitting parameter c1. This fact
vividly shows that fluctuations do not determine the behavior
of a�T �. Heat-capacity measurements for CePd1ÿxRhx with
x � 0:90 have shown that C�T � / ����

T
p

[130]. Thus, the
electron systems of both metals can be interpreted as being
highly correlated electron liquids.

Measurements that have been conducted with
YbRh2�Si0:95Ge0:05�2 show that a=T / 1=T and that the
GruÈ neisen ratio diverges as G�T � � Tÿq, with q � 0:33,
which allows classifying the electron system of this com-
pound as a strongly correlated liquid [12]. Our estimate
q � 0:5, which follows from Eqn (8.5), is in satisfactory
agreement with this experimental value. Both types of
behavior of a�T � contradict the Landau Fermi-liquid
theory, according to which the thermal expansion coefficient
a�T �=T �M � � const as T! 0. In our case, the effective
mass depends on T, and the 1=

����
T
p

-dependence that follows
from Eqn (7.12) is in good agreement with the results for the
first system [127], while the 1=T-dependence of the effective
mass, which follows from Eqn (2.14) and was predicted in
Ref. [128], corresponds to the second result.

Equation (2.14) implies thatM ��T! 0� ! 1 and that a
strongly correlated electron system behaves as if it were
placed at the quantum critical point. Actually, the liquid is
on the quantum critical curve x < xFC, and critical behavior is
observed for all x4 xFC as T! 0. It was shown in Section 3
that as T! 0, the strongly correlated electron liquid under-
goes a first-order quantum phase transition, because the
entropy becomes a discontinuous function of the tempera-
ture: at finite temperatures, the entropy is given by Eqn (8.1),
while S�T � 0� � 0. Hence, the entropy has a discontinuity
dS � S0 asT! 0. This implies that, as a result of a first-order
phase transition, all critical fluctuations are suppressed along
the quantum critical curve and the respective divergences,
e.g., the divergence of G�T �, are determined by quasiparticles
and not critical fluctuations, as could be expected in the case
of an ordinary quantum phase transition [4]. We note that
according to the well-known inequality [124] dQ4T dS, the
heat dQ of the transition from the disordered phase to the
ordered phase is zero, because dQ4S0T tends to zero as
T! 0.
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8.2 The TÿB phase diagram, the Hall coefficient,
and the magnetic susceptibility
To study the TÿB phase diagram of a strongly correlated
electron liquid, we examine the case where non-Fermi-
liquid (NFL) behavior emerges when the antiferromag-
netic (AF) phase is suppressed by an external magnetic
field B, e.g., as it is in the heavy-fermion metals YbRh2Si2
and YbRh2(Si0:95Ge0:05)2 [12, 13].

The antiferromagnetic phase is a Landau electron Fermi
liquid with the entropy vanishing as T! 0. For magnetic
fields higher than the critical value Bc0 at which the NeÂ el
temperature TN�B! Bc0� ! 0, the antiferromagnetic phase
transforms into a weakly polarized paramagnetic strongly
correlated electron liquid. As shown in Section 5, a magnetic
field applied to the system with T � 0 splits the Fermi-
condensate state occupying the interval � pi; pf� into Landau
levels and suppresses the superconducting order parameter
k�p�. The new state is specified by amultiply connected Fermi
sphere, on which a smooth quasiparticle distribution function
n0�p� in the interval � pi; pf� is replacedwith a distribution n�p�
(see Fig. 4). Hence, the behavior of the LandauFermi liquid is
restored and is characterized by quasiparticles with the
effective mass M ��B� given by Eqn (5.5). When the
temperature increases so high that

T > T ��Bÿ Bc0� /
����������������
Bÿ Bc0

p
;

the entropy of the electron liquid is determined by Eqn (8.1).
The described behavior of the strongly correlated liquid is
shown in the TÿB diagram in Fig. 11.

In accordance with the experimental data, we assume that
at relatively high temperatures, such that T=TNO � 1, where
TNO is the NeÂ el temperature in a zero magnetic field, the
antiferromagnetic phase transition is a second-order one [13].
In this case, the entropy and other thermodynamic functions
at the transition temperature TN�B� are continuous. This
means that the entropy SAF of the antiferromagnetic phase
coincides with the entropy SNFL of the strongly correlated

liquid given by Eqn (8.1):

SAF

ÿ
T! TN�B�

� � SNFL

ÿ
T! TN�B�

�
: �8:6�

Since the antiferromagnetic phase behaves like a Landau
Fermi liquid, i.e., SAF�T! 0� ! 0, Eqn (8.6) is not valid at
low temperatures T4Tcrit because of the temperature-
independent term S0. Hence, the second-order antiferromag-
netic phase transition becomes a first-order one at T � Tcrit

(see Fig. 11).
At T � 0, the critical magnetic field Bc0 in which the

antiferromagnetic phase becomes a Landau Fermi liquid is
determined by the condition that the ground-state energy of
the antiferromagnetic phase be equal to the ground-state
energy E

�
n0�p�

�
of the Landau electron Fermi liquid. This

means that the ground state of the antiferromagnetic phase is
degenerate at B � Bc0. Hence, the NeÂ el temperature
TN�B! Bc0� ! 0, the behavior of the effective mass
M ��B5Bc0� is determined by Eqn (5.5), and M ��B�
diverges as B! Bc0.

The phase transition separating the antiferromagnetic
phase existing at B4Bc0 from the Landau Fermi liquid
existing at B5Bc0 is a first-order quantum phase transition.
The driving parameter of this phase transition is the magnetic
field strength B. We note that the respective quantum and
thermal critical fluctuations disappear at T < Tcrit because a
first-order antiferromagnetic phase transition occurs at such
temperatures.

We can also conclude that the critical behavior observed
as T! 0 and B! Bc0 is determined by quasiparticles and
not by critical fluctuations that accompany second-order
phase transitions. As r! 0, the electron liquid approaches
the Fermi-condensate quantum phase transition from the
ordered side. Obviously, Tcrit ! 0 at the point r � 0, and the
NeÂ el temperature is zero at the point where the second-order
antiferromagnetic phase transition becomes a first-order
transition. Hence, the contributions determined by critical
fluctuations can be expected to result in only logarithmic
corrections to the values calculated in the Landau theory of
phase transitions [124], while the power laws of critical
behavior are again determined by the appropriate quasipar-
ticles.

Thus, Landau's paradigm based on the concept of
quasiparticles and the order parameter can be applied in
studies of the TÿB phase diagram of a strongly correlated
electron liquid.

We now examine the jump in the Hall coefficient detected
in measurements involving YbRh2Si2. The Hall coefficient
RH�B� as a function of B experiences a jump as T! 0 when
the applied magnetic field reaches its critical value B � Bc0,
and then becomes even higher than the critical value at
B � Bc0 � dB, where dB is an infinitely small magnetic field
strength [131]. As shown in Fig. 5, when T � 0, introduction
of the critical magnetic field Bc0, which suppresses the
antiferromagnetic phase (with the Fermi momentum
pAF � pF) restores the Landau Fermi liquid with a Fermi
momentum pf > pF. When B < Bc0, the ground-state energy
of the antiferromagnetic phase is lower than that of the
Landau paramagnetic electron Fermi liquid, but for B > Bc0

we are confronted with the opposite case, where the Landau
paramagnetic Fermi liquid has the lower energy. At B � Bc0

and T � 0, both phases have the same ground-state energy,
because they are degenerate.

NFL

LFLAF

TN�B=Bc0�

B=Bc0

T
=T

N
O

Tcrit

T ��B=Bc0 ÿ 1�

Figure 11. The TÿB phase diagram of a strongly correlated electron

liquid. The line TN�B=Bc0� represents the dependence of the NeÂ el

temperature on the field strength B. The black dot at T � Tcrit marks the

critical temperature at which the second-order AF phase transition

becomes a first-order one. For T < Tcrit, the heavy solid line represents

the function TN�B=Bc0�, when the AF phase transition becomes a first-

order one. The strongly correlated liquid in the NFL region is character-

ized by the entropy SNFL given by Eqn (8.1). The line separating the

strongly correlated liquid (NFL) from the weakly polarized electron

liquid, which behaves like the Landau Fermi liquid (LFL), is described

by the function T ��B=Bc0 ÿ 1� / ���������������������
B=Bc0 ÿ 1

p
[see Eqn (5.8)].
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Thus, at T � 0 and B � Bc0, an infinitely small increase
dB in the magnetic field leads to a finite discontinuity in the
Fermi momentum, because the distribution function becomes
multiply connected (see Fig. 4), but the number of mobile
electrons does not change, As a result, the Hall coefficient
experiences a sharp jump, because RH�B� / 1=p 3

F in the
antiferromagnetic phase and RH�B� / 1=p 3

f in the paramag-
netic phase. Assuming that RH�B� is a measure of the Fermi
momentum [131] (as is the case with a simply connected Fermi
volume), we obtain

RH�B � Bc0 ÿ d�
RH�B � Bc0 � d� � 1� 3

pf ÿ pF
pF

� 1� d
S0

xFC
; �8:7�

where S0=xFC is the entropy per heavy electron and d is a
constant �d � 5�.

It follows from Eqn (8.7) that the discontinuity in the Hall
coefficient is determined by the anomalous behavior of the
entropy, which can be attributed to S0. Hence, the disconti-
nuity tends to zero as r! 0 and disappears when the system is
on the disordered side of the Fermi-condensate quantum
phase transition, where the entropy has no temperature-
independent term [132].

We turn to the magnetic susceptibility, which is propor-
tional to the effective mass and is determined by Eqn (5.5).
For T5T ��B�, the magnetic susceptibility is given by [30]

w�B� /M ��B� / 1����������������
Bÿ Bc0

p ; �8:8�

and the static magnetization is

M�B� /
����������������
Bÿ Bc0

p
: �8:9�

Figure 12 shows that the function M�B� that follows
from (8.9) is in good agreement with the data of
measurements involving YbRh2�Si0:95Ge0:05)2; we note
that Bc0 � 0 in this case [6]. We also conclude that
Eqns (7.21) and (7.22), which determine the scaling of the
effective mass, static magnetization, and susceptibility, also
hold in the case of a strongly correlated liquid, but with
y � T=

����������������
Bÿ Bc0

p
. As a result, we find that the factor dr=dT

behaves as A�B�T / T=�Bÿ Bc0� for T < T ��B� but
behaves as A�B�T / 1=T for T > T ��B� [30]. These

observations agree with the data gathered in measure-
ments involving YbRh2�Si0:95Ge0:05�2 [6].

We note that as in the case of a highly correlated liquid,
the susceptibility w�y� of a strongly correlated liquid is not a
monotonic function of y and has a peak. In experiments, such
behavior manifests itself as the presence of a maximum in the
function w�B;T � observed at a fixed value of B with T
varying. As shown in Section 5, the well-known empirical
Kadowaki ±Woods relation K � A=g 20 � const is also valid
for a strongly correlated liquid [30]. These results are in good
agreement with the experimental facts [6, 13, 133].

We examine theTÿB diagram of the heavy-fermionmetal
YbRh2Si2 [13] (Fig. 13). In the Landau Fermi-liquid region,
the behavior of themetal is characterized by the effectivemass
M ��B�, which diverges as 1=

����������������
Bÿ Bc0

p
[13]. It is quite evident

that Eqn (5.5) provides a good description of this experi-
mental fact:M ��B� diverges as B! Bc0 at TN�B � Bc0� � 0
and, as Fig. 12 shows, the calculated behavior of magneti-
zation agrees with the experimental data. Figure 13 shows
that in accordance with (5.8), the curve separating the
Landau Fermi liquid region from the NFL region can be
approximated by the function c

����������������
Bÿ Bc0

p
with a fitting

parameter c. Bearing in mind that the behavior of YbRh2Si2
is like that of YbRh2(Si0:95Ge0:05)2 [6, 12, 115, 133], we
conclude that the thermal expansion coefficient a�T � is
temperature-independent and that the GruÈ neisen ratio
diverges as a function of T in the NFL region [12]. We
conclude that the entropy in the Landau Fermi-liquid region
is determined by Eqn (8.1). Since the antiferromagnetic phase
transition is second-order at relatively high temperatures [13],
we can predict that as the temperature decreases, the phase
transition becomes a first-order one. The above description of
the behavior of theHall coefficientRH�B� also agrees with the
experimental facts [131].

Thus, we conclude that the universal TÿB phase diagram
of a strongly correlated electron liquid shown inFig. 11 agrees
with the experimental TÿB diagram obtained from experi-
ments involving the heavy-fermion metals YbRh2Si2 and
YbRh2(Si0:95Ge0:05)2 and shown in Fig. 13.

8.3 Heavy-fermion metals in the immediate vicinity
of a Fermi-condensate quantum phase transition
Wenow consider the case where dpFC � � pf ÿ pi�=pF 5 1 and
the electron system of a heavy-fermionmetal is in a state close
to the Fermi-condensate quantum phase transition while
remaining on the ordered side. It follows from Eqn (5.10)
that when the system is placed in a magnetic field
�Bÿ Bc0�=Bc0 5Bc, the system passes from the ordered side
of the Fermi-condensate quantum phase transition to the
disordered side, or the strongly correlated liquid transforms
into a highly correlated one. As a result, when T4T1�B�, the
effective mass M ��B� is determined by Eqns (7.5) and (7.9),
the Kadowaki ±Woods relation and the Wiedemann ±Franz
law hold, and there are quasiparticles in the system. The
resistivity then behaves as described in Section 7.3.

In a zero magnetic field or at temperatures
Tf 4T > T1�B�, the system behaves like a strongly corre-
lated Fermi liquid, the effective mass M ��T � is given by
Eqn (2.14), and the entropy is determined by Eqn (8.1). The
magnetic susceptibility w�T � /M ��T � / 1=T, the thermal
expansion coefficient a�T � is temperature-independent [as
follows from Eqn (8.3)], and the GruÈ neisen ratio diverges, as
follows from Eqn (8.5). We note that the heat capacity
behaves as C�T � / ����

T
p

in either case, when the electron

0

0.3

0.2

0.1

0.5
B, T

M�B�

1.0

Figure 12. The values of magnetization M�B� obtained in measurements

involving YbRh2(Si0:95Ge0:05)2 (black squares) [6]. The curve represents

the field-dependent functionM�B� � aM
����
B
p

[see Eqn (8.9)], where aM is a

fitting parameter.
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system is on the ordered or disordered side of the Fermi-
condensate quantum phase transition. It follows from
Eqn (2.14) that g�T � / T (see also Section 3.5). Hence, at
T4T1�B�, the temperature-dependent part of the resistivity
behaves as Dr�T � / g�T � / T in either case, when the
electron system is in the highly correlated state or in the
strongly correlated state.

We assume that the system becomes superconducting at a
certain temperature Tc. In contrast to the jump dC�Tc� of the
heat capacity at Tc in ordinary superconductors, which is a
linear function of Tc, the value of dC�Tc� is independent of Tc

in our case. Equations (3.28) and (3.29) show that both
dC�Tc� and the ratio dC�Tc�=Cn�Tc� can be very large
compared to the corresponding quantities in the ordinary
BCS case [70, 134, 135].

Experiments show that the electron system in the heavy-
fermion metal CeCoIn5 can be considered a strongly
correlated electron liquid. Indeed, for T > T1�B�, the linear
thermal expansion coefficient a�T � / const and the GruÈ nei-
sen ratio diverges [136] [see Eqns (8.3) and (8.5)], and we may
assume that the entropy is given by (8.1).

A finite magnetic field takes the system to the disordered
side of the Fermi-condensate quantum phase transition; for
T < T1�B�, the system behaves like a highly correlated liquid
with the effective mass given by (7.5). Estimates of dpFC
based on calculations of the magnetic susceptibility show
that dpFC � 0:044 [134]. We conclude that Bcr � 0:01, as
follows from Eqn (5.10), and the electron system of the
heavy-fermion metal CeCoIn5 passes, in relatively weak
magnetic fields, to the disordered side of the Fermi-
condensate quantum phase transition and acquires a
behavior characteristic of a highly correlated liquid. We
note that the estimated value of dpFC provides an explana-
tion for the relatively large jump dC�Tc� [134] observed at
Tc � 2:3 K in experiments with CeCoIn5 [135].

As Fig. 14a shows, the behavior A�B� / BH�B� /
M ��B� / �Bÿ Bc0�ÿ4=3 specified by Eqn (7.16) is in good
agreement with the experimental results [18, 31]. The
coefficient BH�B� determines the T 2-dependence of the
thermal resistance, and the ratio A�B�=BH�B� is field-

independent, with A=BH � 0:47 [18, 31]. In the Landau
Fermi-liquid regime, the Kadowaki ±Woods relation and
the Wiedemann ±Franz law hold, and the system contains
quasiparticles [18, 31, 114, 118]. Thus, we may conclude that
our description is in good agreement with the experimental
facts.

At low temperatures and in a magnetic field Bred � Bcr

[see Eqn (7.16)], the electron system is a Landau Fermi liquid.
As the temperature increases, the behavior of the strongly
correlated liquid determined by the entropy S0 is restored at
T ��B�, and the effective mass becomes temperature-depen-
dent, according to Eqn (2.14). To calculate T ��B�, we use the
fact that the behavior of the effective mass is given by (7.5) for
T < T ��B� and by Eqn (2.14) for T > T ��B�. Since the
effective mass cannot change at T � T ��B�, we can estimate
T ��B� by equating these two values of the effective mass, As a
result, we obtain

T ��B� / �Bÿ Bc0�2=3 : �8:10�

The function T ��B� in (8.10) is shown by a dotted line in
Fig. 14b. As themagnetic field becomes stronger,B4Bcr, the
system becomes a highly correlated liquid in which the
behavior of M ��T � is given by (7.9) and that of M ��B� by
(7.5). Comparison of these two types of behavior yields

T ��B� / �Bÿ Bc0� : �8:11�

The function T ��B� in (8.11) is depicted by a light solid line in
Fig. 14b. Clearly, both lines match the experimental results.

Using Eqn (8.6) to study the superconducting phase
transition, we again conclude that this equation cannot be
valid at sufficiently low temperatures, because the behavior of
the system in theNFL region is determined by the entropy S0.
Hence, in magnetic fields, a second-order superconducting
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phase transition becomes a first-order transition at a certain
temperature T0 [66]. To use Eqn (8.6) to calculateT0, wemust
know the entropy of the superconductor in themagnetic field;
this entropy was estimated by Volovik [137]. Using Volovik's
estimate, we find that T0=Tc � 0:3, which agrees with the
experimental facts. As shown in Fig. 14, the phase diagram
that we constructed agrees with the experimental data.

9. Asymmetric conductivity
of strongly correlated metals

The main subjects of investigation in experiments with
heavy-fermion metals are the thermodynamic properties. It
seems reasonable to study the properties of correlated
electron liquids that are determined by the quasiparticle
distribution function n�p;T � and not only by the density of
states or by the behavior of the effective mass M � [138, 139].
Scanning tunnel microscopy and point-contact spectro-
scopy, being sensitive to the density of states and the
function n�p;T � that determines the probability of popula-
tion of quasiparticle states, and being closely related to the
Andreev scattering [140, 141], are ideal tools for studying
the anomalous behavior of strongly correlated Fermi
systems, a behavior that is determined by the function
n0�p;T � and the entropy S0.

9.1 Normal state
The tunnel current I running through a point contact of two
ordinary metals is proportional to the applied voltage V and
to the square of the absolute value of the quantum
mechanical transition amplitude t times the difference
N1�0�N2�0�

ÿ
n1� p;T � ÿ n2� p;T �

�
[142], where N1;2�0� is the

density of states of the respective metals. On the other hand,
in the semiclassical approximation, the wave function that
determines the amplitude t is proportional to
�N1�0�N2�0��ÿ1=2. Therefore, the density of states drops
from the final result and the tunnel current becomes
independent of N1�0�N2�0�. Because the distribution
n� p;T! 0� ! y� pF ÿ p� as T! 0, where y� pF ÿ p� is the
step function, it can be verified that the differential tunnel
conductivity sd�V � � dI=dV is a symmetric or even function
of V in the Landau Fermi-liquid theory. Actually, the
symmetry of sd�V � is obeyed if there is the hole ± quasiparti-
cle symmetry (which is present in the Landau Fermi-liquid
theory). Hence, the fact that sd�V � is symmetric is obvious
and is natural in the case of metal ±metal contacts for
ordinary metals that are in the normal or superconducting
state.

We study the tunnel current at low temperatures, which
for ordinary metals is given by the expression [141, 142]

I�V � � 2jtj2
��
n�eÿ V � ÿ n�e��de ; �9:1�

where we use the atomic system of units e � m � �h � 1 and
normalize the transition amplitude to unity, jtj 2 � 1. Because
the temperatures are low, we can approximate the distribu-
tion function n�e� by the step function y�mÿ e�; Eqn (9.1) then
yields I�V � � a1V, and hence the differential conductivity
sd�V � � dI=dV � a1 � const is a symmetric function of the
applied voltage V.

To quantitatively examine the behavior of the asymmetric
part of the conductivity sd�V �, we find the derivatives of both
sides of Eqn (9.1) with respect toV. The result is the following

equation for sd�V �:

sd � 1

T

�
n
ÿ
e�z� ÿ V;T

�ÿ
1ÿ n

ÿ
e�z� ÿ V;T ��� qe

qz
dz : �9:2�

In the integrand in (9.2), we took the dimensionless
momentum z � p=pF instead of e for the variable, because
n�e� is no longer a function of e in the case of a strongly
correlated electron liquid; it depends on the momentum as
shown in Fig. 1. Indeed, the variable e in the interval � pi; pf� is
equal to m, and the quasiparticle distribution function varies
within this interval.

After performing fairly simple transformations in
Eqn (9.2), we find that the asymmetric part

Dsd�V � � sd�V � ÿ sd�ÿV �
2

of the differential conductivity can be expressed as

Dsd�V � � 1

2

�
a�1ÿ a 2��

n�z;T � � a
ÿ
1ÿ n�z;T ���2

� qn�z;T �
qz

1ÿ 2n�z;T ��
an�z;T � � ÿ1ÿ n�z;T ���2 dz ; �9:3�

where a � exp �ÿV=T �.
Asymmetric tunnel conductivity can be observed in

measurements involving metals whose electron system
contains a Fermi condensate. Among such metals are
high-Tc superconductors and heavy-fermion metals, e.g.,
YbRh2(Si0:95Ge0:05)2), CeCoIn5, and YbRh2Si2. The mea-
surements must be conducted when the heavy-fermion metal
is in the superconducting or normal state. If the metal is in the
normal state, measurements of Dsd�V � can be done in a
magnetic field B > Bc0 at temperatures T ��B� < T4Tf or in
a zero magnetic field at temperatures higher than the
corresponding critical temperature when the electron system
is in the paramagnetic state and its behavior is determined by
the entropy S0. We note that at a sufficiently low temperature
T < T ��B�, the introduction of a magnetic fieldB > Bc0 leads
to restoration of the Landau Fermi-liquid behavior with
M ��B� determined by Eqn (4.5), and the asymmetric
behavior of the differential conductivity disappears [138,
139].

Recent measurements of the differential conductivity in
CeCoIn5 done by the point-contact spectroscopy technique
[143] have vividly revealed the asymmetry in the differential
conductivity in the superconducting (Tc � 2:3 K) and normal
states. Figure 15 shows the results of these measurements.
Clearly, sd�V � is nearly constant when the heavy-fermion
metal is in the superconducting state, experiences no sub-
stantial variation near Tc, and then monotonically decreases
as the temperature increases [143].

Figure 16 shows the results of calculations of the
asymmetric part Dsd�V � of the conductivity sd�V � in
accordance with Eqn (9.3). In calculating the distribution
function n�z;T �, we used functional (7.13) (with the para-
meters b � 3 and g � 8). In this case, � pf ÿ pi�=pF � 0:1.
Figure 16 also shows that the asymmetric part Dsd�V � of
the conductivity is a linear function of V for small voltages
and decreases with increasing the temperature, which agrees
with the behavior of the experimental curves in the inset in
Fig. 16.
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We now derive an estimation formula for analyzing the
asymmetric part of the differential conductivity. It follows
from Eqn (9.3) that for small values ofV, the asymmetric part
behaves as Dsd�V � / V. Here, it is appropriate to note that
the asymmetric part of the tunnel conductivity is an odd
function ofV, and thereforeDsd�V �must change signwhenV
changes sign. The natural unit for measuring voltage is 2T,
because this quantity determines the characteristic energy for
the Fermi condensate, as shown by Eqn (2.16). Actually, the
asymmetric part must be proportional to the size � pf ÿ pi�=pF
of the region occupied by the Fermi condensate:

Dsd�V � � c
V

2T

pf ÿ pi
pF

� c
V

2T

S0

xFC
; �9:4�

where S0=xFC � � pf ÿ pi�=pF is the temperature-independent
part of the entropy [see Eqn (8.1)] and c is a constant of the
order of unity. This constant can be estimated by using
analytically solvable models. For instance, calculations of c
in a simple model with the Landau function of the type [24]

E
�
n� p�� � � p 2n�p�

2M

dp

�2p�3 � V1

�
n�p�n�p� dp

�2p�3 �9:5�

yield c � 1=2. It follows fromEqn (9.4) that whenV � 2T and
the Fermi condensate occupies a sizable part of the Fermi
volume, � pf ÿ pi�=pF � 1, the asymmetric part becomes
comparable to the differential tunnel conductivity
Dsd�V � � Vd�V �.

9.2 Superconducting state
Tunnel conductivity may remain asymmetric as a high-Tc

superconductor or a heavy-fermion metal passes into the
superconducting state from the normal state. The reason is
that the function n0�p� again determines the differential
conductivity. As we saw in Section 3, n0�p� is not noticeably
distorted by the pairing interaction, which is relatively weak
compared to the Landau interaction, which forms the
distribution function n0�p�. Hence, the asymmetric part of

the conductivity remains practically unchanged for T4Tc,
which agrees with the results of experiments (see Fig. 15). In
calculating the conductivity by using the results of measure-
ments done with a tunnel microscope, we must bear in mind
that the density of states

Ns�E� � N�eÿ m� E������������������
E 2 ÿ D 2
p �9:6�

determines the conductivity, which is zero for E4 jDj. Here,
E is the quasiparticle energy given by Eqn (3.5), and
eÿ m �

������������������
E 2 ÿ D 2
p

.
Equation (9.6) implies that the tunnel conductivitymay be

asymmetric if the density of states N�e� is asymmetric with
respect to the Fermi level [144], as is the case with strongly
correlated Fermi systems with a Fermi condensate. Our
calculations of the density of states based on model func-
tional (7.13) with the same parameters as those used in
calculating Dsd�V � shown in Fig. 16 corroborate this
conclusion.

Figure 17 shows the results of calculations of the density
of states N�x;T �. Clearly, N�x;T � is strongly asymmetric
with respect to the Fermi level. If the system is in the
superconducting state, the values of the normalized tempera-
ture given in the upper right corner of the diagram can be
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related to D1. With D1 � 2Tc, we find that 2T=m � D1=m.
Because N�x;T � is asymmetric, the first derivative
qN�x;T �=qx is finite at the Fermi level, and the function
N�x;T � can be written asN�x;T � � a0 � a1x for small values
of x. The coefficient a0 contributes nothing to the asymmetric
part. Obviously, the value of Dsd�V � is determined by the
coefficient a1 /M ��x � 0�. In turn,M ��x � 0� is determined
by (3.8). As a result, Eqn (9.6) yields

Dsd�V � � c1
V

jDj
S0

xFC
; �9:7�

because � pf ÿ pi�=pF � S0=xFC, the energy E is replaced with
the voltage V, and x �

������������������
V 2 ÿ D 2
p

. The entropy S0 here refers
to the normal state of a heavy-fermion metal.

Actually, Eqn (9.7) coincides with Eqn (9.4) if we use the
fact that the characteristic energy of the superconducting
state is determined by Eqn (3.9) and is temperature-
independent. In studies of the universal behavior of the
asymmetric conductivity, Eqn (9.7) has proved to be more
convenient than (9.6). It follows from Eqns (9.4) and (9.7)
that measurements of the transport properties (the asym-
metric part of the conductivity) allows determining the
thermodynamic properties of the normal phase that are
related to the entropy S0. Equation (9.7) clearly shows that
the asymmetric part of the differential tunnel conductivity
becomes comparable to the differential tunnel conductivity at
V � 2jDj if the Fermi condensate occupies a substantial part
of the Fermi volume, � pf ÿ pi�=pF � 1. In the case of the d-
wave symmetry of the gap, the right-hand side of Eqn (9.7)
must be averaged over the gap distribution D�f�, where f is
the angle. This simple procedure amounts to redefining the
gap size or the constant c1. As a result, Eqn (9.7) can also be
applied when V < D1, where D1 is the maximum size of the d-
wave gap [138]. For the Andreev scattering, where the current
is finite for any small value of V, Eqn (9.7) also holds for
V < D1 in the case of the s-wave gap.

Low-temperature measurements with tunnel microscopy
and spectroscopy techniques were used in [145] to detect an
inhomogeneity in the electron density distribution in
Bi2Sr2CaCu2O8�x. This inhomogeneity manifests itself as
spatial variations in the local density of states in the low-
energy part of the spectrum and in the size of the super-
conducting gap. The inhomogeneity observed in the inte-
grated local density of states is not caused by impurities but is
inherent in the system. Observation allowed relating the value
of the integrated local density of states to the concentration x
of local oxygen impurities.

Spatial variations in the differential tunnel conductivity
spectrum are shown in Fig. 18. Clearly, the differential tunnel
conductivity is highly asymmetric in the superconducting
state of Bi2Sr2CaCu2O8�x. The differential tunnel conductiv-
ity shown in Fig. 18 may be interpreted as measured at
different values of D1�x� but at the same temperature, which
allows studying the Dsd�V � dependence on D1�x�.

Figure 19 shows the asymmetric conductivity diagrams
obtained from the data in Fig. 18. Clearly, for small values of
V, Dsd�V � is a linear function of voltage in accordance with
(9.7) and the slope of the respective straight lines Dsd�V � is
inversely proportional to the gap size D1. Figure 20 shows the
variation in the asymmetric part of the conductivity Dsd�V �
as the temperature increases. The measurements were done
with YBa2Cu3O7ÿx=La0:7Ca0:3MnO3 at Tc � 30 K [146].
Clearly, for T < Tc in the region of the linear dependence on

V, the asymmetric part Dsd�V � of the conductivity depends
only weakly on the temperature; such behavior agrees with
(9.7). When T > Tc, the slope of the straight lines of sections
of the Dsd�V � diagrams decreases as the temperature
increases; this behavior is described by Eqn (9.4). We
conclude that the description of the universal behavior of
Dsd�V � by (9.4) and (9.7) is in good agreement with the
results of the experiments presented in Figs 16, 19, and 20.

10. Conclusion

In this review, we have described the effect of a Fermi-
condensate quantum phase transition on the properties of
various Fermi systems and presented substantial evidence in
favor of the existence of such a transition. We have
demonstrated that the vast body of experimental facts
gathered in studies of various materials, such as high-Tc

superconductors, heavy-fermion metals, and correlated 2D
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Fermi structures, can be explained by a theory based on the
concept of a Fermi-condensate quantumphase transition.We
have found that Fermi systems with a Fermi-condensate
quantum phase transition exhibit all the features of a
`quantum protectorate,' while the theory of high-Tc super-
conductivity based on the Fermi-condensate quantum phase
transition provides a description for high Tc and the
maximum gap size D1, which can be as large as D1 � 0:1eF.
We have followed the transition from ordinary superconduc-
tors to high-Tc superconductors and, by a simple and yet self-
consistent analysis, found that the theory explains the
pseudogap state and the general features of variation in the
critical temperature Tc�x� as a function of the number density
x of mobile charge carriers in high-Tc superconductors.

We have also found that the remarkable results of
experiments with high-Tc superconductors in inducing a
Landau Fermi liquid by a magnetic field, which in many
respects clarified the nature of high-Tc superconductivity, can
be explained by our theory. The achieved agreement between
theory and experiment allows us to state that the presence of a
Fermi-condensate quantum phase transition and the emer-
gence of new quasiparticles with the effective mass strongly
dependent on the magnetic field and temperature are proper-
ties inherent to the electron (hole) system of high-Tc super-
conductors.

We have explained the experimental results that point to a
divergence of the effectivemass in a 2D electron liquid and 2D
3He. We have found that up to the critical point of the Fermi-
condensate quantum phase transition, the heavy-fermion
liquid behaves like the Landau Fermi liquid at low tempera-
tures. However, the behavior of the heavy-fermion liquid that
approaches the Fermi-condensate quantum phase transition
from the disordered side may be considered that of a highly
correlated liquid because the effective mass of the quasipar-
ticles is large and strongly depends on the density, tempera-
ture, and magnetic field.

We have also studied the behavior of a highly correlated
electron liquid at various temperatures and in different
magnetic fields, constructed the TÿB phase diagram, and
described the behavior of magnetoresistance. Our results are
in good agreement with those of experiments involving heavy-
fermion metals whose electron systems are on the disordered
side of the Fermi-condensate quantum phase transition.

We have defined a strongly correlated electron liquid as a
liquid on the ordered side of the Fermi-condensate quantum
phase transition. In contrast to the highly correlated electron
liquid, this liquid behaves anomalously at temperatures down
to absolute zero, and its entropy contains a temperature-
independent term. However, this liquid can be transformed
into the Landau Fermi liquid by applying a magnetic field B.
The resulting TÿB phase diagram agrees well with the
experimental TÿB phase diagram obtained from measure-
ments involving heavy-fermion metals.

We have shown that in finite magnetic fields, the second-
order antiferromagnetic phase transition and the supercon-
ducting phase transition are replaced by a first-order phase
transition as the temperature decreases. The quantum and
thermal critical fluctuations corresponding to second-order
phase transitions disappear and have no effect on the
behavior of the system at low temperatures, and the low-
temperature thermodynamics of heavy-fermion metals is
determined by quasiparticles.

We have found that the GruÈ neisen ratio, as a function of
the temperature, diverges as T! 0 and provides an explana-
tion for experiments in which a sharp jump in the Hall
coefficient RH was discovered. We have also demonstrated
that the differential conductivity between a metal point
contact and a heavy-fermion metal or a high-Tc super-
conductor can be highly asymmetric. This asymmetry is
observed when a strongly correlated metal is in its normal or
superconducting state. The above features determine the
universal behavior of strongly correlated Fermi systems and
are related to the anomalous low-temperature behavior of the
entropy, which contains a temperature-independent term.

We have established that in contrast to the physics of
ordinary quantum phase transitions, which is determined by
the thermal and quantum fluctuations and is characterized by
the absence of quasiparticles, the physics of systems with
heavy fermions is determined by quasiparticles similar to the
Landau quasiparticles. In contrast to the effective mass of the
ordinary Landau quasiparticles, the effective mass of the new
quasiparticle strongly depends on the temperature, magnetic
field, pressure, and other parameters. The quasiparticles and
the order parameter are well defined and can be used to
describe the universal thermodynamic and transport proper-
ties of high-Tc superconductors, heavy-fermion metals, and
other correlated Fermi systems. The quasiparticle system
determines the conservation of the Kadowaki ±Woods
relation and the restoration of the Landau Fermi-liquid
behavior in a magnetic field.

In the future, the realm of problems should be broadened
and certain efforts should be made to describe the macro-
scopic features of the Fermi condensate, such as the
propagation of sonic and shock waves. In addition to the
already known materials whose properties not only provide
information on the existence of a Fermi condensate but also
almost cry aloud about such a condensate, there are other
materials of enormous interest as possible objects for study-
ing the phase transition in question. Among such objects are
neutron stars, atomic clusters, ultracold gases in traps, nuclei,
and quark plasma. Another possible area of research is
related to the structure of the nucleon, in which the entire
`sea' of nonvalence quarks may be in the Fermi-condensate
state. The combination of quarks and the gluons that hold
them together is especially interesting because gluons, quite
possibly, can be in the gluon-condensate phase, which could
be qualitatively similar to the pion condensate proposed by
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ABMigdal long ago.We believe that a Fermi condensate can
be observed in traps, where there is the possibility of
controlling the emergence of a quantum phase transition
accompanied by the formation of a Fermi condensate by
changing the particle number density.

Overall, the ideas associated with a new phase transition
in one area of research stimulates intensive studies of the
possiblemanifestation of such a transition in other areas. This
has happened in the case of metal superconductivity, whose
ideas were successfully used in describing atomic nuclei and in
a possible explanation of the origin of the mass of elementary
particles. This, quite possibly, could be the case with fermion
condensation.

Finally, our general discussion shows that the Fermi-
condensate quantum phase transition, the emergence of new
quasiparticles, and their similarity to Landau quasiparticles
constitute the properties inherent in strongly correlated
fermion systems. Moreover, the Fermi-condensate quantum
phase transition can be considered the universal reason for
the non-Fermi-liquid behavior observed in various metals,
liquids, and other Fermi systems. Thus, Landau's paradigm
based on the concept of quasiparticles and the order
parameter proves applicable in examining the low-tempera-
ture properties of strongly correlated Fermi systems.
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