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Ginzburg ±Landau equations
for high-temperature superconductors

V I Belyavsky, Yu V Kopaev

The phenomenological theory of superconductivity [1] for-
mulated by V L Ginzburg and L D Landau in 1950 (long
before the appearance of the Bardeen ±Cooper ± Schrieffer
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(BCS) microscopic theory of superconductivity [2]) predeter-
mined many prospective directions in condensed state
physics. The complex order parameter introduced in paper
[1] made it possible to describe the transition to the super-
conducting state as the establishment of phase coherence in
an electronic system, while taking account of the gradient
contribution to the free energy functional (in the spirit of
Ornstein and Zernicke fluctuation theory) allowed considera-
tion of the behavior of a superconducting system in
inhomogeneous external fields, in particular, the Meissner
effect. Such parameters of the Ginzburg ±Landau theory as
the coherence length and the penetration depth permitted
seeing the difference in the behavior of different super-
conductors and making their simple classification (type I
and type II superconductors [3]). The Ginzburg ±Landau
equations (derived in 1958 by L P Gor'kov [4] proceeding
from the microscopic theory) are the principal instrument for
interpretation of experimental data and underlie numerous
technical applications.

The 1986 discovery of high-temperature superconductiv-
ity [5] and the consequent active experimental and theore-
tical studies of this unique phenomenon (following the way
largely paved by the group of theoreticians headed by
Ginzburg [6]) led to the necessity of explaining the proper-
ties of new superconductors that did not fit in the usual BCS
scheme.

Ginzburg was one of the first to pay attention to the then
unknown temperature range lying above the superconducting
transition temperature Tc, in which strong fluctuation effects
show themselves [7]. It is currently believed that the under-
standing of the nature of this region of the pseudogap state of
high-temperature superconducting (HTSC) cuprates can
provide insight into the microscopic mechanism of the
superconductivity of these compounds.

Ginzburg's interest in the thermoelectric phenomena in
superconductors [8] and in the giant diamagnetism of ordered
states with orbital currents [9], which he has shown for over
half a century, is now shared by many research workers in
connection with the observed anomalous Nernst effect [10 ±
12] and the nonlinear-in-field diamagnetism [13] in the region
of the strong pseudogap of HTSC cuprates.

To explain the whole set of HTSC cuprate properties
in both pseudogap and superconducting states, various
theoretical schemes have been proposed, which are mostly
based on the assumption that these properties are basically
determined by strong electron correlations in copper ± oxygen
planes [14].

The Coulomb repulsion restricting the double occupation
of the copper atom lattice sites in cuprate planes leads to the
fact that the parent compound appears to be an antiferro-
magnetic (AF) insulator. With increasing concentration of
carriers incorporated through doping, the long-range AF
order is replaced by the short-range order, and the dielectric
gap is preserved, thus offering the conditions for the
occurrence of superconductivity with an unusual energy-gap
symmetry [15]. Hence, strong Coulomb correlations lead not
only to a rise of insulating state, but also to cuprate
superconductivity.

The possibility of the occurrence of superconductivity in
pairing repulsion, first noticed by Landau, was investigated
by Kohn and Luttinger [16] for an isotropic degenerate
electron gas, and by Moskalenko [17] and Suhl et al. [18] for
metals with a two-band electronic spectrum. The estimates
obtained in these works lead to rather low Tc values.

Here, we present the phenomenology of large-momentum
superconducting pairing during Coulomb repulsion in the
framework of theGinzburg ±Landau scheme and consider its
application to the interpretation of the phase diagram of
doped cuprate compounds.

For finite sections of the Fermi contour in the form of a
rounded-corner square [19], which is typical of cuprates, the
nesting condition

e�Q� p� � e�p� � 2m �1�
holds true, where e�p� is the dispersion law, and m is the
chemical potential, which leads to dielectric instability of the
system. ThemomentumQ determines the period of state with
a long-range dielectric order. Furthermore, for finite sections
of the Fermi contour the mirror nesting condition [20]

e
�
K

2
� k

�
� e
�
K

2
ÿ k

�
�2�

is fulfilled, which corresponds to the fact that a pair of likely
charged particles with momenta k� � K=2� k belonging to
the Fermi contour has the total momentum K when the
momentum k of the relative motion is determined in a certain
part of the Brillouin zone (the kinematically restricted
region). The mirror nesting produces instability with respect
to singlet superconducting pairing with pair momentum K.

The nesting andmirror nesting of the Fermi contourmake
possible the development of instability in both the super-
conducting and a certain insulating channel of pairing upon
Coulomb repulsion. In the insulating channel no logarithmic
singularity is induced by the mirror nesting which (as distinct
from the ordinary nesting) cannot therefore be the reason for
a radical transformation of the phonon spectrum.

An approximate mirror nesting takes place in only finite
sections of the Fermi contour, and hence the finite density of
noncondensate particles is retained up to T � 0, which is
reflected in Drude type behavior of optical conductivity [21]
and a quasilinear temperature dependence of heat capacity
[22] of cuprates in the superconducting state.

The characteristic form of the superconducting region in
the phase diagram of cuprates is determined by two compet-
ing factors: with increased doping, the momentum space area
making an effective contribution to the order parameter
increases, while the length of the Fermi contour sections
with mirror nesting decreases. An approximate mirror
nesting can lead to superconductivity with large (but gen-
erally incommensurate) pair momentum. A further evolution
of the Fermi contour with doping [23] makes the channel of
pairing with large momentum ineffective. The usual channel
of Cooper pairing with zero pair momentum in the electron ±
phonon interaction (EPI) may also turn out to be ineffective
because of the smallness of the Tolmachev logarithm which
restricts the coupling constant from below.

Apart from the spin antiferromagnetic and superconduct-
ing states with a long-range order, the phase diagram of
cuprates with hole doping shows a pseudogap state restricted
from above by a certain temperature T �. The fact that some
phase transition corresponds to this temperature has no
convincing experimental confirmation, which gives grounds
for treating T � as the temperature of crossover between the
pseudogap states for Tc < T < T � and the normal Fermi
liquid for T > T �. The pseudogap behavior can be associated
with the insulating short-range order [24] or with the
developed fluctuations of the superconducting order para-
meter for T > Tc, which appears possible for a low superfluid
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density (a low phase stiffness), for which reason the loss of
phase coherence occurs earlier than the pair-break of the
Cooper pair [25]. In this case, incoherent pairs (a fluctuating
superconducting order) can exist in a certain temperature
range above Tc. The characteristic width of this interval has
the order of Tc and proves to be much lower than T � in
underdoped compounds.

If, as is assumed in Ref. [26], the pseudogap manifests a
hidden (hardly detectable) long-range dielectric antiferro-
magnetic order in the form of a density wave of orbital
current with d-wave symmetry, then T � has the meaning of
phase transition temperature. The orbital antiferromagnet-
ism possiblymanifests itself as only the short-range order [27],
in particular, as the insulating state of the Abrikosov vortex
core (which considerably lowers its energy and has an
experimental confirmation [28]).

The pseudogap region can conditionally be divided into
the regions of a strong pseudogap for Tc < T < T �str, in which
the developed fluctuations of the superconducting order
parameter induce an increase in the diamagnetic response
and a giant Nernst effect, and a weak pseudogap for
T �str < T < T � with anomalies of some physical properties.
The upper boundary T �str of the strong pseudogap is the
temperature of crossover between the regions of weak and
developed fluctuations of the superconducting order para-
meter.

In the scheme of large-momentum pairing, the screened
Coulomb repulsion, as distinct from the pairing attraction,
allows not only the bound state, but also the long-lived quasi-
stationary states of incoherent pairs [29], which broaden
substantially the region of developed fluctuations of the
superconducting order parameter at temperatures above Tc

and can be associated with the state of the strong pseudogap.
The hidden long-range order in the form of a current-

density wave with d-wave symmetry can manifest itself in the
relative phase of two components of the superconducting
order parameter [31, 32]. The zeros of the superconducting
(for extended s-wave symmetry) and orbital antiferromag-
netic (corresponding, according to Ref. [26], to the flux-phase
[27] possessing d-wave symmetry) order parameters do not
coincide, which can be associated with the relative insensitiv-
ity of cuprate superconductivity to scattering by nonmagnetic
impurities.

The necessary (and sufficient in the case of mirror nesting)
condition of superconductivity under repulsion is the exis-
tence of at least one negative eigenvalue of the pairing
interaction operator. The eigenfunction corresponding to
the negative eigenvalue has the line of zeros crossing the
Fermi contour in the domain of kinematic constraint. The
superconducting energy gap appears to be a function with
alternating signs of momentum of the relative motion of a
pair inside this region, which vanishes at several points of the
Fermi contour [20].

The kinematic constraint is sufficient for one negative
eigenvalue to separate from the spectrum of the kernel of the
screened Coulomb pairing interaction [33]. Such pairing
interaction can approximately be described by a degenerate
kernel with two even (with respect to the transformation
k! ÿk) eigenfunctions with eigenvalues of opposite signs.
Thus, the superconducting ordering upon pairing Coulomb
repulsion corresponds to a two-component complex order
parameter (conventional superconductivity upon pairing
attraction due to EPI is described by a one-component order
parameter).

Pairing repulsion leads to the existence of three singular
lines with common intersection points in each domain of
kinematic constraint corresponding to one of the crystal
equivalent pair momenta. One of these lines is part of the
Fermi contour on which the pair kinetic energy

2x�k� � e
�
K

2
� k

�
� e
�
K

2
ÿ k

�
ÿ 2m

vanishes because of themirror nesting (when crossing this line
the quasiparticle charge reverses sign). The second singular
line is the line of zeros of the order parameter (the intersection
points of this line with the Fermi contour correspond to a
gapless spectrum of quasiparticles). The group velocity of the
quasiparticle vanishes in the line of minima of the quasipar-
ticle energy as a function of momentum [20]. The coherence
factors exhibit a nontrivial dependence on the momentum
with inhomogeneous distribution of particles in momentum
space, which leads to asymmetry of tunnel conductivity, to a
peak-dip-hump structure of tunnel and photoemission spec-
tra, and also to a restriction of Andreev reflection in cuprates
[20]. The transition to a superconducting state causes a shift
(linear in the absolute value of the order parameter) in the
chemical potential depending on the ratio of areas of the
occupied and vacant parts of the domain of kinematic
constraint [34].

In each domain of kinematic constraint one can determine
the order parameter in the form of the product of wave
functions of the relative motion and free motion of the center-
of-mass of a pair with momentum Kj and radius vector R. In
the mean-field approximation, the wave functionCj�k� of the
relative motion is proportional to the nontrivial solution of
the self-consistent equation. With allowance for the degen-
eracy due to crystal symmetry, the order parameter is written
down as

C�R; k� �
X
j

gj exp �iKjR�Cj�k� ; �3�

where the domain of definition of momentum k of the relative
motion is the union of all the domains of kinematic
constraint, and the coefficients gj are determined by the
interaction removing the degeneracy typical of pairing with
large momentum.

Under dominating EPI-induced attraction, which itself
can lead to conventional s-wave superconductivity, all the
coefficients gj prove to be identical. The function Cj�k� has a
line of zeros crossing the Fermi contour in the corresponding
domain of kinematic constraint, so that the order parameter
has zeros on the Fermi contour (distributed symmetrically
about quadrants of the Brillouin zone) and remains invariant
under rotation through the angle p=2 in momentum space.
Such order parameter corresponds to extended s-wave
symmetry.

The scheme of large-momentum pairing with allowance
made for the contribution of the EPI mechanism of pairing
[35] provides an explanation of the occurrence of the isotope
effect in cuprates, including the negative isotope effect [36].

If the dominating pairing perturbation is the exchange by
AF magnons [37, 38], the coefficients gj corresponding to
neighboring Xj regions have different signs. In this case, when
turning through the angle p=2, the order parameter changes
sign and four more zeros are added to the zeros due to pairing
repulsion at the intersection points of the Fermi contour with
the diagonals of the Brillouin zone. Then, the order parameter
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can be attributed to the extended d-wave symmetry. In
different compounds (or in the bulk or the near-surface
layer of one compound) both types of symmetry show
themselves [39, 40].

The expansion of the order parameter in terms of the
complete orthonormal system of two eigenfunctions js�k� of
the degenerate kernel U�kÿ k 0� of the pairing-interaction
operator allows defining the order parameter by two of its
complex components depending, in the case of a spatially
inhomogeneous system, on the radius vector of the center of
mass:

C�R; k� �
X2
s� 1

Cs�R�js�k� : �4�

The whole dependence on the momentum of relative motion
is transferred to the eigenfunctions defined without regard to
the self-consistent equation.

The two-dimensional (calculated for one cuprate plane)
free-energy density in the Ginzburg ±Landau functional can
be given as follows:

f � f0 � fg � fm ; �5�
where f0 are contributions of the second and fourth order in
Cs�R�, fg is the gradient term, and fm is the magnetic field
energy density.

Expansion of the free-energy density in powers of the
order parameter can generally be represented in the form

f0 �
X
ss 0

Ass 0C �s Cs 0 �
1

2

X
ss 0tt 0

Bss 0tt 0C �s C
�
s 0CtCt 0 : �6�

Here, thematricesAss 0 andBss 0tt 0 are functions of temperature
and doping.

Retaining in the gradient term only the contribution of the
second-order in HCs, which is sufficient for a slowly varying
Cs�R�, we can write the gradient term as

fg � �h 2

4m

X
ss 0
� bDCs�yMss 0 � bDCs 0 � ; �7�

where the elements of the matrix Mss 0 also depend on the
temperature and doping, and the covariant differentiation
operator has the form

bD � ÿiHÿ 2e

�hc
A : �8�

Here, A � A�R� is the vector potential determining the
induction of the magnetic field B � rotA. Field A charac-
terizes not only the external magnetic field, but also the
internal magnetic field associated with the possible occur-
rence of spontaneous orbital currents.

The change of the two-dimensional density of the medium
free energy in a magnetic field is written out as

fm � z0
8p
�rotA�2 ; �9�

where z0 is the distance between the neighboring planes.
The matrices determining the expansion of the free energy

in power series of the order parameter were calculated in
Ref. [41] in the weak coupling approximation.

The components of the order parameter have a common
phase factor Cs � cs exp �iF�. The phase F referring to the
motion of the center of mass of pairs is associated with

establishment of phase coherence in the system of pairs
upon transition to the superconducting state. The complex
coefficientscs are characterized by the absolute values related
to each other by the normalization condition jc1j2 � jc2j2 �
nsf=2 and by the relative phase b:c2 � c1 exp �ib�. Thus, for a
given superfluid density nsf, the relative orbital motion of the
pair is characterized by two independent parameters: by one
of the modulus (c1 or c2), and by the relative phase b.

The occurrence of a nonzero modulus of the order
parameter is associated with violation of gauge symmetry
upon transition to the superconducting state, i.e., with the
charge degree of freedom of a pair. It is natural to assume that
the phase b, which shows up in the gradient term, is associated
with the orbital current degree of freedom of the relative
motion of the pair.

The state of a spatially homogeneous system is determined
by the minimum condition of free-energy density (5). For a
temperature of T > Tsc, where Tsc is the superconducting
phase transition temperature, the elements of the matrix Ass 0

are greater than zero, and the minimum of function (5)
corresponds to the obvious trivial solution c1 � c2 � 0 with
an indefinite relative phase b. For T < Tsc, a nontrivial
solution occurs for which the equilibrium values of c1, c2,
and b are determined by the values of the matrices Ass 0 and
Bss 0tt 0 .

For simplification, we can putc1 � c2 � c. In the case of
a spatially homogeneous systemwithout an external magnetic
field, the summands fg and fm are absent in expansion (5).
The free-energy density can then be rewritten in the form

f0 � a1c
2 � 1

2
�B� 2C cos b�D cos2 b�c 4 ; �10�

where a1 � A11 � A22, B � B1111 � 2B1122 � B2222, C �
2�B1112 � B1222�, and D � 4B1122. Notice that the simplest
approximation corresponding to a symmetric occupation of
the domain of kinematic constraint gives B 6� 0 and
C � D � 0. Therefore, for the analysis of possible states in
the phase diagram it is necessary to remove this restriction.

The study of function (10) for an extremum at T < Tsc

reveals that the minimum is reached for b � p and c 6� 0,
when the condition C5D holds true or for b < p and c 6� 0
ifC4D. In the latter case, the relative phase is determined by
the relationship cos b � ÿC=D. To distinguish between the
two thermodynamically equilibrium SC phases, we shall
introduce the order parameter a � pÿ b. Thus, for C5D
we have a � 0, while for C < D we have a 6� 0.

The deviation of the relative phase b from p permits an
obvious interpretation. The change in the phase of the
electron annihilation operator at the site of the crystal lattice
n can be due to the vector potential A�n� of the magnetic field
occurring with the appearance of the orbital antiferromag-
netic (OAF) ordering [26]. In the superconducting state, the
OAF ordering can appear as AF-correlated circulations of
orbital currents [30] surviving also for T > Tsc.

The occurrence of orbital currents in the superconducting
state leads to the necessity of allowing for in the Ginzburg ±
Landau functional the contribution due to the energy of their
magnetic field. This contribution is formally taken into
account in the free-energy density by the term fm if we
understand B as magnetic induction of the field of orbital
currents. A simple addition to f0 of a summand of the form
fm�a� � Ka 2 with positive K excludes the minimum of the
free-energy density for a 6� 0. This naturally necessitates a
consideration of competition between two pairing channels:

May, 2007 Conferences and symposia 543



the large-momentum superconducting pairing, and the
insulating OAF pairing with the order parameter a.

Since spontaneous orbital currents can also occur in the
absence of superconducting order, the free-energy density (in
the absence of superconductivity) near an OAF transition
may be represented as an expansion in even powers of a:

fd � a2a 2 � 1

2
b2a 4 ; �11�

where b2 is a positive doping function, and the coefficient a2
near the line of an insulating phase transition can be
represented as a2 � t2a 0, where a 0 > 0 and t2 �ÿ
Tÿ Td�x�

�
=Td�x�, with Td�x� being the temperature of

transition into the OAF state.
The relation between the two types of ordering is

determined by the gradient term fg in which the contribution
of spontaneous currents to the spatially homogeneous system
should be retained. This leads to the appearance in the free
energy of the summand b12c

2a 2, where b12 is a doping-
dependent phenomenological parameter determined by the
matrixMss 0 .

Thus, the free-energy density describing the competition
between the superconducting and OAF-ordered states up to
and including fourth-order terms assumes the form

f � a1c
2 � a2a 2 � 1

2
b1c

4 � b12c
2a 2 � 1

2
b2a 4 ; �12�

where the coefficient b1, as can be seen from expression (10), is
determined by the nonzero elements of the matrix Bss 0tt 0 . The
expansion (12) makes sense only in a small neighborhood of
both phase transitions, where the linesTsc�x� andTd�x� either
intersect or run near each other.

Doping causes the suppression of orbital antiferromag-
netism and it is therefore natural to assume Td�x� and Tsc�x�
to be decreasing functions of doping. Suppose that for small x
the insulating order with the transition temperature Td�x�
dominates over superconductivity with the transition tem-
perature Tsc�x� and is quickly suppressed by doping. This
implies the possibility for the lines Td�x� and Tsc�x� to
intersect at a certain point (a tetracritical point c) correspond-
ing to the doping x0.

Minimization of function (12) gives rise to four different
phases in the phase diagram.

(1) For T > max
ÿ
Td�x�;Tsc�x�

�
, the minimum is reached

at a � 0 and c � 0, which corresponds to the normal (N)
phase. The section Td�x� for x < x0 is the line of phase
transition from the N phase to the insulating OAF phase
(a phase corresponding to a weak pseudogap), while the line
Tsc�x� for x > x0 corresponds to the phase transition from the
N phase to the superconducting p phase.

(2) The insulating a phase penetrates the temperature
range below Tsc�x� (the region of a strong pseudogap). The
position of the TC�x� line with x < x0 corresponding to a
phase transition from the a phase to the superconducting
b phase is determined by the condition b2a1 ÿ b12a2 � 0. In
the a phase, c � 0 and a 2 � ÿa2=b2.

(3) The sector b corresponds to the superconducting
b phase in which

c 2 � ÿ b2a1 ÿ b12a2

b1b2 ÿ b 2
12

; a 2 � ÿ b1a2 ÿ b12a1

b1b2 ÿ b 2
12

; �13�

and superconductivity coexists with spontaneous orbital
antiferromagnetism. The temperature TC of superconduct-

ing phase transition from a to b phase is below Tsc. Similarly,
the temperature Tbp of the phase transition between two
superconducting states (b and p phases) is less than Td.

(4) In the superconducting p phase, the order parameter
has the form a � 0, c � ÿa1=b1. Part of the p phase between
Td�x� andTbp�x� for x > x0 penetrates the temperature range
below Td�x�.

Apart from the four thermodynamically distinct phases,
the diagram shows two regions that can be interpreted as
regions of developed fluctuations of the superconducting
order parameter (the region between the Tsc�x� and TC�x�
lines for x < x0) and the OAF order parameter (the region
between the Td�x� and Tbp�x� lines for x > x0). In the first of
these regions it is the order parameter c that fluctuates:
incoherent superconducting pairs exist in the form of quasi-
stationary states at temperatures exceeding TC [29]. The
fluctuation state of superconducting pairs corresponds to
the saddle point (on the c-axis) of the free-energy density as
a function of c and a, close in energy to the minimum on
the a-axis. The temperature Tsc up to which developed
fluctuations of SC pairs exist is not the phase transition
temperature and corresponds to the crossover between the
two states of the insulating a phase: weak and strong
pseudogaps. It should be noted that quasistationary states
can also occur at temperatures above Tsc [29], thus extending
the region relevant to the strong pseudogap.

In the region of developed fluctuations of the insulating
order parameter a [between the lines Td�x� and Tbp�x� inside
the superconducting state], the free-energy density passes a
minimum on the c-axis and the saddle point on the a-axis.
The free-energy values in the minimum and at the saddle
point are close to each other within this region and the line
Td�x� has themeaning of crossover which limits conditionally
the p-phase region with developed fluctuations of the
insulating OAF order parameter a. These fluctuations
appear as quasistationary states of orbital circular currents
and correspond to the current circulations in the super-
conducting state, which were investigated in Ref. [30]. Such
fluctuations occurring in the mean-field scheme are due to the
competition between two ordered states. The second-order
phase transition between two superconducting states at
Tbp�x� separates the region of conventional superconductiv-
ity (p phase), which is in fact described by the one-component
order parameter �c�, from the coexistence region of the
insulating state and the SC state (b phase), whose description
essentially requires no less than a two-component order
parameter. Above the doping level corresponding to the
b! p transition, a broad region of phase diagram exists
which also shows up developed fluctuations. Since such a
transition proceeds between two superconducting states, the
phase interruption is due not to the motion of the center of
mass but to the relative pair motion, i.e., to fluctuations of the
relative phase b in the form of quasistationary states of
circular orbital currents. Phase interruption of the super-
conducting order parameter (this phase is due to the motion
of the center of mass of the pair) leading to the destruction of
superconductivity results from the occurrence of Abrikosov
vortices, which is the cause of the anomalous strengthening of
the Nernst effect.

Our analysis is, strictly speaking, valid in only a small
neighborhood of the tetracritical point c, and so the lines
extended beyond this neighborhood have a rather conditional
meaning reflecting the general tendencies of their behavior in
the neighborhood of point c. In this connection, it should be
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noted that the extension of the line Tbp�x� to the T � 0-axis
up to x � xb (the line of second-order phase transition cannot
end at a point) naturally leads to the concept of a quantum
critical point (x � xb, T � 0) for a higher doping level xb
compared to x0.

In the case of a short-range rather than a long-range OAF
order, the phase transition inside the superconducting state
does not occur, and yet the broad region of developed
fluctuations at temperatures above Tc allows interpretation
of the pseudogap state with conditional separation into
strong and weak pseudogaps, reflecting one of the admissible
versions of the phase diagram of cuprates [42].

The conception of large-momentum superconducting
pairing in screened Coulomb repulsion [20], which naturally
leads to a two-component order parameter reflecting the
charge and current degrees of freedom of the relative pair
motion, agrees well on the whole with experimental data for
the phase diagram and the physical properties of cuprates.

The work was supported by the Russian Foundation for
Basic Research (grants Nos 05-02-17077a and 06-02-17186a).
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Polarization effects in a medium:
from Vavilov ±Cherenkov radiation
and transition radiation to dust-particle
pairing, or the development of one of
V L Ginzburg's ideas from 1940 to 2006

V N Tsytovich

1. Polarization around particles
In the future general particle theory, with each particle
consisting of all the other particles, any particle, being an
excitation of the system, will be surrounded by the polariza-
tion of these other particles. So far, only the notion of the
polarization produced around particles traveling through a
medium has been elaborated (Fig. 1a). When the states of the
particles change, their polarization `coats' also change.
Figure 1 shows the interaction of particles with external
forces, with emitted radiation or incident radiation, with
either individual incident particles or a large number of
incident particles (i.e., particle fluxes) Ð the oval S in
Fig. 1b. The interparticle interaction depends strongly on
perturbations of the polarization cloud during the interac-
tion. The physics of such interactions was first considered by
Ginzburg [1].

2. Ginzburg's paper of 1940
InGinzburg's 1940 paper ``Quantum theory of the supersonic
radiation of an electron uniformly traveling through a
medium'', quantum energy and momentum conservation
laws for radiation in a medium, ep � ep 0 � �hok and
p � p 0 � �hk, were first used; in the system of units where
�h � 1, they become ep � ep 0 � ok and p � p 0 � k, which in the
classical limit (k5 p; ok 5 ep) leads to the classical Tamm±
Frank condition ok � �kv�, v � dep=dk for Vavilov ±Che-
renkov radiation. Of significance here is (i) the introduction
of the photon momentum in the medium and (ii) the clear
statement that an exchange of energy and momentum occurs
only between the particle and the radiation. Subsequent
research led to a deeper understanding and generalization of
these statements.
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