
Abstract. The importance of nonsynchronous (nonresonant)
forces is demonstrated using the interaction of electron flows
with regular and irregular electrodynamic structures as an
example. These forces lead to cumulative `nonsynchronous-
interaction' effects, which manifest themselves both without
and in the presence of synchronous (resonant) interaction.

1. Introduction

In modern physics, although the performance of available
computers has substantially increased, the formulation of
mathematical models of some investigated phenomena or
experimental setups still requires neglecting a number of
factors that are assumed to have no significant effect on the
characteristics of the phenomenon or setup (and, anyway, all
factors cannot obviously be taken into account). Such factors
are typically related tononresonant ornonsynchronous forces
or interactions. At first glance, this is correct and reasonable:
in contrast to synchronous interactions, these should see-
mingly have no cumulative effects because their action should
not be significant, on average. However, as we show here, this
is not the case, in some particular foreknown cases at least.

(1) Obviously, these are cases without synchronous
(resonant) interactions, with the presence of only a nonsyn-
chronous (nonresonant) component of the forces. The non-
linear nature of the process gives rise to quadratic terms that
are responsible for the origin of a systematic (cumulative)
component of the interaction.

(2) There may be a situation where the resonant
(synchronous) effects of the interaction are mutually
balanced, and hence the nonsynchronous interaction
acquires a primary role. As an example, we note the
interaction between a helical electron flow, controlled by a
uniform magnetic field, and a T wave. If there is a
synchronism (cyclotron resonance) between the electrons
and a forward or backward wave, the phenomenon of
autoresonance occurs: the relative phase in the wave does
not vary because of the exact balance between the phase
changes due to relativistic azimuthal displacements of the
electron and its inertial longitudinal displacements [1, 2].
However, such a mechanism is possible only if the electron
flow is in synchronism (cyclotron resonance) with an isolated,
constant-amplitude T wave running concurrently with or
oppositely to the flow. In reality, this case is impossible,
because the electron flow emits both a forward and a
backward wave. Therefore, a nonsynchronous forward or
backward wave arises, and its interference with the synchro-
nous forward or backward wave, respectively, violates the
balance between the azimuthal and longitudinal bunchings in
the electron flow, such that positive effects Ð either
amplification (a synchronous forward wave) or generation
(a backward wave) Ð become possible in the T-field [3, 4]. In
other words, if the nonsynchronous interaction with the
forward or backward wave excited by the flow is not taken
into account, the erroneous conclusion can be made that
phase bunching and, accordingly, energy exchange between
the helical electron flow and the T waves are impossible.

(3) This is also the case if the nonsynchronous interaction
substantially affects the fundamental (resonant) effects, for
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example, the nonsynchronous spatial harmonics affect the
interaction of electrons with electromagnetic fields.

We here demonstrate the role of nonsynchronous inter-
actions using the interaction between electrons and electro-
magnetic fields as an example, according to the authors'
research interests. However, we can conjecture that the
nonsynchronous interactions of other types play a similar
role, and therefore they should be taken into account or, at
least, their effects should be estimated.

2. The band and criticality
of the cyclotron-autoresonance conditions

The content of this section is based on the material in Ref. [5].
The phenomenon of the cyclotron autoresonant motion of a
charged particle in the field of a Twave propagating along the
direction of a constant magnetic field was first described and
investigated in Refs [1, 2]. This phenomenon consists in the
fact that a charged particle, irrespective of its acceleration or
deceleration due to the field, moves exactly along the helical
constant-phase line of a resonant, circularly polarized
component of a T wave. In other words, the relative phase
of the charged particle (from here on, electron) in the field of a
T wave remains invariable, although the particle energy
varies. Therefore, if the electrons enter the interaction region
at a braking phase of the wave field, they are continuously
decelerated over a long path until they fully stop; the length of
this path is determined only by the initial phase of the T wave,
its amplitude, and the energy of the electron. These properties
of the cyclotron autoresonance turned out to be very
attractive in terms of using such regimes in the devices of
relativistic electronics: cyclotron-resonance masers [6 ± 13],
peniomagnetrons [14], and gyrotrons [15 ± 17]. It is expected
that using the autoresonant regime will allow substantially
enhancing the efficiency of relativistic generators and
amplifiers and even bringing it closer to its maximum
achievable value with a simultaneous increase in the working
frequency.

Experiments on cyclotron-autoresonance masers
(CARMs) with extended interaction [18 ± 20] revealed a
strong disagreement with theoretical expectations [6 ± 13]:
efficiencies of 2 ± 4% were actually obtained instead of the
20 ± 40% predicted. We note in passing that a wrong
expression for the `one-particle' efficiency was used in the
above-mentioned theoretical studies [6 ± 13]; it contradicts the
integral of motion of an electron in a running wave at vph 6� c
[20]. However, the main source of this discrepancy is most
likely in the criticality of the autoresonance conditions, which
increases dramatically as the length of the interaction region
increases; this was already noted long ago in [15]. A
nonoptimal choice of the electron-beam pitch factor in
experiments [18 ± 20] resulted in a sharp decrease in effi-
ciency. An analytic solution of the equation of motion of a
charged particle in the field of a T wave under strictly
autoresonant conditions was obtained in [1]. We here obtain
analytic solutions also for a nonresonant case, which allows
investigating autoresonance as a physical phenomenon in
various situations: at a fixed length of the interaction region,
at a fixed amplitude of the wave, at a given number of circuits
of the particle trajectory, etc. Such studies enable estimating
the band and criticality of the cyclotron-autoresonance
conditions at varying parameters of the electron beam and
varying conditions of the interaction, which appears to be
useful for choosing the type and arrangement of the devices of

relativistic electronics that operate in nearly autoresonant
regimes.

The equations of motion of an electron in a given rotating
T-field of a resonator and a uniform magnetic field, with the
action of the backward nonsynchronous component of the
resonator standing field and of the nonsynchronous left-hand
polarized component neglected, are given by [1, 21]

dgb
dy
� ÿA

n
E� �b � z0 E ��oÿ F0 �b z0� ; �1�

dx

dy
� bx ;

dy

dy
� by ;

dz

dy
� bz ; �2�

where

y � ot ; A � eE 0m
m0oc

; F0 � eB0

m0o
;

b � v

c
; g � 1�������������

1ÿ b2
p ; x � o

c
x � x x0 � y y0 � z z0 :

Based on the hyperresonance conditions, we choose the right-
hand polarized T wave

E � cos �yÿ z� c0� x0 � sin �yÿ z� c0� y0 : �3�

The initial conditions for system (1), (2) are

y � 0 ; z � 0 ; bz�0� � bjj ; bx�0� � b? cosc0 ;

by�0� � b? sinc0 ; x�0� � 0 ; y�0� � 0 : �4�
The electronic efficiency of the interaction can be

calculated from the change in the relativistic mass factor
g�z� as

Z �z� � g0 ÿ g �z�
g0 ÿ 1

; g0 � g �0� : �5�

To obtain an analytic solution, we transform Eqn (1)
following a line similar to that described in Ref. [1]. We take
the scalar product of Eqn (1) with b to obtain the well-known
equation for g,

dg
dy
� ÿAbE : �6�

The scalar multiplication of Eqn (1) by z0 with the use of
Eqn (6) yields the integral of motion

g �1ÿ bz� � k0 � const � g0�1ÿ bz0� ; �7�

where g0 and bz0 are the values of g and bz at the inlet of the
resonator. We introduce the transverse vector b t �
bxx0 � byy0 and use Eqns (1), (6), and (7) to derive the
equation

dgbt
dy
� ÿ�1ÿ bz�

�
AE� F0

k0
�gbt z0�

�
:

Next, we pass to the new independent variable F � yÿ z.
Using the notation Pt � gbt, we write the following linear
equation for the transverse component of the momentum Pt

with a harmonic right-hand side:

dPt

dF
� F0

k0
�Pt z0� � ÿAE �F� : �8�
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We note that Eqn (8) is valid for an arbitrarily polarized T
wave and F0 of an arbitrary sign. To obtain the exact solution
of Eqn (8), it is convenient to write it in complex form. For
this, we introduce the notation

_Pt � Px � jPy ;

_E � cos �F� c0� � j sin �F� c0� � exp � jF� exp � jc0� :

We then have

d _Pt

dF
ÿ j

F0

k0
_Pt � ÿA exp � jc0� exp � jF� ;

_Pt�0� � _Pt 0 � Px0 � jPy0 � j _Pt 0j exp � jcp� ; �9�

where F > 0, and y and z are measured from the resonator
inlet.

We represent the exact solution of problem (9) as follows:
(a) F0=k0 6� 1 (nonresonant motion),

_Pt � _Pt 0 exp

�
j
F0

k0
F
�

ÿ jA exp � jc0�
1ÿ F0=k0

�
exp

�
j
F0

k0
F
�
ÿ exp � jF�

�
; �10�

(b) F0=k0 � 1 (autoresonant motion),

_Pt �
�

_Pt 0 ÿ A exp � jc0�F
�
exp � jF�

� �j _Pt 0j exp � jcp� ÿ AF exp � jc0�
�
exp � jF� : �11�

Expressions (10) and (11) were obtained for the transverse
component of the momentum. To determine its longitudinal
component Pz � gbz, we use integral of motion (7) and the
relation g 2 � 1� P 2

x � P 2
y � P 2

z . Then,

Pz � g �z� ÿ k0 ; g � 1� P 2
x � P 2

y � k 2
0

2k0
; �12�

where j _Ptj2 � P 2
x � P 2

y , which is involved in the expression for
g, has the following forms:

(a) in the case of nonresonant motion (a � 1ÿ F0=k0),

j _Ptj2 � j _Pt 0j2 � 2A 2

a 2
�1ÿ cos aF�

ÿ 4
j _Pt 0jA

a
sin

aF
2

cos

�
aF
2
� c0 ÿ cp

�
; �13�

(b) in the case of autoresonant motion (a � 0),

P 2
x � P 2

y �j _Pt 0j2 � A 2F 2 ÿ 2 j _Pt 0jAF cos �c0ÿ cp� : �14�

To solve Eqns (2), we introduce the notation _r � x� jy
and, using relation (7) and passing to the independent
variable F, write the equations

d _r

dF
�

_Pt

k0
; _r�0� � _r0 ;

dz

dF
� Pz

k0
� gÿ k0

k0
; z�0� � 0 :

�15�

After the substitution of expressions (10) ± (14) in Eqn (15),
we obtain the exact solutions for _r �F� and z �F�.

We now find the solution of Eqns (15) in the case of
autoresonant motion. We use expression (11) for _Pt in
Eqn (15) and obtain, upon integration,

_r � _r0 � 1

F0

�
A exp � jc0� � j _Pt 0

�
ÿ 1

F0

�
A exp � jc0� � j _Pt 0 ÿ jAF exp � jc0�

�
exp � jF�: �16�

Using Eqns (12) and (14), we write the equation for the
variable z that enters Eqn (15) in the form

dz

dF
� 1ÿ k 2

0 ��Px0 ÿ AF cosc0�2��Py0 ÿ AF sinc0�2
2k 2

0

:

�17�
Integrating Eqn (17) yields the equation that relates F and z:

z � aF 3 � bF 2 � cF ; �18�

where

a � A 2

6k 2
0

;

b � ÿA Px0 cosc0 � Py0 sinc0

2k 2
0

;

c � 1ÿ k 2
0 � P 2

x0 � P 2
y0

2k 2
0

:

Similar but more cumbersome relations can be obtained
in the nonresonant case (10):

z � 1

2k 2
0

�ÿ
1ÿ k 2

0 � j _Pt 0j2
�
F� 2A 2

a 3
�aFÿ sin aF�

ÿ 2 j _Pt 0jA
a 2

�
cos�c0 ÿ cp� ÿ cos �aF� c0 ÿ cp�

ÿ aF sin �c0 ÿ cp�
��

: �19�

Given the initial conditions at the inlet of the resonator,
expressions (11) ± (19) determine the motion of the electron
interacting with the backward partial T wave at any section z.
Figure 1a presents a family of functions Z �F0� at A � 0:015
and various b0. For any b0, the length of the interaction
region L and the pitch factor q � v?=vjj �

���������������������
2=�g0 ÿ 1�p

were
chosen based on the condition of the full stop of the electron
at the end of this region in the case of exact autoresonance
(F0 � 1), i.e., Z�1� � 1. The appearance of the resonant curves
is highly specific: in contrast to the case of normal resonance,
the point of exact autoresonance is not stationary, i.e., the
first derivative Z 0�F0� has a discontinuity at this point. Then,
Z 0�1ÿ 0� � ÿZ 0�1� 0�, and the derivatives themselves are
very large, which testifies to the criticality of the optimum
conditions for autoresonance. The band of autoresonance is
fairly narrow and narrows as the relativism of the electrons,
b0, increases. This can easily be understood because for a
fixed amplitudeA, the length of the optimum region decreases
with the increase in b0, which naturally narrows the auto-
resonance band.

The `resonance' curves Z�q� for F0 � 1, A � 0:015, and
given b0 (i.e., g0) shown in Fig. 1a characterize the criticality
of the autoresonance conditions with respect to departures of
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the beam parameters (pitch factor q) from the optimum
values computed based on the condition of the full removal
of the electron energy in the case of exact autoresonance�
g0�1ÿ bz0� � 1

�
. The criticality of Z�q� at the optimum

points increases dramatically with the increase in b0. To a
certain extent, this is due to the above-mentioned factor, the
increase in the optimum length of the interaction region at a
given A. In addition, the optimum condition itself,
1ÿ bz0 � gÿ10 , becomes more critical as g0 increases.

Figure 2a represents a family of resonance curves Z�F0�
for the interaction region length L � 15p and various b0. As
in the preceding case, the choice of A and q was based on the
condition Z�1� � 1. The functions Z�F0� are similar to those
shown in Fig. 1a; however, the b0 dependence in the family
Z�F0� is here exactly the opposite: now, the resonance band
broadens as b0 increases. This can easily be understood,
because now, given the length of the interaction region, the
number of cyclotron circuits of the electron decreases and the
resonance band broadens with an increase in Z�q�. Figure 2b

shows a family of dependences Z�q� for F � 1, L � 15p, and
varying b0. Compared to the analogous family in Fig. 1b, the
general pattern of dependences is preserved and, importantly,
the criticality of Z�q� still increases with increasing b0,
although not so sharply as in the previous case. Thus, the
requirements for the quality of the electron flow (the
minimum spread in q) and for q complying with the
condition of the full removal of the electron energy�
g0�1ÿ bz0� � 1

�
become more stringent as the relativism of

the beam is increased.
Shown in Fig. 3a is a family of resonant curves Z�F0�, with

N � 10 circuits of the electron in the interaction region, for
varying b0. As follows from Fig. 3a, this family degenerates
into a single curve Z�F0� for all b0 values; i.e., given N, the
resonant curves Z�F0� are b0-independent. Figure 3b presents
a family of dependences Z�q� at F0 � 1, N � 10, and varying
b0. The general pattern of the dependences remains similar to
those shown in Figs 1b and 2b: the criticality of Z�q� increases
fairly rapidly as b0 decreases.
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Figure 1.Resonance curves for the fixedA � 0:015: (a) Z �F0�, (b) Z �q�; 1Ð
b0 � 0:8, L � 17:1, F � 77:0; 2 Ð b0 � 0:9, L � 46:3, F � 107:2; 3 Ð

b0 � 0:95, L � 102:7, F � 139:9.
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Figure 2.Resonance curves for the fixed L � 15p: (a) Z �F0�, (b) Z �q�; 1Ð
b0 � 0:8, A � 0:0055, F � 211:7; 2 Ð b0 � 0:9, A � 0:0147, F � 109:2;
3Ð b0 � 0:95, A � 0:0327, F � 64:2.
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Figures 4a and 4b show the dependences Z�F� and Z�q�,
similar to the preceding ones for N � 50 and various b0. It
follows from these dependences that the resonance band
substantially narrows here and the criticality of the reso-
nance conditions increases. The criticality of Z�q� is enhanced
very sharply with increasing b0. Therefore, the difficulties
associated with developing high-efficiency CARMs becomes
understandable: to achieve an appropriate bunching of
electrons as bph ! 1 (e.g., bph � 1:03 [11]), a long interaction
region (or, more precisely, largeN) is needed; however, asN is
increased, the criticality of a CARM with respect to the
deviations in the beam parameters (most of all, q) forming
the optimum values increases dramatically, especially at high
b0, according to the above results. At the same time, precisely
ultrarelativistic CARMs seem to be interesting in view of the
possibility of increasing the working frequency proportion-
ally to g 2 [11]. These contradictions can likely be resolved only
in cascade CARMs, where the first cascade operates at
bph � 1:5ÿ2, ensuring the necessary phase bunching of
electrons, while the second one (the remover) operates in the

CARM regime at bph � 1 (with a high quality of the electron
beam andwith a strict correspondence of its parameters to the
condition of full energy removal) and ensures a high efficiency
of the device.

3. Nonsynchronous interaction: apparent
contradictions in averaged solutions

The content of this section is based on Ref. [22]. In closing the
tenth lecture (Prospects) of his course ``Foundations of
SuperHigh-Frequency Electronics'' [23], L A Vainshtein
gave principal attention to the nonsynchronous interaction
of electrons with a fast oscillating field. This interaction is
remarkable in that an electron in a nonuniform (in the
direction of the initial velocity of the electron) field acquires
an increment in the systematic component of its velocity. This
effect is similar to that discovered by Kapitza [24] in the
behavior of a pendulum with a vibrating suspension. This
phenomenon in electronics was discovered and investigated
by Miller [25, 26]. As the instrument of investigation, an
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q
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a

Figure 3. Resonance curves for the fixed F � 20p �N � 10�: (a) Z �F0�, (b)
Z �q�; 1 Ð b0 � 0:8, A � 0:0184, L � 13:9; 2 Ð b0 � 0:9, A � 0:0256,
L � 27:10; 3Ð b0 � 0:95, A � 0:0334, L � 46:13.
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Figure 4. Resonance curves for the fixed F � 100p �N � 50�: (a) Z �F0�,
(b) Z �q�, 1 Ð b0 � 0:8, A � 0:0037, L � 69:8; 2 Ð b0 � 0:9, A � 0:0051,
L � 135:5; 3Ð b0 � 0:95, A � 0:0067, L � 230:6.
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averaging technique was used in the equation of motion for
the electron in the `t' system. The averaging technique was
applied again 20 years later to the equations of motion of an
electron in a nonuniform high-frequency field [27]; however,
the `t' systemwas used for the equations in one case and the `z'
systemwas used in another. Accordingly, the right-hand sides
of the equation for the systematic component of the
acceleration in these two cases proved to be equal in absolute
value but opposite in sign. The apparent insolubility of this
contradiction led the authors of Ref. [27] to the conclusion
that no systematic velocity increase is possible or this effect is
weak and cannot therefore be isolated, i.e., Miller's effect
does not exist and the electron is not reflected by an increasing
field. We demonstrate below that this conclusion is not
correct, although the `contradiction' noted in Ref. [27] is
actually present. The substantial difference between the
descriptions of the electron motion in the `t' and `z' systems
plays a decisive role here.

Let a rectilinear nonrelativistic electron flow directed
along the z axis interact with the z component of a given
electric field at a frequency o, Ez � E �z� cos �ot� j�. The
interaction interval is 04 z4L. The process of interaction
between the electron flow and the electromagnetic field can be
studied by analyzing the collective interaction between a high-
frequency (HF) field and an N-particle ensemble originally
distributed uniformly with respect to the electronic wave-
length lo � 2pv0=o. All particles of the ensemble enter the
interaction region one by one over one oscillation period at an
initial velocity v0. If the interaction of particles, i.e., electrons,
is ignored, the motion of each of them in the interaction
region is described by the equation (in the nonrelativistic
approximation)

d2z 0i
dt 2
� e

m0
E �z 0i � cos �ot� ji� ; �20�

where z 0i is the dimensional coordinate of the ith electron,ji is
the phase at which it enters the interaction region, and e and
m0 are the charge and rest mass of the electron.

Next, we pass to the dimensionless variables

zi � z 0i
L
; Vi � vi

v0
; t � v0t

L
; E �z 0� � Em f

�
z 0

L

�
;

A � eEmL

m0v 2
0

; y0 � oL
v0

:

We can then rewrite Eqn (20) as the system of equations

dVi

dt
� A f �zi� cos �y0t� ji� ;

dzi
dt
� Vi :

�21�

The initial conditions for system (21) are specified in the
form

Vi�0� � 1 ; zi�0� � 0 ; ji �
2pi
N

: �22�

We note that because the interaction interval is fixed,
f �zi� � 0 in Eqn (20) at zi 4 0 and zi 5 1. If Eqns (21) are
written in the `t' system, this fact is important in analyzing the
state resulting from themotion of the electron in the field over
a finite interval (at z � 1 or at a current z). Specifically, we
need to compute a ti at which the electron finds itself at z or
z � 1. This recalculation procedure can be avoided if the

equations of motion for the electron are originally written in
the `z' system,

dVi

dz
� A f �z�

Vi
cos �y0ti � ji� ;

dti
dz
� 1

Vi
; �23�

Vi�0� � 1 ; ti�0� � 0 ; ji �
2pi
N

:

This system of equations, being computationally simpler
(although more complex in terms of the interpretation of the
results), is unfortunately not universal, in contrast to the `t'
system. It allows studying the motion of the electron only for
Vi > 0, i.e., up to the point where the electron stops (and
hence its total, systematic+oscillating velocity vanishes).
Thus, neither the reflection of the electron nor its earlier
stages of motion (with zero totalVi) can be analyzed in the `z'
system. The power of the interaction between the electron
flow of powerP0 and the electromagnetic field in the `z' and `t'
systems can be calculated using the formulas

P �z�
P0
� 2A

N

XN
i�1

�z
0

f �z� cos ÿy0ti�z� � ji

�
dz

� 2A

N

XN
i�1

� tiz

0

Vi�t� f
ÿ
zi�t�

�
cos �y0t� ji� dt ; �24�

zi�tiz� � z :

The problem in (21), (22) or (23) can be solved using
modern PCs to any preassigned accuracy, which allows
finding the entire pattern of the one-dimensional, nonsyn-
chronous interaction of electrons with a uniform electric field
for particular functions f �z�. Our aim is, however, to check
the reliability of the conclusions in Refs [23, 25, 26] and to
understand the essence of the contradiction noted in Ref. [27]
using the exact solutions. In those studies, solutions were
obtained using the averaging technique (whose various
modifications yield the same averaged equations in the
problem under consideration). We therefore recall the form
of the solution to which the averaging technique leads.

(1) For problem (21), (22) [23, 25 ± 27],

zi � zci �t� � A f �zci� cos �y0t� ji� ;

Vi � Vci�t� ÿ A f �zci� sin �y0t� ji�
y0

;

dVci

dt
� ÿ A 2

4y 2
0

d f 2�zci�
dz

;

dzci
dt
� Vci ; �25�

where the subscript `s' denotes the systematic parts of the
quantities.

(2) For problem (23), with the same general form of the
solution as found in Ref. [27],

dVci

dz
� A 2

4y 2
0Vci

d f 2�zci�
dz

;

dti
dz
� 1

Vci
: �26�
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At first glance, the contradiction between Eqns (25) and (26)
is apparent.

We choose f �z� � Az 2, because the truncation used in
Vainshtein's technique,

f �zc � zv� � f �zc� � d f �zc�
dz

zv � 1

2

d2f �zc�
dz 2

z 2v �O �z 3v �

(with z � zc�t� � zv�t�, where zv�t� is the oscillating part), is
exact in this case.We calculate the efficiency of the interaction
between the electron ensemble and the electromagnetic field
as the respective electron and wave efficiencies Ze and Zv
averaged over the ensemble, as follows:
(1) in the `z' system,

Ze�z� �
DWk�z�
Wk�0� � 1ÿ V 2 ; V 2�z� � 1

N

XN
i�1

V 2
i �z� ; �27�

Zv�z� �
P�z�
P0
� 2A

N

XN
i�1

�z
0

f �z� cos �y0ti � ji� dz ; �28�

(2) in the `t' system,

Ze�z� � 1ÿ 1

N

XN
i�1

V 2
i �tiz� ; z � zi�tiz� ; �29�

Zv�z� �
2A

N

XN
i�1

� tiz

0

Vi�t� f
ÿ
zi�t�

�
cos �y0t� ji� dt : �30�

At N � 1, formulas (27) ± (30) define the `individual' efficien-
cies Zei and Zvi. The accuracy of the calculations can be
checked by comparing Zv�z� and Ze�z�. The limited length of
this paper does not allow us to use all numerical and graphic
materials obtained in comparing the exact and the averaged
solutions, and we therefore present only some of them, which
generally characterize the essence of the problem.

Figure 5 illustrates typical z dependences of the averaged
and individual parameters of the interaction for an ensemble
of eight electrons (N � 8) with

V � 1

N

XN
i�1

Vi�z� ;

and Vci�z� and Zeic�z� being the systematic components of Vi

and Zei; they can be determined numerically using the
filtration procedure. The parameters are chosen such that
the applicability condition of the `z' system (Vi > 0) is
satisfied for all electrons everywhere to the boundary of the
interaction region. The slight increase inA to 33.5 violates this
condition. These data were obtained by numerically solving
problem (23). As the first conclusion, we note that Ze�z� and
Zeic�z� coincide for all initial phases of the ith electrons the
same also applies to both V and Vci. Therefore, instead of
implementing the filtration procedure for the regime with
Vi > 0, we can simply calculate Ze and V for the ensemble
(averaging the oscillations over the ensemble). The second
(and most important) conclusion is in the fact that Vci�z�
increases in the considered regime (Vi > 0), which corre-
sponds to representations (26) [and, as we see in what
follows, also to representation (25)]. Accordingly, Ze and Zeic
are negative and increase monotonically in their absolute
values (which corresponds to energy pumping into the
electron flow).

Figure 6a shows the dependences Ze�A� and V �A� (at
z � 1, for the same ensemble). The calculations were done in
the `t' system for problem (21), (22), recalculating the integral

quantities into the `z' system. This step yielded the following
information:

(1) at the point A � 32, the quantities Ze�A� and V �A�
exactly correspond to Ze�1� and V �1� in Fig. 5, i.e., the
computations in the `t' and `z' systems yield exactly the same
results, as could be expected;

(2) at A � 59, a decrease in V begins (from the initial
value), while Ze vanishes at this point. Near this point, the first
electron that was expelled backward through z � 0 appears;

(3) at A0 5 59, the quantity Ze becomes positive, and the
efficiency reaches 48% at A0 � 60:5. In this regime, a part of
the electrons overcome the interaction interval, while another
part is expelled backward;

(4) at A � A � � 62, all electrons are reflected by the HF
field, withV �0� � ÿ1 and Ze�A �� � 0. Therefore, the infer-
ences by Miller are quite correct at such A �.

Finally, we can also easily check the solutions based on
averaged equation (25) with a recalculation into the `z' system
and in accordance with Eqns (22). These solutions are shown
with the dashed curve in Fig. 6a.
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Figure 5.Characterization of the interaction of the eight-electron ensemble

at y0 � 40 and A � 32: (a) averaged and systematic components (curve 1

corresponds to coinciding �V andVci and curve 2 to coinciding Ze and Zeci);
(b, c) individual trajectories, i � 1, 3, 5, 7.
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Therefore, we can state the following:
(1) the solutions of the averaged equations virtually

coincide with the exact solutions;
(2) averaged equations (25) yield the same results at

A < 32 as Eqns (26), although the sign in the equation for
dVci= dt is different: the electrons are accelerated by the HF
field in these regimes instead of being retarded.Naturally, this
result manifests itself only if we pass from the `t' to the `z'
system. Thus, the contradiction between Eqns (25) and (26) is
fictitious. In addition, it is important that Eqns (26) apply
only in the above-specified range of A, where V definitely
increases.

The case considered above (Figs 5 and 6a) corresponds to
the situation where the averaging technique is undoubtedly
applicable, because the number of electron oscillations is
ne010 and the process is truly adiabatic. Shown in Fig. 6b
are the dependences V �A� and Ze�A� in the case where the
averaging conditions are not satisfied and the correspondence

is considerably violated at sufficiently largeA. Here, ne � 2:5,
and there is nothing to `average'; all the more surprising is the
fact that a qualitative correspondence is still present. We note
that the physical processes occur in this case in an obviously
different way. The oscillating components of the velocity
remain finite due to the nonadiabatic character of the
processes instead of damping to zero. As a result, if A > 23
and all electrons are reflected by the field, the efficiency Ze �A�
does not remain zero but its negative value further increases.

4. Nonsynchronous interaction of a relativistic
electron flow with the rotating E11n field
of a cylindrical resonator

The content of this section is based on Ref. [28]. As shown in
Ref. [29], if a relativistic electron flow (REF), rectilinear at the
inlet, interacts with a strong rotating fieldH111 of a cylindrical
resonator, then efficient generation is possible at an appro-
priate combination of the initial speed of electrons v0 the
phase speed of the wave in the resonator vph, and the
induction of the external longitudinal magnetic field B0, if
the amplitude of the electromagnetic field reaches sufficiently
high values. The output of energy by relativistic electrons is
also apparently possible in a rotating H11n field, with the
interaction between the electrons and the longitudinal
component of the electric field Ez as an accessory factor. But
the basic feature of the mechanism of the interaction between
a thin REF and a rotating electromagnetic field is the absence
of a phase bunching of electrons (i.e., all electrons are at a
right phase); this property is naturally preserved in this case.
In what follows, we present the results of an analysis of the
interaction between an REF and a rotating E11n field. The
principal simplifications in the model are the same as in
Ref. [29]: the REF is thin and rectilinear, and enters the
resonator axially; the volume charge is not taken into
account; and the approximation of a given E11n field is used
(i.e., the excitation of parasitic waves is neglected).We specify
the fields of the working oscillation mode at a frequency o in
the resonator as

_E 0 � E 0mE
0�x� exp� jy� � E 0mE

0�x� exp � j�y� c0�
�
;

_B 0 � _B 0mB
0�x� exp� jy� � E 0m

c
B 0�x� exp � j�y� c0�

�
; �31�

yÿ ot :

Next, we introduce the notation

E � ReE 0 exp
�
j�y� c0�

�
; B � ReB 0 exp

�
j�y� c0�

�
:

The equations ofmotion of an electron in the given field of the
resonator and in a uniform longitudinal magnetic field then
acquire the form

d �b=R�
dy

� ÿA ÿE� � bB��ÿ F � bz0� ; dx

dy
� b ; �32�

where

x � cx 0

o
� xx0 � yy0 � zz0 � cw0 � rr0 � zz0 ;

b � v
c
; R �

�������������
1ÿ b2

q
; A � eE 0m

m0oc
; F � eB0

m0o
:
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Figure 6. Integral parameters of the interaction between the electron flow

and the oscillating field as a function of the amplitude A, for y0 � 40 (a)

and 10 (b). Curve 1, �V; 2, Ze. Solid curve, full equations; dashed curve,

averaged equations.
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For a rotating E11n field, the components E and B are
given by �Bz � 0�

Ec�ÿ0:5 kz
kr

�
J0�krr� � J2�krr�

�
sin �kzz� sin �y� c0 ÿ c�;

Er�ÿ0:5 kz
kr

�
J0�krr� ÿ J2�krr�

�
sin �kzz� cos �y� c0 ÿ c�;

Ez � J1�krr� cos �kzz� cos �y� c0 ÿ c� ; �33�

Bc � 0:5kÿ1r

�
J0�krr� ÿ J2�krr�

�
cos �kzz� sin �y� c0 ÿ c�;

Br � 0:5kÿ1r

�
J0�krr� � J2�krr�

�
cos �kzz� cos �y� c0 ÿ c�:

In a resonator withH11n oscillations, the componentsE andB
can be written as �Ez � 0�

Ec � ÿ0:5
�
J0�krr� ÿ J2�krr�

�
sin �kzz� sin �y� c0 ÿ c�;

Er � ÿ0:5
�
J0�krr� � J2�krr�

�
sin �kzz� cos �y� c0 ÿ c�;

Bc � 0:5kz
�
J0�krr� � J2�krr�

�
cos�kzz� sin �y� c0 ÿ c�;

Br � 0:5kz
�
J0�krr� ÿ J2�krr�

�
cos �kzz� cos �y� c0 ÿ c�;

Bz � krJ1�krr� sin �kzz� cos �y� c0 ÿ c� ; �34�

where

kz � 1

bph
; kr � bph

���������������
bph ÿ 1

q
; bph �

vph
c
; 04 z4

np
kz

:

For a thin electron flow that has negligibly small transverse
velocities of electrons at the resonator inlet and that enters the
resonator axially, the initial conditions for system (32) can be
specified as

b�0� � b0z0 ; x�0� � 0 : �35�

The total electron efficiency can be defined as

Z�0� � 1ÿ R�0�=R�y�
1ÿ R�0� : �36�

Tomatch the field in the resonator and the current that excites
it, equations of motion (32) must be supplemented with the
excitation equation

A � A exp � jcc�

� 2eI0Q

m0o 3e0 jjE 0jj2
1� jjQ

1� �jQ�2
� y1

0

exp �ÿjy�E 0b dy : �37�

where

jjE 0jj2 �
�
Vp

E 0E 0� dVp ;

Vp is the volume of the resonator, I0 is the current of the beam,
Q is the quality factor of the resonator for working-mode
oscillations, j � 2�oÿ o0�=o is the relative detuning of the
resonator (where o0 is its resonance frequency), and y1 is the
phase atwhich the electron leaves the resonator.Equation (37)
allows dividing the problem into two stages if I0 andQ are not
given: problem (32), (35), (36) with given A and c0 can be
separately solved first, after which the combinations of Q, I0,

and j corresponding to the regime thus found can be
determined (if necessary) by calculating the integral in
Eqn (37). In what follows, we use precisely this possibility of
separation. Figure 7 shows the height plot of the oscillation
and absorption zones on the (F,A) plane for a rectilinear REF
interacting with rotating E111 (a), E112 (b), and H111 (c) fields
at b0 � 0:9 and bph � 1:2. The contours are labeled with the
efficiency values (positive and negative); the plus signs mark
the oscillation zones and the minus signs mark the absorption
zones.

Comparing the structure of the oscillation and absorption
zones in the above three cases yields the following inferences.
The oscillation zone is the widest and least critical if the REF
interacts with the E111 field. For the E112 field, the main zone
is narrower and the maximum efficiency is lower; at the same
time, a second oscillation zone emerges in the region of
increased A and F < 0. The oscillation zone for the H111

field proves to be highly critical at high efficiencies; moreover,
high efficiencies are achieved at A values twice as large as for
the E111 fields.
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We also note that the generation zone at F > 0 in the case
of theH111 field is separated from the region of small A by an
absorption zone (the same also refers to the second zone of the
E112-field oscillation). This property (noted in Ref. [29])
results in a threshold effect: oscillation is possible only at
finite (and sufficiently large) amplitudes of the high-fre-
quency field. In the case of E111 oscillations, no threshold
effect is present, which is very important for the realization of
an REF-based generator. The displacement of the center of
the oscillation zone in the (A, F, bph) space at b0 � 0:9 for the
E111 field is illustrated in Fig. 8a, where theA

0 dependences of
F 0, Z0, and bph are shown. At small bph (bph � 1:05; 1:1), the
center of the zone is located in the region of F � 0 (we recall
that generation at bph � 1, i.e., in the T00n field, is possible
only if F < 0 [21]). As bph increases, the center of the zone
shifts toward positive F (the generation zone drifts to the right
in the (F,A) plane). At first,A 0 and Z0 increase (themaximum
of Z0 is located in the region bph ' 1:2), after which Z0

decreases slowly. The b0 dependences of A 0, F 0, and Z0 at
bph � 1:2 are presented in Fig. 8b. They indicate that F 0, A 0,
and Z0 increase monotonically with b0; at b0 � 0:95, the
efficiency reaches 75%. At b0 > 0:9, however, the increase in
A0 accelerates dramatically, which is obviously an undesir-
able effect because it both increases the losses in the resonator
and restricts the generation frequency (because of reaching
the breakdown strengths of the HF field). Since the interac-
tion of the REF with the E111 field is most interesting, we
consider precisely this case. As investigations show, the
interaction mechanism remains the same throughout the
entire generation zone. We therefore discuss its basic
regularities using the particular example of bph � 1:2,
b0 � 0:9, A � 1:35, and F � 0:445 (this point is located
below the center of the zone at the A axis, A 0 � 1:74). In
Fig. 9a, the dependences bz�z�, bt �z�, and R �z� are shown
together with the relative value ofEz�z� at the trajectory of the
electron; the arrows at the z axis mark the times needed for
comparisons with Fig. 9b, where the same times are marked
with dots and are numbered. Figure 9b shows the trajectory of
the electron in the rest frame. The interaction of the REFwith
a rotating E111 field can be divided into several stages.

(1) In the interval 04 z4 1:5, the action of the Bt field
results in a transformation of bz and bt. In addition, in the end
region of this section (14 z4 1:5), there is a specific balance

between the accelerating action of Ez (Ez < 0) and the
decelerating action of the component of Et tangential to the
trajectory (cf. Figs 9a and 9b, the node point 3). As a result,
R � const in this region.

(2) In the interval 1:54 z4 2 (the center of the resona-
tor), the removal of transverse energy starts exceeding the
increase in longitudinal energy, with a slow increase in R.

(3) In the interval 24 z4 3:7, the bulk removal of energy
from the REF occurs. This is a very specific process: the
electron moves in a rapidly increasing decelerating field Ez,
while its longitudinal velocity increases in the interval
24 z4 3:25. This results from the excessive increase in bz
due to the transformation of bt into the Bt field (for the
orientation of Bt, see points 4 ± 7 in Fig. 9b) over the decrease
in bz due to the decelerating action of theEz field. Thus, in the
interaction of the REF with the E111 field, the function bt is a
specific reservoir of energy for the afflux to bz, while the direct
interaction with Et (Fig. 9b) is not significant (because the
tangential component Et is small) and plays an auxiliary role,
in contrast to the interaction of the REF with the H111 field.
The transverse component of the electron velocity, bt, also
plays another role, leading to a transverse deflection of the
electron and phasing it in the field Ez [we recall that Ez � 0 at
the axis, see Eqn (33)].

In the end region of the selection interval 3:54 z4 3:77,
the backward turn of the beam also occurs inBt (see point 8 in
Figs 9a and 9b). Again, bt increases there, while bz decreases
due to both braking in theEz field and transformation into bt.
We note that this effect is not a manifestation of a `saturated'
or `oversaturated' regime. It can also be observed at A even
smaller than its optimum value. Apparently, this regime is
energetically more favorable because of the delay of the
electron at the braking phase of Ez, where the trajectory is
reversed.

Of interest are the dependences of A 2=Z on A, which
characterize the starting current and the stability of the steady
oscillation regime (A 2=ZjA�0 is proportional to the starting
current Istart; at a given finite A, this quantity is proportional
to the working current, or to the quality factor of the
resonator). Figure 10 presents dependences of A 2=Z on A at
b0 � 0:9. It can be seen that no threshold effect is present in
the interaction of the REF with rotating E111 fields, in
contrast to the case of H111 fields [29]; this was noted above
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based on our analysis of the structure of the oscillation zones.
In principle, a hard excitation regime is possible for
0:44A4 1:3 (curves 1 and 2); in this case, the working
current is smaller than the starting current. However, in high-
efficiency regimes (curve 2) at A � 1:74, the working current
exceeds the stating current, and the slope of theA dependence
ofA 2=Z is positive, which testifies to the stability of the steady
oscillation regime. Curves 3 ± 5 reflect the fact that the slope
of the A 2=Z curve is everywhere positive, i.e., that the steady
oscillation regime is stable at any quality factor.

Thus, our investigation of the interaction of a rectilinear
REF with rotating E111 fields reveals three basic advantages
of this type of interaction in the oscillator compared with the
case ofH11n fields [29]: (1) no threshold effects are present; (2)
the working strength is reduced by half; and (3) the oscillation
zones are not critical at high efficiencies. At the same time, the
following feature should be noted: removers with E111-type
oscillations in amplifiers with pre-swept REFs can ensure
efficiencies approaching unity, in contrast to removers with
H111-type oscillations. If we also take into account that the

removers with E111-type oscillations can exhibit self-excita-
tion (without a pre-sweep of the REF), while the removers
with H111-type oscillations cannot (because of the threshold
phenomena), it becomes cleat that the E111 type oscillation
can be recommended for generators and the H111 type for
removers in amplifiers.

5. Coaxial oscillator with a nonsynchronous
interaction

The content of this section is based on thematerial inRef. [30].
Currently, medium-power microwave oscillators are needed
for many purposes; their basic advantages are small weights
and sizes (e.g., due to the absence of magnetic focusing
systems), as well as simple and highly reliable arrangements.
Their efficiency is not a primary factor. The field of
application of such oscillators is very wide: portable, durable
medical and technological setups, devices for training
laboratories and measuring antenna equipment, etc. These
needs dictated the search for oscillation mechanisms comply-
ing with these requirements. As frequently happens, this
search led to the well-known diode and monotron arrange-
ments [31 ± 34]. However, their efficiency is unacceptably low,
� 6%. Therefore, we here consider an inverted cylindrical-
diode (and monotron) arrangement with a coaxial resonator.
In such arrangements, electrons move in the direction of an
increasing HF field; it is known that although bunching faults
are inherent in nonsynchronous interaction, such a pattern of
motion can be expected to substantially increase the effi-
ciency. As shown in this section, the electron efficiency of a
monotron (with the volume charge taken into account) can in
principle reach 33% and that of a diode, 24%.
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Figure 11 shows an oscillator arrangement that we
consider in the case of a monotron. The electron gun, 1,
forms a planar disk-shaped electron flow, 2, which passes
through the coaxial resonator, 3, in the region of the
maximum electric component of the lowest eigenmode T1

and interacts with the latter. The voltage Du0 determines the
initial speed of the electrons entering the interaction region,
andDu1 is the accelerating voltage in the interaction region. If
electrons are emitted from the resonator wall at zero speed,
the arrangement becomes simpler, with Du0 � 0 (which
corresponds to a diode). The waste electrons settle to the
inner cylinder, which plays the role of the anode (in contrast
to the experiments in Ref. [31], where the inner cylinder was
the cathode). The electrons in the flow move through the
interaction region (Fig. 11) under the action of a constant
electric field Er and a variable electric field Ers:

Er � Du1
ln �R2=R1�

1

r
; Ers � Dus

ln �R2=R1�
1

r
cos �ot� j� :

�38�

Here, R1 and R2 are the radii of the inner and outer cylinders
of the coaxial resonator, r is the distance from the resonators
axis, R1 4 r4R2, Du1 is the potential difference between the
cylinders, Dus is the amplitude of the HF oscillations of the
electromagnetic field excited in the resonator, o is the
working frequency of the oscillation, and j is the initial
phase. According to large-particle method, we represent the
electron flow as an ensemble of N ring particles, which are
initially uniformly distributed over the oscillation period. The
field of the volume charge acting on the ith particle and
produced by other particles can then be approximately
written as

Eqi � I0
ori2pe0

1

N

XN
j�1
j 6�i

1

ri ÿ rj
; �39�

where I0 is the beam current, e0 is the vacuum dielectric
constant, and ri and rj are the radii of the ring particles.

We introduce the variable z � R2 ÿ r, measured in the
direction of particle motion, and write the dimensional
equations of motion of large particles in the `z' coordinate
system as

dvi
dz
� e �Er � Es � Eqi�

m0g 3i vi
;

dti
dz
� 1

vi
; �40�

where vi is the velocity of the ith particle, ti is the individual
time, e and m0 are the charge and mass of the electron,
gi � 1=

���������������������
1ÿ v 2

i =c
2

p
, and c is the speed of light.

For convenience, we pass to dimensionless variables, viz.,
Vi � vi=v0, where v0 is a reference value of the electron speed,

b0 �
v0
c
; g0 �

1��������������
1ÿ b 2

0

q ; gi�T � �
1����������������������������

1ÿ V 2
i �T � b 2

0

q ;

L�R2 ÿ R1 ; d � R1

L
; T � z

L
; ui � oti ÿ zo

v0
;

y0 � oL
v0

; A � eDu1
m0v 2

0

; As � eDus
m0v 2

0

;

Dl � ln
d� 1

d
; Sq � eDlI0

m02pe0v 30
; Fqi � 1

N

XN
j�1

1

ui ÿ uj
:

In passing from Eqn (39) to Fqi, we use a linear extrapolation
of uj, as is usually done for O-type devices. In these variables,
Eqns (40) is written as

dVi

dT
� A� As cos �ui � y0T � � SqFqi

Vi g 3i Dl �d� 1ÿ T � ; �41�

dui
dT
� y0

�
1

Vi
ÿ 1

�
:

For amonotron, the reference velocity v0 is chosen to be equal
to the entry velocity of the electrons at the resonator inlet; it
can be calculated from the accelerating voltage Du0 in
accordance with the relation eDu0 � mc 2 �g0 ÿ 1�. Without
the relativistic corrections,

v 2
0 �

2Du0e
m0

; A � 1

2

Du1
Du0

; As � 1

2

Dus
Du0

:

For a diode, the electrons have zero initial velocity
(Du0 � 0), and the reference velocity v0 is calculated from
the accelerating voltage Du1 using the relation eDu1 �
mc 2�g0 ÿ 1�. If the relativistic correction is ignored,

v 2
0 �

2Du1e
m0

;

with A � 0:5 � const and As � 0:5Dus=Du1.
The initial conditions at T � 0 are

ui � �iÿ 0:5� 2p
N
; i � 1; . . . ;N ; �42�

where Vi � 1 for the monotron and Vi � 0 for the diode.

Du1 Du0

3

1
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2R1

R2

4

2 1

Figure 11. The arrangement of a diode oscillator, diotrone.
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The efficiency of the interaction can be estimated based on
the electron efficiency, which is the ratio of the difference
between the mean electron energies before and after the
interaction with the HF field to the electron energy corre-
sponding to the potential difference Du0 � Du1:

Ze�T �

� 1

N

XN
i�1

g0 ÿ gi�T � � Ab 2
0 ln

ÿ�d� 1�=�d� 1ÿ T��=Dl

g0 ÿ 1� Ab 2
0

�43�

for the monotron and

Ze�T �

� 1

N

XN
i�1

�
ln
ÿ�d� 1�=�d� 1ÿ T ��

Dl
ÿ gi�T � ÿ 1

g0 ÿ 1

�

for the diode. The degree of particle bunching can be
estimated using the bunching function

Gr �
������������������������������������������������������������������������

1

N

X
i

cos ui

�2

�
�

1

N

X
i

sin ui

�2

vuut : �44�

If no bunching is present, Gr � 0; if the bunching is perfect,
Gr � 1.

The interaction process in the considered oscillator is
determined by four basic dimensionless parameters: the
relative value A of the accelerating voltage in the interaction
region, the relative amplitude As of the HF field, the transit
angle, y0, and the geometrical factor of the resonator d. Two
additional parameters, b0 and Aq, describe the relativistic
effects (if b0 > 0:3) and the role of the interaction of electrons
at high beam currents, respectively.

Two radically different regimes can be realized in the
arrangement under discussion. The first is the diode regime in
which electrons are emitted directly from the wall of the outer
cylinder of the resonator (the cathode of the gun, 1, coincides
with the wall;Du0 � 0). The second is the monotron regime in
which the electrons of the flow produced by the gun enter the
resonator at the initial speed v0 determined by the potential
difference Du0 and interact with the HF field. An additional
accelerating voltage Du1 is in this case necessary for the
electrons settling into the inner cylinder. In both cases,
solutions of problem (41), (42) were obtained and specific
features of the regimes revealed.

The diode regime. In this case, the arrangement of the
generator is especially simple. In the calculations, which took
into account that Vi � 0 at T � 0, Eqns (41) were written in
the `t' system, and the field of the bulk charge was neglected
(Sq � 0). Thus, the problem was described by three para-
meters: As, y0, and d. Figure 12a presents a dependence Z �T �
typical of three cases with different transit angles y0. At large
transit angles y0, the quantity Z �T � changes its sign
periodically with an increase in T. The regions of positive Z
correspond to the removal of the kinetic energy of the
electrons by the electromagnetic wave. The oscillation
amplitude of Z �T � increases with T because of the increase
in the HF-field amplitude. Generation occurs if Z�1� > 0 at
the end of the interaction region. If As and d are fixed,
generation can be successively observed with increasing y0 at
the first, second, and consequent maxima (zones). The

generation mechanism operates because the electrons of the
flow, at the very beginning of their motion, experience
velocity modulation in the field of the HF wave, which has a
finite amplitude, As=�1� d�, at T � 0. As a result, the
subsequently formed bunch passes alternately through decel-
erating and accelerating phases of the HF field, whose
amplitude increases. The energy exchange is most intense
near the inner electrode, where the amplitude of the HF field
increases sharply if d is small. The parameters should be
chosen so as to position the positive maximum at the end of
the region (T � 1). Calculations show that the location of the
maximum Z�1� is independent of As and is determined by the
parameters y0 and d. As As increases, the quantity Z�1�
decreases monotonically. For As > 0:5 (Dus > Du1), a frac-
tion of the electrons is locked by the HF field at the cathode;
we therefore carried out our computations for As 4 0:5.
Figure 12 shows various cases for a fixed d � 0:1 at which
the amplitude of the field increases over the extent of the
interaction region by approximately a factor of 10. The y0
values are chosen such that Z�1� corresponds to a maximum.
As d decreases, Z�1� increases and the y0 value corresponding
to the maximum decreases.

It can be seen from the Table (where the superscripts
correspond to the numbers of the working maxima) that the
efficiency of the oscillator can reach 24% in the first zone,
which substantially exceeds the efficiency of the plane diode
generator (� 6% [31]). As the zone number is increased by
unity, the quantity Z�1� decreases by a factor of about 1.2.
Given the values of the loaded quality factors Q, d, and Du1,
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Figure 12. The characteristics of a diode at As � 0:5 and d � 0:1 in three

cases: 1, y0 � 2:21, Z �1� � 0:205; 2, y0 � 4:47, Z �1� � 0:162; 3, y0 � 6:68,
Z �1� � 0:135. (a) The T dependences of the electron efficiency; (b) the As

dependences of A 2
s =Ze.
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we can compute the working current of the generator as

I0 � pe0cDu1
ln
��d� 1�=d�Q A 2

s

Z�1� : �45�

As As ! 0, formula (45) determines the starting current Istart.
Figure 12b presents the As dependences of A 2

s =Ze, which
indicate that Istart < I0, i.e., the excitation regime of the
diotron is soft.
The monotron regime. This form of the generator allows
varying the parameter A, the ratio of the constant accelerat-
ing voltages. At A � 0, there is no accelerating voltage inside
the interaction region. In this case, the electrons of the flow
move inertially to the inner cylinder in the HF field of
increasing amplitude. Because of the initial and dynamical
spread in the velocities of electrons in the flow, a portion of
the electrons can be reflected from the inner cylinder, which is
undesirable. To avoid this effect, an additional accelerating
voltage Du1 is created, which ensures the settling of all
electrons in the flow to the inner cylinder. At A � 0:5, the
relation Du1 � Du0 holds, and therefore all electrons settle to
the anode. Problem (41), (42) was solved taking the field of the
volume charge at voltages Du0 � Du1 4 5 kV into account;
therefore, relativistic effects were insignificant, and the results
could be used at b0 4 0:15. Calculations have shown that the
actual transit angle decreases with increasing A without
changes in the character of the interaction. As As increases
to a certain value depending on d and y0, the quantity Z�1�
increases monotonically (after this value has been exceeded,
electrons decelerated to zero velocity emerge). In contrast to
the diode arrangement, Z�1� reaches its maximum at a certain
relation between the parameters As, d0, and y0; they can be
found from the condition for the maximum of Z�1�.

For this regime, Fig. 13a presents typical T dependences
of the interaction parameters at the optimum values ofAs, d0,
and y0, which correspond to the generation regimes at the
first, second, and third maxima (zones). The Z�T � depen-
dences are similar to the above-described diode character-
istics. It can be seen from the behavior of the Gr�T � curves
that the electrons of the flow, after acquiring their initial
velocity modulation, are gathered into fairly compact
bunches (with Gr reaching 0.65), and Gr increases only
where Z decreases, i.e., as the bunch passes through the
accelerating phase of the field. The decelerating-phase center
at the entry to the interaction region corresponds to the center
of the bunch. The bunching process is illustrated in Fig. 13b,
where the phase trajectories of electrons are given in the form
ofTi�ot� dependences, i.e., in the `t' system. A compact bunch
passing through the end section of its path through high-
amplitude fields of a decelerating phase releases a larger
portion of its kinetic energy, the larger the field amplitude at
this section and the higher the bunching level.

In the arrangement under consideration, the profile of the
field amplitude is determined by a single parameter, d, whose
optimum value decreases with an increase in the number of
the working maximum. With increases in the number of the

working zone, the efficiency becomes somewhat higher due to
the achievement of higher bunching levels and the shortening
of the selection-interval length. Calculations have shown that
the efficiency in the considered arrangement reaches 37% (in
a plane-parallel monotron, 19%). It can be conjectured that
the efficiency of the interaction can be increased by a factor of
1.5 ± 2 by choosing a similar profile of the HF-field amplitude
and the accelerating voltage in a different arrangement, which
could ensure optimum conditions of the initial modulation,

Table. Diode parameters at As � 0:5.

d y 1
0 Z 1�1� y 2

0 Z 2�1� y 3
0 Z 3�1�

1.0
0.1
0.05
0.025

3.20
2.21
2.06
1.82

0.13
0.20
0.22
0.24

6.14
4.47
4.02
3.69

0.08
0.16
0.18
0.22

8.97
6.68
6.04
5.59

0.06
0.13
0.16
0.18
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Figure 13. Characteristics of the monotron generator arrangement at

A � 0:5 in three cases: 1, y0 � 8:18, As � 3:96, d � 0:41; 2, y0 � 15:31,
As � 5:12, d � 0:18; 3, y0 � 22:2, As � 6:00, d � 0:1. (a) The T depen-

dences of the electron efficiency (1, 2, 3) and of the functionGr (1
0, 2 0, 3 0);

(b) the trajectories of electrons in case 2; (c) the dependences of the electron

efficiency on the working current I0; (d) the As dependences of A
2
s =Ze.
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subsequent bunching, and energy removal. Presented in
Fig. 13c are computational results with the volume-charge
field taken into account. It can be seen that as the working
current I0 increases, the repulsion forces prevent bunching,
and hence the efficiency decreases. The criticality to the
growth of the current increases dramatically with the number
of the working zone.

For the monotron, the working current can be calculated
as

I0 � pe0cDu0
�1� 2A� ln ��d� 1�=d�Q A 2

s

Z�1� : �46�

In the limit As ! 0, the current I0 ! Istart. Soft excitation is
an important property of the monotron regime. It can be seen
from Fig. 13d, where typical As dependences of A 2

s =Ze are
presented for the first three generation zones, that the starting
current is much smaller than the working current. As the
number of the working maximum increases at a fixed quality
factor of the resonator, the starting current increases. Of
considerable importance is the issue of the wavelength ranges
in which the diotron parameters are realizable. For this
reason, we present here, for illustration, the following cases
corresponding to y0 and d from Fig. 13 at L � 1 cm,
Du0 � Du1 � 1 kV, and I0 � 0:2 A. For the first zone,
l � 11:5 cm and Q � 841; for the second, l � 6:32 cm and
Q � 928; and for the third, l � 4:35 cm andQ � 1252. At the
same time, the quality factor Qc of the copper coaxial
resonator itself exceeds 12,000 in the above wavelength
ranges. Therefore, the circuit efficiency Zk � 1ÿQ=Qc is in
excess of 90% in all ranges.

6. The effect of nonsynchronous azimuthal
spatial harmonics on the peniotron efficiency

The content of this section is based of thematerial in Ref. [35].
The peniotronwas invented in the early 1960s [36]. It is among
the few microwave devices in which a virtually perfect, in
terms of efficiency, interaction mechanism is realized: all
electrons of a thin-wall tubular beam, which rotates in a
longitudinal magnetic field B0 coaxially with an azimuthally
periodic electrodynamic system, give the same average energy
up to the HF filed, irrespective of their initial relative phase in
the T field (vph � c). This occurs if the following peniotron-
synchronism condition is satisfied:

1ÿ vz
vph
� pO ; p � nÿ 1 ; O � eB0

gm0o
;

where vz is the longitudinal velocity of electrons, vph is the
phase speed of the wave that has n azimuthal variations, and p
is the number of the synchronous harmonic. In this case, as
simplified analytical models indicate [37], the efficiency of the
peniotron interaction remains high with the increase in the
number of the synchronous harmonic to p � 10. This raised
hopes of developing an efficient, medium-power, millimeter-
wave source (Pout � 1ÿ10 kW) with permanent magnets,
based on this mechanism, which could ensure the required
level of B0.

The inadequacy of the one-electron model under certain
conditions was first noted in [38]. In calculations based on a
nonaveraged model, the author revealed a substantial
dependence of the efficiency on the initial phase of electrons
at vph > c and in the relativistic case. Nonaveraged models of

the peniotron amplifier and oscillator using a T wave in a
multiply connected electrodynamic system were proposed in
Ref. [39]. Such a system is best for the efficient realization of
the peniotron mechanism because not only the condition
vph � c is satisfied there but also the electron orbits of the
weakly relativistic beam can be brought nearer to the
lamellas of the electrodynamic structure in the intense-field
region.

The investigations of the optimum arrangements based on
such models with the effect of the volume-charge field taken
into account indicate that the efficiency of the peniotron
amplifier becomes considerably lower due to the action of the
volume-charge field, which results in a dependence of the
interaction energies on the entry phase of the electron,
especially at larger numbers of the synchronous harmonics.
As the calculations in Refs [40 ± 42] show, the efficiency of the
peniotron generator at optimally chosen parameters remains
fairly high (reaching 72% at p � 3 and 34% at p � 10),
although the backward partial wave has a negative effect if
there are conditions close to those of the gyroresonant wave ±
beam interaction.

An analysis of the optimum arrangements of the penio-
tron oscillator has shown that the action of the volume-
charge-field forces can be compensated because conditions
are created under which the amplitude of the HF field far
exceeds these forces. In practice, this is possible if the quality
factor of the resonator and the power of the beam are
properly balanced. According to experimental data [43], a
proper choice of the loaded quality, Q � 2000 for p � 3, can
ensure the required amplitude of the HF field and allow
obtaining an efficiency of 70%, in agreement with calcula-
tions. At p � 10, the calculated efficiency is 33%, while only a
6% efficiency was achieved in experiment. As calculations
show, the optimum efficiency can be obtained if the quality
factor of the resonator is five times as large as realized
experimentally. A similar experimental result was reported
in Ref. [44].

A drawback of the available mathematical models is that
the field of the electrodynamic system is represented by only
one synchronous harmonic with an azimuthal dependence of
the form exp �ÿjnc�. For this approximation, the `perfection'
of the peniotron interaction mechanism was noted in the
nonrelativistic case. However, an HF field is actually not
azimuthally harmonic, i.e., it includes nonsynchronous
components with distributions of the form exp �ÿj knc�.
Obviously, these components destroy the `perfection' of the
peniotron mechanism, and their effect must be taken into
account in considering a peniotron.

We have carried out such computations for a centimeter-
wave peniotron generator with a resonator in the form of a
segment of a multiply connected waveguide in which the p
type of the T21l mode is realized [39] (the phase shift between
neighboring lamellas is p). The vector potential for the T21

wave was calculated using a mesh technique virtually exactly,
which allowed finding the electron interaction pattern near
the lamellas, where the distribution of the HF field differs
from that represented by one synchronous harmonic, as in
Ref. [39]. It has been found that the presence of nonsynchro-
nous harmonics results in a dependence of the interaction on
the initial entry phase of the electrons and, accordingly, in a
decrease in the efficiency. It has been shown that using
ellipsoidal lamellas allows substantially reducing the level of
nonsynchronous harmonics and enhancing the efficiency of
the peniotron.
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The geometry of the cross section of the interaction region
for two different lamella profiles is shown in Figs 14a and 14b.
The tubular beam rotating about its axis in a longitudinal
magnetic field B0 interacts in the working region with the T21l

mode excited in the resonator (p mode). We use the notation
and the dimensionless mathematical model described in
Ref. [39], with the effect of the volume-charge field taken
into account. To include the effect of nonsynchronous
harmonics, we compute the components of the HF field as
follows. We represent the dimensionless components of the
T21l -mode electromagnetic field in terms of theVt component
of the vector potential,

fEr ; Ec ; Br ; Bcg�Re
�

_Er ; _Ec ; _Br ; _Bc
	
exp � jWy�;

_Er �W
qVt

qr
; _Ec �W

1

r

qVt

qc
; _Br � ÿj 1

r

q2Vt

qz qc
;

_Bc � j
q2Vt

qz qr
;Vt � V �r;c� sin z ; W � o

o0
:

The function V �r;c� satisfies the Laplace equation
r
q
qr

�
r
qV
qr

�
� q2V

qc 2
� 0 : �47�

In view of the azimuthal symmetry, the solution of Eqn (47)
for the Tn1 mode can be sought in the sector 04c4 p=2n,
04 r4R (Fig. 14).

Values of the function V at contiguous lamellas were
specified to be unity, �1. At the boundaries of the computa-
tion sector,

at r � R and r � 0; V � 0 ;

at c � 0;
qV
qc
�0 �symmetry condition� ;

at c � p
2n
; V � 0 : �48�

Problem (47), (48) was solved using a finite-element
technique in the MATLAB system. After that, the ampli-
tude of the HF field A and the associated magnetic field B0

were obtained based on the model described in Ref. [39] via
efficiency optimization. A specific property of a medium-
power peniotron oscillator is that the length of the
interaction region at the beam voltages U0 � 1ÿ20 kV is
L 0 � �0:5ÿ1:5� l (L � pÿ 3p), in contrast to millimeter-
wave peniotrons, where this length is normally �10ÿ15� l.

We analyze the computer-simulated arrangements of
oscillators in which output powers 4 ± 15 kW are ensured
with efficiencies of 70 ± 85% for the frequency f � 915 MHz
(l � 32:7 cm), which is used in technological setups, at the
voltage U0 � 10 kV and the beam current I0 � 0:5ÿ2 A. In
the chosen variables, the loaded quality of the Tn1l -mode
resonator can be calculated as

Q � oE
ZI0U0

� e0c 3A 2m0lpW
4e0I0 �g0 ÿ 1� Z

�
� �

S

��
qV
qr

�2

�
�
1

r

qV
qc

�2�
r dr dc ;

where Z is the electron efficiency, o is the working frequency,
E is the stored resonator energy, and S is the cross section of
the interaction region.

In the computations in Refs [40,42], the HF field involved
only one synchronous harmonic, i.e., it was assumed that
_V � r n sin z exp �ÿjnc� in the interaction region. Therefore,
near the lamellas, i.e., at r close to R0, this approximation
substantially diverges from the reality. Figure 15 presents the
dependence

Ec � 1

r

qV �r;c�
qc

for a resonator with rectangular lamellas at varying r4R0

(curve 1 corresponds to r � 0:5R0, curve 2 to r � 0:75R0, and
curve 3 to r � 0:95R0). It can be seen from the graph that as r
approaches R0, the sinusoidal distribution is distorted and
gradually changes into a step function. As comparative
calculations show, taking the actual distribution of the field
near the lamellas into account results in an additional
dependence of the interaction on the initial phase of the
electrons. In this case, as the synchronous radius r0 of the
electron flow approaches the lamellas, the maximum effi-
ciency decreases. Computations of the field based on mesh
techniques show that the level of spatial harmonics can be
reduced if a rounded lamella is used. The dependence of the
efficiency on R0=r0 for the one-harmonic approximation of
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Figure 14. The cross section of the interaction region in the peniotron.
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Figure 15. Change of the Ec�c� dependence in approaching the lamellas.
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the field is shown with the dashed curve in Fig. 16. An abrupt
decrease is observed as the trajectories of the electrons reach
the radius R0, and electrons start settling into lamellas.

The efficiencies calculated with the inclusion of the spatial
harmonics for lamellas with rectangular cross sections
(curve 1) and rounded cross sections (2) coincide at large
R0=r0 with the efficiencies based on the ideal model, because
the distribution of Ec differs little from a sinusoidal one. As
R0=r0 is reduced from 2 to 1.5, curve 1 declines sharply. That
is because the electrons, due to the drift of the guiding centers,
approach the lamellas and find their way into the field with
intense spatial harmonics. The efficiency curve for a resona-
tor with rounded lamellas begins declining at smaller R0=r0,
because the amplitude of the spatial harmonics is much
smaller in this case. Curves 3 and 4 represent the required
values of the quality factorQ for the respective arrangements
with rounded and rectangular lamellas. Apparently, the
quality factor necessary for a resonator with rounded
lamellas is higher than for a resonator with rectangular
lamellas; but in the region of working values Q < 1000, this
enhancement is not significant compared to the gain in
efficiency.

The dependences presented here were obtained for the
following parameters of the beam: b0 � 0:2, q � 2,
r0 � 0:196, D � 0:083, cD � 22�, R0=R � 0:6, l � 32:7 cm,
U0 � 10:5 kV, I0 � 1 A, L 0 � l, and B0 � 0:0304 T. The
lamella radius R0 varied from 0.295 to 0.491; the amplitude
A0 and the accompanyingmagnetic fieldB0 were optimized at
each point. Energy is mainly removed from the transverse
component bt of the electron velocity near the maxima of the
E components of the HF field. A slight decrease in the
longitudinal component bz is because it is transformed into
the transverse component at the maximum of the magnetic
component of the HF field. For a resonator with rectangular
lamellas, taking the three-dimensional harmonics into
account increases the spread in electron energies tenfold.

The results discussed here were obtained without the
inclusion of the forces of the volume-charge field, to isolate
the pure effect of the nonsynchronous components. Taking
these forces into account also reduces the efficiency and
increases the spread in the electron energy: the efficiency is
83% at the current 0.5 A, but it declines nearly linearly to
36% as the current is increased to 5 A.

It follows from Fig. 16 that to achieve high efficiencies
(> 70%) at a realized loaded-quality factor for a resonator

with rectangular lamellas, the ratioR0=r0 should be chosen to
be roughly 2. Using rounded lamellas allows reducing R0=r0
to 1.7 and bringing the electron flow closer to the region of
strong fields near the lamellas, thus reducing the required
loaded quality factor Q.

Below, we present optimized arrangements of the penio-
tron oscillator based on using the first harmonic of the
cyclotron frequency at the parameters l � 32:7 cm and
U0 � 10:5 kV. The first three cases correspond to a penio-
tron with a rectangular-lamella resonator. Cases 4 and 5were
considered for rounded lamellas. In each case, the beam
current I0 and the length of the resonator L 0 were fixed; the
HF-field amplitude Em and the guiding magnetic field Em

were optimized in terms of efficiency, which yielded the
efficiency B0, the output power Z, and the loaded quality
factor Pout.
Case 1:

R0=r0 � 2 I0 � 2 A ; L 0 � l ; Em � 1:35 kV cmÿ1 ;

B0 � 0:0304 T; Z � 0:78 ; Pout � 16:3 kW; Q � 400 :

Case 2:

R0=r0 � 2 ; I0 � 0:5 A ; L 0 � l ; Em � 1:62 kV cmÿ1 ;

B0 � 0:031 T; Z � 0:83 ; Pout � 4:3 kW; Q � 900 :

Case 3:

R0=r0 � 2 ; I0 � 0:5 A ; L 0 � 0:5l ; Em � 3:43 kV smÿ1 ;

B0 � 0:030 T; Z � 0:77 ; Pout � 4:0 kW; Q � 1900 :

Case 4:

R0=r0 � 1:7 ; I0 � 0:5 A ; L 0 � l ; Em � 1:20 kV cmÿ1 ;

B0 � 0:030 T; Z � 0:81 ; Pout � 4:2 kW; Q � 540 :

Case 5:

R0=r0�1:7 ; I0 �0:5 A ; L 0 �0:5l ; Em � 2:54 kV cmÿ1 ;

B0 � 0:030 Tl; Z � 0:78 ; Pout � 4:1 kW; Q � 1200 :

The first case corresponds to large values of the micro-
perveance of the beam, which allows achieving a high output
power at the electron efficiency close to 80%. In the second
case, the current is reduced by a factor of four, such that the
electron efficiency is increased by 6%, although the output
power is reduced fourfold and the loaded quality factor
increased twofold. In the fourth and fifth cases, employing
rounded lamellas brought the electron beam closer to the
intense-field region, reducing the quality factor without
reducing the efficiency.

Our studies suggest that the nonharmonic azimuthal
structure of the HF field in the peniotron plays an important
role in reducing its efficiency. This structure must be taken
into account in the mathematical model of the peniotron.
Based on such a more complete model, the optimum
parameters of the peniotron can be chosen so as to minimize
the effect of nonsynchronous azimuthal harmonics. We note
that, as we show below, the phase trajectories of the electrons
are nearly congruent in this case, and the spread in the
electron energies in the flow is not large at the resonator
outlet. This fact can be used for a highly efficient recuperation
of the electron energy at the collector. In this respect, the
peniotron has advantages over phase-bunching devices such
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Figure 16. Dependence of Z and Q on the position of the beam radius

relative to the lamellas.

May, 2007 Nonsynchronous interactions 505



as O-type TWTs, in which the energy ± phase spread of
electrons is large and complex and multicascade recupera-
tion systems selecting electrons with different velocities are
necessary. As regards the magnetron, it offers no possibility
of energy recuperation.

7. Nonsynchronous interaction of relativistic
electron flows with the fields of irregular
waveguides in superpower microwave electronic
devices

The content of this section is based on Refs [45, 46]. The
electrodynamic systems of modern high-power and super-
power electronic devices (gyrotrons; relativistic traveling- and
backward-wave tubes, TWTs and BWTs), including energy
leads-in and leads-out, are segments of irregular waveguides.
They typically operate in multiwavelength regimes. The
characteristics of superpower microwave devices can be
improved, first and foremost, by optimizing the profile of
their electrodynamic systems. In turn, this requires develop-
ing an adequate theory of and computational techniques for
arbitrary irregular waveguides.

The technique based on mapping ñõÂ arbitrary irregular
inner surface of the waveguide onto a regular cylinder,
coaxial, etc., with a circular or rectangular cross section
[47 ± 51] appears to be the most efficient procedure for
calculation of irregular waveguides, in terms of both
computations and interpretation of the obtained results. In
the transformed (oblique) coordinate system, the solution can
be written in the form of coupled normal modes using a
projection procedure. The amplitudes of the coupled waves
are therefore determined by a system of ordinary differential
equations with variable coefficients whose form depends on
the profile of the nonuniform waveguide. The boundary
conditions for this system are specified at the initial and end
cross sections of the irregular-waveguide segment (a two-
point problem).

If only propagating waves are considered, this problem
can be solved using traditional methods without substantial
difficulties. As we show in what follows, an accurate
calculation of the waveguide also requires accounting for
supercritical waves associated with the propagating waves,
which substantially modify the properties of the waveguide.
But a numerical solution of the (two-point) boundary value
problem for supercritical waves cannot be based on tradi-
tional (stepwise Runge ±Kutta or Hamming) techniques
because of their fast divergence (small errors lead to
dramatically growing solutions). In this case, an analytic
solution should be constructed on a set of given meshpoints
so as to satisfy the boundary conditions and decompose the
sought functions with respect to a special basis that ensures
the solvability of the system of algebraic equations for the
decomposition coefficients. For this, we use a block-matrix
double-sweep method [52, 53], which differs from the
previously suggested double-sweep techniques [54 ± 56]. We
also compare the results based on the newly developed
technique with those obtained for the same irregularities in
the waveguide using a finite-element method.

In addition, we note that the second-kind (Floquet)
periodicity condition does not apply to matched segments of
periodic irregular waveguides; in view of this, some studies in
the theory of TWTs and BWTs [57 ± 60], based on this
condition and on the resulting pattern of spatial field
harmonics, do not prove to be tenable.

7.1 Self-consistent equations of a nonlinear model
of a relativistic BWT and O-type TWT with a slow-wave
structure in the form of a corrugated waveguide
The theory of relativistic O-type TWTs and BWTs with
electrodynamic systems in the form of irregular corrugated
waveguides was developed using the coordinate-transforma-
tionmethod in Refs [47 ± 49, 53, 61]. For a TWTor BWTwith
a working wave E0m in a hollow irregular waveguide, in the
one-dimensional approximation, it yields a system of self-
consistent nonlinear equations for the amplitudes of the
excited waves:

d _Asm

dT
� L0

ÿ
sW _Vsm � n0m _Csm

�
; �49�

d _Vsm

dT
� ÿsW

�
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The equations of motion of large particles are

dbi
dT
� ÿL0Ezi

big
3
i

;
d �Wyi�
dT

�WL

sbi
; i � 1; . . . ;N ; �50�

Ezi � Re

�XS
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�
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�
_Csm exp � jsWyi�
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�
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�
_Asm exp � jsWy1�

�
;

�51�

where T � z=L, L is the total length of the interaction region,
s is the number of the reference-frequency harmonic o0,
W � o=o0, o is the working frequency, m is the radial index
of the E0m wave, n0m is the mth node of J0 �x�, k0 � o0=c,
b�T � � k0bv�T �, bv�T � is the inner radius (profile) of the
waveguide, g � b�T �=n01,L0 � k0L, r0 � k0re, re is the radius
of the tubular electron beam,

_Asm � bv _Ersm e

m0c 2
; _Csm �

_Ezsm e

o0m0c
; _Vsm � bv _Bjms e

m0c
;

e and m0 are the charge and rest mass of the electron, c is the
speed of light in the vacuum, s � 0:73� 10ÿ3jI0j, I0 is the
beam current in amperes, bi � vi=c, vi is the velocity of the ith
large particle, gi � �1ÿ b 2

i �ÿ1=2, and e0m � J 2
1 �n0m�=2.

We note that excitation equations (49) include both the
vortical and the potential (produced by the volume charge)
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component of the total field at the frequency so0W. We
additionally clarify this fact. Applying the divergence opera-
tion to both sides of the first Maxwell equation yields

div rotH � div

�
qD
qt
� d

�
:

Therefore, in view of the equation div rotH � 0, we have

div

�
qD
qt
� d

�
� 0 ;

where d is the total vector of the electric current density andD
is the electric displacement vector. Because div d � ÿqr=qt
according to the continuity equations, we find that

q
qt
�divDÿ r� � 0

in the rest frame. For purely time-dependent processes
�q=qt 6� 0�, we obtain the third Maxwell equation divD � r.
Quite similarly, the fourth Maxwell equation for these
processes is implied by the second one. Thus, for purely
time-dependent processes, the first and second Maxwell
equations determine the full (i.e., including both the vortical
and potential components) field excited by a source with the
current density d with properly specified boundary condi-
tions. This conclusion is also fully applicable to excitation
equation (49) with the total electric current density d specified
in the originally formulated problem [47, 53].

In some problems (for example, in the theory of
klystrons), it is reasonable to split the sought electric field E
into a vortical and a potential component,

E � E1 � E2 ; divE1 � 0 ; rotE2 � 0 :

In this case, the problem decomposes into two coupled
problems, a dynamical and a quasi-static one [47 ± 49]:

rotH � e0
qE1

qt
� d 0 ;

rotE1 � ÿm0
qH
qt

;

E2 � ÿgradF e ; H 2F e � ÿ r
e0
;

d 0 � d ÿ e0 grad
�
qF e

qt

�
:

If such an approach is used, the current density d should
be replaced with d 0 in Eqns (49). Obviously, this division is
not warranted for TWTs, because it requires repeated
calculations of the series representing F e, in the quasi-static
and dynamical problems (in the excitation equation). It is
interesting that the `traditional' TWT theory contains an
obvious error: the quasi-static part (the volume-charge field)
is calculated separately but d is left in the excitation equation
instead of d 0 (see formulas (7.07) ± (7.11) in Ref. [59]), which
definitely contradicts the above implications of the Maxwell
equations. As a result, the quasi-static field is taken into
account twice in Ref. [59], which entails an error (not the sole
one) in Ref. [59] and other studies based on Ref. [59]. The
double inclusion of the potential component can easily be
noted in Ref. [59] based on the original formula for the Ez

field (see Eqn (6.04) in Ref. [59]):

Ez � �E; z0� ; E � Cs �z�Es ÿ gradF ; divEs � 0 :

The potential part is written as ÿgradF. But the `vortical'
part CsEs also contains a potential component,

div
ÿ
Cs�z�Es

� � �Es; gradCs� � Cs divEs � Esz
dCs

dz
6� 0 ;

in the region of the sources, where dCs=dz 6� 0.
The boundary conditions for system (49) can be formu-

lated as follows:
(1) for an electric flow not modulated at the entry to the

electron-flow-interaction region,

Wyi�0� � 2p
N
�iÿ 0:5� ; bi�0� � b0 : �52�

At the boundaries of the irregular interaction region
matched to the regular waveguide,

�
dg=dT �0� �

dg=dT �1��0
�
, the following relations are valid:

(2) for propagating E0m waves,

W _Asm�0� � jke
sm

_Vsm�0� � jke
smW 2b �0� _e�sm ;

ÿW _Asm�1� � jke
sm

_Vsm�1� � jke
smW 2b �1� _eÿsm ;

�53�

(3) for supercritical E0m waves,

W _Asm�0� � ke
sm

_Vsm�0� � ke
smW 2b �0� _e�sm ;

ÿW _Asm�1� � ke
sm

_Vsm�1� � ke
smW 2b �1� _eÿsm ;

�54�

where

ke
sm �

����������������������������������������������sW�2 ÿ � n0m
gn01

�2����
s

;

and _e�sm and _eÿsm are the relative amplitudes of the forward and
backward propagating and supercritical waves at the regular
segments matched to the interaction region.

The profile of the irregular corrugated waveguide was
specified as

b �T � � b0 � hv�T � sin2
�
nvp

ÿ
T�Dv�T �

��
; �55�

where T � �zÿ z0�=Lv, with z0 and Lv being the entry to and
the length of the irregular segment, nv is the number of
periods, hv�T � is the depth of corrugations, Dv�T � is the
function specifying the period variation, Dv�0� � 0,
Dv�1� � 0, and the period at Dv�T � � 0 is constant and
equal to d � k0Lv=nv in the accepted units.

We approximate the functions hv�T � and Dv�T � by a
series in shifts of the standard finitary function j3�x� that
represents the third-power B spline [54],

hv�T � �
XK
k�1

h vkj3

�
T �Kÿ 3� ÿ k� 2

�
; �56�

Dv�T � �
XK
k�1

d vkj3

�
T �K� 3� ÿ kÿ 1

�
;

j3�x��
0; jxj5 2 ;

�2ÿ x�3
6

; 14 x4 2 ;

1

6

�
1�3 �1ÿ x��3 �1ÿ x�2ÿ 3 �1ÿx�3�; 04 x4 1 ;

j3�ÿx� ; x4 0 :

8>>>><>>>>:
We note that the coefficients nk and dk in this approxima-
tion respectively correspond to the values of the functions
hv
ÿ�kÿ 2�=�Kÿ 3�� and Dv

ÿ�k� 1�=�K� 3��.
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The efficiency of the interaction is determined by the
following relations:

(1) in terms of the power of the waves excited by the flow
(the `wave' efficiency),

Zsm�T � � pe0m
Im
�

_Asm �T � _V
�
sm�T � ÿ _Asm�0� _V

�
sm�0�

�
�g0 ÿ 1� s ;

Z vs �
X
m

Z vsm ; �57�

(2) in terms of the kinetic energy loss by the electron flow
(the `electron' efficiency),

Z e�T � � 1

N

XN
i�1

g0 ÿ g�T �
g0 ÿ 1

: �58�

The phase bunching of the electrons is determined by the
bunching function

Gr�T � � 1

N

��XN
i�1

cos sWyi

�2

�
�XN

i�1
sin sWyi

�2�1=2
:

�59�

If the energy exchange is weak, Gr is close to the relative first
harmonic of the beam current.

7.2 Special features of calculations of supercritical waves
It can be seen from Eqn (51) that the exact solution for the
full electromagnetic field of the frequency sW in the
waveguide under consideration can in general be written as
an infinite series in m. Over an extended interval without
sources, this expansion has only a finite number of terms,
which represent traveling normal-mode waves E0m with
indices 14m4mp (where mp is the number of subcritical
waves for a given radius b). All supercritical waves decay
over a sufficiently long regular interval. To obtain the exact
solution in representation (51) for the irregular interval or
for a regular interval with sources, several supercritical E0m

waves with indices mp < m4 mp �me �M must be taken
into account along with the traveling waves (here, me is the
number of supercritical waves taken into account).

A specific feature of the boundary value problem for
system of differential equations (49) is that direct numerical
calculations based on a shooting method, with supercritical
waves included, are unstable because of the presence of
exponentially increasing components in the representation
of the general solution, i.e., the Cauchy problem is ill-posed.
To solve such problems, directional-orthogonalization tech-
niques [55] and various versions of the differential double-
sweep method [52, 56] were previously suggested, but they
have only limited applicability. In the context of solving this
boundary value problem, we here consider a universal stable
algorithm based on the block-matrix double-sweep method.
We write the system of differential equations for complex
amplitudes (49) in the standard form

du

dT
� G �T � u� f�T � ; �60�

u � �u 1; . . . ; u 2M
	

� � _A1; _V1; _A2; _V2; . . . ; _Am; _Vm; . . . ; _AM; _VM

	
;

f � � _f
1
; _f

2
; . . . ; _f

2Mÿ1
; _f

2M	
: �61�

The elements of the complex matrix G of size 2M were
obtained by combining like terms in system (49) according
to representation (61); they are functions of T. The link with
the equations of motion is realized through the vector f �T �,
which includes the terms of Eqns (49) containing s.

We specify the boundary conditions for Eqn (60) using
Eqns (53) and (54) in the general form

a 0
mu

2mÿ1�0� � b 0
mu

2m�0� � g 0m ;

aL
mu

2mÿ1�1� � bL
mu

2m�1� � gLm ; m � 1; . . . ;M : �62�

To numerically solve the boundary value problem in (60) and
(62), we choose a uniform mesh

�
Ti � �iÿ 1� h, h � 1=n,

i � 1; . . . ; n� 1g; here, fui � u �Ti�
	
is the table of the values

of the sought solution at the meshpoints. For computations,
we use the third-order, three-point implicit finite-difference
Adams scheme,

u i�1ÿ ui
h

� 5

12
�Gu� f �i�1

� 8

12
�Gu� f �i ÿ

1

12
�Gu� f �iÿ1 : �63�

We note that this scheme yields a three-diagonal block matrix
with a predominant diagonal element. By collecting like terms
in Eqn (63), we obtain the following system of algebraic
equations (if we ignore the u dependence of f):

h

12
Giÿ1uiÿ1 ÿ

�
E� 8h

12
Gi

�
ui �

�
Eÿ 5h

12
Gi�1

�
ui�1 � di ;

�64�
where

di � h

12

ÿ
5fi�1 � 8fi ÿ fiÿ1

�
; i � 2; . . . ; n ;

and E is the unit matrix. System (64) should be supplemented
with the missing second-order finite-difference equation

u2 ÿ u1
h

� G1u1 � f1 � G2u2 � f2
2

�65�
and the boundary conditions

a 0
m u 2mÿ1

1 � b 0
m u 2m

1 � g 0m ; aL
m u2mÿ1n1 � bL

m u 2m
n1 � gLm : �66�

To solve the system of linear equations (64) ± (66) with a
bandmatrix, we developed an economical modification of the
Gauss method, the block-matrix double-sweep method.

The solution of self-consistent system of equations (60)
can be obtained as the result of the following iteration
process. First, system (60) is solved at the given boundary
conditions and at f 0 � 0. Next, equations of motion (50) are
solved for the Ez fields determined from formula (51), and ~f 1

is found, after which iterations are repeated to reach
convergence. For the iterations, we use the sequential lower
relaxation,

f k�1 � or
~f� �1ÿ or� f k ; or � 0:1ÿ0:6 :

In our notation, the dimensionless componentsEr,Ez, andBj

of the symmetric wave E fields of the cylindrical long-
itudinally irregular waveguide at the fundamental frequency
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s � 1 can be obtained from the solution of the boundary value
problem

_Bj � u �r; z�
r

; _Er � j

W

1

r

qu
qz

;

_Ez � ÿ j

W

1

r

qu
qr
; u �z; r� � ure � juim :

In the region 04 r4 b �z� and 04 z4L,

q
qz

�
1

r

qu
qz

�
� q
qr

�
1

r

qu
qr

�
�W 2

r
u � 0 : �67�

The boundary conditions are as follows:

at r � 0; u � 0 ;

at the conducting boundary
�
r � b �z�, qu=qn � 0, where n is

the vector normal to the surface
�
,

at z � 0; ÿ qu
qz
� jke

m u � e�rJ1�n0m r�
(an incident E0m wave);

at z � L;
qu
qz
� jke

mu � 0

(the condition of perfect matching for the E0m wave).
The power passing through the cross section is

P � Re

� b�z�

0

ErB
�
jr dr

� 1

W

� b�z�

0

�
uim

qure
qz
ÿ ure

quim
qz

�
dr

r
: �68�

Test computations. To check the accuracy of the proposed
Galerkin technique, we solved the problem of the reflection of
an E01 wave in the regular cylindrical waveguide of radius b0
from a nonuniformity of the form of sinusoidal grooves of
depth h and width d,

b�z� �
b0; z < z1 ;

b0 � h sin2
p �zÿ L1�

d
; z1 4 z4 z1 � kd ;

b0; z1 � kd < z < L .

8><>:
The values of z1 and Lwere chosen such that the supercritical
waves excited on the surface decay and only the E01 wave of
the regular waveguide is observed at the cross sections z � 0
and z � L. Figure 17 presents the depth (h) dependences of
the ratio of passing power (68) to the passing power of the
regular waveguide. Curves 1 were obtained using a Galerkin
technique with eight basis functions, and curves 2 from the
solution of the boundary value problem using the method of
triangular finite elements with the MATLAB package. We
chose z1 � 1:5b0 and L � 2z1 � kd. The region was divided
into 2750 elements. If the number of elements is 4000, the
curves coincide in all graphs, i.e., the results based on the
finite-element method converge to the results obtained using
the Galerkin method.
Violation of the second-kind periodicity condition in matched
segments of periodic waveguides. The violation of this
condition was already noted in [53, 61 ± 63] in both the
general case (EHnm- and HEnm-waves [61] ± [63]) and the
case of E0m-waves considered here [52]. These inferences
were confirmed by calculation results for matched segments
of periodic corrugated E0m-mode waveguides obtained by

solving problem (67) using both the finite-difference and
Galerkin methods. Figures 18a and 18b present the contour
maps of the function Re

�
r _Bj �r; z�

�
computed using the

finite-difference method for two waveguide configurations
(these lines are close to E field lines). Figure 19 illustrates the
variation of the modulus of the longitudinal component�� _Ez �r0; z�

�� along a segment of a corrugated waveguide,
calculated using the Galerkin method. We note that an
accurate computation of such a waveguide using a finite-
difference method can hardly be carried out because of the
insufficient performance of modern personal computers. It
can be seen from Figs 18 and 19 that the distributions of both
r _Bj and _Ez over the corrugated segment are not periodic in
either case. As noted previously in Refs [51, 52, 61 ± 63], this
conclusion is important for the formulation of an adequate
self-consistent theory of TWTs and BWTs. In view of this
inference, the theories based on the consideration of
``synchronous spatial harmonics of the field'' in the slow-
wave structure of a BWT or TWT are erroneous. This can be
particularly emphasized in the case of Ref. [60]; the author of
that study neglects the transversal and longitudinal boundary
conditions for a piecewise-periodic corrugated structure and
considers `spatial harmonics' using their Fourier transform.
Calculation and optimization of a relativistic corrugated-
waveguide-based generator. We use self-consistent system
(49) ± (51) with boundary conditions (52) ± (54) and apply
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Figure 17. Dependences of the passing power on the groove depth h for

d � 2: (a) b0 � 3, k � 1; (b) b0 � 2:5, k � 1; (c) b0 � 2:5, k � 2.
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the block-matrix double-sweep method to calculate the
following arrangement of the three-wave generator with an
optimized corrugation profile: b0 � 9:5, r0 � 9, h � 1:3,
d � 1, b0 � 0:79 (U0 � 320 kV) I0 � 1 A, and Ze � 0:56.

The variation in the corrugation period Dv�z� is specified
by the coefficients dvar � d1ÿ6 [see Eqns (55) and (56)], where
the d1ÿ6 are respectively equal to 0.003, 0.035, ±0.012, ±0.053,
0.082, and ±0.01.

Figure 20 presents the variations in the characteristics of
the interaction in this case. Curves 4 ± 6 correspond to wave
efficiencies (57) for the E01, E02, and E03 waves, respectively.
In this case, the electron efficiency is 13% higher than in the
corresponding case with a regular corrugation. A higher
efficiency is achieved at a low bunching degree due to the
prolonged confinement of the bunch at the braking phase of
the (E02 � E03)-wave superposition. In contrast, the E01 wave
yields the energy gained as E02 and E03 are converted into E01

at the irregularities of the corrugated waveguide: the phase
speed of this wave increases (the corrugation period
increases), and therefore the bunch finds its way to the
accelerating phase of the wave.

It is remarkable that the power yielded by the electrons is
transferred to both the exit and entry, and the powers
transferred to the left and to the right at the entry are equal
in this case:Pÿ�0� ' P��0�; at the same time, a nearly perfect
matching is realized at the exit: Pÿ�1� ' 0; P��1� ' P �1�
(Fig. 20b). This suggests that as the waves are reflected at the
entry, this arrangement is effectively an internal-feedback
generator. The variation in the phase increase of the `hot'
wave, j � arctan �Ezim=Ezre� at r � r0, shown in Fig. 20c,
indicates that the wave travels oppositely to the motion of the

electrons in the first half of the interaction region. The
bunching of the beam then increases monotonically without
energy removal from it. The energy removal increases sharply
at the end, where the phase of the wave begins increasing and,
accordingly, the energy transfer becomes mainly concurrent
with the motion of the electrons toward the end of the region.
The slope of thej �T � curve at the end section corresponds to
the deceleration of the hot wave, b h

ph � 0:73. We note that in
most cases of regular or irregular TWTs (either single-mode
or dual-mode) that we analyzed using the efficiency optimiza-
tion, we observed the above-described regime of nonsynchro-
nous interaction.
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