Б Н Пановкин; Отв. ред. Ю Л Кокурин) (М.: Изд-во АН СССР, 1960)

- Очерки истории радиоастрономии в СССР. Сб. науч. тр. 2. (Редкол. А Е Саломонович и др.) (Киев: Наукова думка, 1985); Гиндилис Л М и др. Развитие радиоастрономии в СССР (Отв. ред. А Е Саломонович) (М.: Наука, 1988)
- 3 Алексеев В А и др. Советские радиотелескопы и радиоастрономия Солнца (Отв. ред. А Е Саломонович, Г Я Смольков) (М.: Наука, 1990)
- Шкловский ИСИз истории развития радиоастрономии в СССР 4. (Новое в жизни, науке, технике. Космонавтика, астрономия, Вып. 11) (М.: Знание, 1982)
- Радиоастрономия. Труды Пятого совещания по вопросам кос-5. могонии, 9-12 марта 1955 г. (Отв. ред. В Л Гинзбург) (М.: Издво АН СССР, 1956)
- 6. Van de Hulst H C (Ed.) Radio Astronomy, IAU Symp., No. 4, August 1955 (Cambridge: Univ. Press, 1957)
- Гинзбург В Л О науке, о себе и о других 3-е изд. (М.: Физматлит, 7. 2003
- Гинзбург В Л "Об излучении Солнца в области радиочастот" 8. ДАН СССР **52** 491 (1946)
- 9. Гинзбург В Л "Радиоизлучение Солнца и Галактики" УФН 32 26 (1947)
- 10. Гинзбург В Л "Новые данные о радиоизлучении Солнца и Галактики" УФН **34** 13 (1948)
- Гинзбург В Л "Н.Д. Папалекси и радиоастрономия" Изв. АН 11. СССР. Сер. физ. 12 34 (1948)
- Гинзбург В Л "О поглощении радиоволн в солнечной короне" 12. Астрон. журн. 26 84 (1949)
- 13. Гетманцев Г Г, Гинзбург В Л "О диффракции солнечного и космического радиоизлучения на Луне" ЖЭТФ 20 347 (1950)
- Гинзбург В Л [®]Космические лучи как источник галактического 14. радиоизлучения" ДАН СССР 76 377 (1951)
- 15. Гинзбург В Л "Межзвездная материя и ионосферные возмущения, приводящие к мерцанию радиозвезд" ДАН СССР 84 245 (1952)
- Гинзбург В Л "Сверхновые и новые звезды как источники 16. космического и радиоизлучения" ДАН СССР 92 1133 (1953)
- Альперт Я Л, Гинзбург В Л, Фейнберг Е Л Распространение 17. радиоволн (М.: Гос. изд. техн.-теор. лит., 1953)
- 18. Гинзбург В Л "О природе радиогалактик" Астрон. журн. 38 380 (1961)
- 19. Гинзбург В Л, Писарева В В "Поляризация радиоизлучения дискретных источников и изучение метагалактического, галактического и околосолнечного пространства" Изв. вузов. Радиофизика 6 877 (1963)
- Гинзбург В Л, Сыроватский С И Происхождение космических 20. лучей (М.: Изд-во АН СССР, 1963)
- 21. Spergel D N et al. "Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology", astroph/0603449; Astrophys. J. (2007) (in press) The Planck Collab. "The scientific programme of Planck", astro-ph/
- 22. 0604069
- Visser M Lorentzian Wormholes: from Einstein to Hawking (Wood-23 bury, NY: American Institute of Physics, 1995)
- Кардашев Н С, Новиков И Д, Шацкий А А "Магнитные 24. тоннели (кротовые норы) в астрофизике" Астрон. журн. 83 675 (2006)
- Kovalev Y Y et al. "Sub-milliarcsecond imaging of quasars and 25. active galactic nuclei. IV. Fine-scale structure" Astron. J. 130 2473 (2005)
- Kuno N et al. "Radio observations of the afterglow of GRB 030329" 26. Publ. Astron. Soc. Jpn. 56 (2) L1 (2004); astro-ph/0401258
- Kohno K et al. "Nobeyama Millimeter Array observations of GRB 27. 030329: a decay of afterglow with bumps and molecular gas in the host galaxy" Publ. Astron. Soc. Jpn. 57 (1) 147 (2005); astro-ph/ 0412261
- 28. Frail D A et al. "An energetic afterglow from a distant stellar explosion" Astrophys. J. 646 L99 (2006)
- Soglasnov V A et al. "Giant pulses from PSR B1937+21 with widths 29. ≤ 15 nanoseconds and $T_b \geq 5 \times 10^{39}$ K, the highest brightness temperature observed in the Universe" Astrophys. J. 616 439 (2004)
- Tudose V et al. "First e-VLBI observations of Cygnus X-3" Mon. 30. Not. R. Astron. Soc. Lett. **375** L11 (2007) Camilo F et al. "Transient pulsed radio emission from a magnetar"
- 31. Nature 442 892 (2006)
- 32. Slysh V I "Self-stark limit on brightness temperature in cosmic masers", in Radio Astronomy at the Fringe (Astron. Soc. of the Pacific Conf. Ser., Vol. 300, Eds J A Zensus, M H Cohen, E Ros) (San Francisco, Calif.: Astron. Soc. of the Pacific, 2003) p. 239

- 33. Vlemmings W H T, Bignall H E, Diamond P J "Green Bank Telescope observations of the water masers of NGC 3079: accretion disk magnetic field and maser scintillation" Astrophys. J. 656 198 (2007)
- 34. Argon A L et al. "Toward a new geometric distance to the active galaxy NGC4258: I. VLBI monitoring of water maser emission", astro-ph/0701396
- 35. Проект РадиоАстрон, http://www.asc.rssi.ru/radioastron/description/intro rus.htm
- 36. Проект Миллиметрон, http://www.asc.rssi.ru/millimetron/rus/ millim.htm
- 37 Радиоастрономическая обсерватория на плато Суффа, http:// tashkbm.narod.ru/suffa.htm
- The Atacama Large Millimeter/submillimeter Array (ALMA), 38. http://www.alma.info/
- 39 LOFAR, http://www.lofar.org/
- Square Kilometre Array (SKA), http://www.skatelescope.org/ 40.

PACS numbers: 96.50.S-, 98.70.Sa

О происхождении галактических космических лучей

В.С. Птускин

1. Введение

Наша Галактика заполнена космическими лучами газом релятивистских протонов, электронов и атомных ядер. Основная доля этих частиц была ускорена в остатках сверхновых и несколько десятков миллионов лет блуждает в межзвездных магнитных полях до выхода в межгалактическое пространство. Спектр космических лучей имеет степенной вид по энергии с изломом ("коленом") при 3×10^{15} эВ (рис. 1). Максимальная зарегистрированная энергия превышает 10²⁰ эВ. При очень малой концентрации, $N \sim 10^{-10}$ см⁻³, на 10 порядков меньшей средней концентрации межзвездного газа в галактическом диске $n \sim 1 \text{ см}^{-3}$, космические лучи обладают плотностью энергии $w_{\rm cr} = 1,5$ эВ см⁻³, что сравнимо с плотностью энергии галактического магнитного поля и плотностью энергии турбулентных движений межзвездного газа. Космические лучи в высокой сте-

Рис. 1. Спектр космических лучей с энергиями, превышающими 1 ГэВ. (Упрощенная версия рисунка из статьи [1], в которой даны ссылки на соответствующие эксперименты.)

559

пени изотропны — амплитуда первой угловой гармоники в распределении направлений их прихода составляет $\delta_{\rm cr} \sim 10^{-3}$ при энергиях $10^{12} - 10^{14}$ эВ, для которых данные наиболее надежны.

Эффективная изотропизация и перемешивание траекторий энергичных заряженных частиц объясняются действием межзвездных магнитных полей. В результате непосредственная идентификация источников приходящих на Землю частиц оказывается невозможной. Установление синхротронной природы основной части нетеплового космического радиоизлучения в начале 1950-х годов позволило получить данные о релятивистских электронах, которые входят в состав космических лучей, находящихся вдали от Земли. Именно к этому периоду относятся пионерские работы В.Л. Гинзбурга [2-4] по теории синхротронного космического радиоизлучения. Благодаря развитию радиоастрономии возникла астрофизика космических лучей и стало ясно, что наличие релятивистских частиц является универсальным феноменом в космических условиях. Подробнее с периодом становления астрофизики космических лучей можно ознакомиться по статье [5] и цитированной там литературе. К середине 1960-х годов, в значительной степени благодаря исследованиям В.Л. Гинзбурга и его совместной работе с С.И. Сыроватским, была разработана каноническая модель происхождения космических лучей, изложенная в книге В.Л. Гинзбурга и С.И. Сыроватского [6]. Эта книга стала "библией" для специалистов по астрофизике высоких энергий. Развитая в [6] модель основана на следующих положениях: основная часть космических лучей имеет галактическое происхождение; космические лучи диффундируют в межзвездных магнитных полях и заполняют обширное гало; источниками космических лучей являются взрывы сверхновых. Бурное развитие этой области астрофизики нашло отражение в книге [7], которая задумывалась В.Л. Гинзбургом как продолжение [6]. В книгу [7] вошла, в частности, и новая тематика: гамма-астрономия, нейтринная астрономия, космические лучи со сверхвысокой энергией, описание ускорения и переноса космических лучей на кинетическом уровне. Более поздние обзоры можно найти в [8-10]. Настоящее краткое сообщение главным образом иллюстрирует развитие тех исследований, которые были выполнены В.Л. Гинзбургом и сложившимся вокруг него научным коллективом. В основном отражены полученные после опубликования обзора В.Л. Гинзбурга в $У\Phi H$ [8] результаты и сформулированы остающиеся нерешенными проблемы.

2. Диффузионная модель распространения космических лучей

Движение космических лучей с энергиями до $E \sim 10^{17}$ эВ в галактических магнитных полях обычно описывают как диффузию [6, 7]. Диффузионная модель является основой для интерпретации данных по спектру, составу и анизотропии космических лучей, а также соответствующих радиоастрономических, рентгеновских и гаммаастрономических наблюдений. Согласие с этими данными позволяет определить основные параметры модели. При этом необходимо решить уравнения переноса для релятивистских протонов, ядер и электронов при заданном распределении источников (остатков сверхновых) и заданных условиях на границах гало. Уравнение переноса частиц описывает их диффузию, конвективный перенос гипотетическим галактическим ветром и изменения энергии, включая потери энергии в межзвездной среде и возможное доускорение межзвездной турбулентностью. В космических лучах наблюдается высокое содержание редких в природе вторичных ядер ²H, ³He, Li, Be, B и др., которые образуются при ядерной фрагментации более тяжелых ядер, взаимодействующих с ядрами межзвездного газа. За время пребывания в Галактике космические лучи проходят толщу вещества ~ 10 г см⁻² при энергии ~ 1 ГэВ на нуклон (при этой энергии наблюдается максимальное отношение содержания вторичных ядер к первичным). Порядка ста различных стабильных и радиоактивных изотопов в широком интервале энергий включаются в современные полные расчеты переноса и ядерной трансформации космических лучей в Галактике.

При моделировании распространения космических лучей используются как комбинация аналитических и численных методов (см. [11-14]), так и прямые численные расчеты [15, 16]. Требуемая полная мощность источников космических лучей в Галактике оказывается равной $Q_{\rm cr} = 5 \times 10^{40}$ эрг c⁻¹, что составляет примерно 15 % кинетической энергии взрывов сверхновых. С учетом селекции инжектируемых в процесс ускорения ионов по величине первого потенциала ионизации или летучести состав космических лучей в источниках оказывается близким к составу Солнечной системы и локальной межзвездной среды (подробнее см. [9]). Высота гало космических лучей составляет $H \approx 4$ кпк (или больше в модели с галактическим ветром). Согласно [16] в двух основных вариантах диффузионной модели коэффициент диффузии космических лучей, определенный по статистически надежным (примерно до 100 ГэВ на нуклон) данным о вторичных ядрах, выражается в виде

$$D = 2.2 \times 10^{28} \beta \left(\frac{R}{R_0}\right)^{0.6} [\text{см}^2 \text{ c}^{-1}] \text{ при } R > R_0 = 3 \text{ ГВ},$$

$$D \sim \beta^{-2} \text{ при } R < R_0$$
(1)

в чисто диффузионной модели и

$$D = 5.2 \times 10^{28} \beta \left(\frac{R}{R_0}\right)^{0.34} [\text{см}^2 \text{ c}^{-1}] \text{ при всех } R$$
(2)

при учете стохастического доускорения частиц случайными магнитогидродинамическими (МГД) волнами в межзвездной среде и величине альвеновской скорости $V_a \approx 36$ км с⁻¹ (см. также обсуждение в разделе 3). Здесь R = pc/Z — магнитная жесткость, p — импульс, Z заряд, $\beta = v/c$, v — скорость частицы.

Оба варианта (1) и (2) не свободны от трудностей и нуждаются в совершенствовании. Сильная зависимость диффузии в (1) от энергии в чисто диффузионной модели приводит к анизотропии, превышающей наблюдаемую при энергии ~ 10^{14} эВ более чем на порядок (см. [17]). С другой стороны, модель с доускорением дает заниженный по сравнению с наблюдаемым поток вторичных антипротонов в космических лучах (см. [16]). Существенно также, что для объяснения спектра космических лучей ~ $E^{-2,7}$, наблюдаемого при энергиях E > 30 ГэВ на нуклон, требуется спектр в источнике $E^{-2,1}$ в варианте (1) и $E^{-2,36}$ в варианте (2). Непосредственные наблюдения радио- и гамма-излучения от остатков сверхновых и современная теория ускорения частиц в остатках сверхновых дают спектр частиц, близкий к E^{-2} , и в этом смысле вариант (1) выглядит предпочтительнее.

Диффузное гамма-излучение отражает глобальное распределение космических лучей в Галактике. При взаимодействии с ядрами межзвездного газа протонноядерная компонента космических лучей генерирует непрерывное гамма-излучение в основном через образование и распад π^0 -мезонов в процессе $pp \rightarrow \pi^0 \rightarrow \gamma\gamma$. Электронная компонента генерирует гамма-излучение благодаря комптоновскому рассеянию фотонов межзвездного фонового излучения и через тормозное излучение в межзвездном газе. Диффузионная модель распространения космических лучей с коэффициентном диффузии, определяемым по наблюдениям вблизи Земли и не зависящим от координат во всем объеме Галактики, в целом хорошо воспроизводит угловое и энергетическое распределение галактических гамма-лучей с энергиями 30 МэВ-10 ГэВ, полученное в эксперименте EGRET (Energetic Gamma Ray Experiment Telescope) [18, 19]. Однако найденный градиент концентрации космических лучей оказался меньше предсказываемого при стандартном радиальном распределении источников остатков сверхновых, что, скорее всего, свидетельствует о необходимости усовершенствования модели (см. [20]).

Загадкой данных EGRET является наблюдаемый во всех направлениях избыток гамма-излучения при энергиях 1-10 ГэВ по сравнению с ожидаемым потоком, вычисленным с использованием данных о спектрах протонов, ядер и электронов в космических лучах у Земли (рис. 2). Если это не инструментальный эффект (что будет проверено на планируемом к запуску космическом гамма-телескопе GLAST (Gamma-ray Large Area Space Telescope)), то не исключено наличие аномалии в характеристиках космических лучей в окрестности Солнечной системы радиусом в несколько сотен парсек по сравнению со средними по Галактике характеристиками. Имеются альтернативные объяснения, связанные с вкладом в диффузное излучение областей источников с жестким спектром [21, 22] и с потоком гамма-лучей от гипотетической аннигиляции темной материи в галактике с обширным гало [23]. При этом очень информативными являются наблюдения диффузного гамма-

Рис. 2. Спектр диффузного галактического гамма-излучения [19]: данные наблюдений EGRET и результаты соответствующих теоретических расчетов для различных механизмов генерации гаммаизлучения.

излучения от галактического диска при энергиях в несколько тераэлектронвольт [24] (см. обсуждение в [25]).

Отметим, что по данным EGRET с помощью "теста Гинзбурга" было установлено [26], что концентрация космических лучей с энергиями 1-10 ГэВ в межгалактическом пространстве существенно меньше, чем в Галактике. Тест, который был предложен в [27], состоит в измерении потока гамма-лучей от Магеллановых Облаков, расстояния до которых и масса газа в которых хорошо известны. В развитие другой ранней работы [28], в которой участвовал В.Л. Гинзбург, недавно было получено сильное ограничение на межгалактическую концентрацию космических лучей в космологических масштабах [29]. Было показано, что ускоряемые в сверхновых и в галактиках с бурным звездообразованием космические лучи существенно влияют на тепловую историю Вселенной при больших красных смещениях. Для объяснения значения температуры межгалактической среды $\sim 10^4$ К при красном смещении z = 2-4плотность энергии космических лучей в межгалактическом пространстве в настоящую эпоху, т.е. при z = 0, должна при разных предположениях составлять 10^{-4} – 6×10^{-3} эВ см⁻³ в стандартной модели холодной темной материи с Л-членом. Эта величина согласуется с известными энергетическими оценками [6-8].

3. Кинетическая теория диффузии

Диффузия космических лучей в Галактике объясняется их рассеянием в случайных магнитных полях. Это рассеяние имеет резонансный характер, так что частица с гирорадиусом $r_{\rm g} = pc/(ZeB)$ в основном рассеивается неоднородностями магнитного поля с волновым числом $k_{\rm res} \sim 1/r_{\rm g}$ (см. [7, 30]). В типичном межзвездном поле B = 5 мкГс величина $r_{\rm g} = 6.7 \times 10^{11} R_{\rm GV}$ [см] (здесь $R_{\rm GV}$ – магнитная жесткость частицы, измеряемая в гигавольтах). Возникающая пространственная диффузия оказывается сильно анизотропной и преимущественно идет вдоль силовых линий магнитного поля. Однако сильные флуктуации, $\delta B/B \sim 1$, в больших масштабах, $L \sim 100$ пк, приводят к изотропизации диффузии (в квазистатическом поле процесс изотропизации диффузии нетривиален и обусловлен стохастическим разбеганием близких магнитных силовых линий (см. [31, 32])). Предполагая флуктуации магнитного поля в резонансном масштабе малыми по сравнению с полным крупномасштабным полем, δ*B*_{res} ≪ *B*, и считая флуктуации изотропными в пространстве волновых векторов k, можно оценить коэффициент диффузии при $r_{\rm g} < L$ (т.е. при $E < 10^{17} Z$ [эВ]) как

$$D \approx \frac{vr_{\rm g}}{3} \frac{B^2}{B_{\rm res}^2} \tag{3}$$

(см. подробнее [7, 30]). Наблюдаемая спектральная плотность энергии межзвездной турбулентности имеет степенной вид: $w(k) dk \sim k^{-2+a} dk$, где $a \approx 1/3$ в широком интервале волновых чисел, $1/(3 \times 10^{20}) < k < 1/10^8$ см⁻¹ [33]. При этом (3) дает оценку $D \approx 4 \times 10^{27} R_{GV}^{1/3}$ [см² с⁻¹], что удовлетворительно согласуется с эмпирическим значением в модели с доускорением (2). Само доускорение возникает как диффузия по импульсу с коэффициентом $D_{\rm pp} \approx p^2 V_{\rm a}^2/D$ при учете конечной скорости движения ($\sim V_{\rm a}$) случайных неоднородностей, которые рассеивают частицы и обеспечивают пространственную

диффузию. Доускорение межзвездной турбулентностью может быть существенным лишь при сравнительно малых энергиях и не влияет на энергетический спектр космических лучей при E > 30 ГэВ на нуклон. Напомним, что основное ускорение происходит в компактных источниках — остатках сверхновых.

Зависимость диффузии от магнитной жесткости частиц $D \sim \beta R^{1/3}$ типична для колмогоровского спектра, для которого a = 1/3. Теоретически [34] не исключено, что колмогоровский спектр относится только к части межзвездной МГД-турбулентности, которая включает возмущения альвеновского типа, сильно вытянутые вдоль направления магнитного поля. Такие возмущения с kB = 0 не являются эффективными для рассеяния частиц и не могут дать нужный коэффициент диффузии. Наряду с этим могут существовать более изотропные возмущения, состоящие из быстрых магнитозвуковых волн с меньшей амплитудой в основном масштабе [35]. Эта часть турбулентности имеет спектр Ирошникова-Крейкнана с параметром a = 1/2 и обеспечивает диффузию космических лучей с коэффициентом диффузии $D \sim \beta R^{1/2}$, что близко к варианту эмпирической модели (1), если для этих возмущений $\delta B/B \sim 0.2$ в основном масштабе $L \sim 100$ пк. Отметим, что при этом можно объяснить, почему коэффициент диффузии (1) имеет минимум при $R = R_0 = 3 \ \Gamma B$: сравнительно медленный нелинейный каскад МГД-волн Ирошникова – Крейкнана обрывается на масштабах, меньших $1/k \sim 10^{12}$ см, вследствие затухания на космических лучах. Соответствующий самосогласованный расчет приведен в [16].

Можно констатировать, что кинетическая теория дает согласующуюся с эмпирической величину коэффициента диффузии и в принципе объясняет его зависимость от магнитной жесткости, но отсутствие детальной информации о межзвездной турбулентности не позволяет получить однозначные предсказания и, в частности, сделать окончательный выбор между вариантами $D \sim \beta R^{1/3}$ и $D \sim \beta R^{1/2}$.

Наличие в Галактике отличного от нуля крупномасштабного среднего магнитного поля приводит к появлению холловской диффузии с коэффициентом $D_{\rm H} = vr_{\rm g}/3$, который входит в антисимметричную часть тензора диффузии и сильно зависит от магнитной жесткости частиц. Благодаря последнему обстоятельству роль холловской диффузии (дрейфа) возрастает с увеличением энергии, что может привести к появлению колена в спектре космических лучей при энергии $\sim 3 \times 10^{15}$ эВ за счет перехода от обычной диффузии к холловской [36–38]. Другое объяснение связывает происхождение колена с процессом ускорения частиц в остатках сверхновых (см. раздел 6).

4. Коллективные эффекты в космических лучах

Космические лучи не всегда могут рассматриваться как пробные частицы, движущиеся в заданных регулярных и случайных полях. Пионерская работа о роли коллективных (плазменных) эффектов при распространении космических лучей принадлежит В.Л. Гинзбургу [39] (см. также [40]). Потоковая неустойчивость космических лучей с концентрацией $N_{\rm cr}(E) \sim E^{-\gamma+1}$ приводит к усилению МГД-волн с инкрементом

$$\Gamma_{\rm cr}(k) \approx \Omega_{\rm p} \, \frac{N(r_{\rm g} > k^{-1})}{n} \left(\frac{v \delta_{\rm cr}}{(\gamma + 2) V_{\rm a}} - 1 \right),\tag{4}$$

где $\Omega_{\rm p}$ — гирочастота тепловых протонов. Даже при малой анизотропии, $\delta_{\rm cr} \approx 10^{-3}$, неустойчивость для галактических космических лучей с энергией ~ 100 ГэВ развивается примерно за 10^5 лет, т.е. довольно быстро по галактическому масштабу времени. Развитие неустойчивости приводит к изотропизации углового распределения частиц и усилению турбулентности (см., например, [41–43] и цитированную там литературу). Вблизи источников эффект значительно усиливается. Как будет видно из обсуждения в разделе 6, развитие потоковой неустойчивости частиц вблизи фронта ударной волны в остатке сверхновой необходимо для ускорения космических лучей.

Космические лучи вызывают, помимо кинетических, существенные гидродинамические эффекты в Галактике. Учет давления космических лучей принципиально важен для формирования гало, заполненного газом, магнитным полем и релятивистскими частицами [44]. Равновесное распределение межзвездной среды над галактической плоскостью в гравитационном поле звезд подвержено паркеровской неустойчивости [45], в развитии которой значительную роль играют космические лучи. Используя диффузионно-конвективное уравнение переноса для космических лучей, можно показать [46], что неустойчивость развивается, если показатель политропы межзвездного газа γ_g оказывается меньшим критического значения

$$\gamma_{g^*} = 1 + \frac{P_{m0}}{P_g} \frac{0.5P_g + P_{m0} + P_{cr}}{P_g + 1.5P_{m0} + P_{mt} + P_{cr}},$$
(5)

где $P_{\rm g}$, $P_{\rm m0}$, $P_{\rm mt}$ и $P_{\rm cr}$ — давления газа, регулярного и случайного галактических магнитных полей и космических лучей соответственно. Неустойчивость приводит к крупномасштабной турбулентности и позволяет поддерживать примерно равное распределение энергии между космическими лучами, магнитным полем и турбулентными движениями газа. Характерное время развития неустойчивости составляет ~ 10^7 лет для неустойчивости галактического газового диска и ~ 10^8 лет для неустойчивости газового гало. В работе [47] было показано, что возникающие под действием космических лучей над галактическим диском магнитные арки и петли необходимы для реализации $\alpha\omega$ -динамо — основного механизма генерации магнитного поля в Галактике.

Возможно, что газ в гало не находится в статическом равновесии, а вовлечен в крупномасштабное конвективное движение — галактический ветер. Существование сверхзвукового галактического ветра в нашей Галактике за счет высокой температуры межзвездного газа в галактическом диске кажется маловероятным, поскольку температура газа недостаточно высока. Однако галактический ветер может поддерживаться давлением космических лучей. В [48, 49] развита модель, в которой космические лучи после выхода из источников (остатков сверхновых) определяют течение ветра во вращающейся галактике с вмороженным магнитным полем. При этом потоковая неустойчивость космических лучей, выходящих из галактики вдоль спирального магнитного поля, приводит к генерации МГД-турбулентности, которая самосогласованным образом определяет перенос релятивистских частиц. Течение имеет скорость ~ 30 км с⁻¹ на расстоянии ~ 3 кпк, становится сверхзвуковым на расстоянии ~ 20 кпк и разгоняется до скорости ~ 400 км с⁻¹ на расстояниях, равных нескольким сотням килопарсек. Внешнее давление межгалактического газа приводит к возникновению ударной волны на расстоянии ~ 300 кпк. В данной модели коэффициент диффузии частиц не задается независимо, а последовательно вычисляется и является зависящим от мощности источников и спектра ускоренных в них частиц. Замечательно, что найденные коэффициенты переноса и остальные параметры модели хорошо согласуются с эмпирической диффузионной моделью распространения космических лучей в варианте с галактическим ветром [7, 13].

5. Космические лучи в остатках сверхновых

Многочисленные наблюдения указывают на наличие релятивистских частиц в остатках сверхновых оболочечного типа. Результаты наблюдений кратко можно суммировать следующим образом.

1. Остатки сверхновых являются источниками синхротронного радиоизлучения, которое свидетельствует о наличии в них релятивистских электронов с полной энергией $10^{48} - 10^{49}$ эрг и спектром $E^{-1,9} - E^{-2,5}$ в интервале энергий частиц 50 МэВ-30 ГэВ [6, 50, 51]. Этого достаточно, чтобы обеспечить наблюдаемую в космических лучах концентрацию электронов при частоте вспышек сверхновых в Галактике $v_{sn} \sim 1/30$ год⁻¹.

2. Сначала для SN 1006 [52], а затем и для других молодых остатков сверхновых с возрастами 300-2000 лет, включая Cas A, RX J1713.7-3946, RX J0852-46, Tycho, RCW 86, Kepler, было установлено наличие синхротронного излучения в рентгеновском диапазоне энергий до нескольких килоэлектронвольт, что указывает на наличие в них электронов с энергиями ~ 10^{13} эВ и, возможно, с более высокими. Излучение идет из узкой области, находящейся непосредственно за фронтом ударной волны, в которую сносятся и в которой теряют энергию на синхротронное излучение ускоренные на фронте электроны. Размер области излучения позволяет определить величину магнитного поля, которая оказывается значительной — достигает нескольких сотен микрогауссов (см. [53]).

3. Наличие протонно-ядерной компоненты космических лучей в принципе можно установить по гаммаизлучению остатков сверхновых, возникающему в процессе pp $\rightarrow \pi^0 \rightarrow \gamma \gamma$ в областях со сравнительно высокой плотностью газа. Анализ данных EGRET при энергиях гамма-фотонов 30 МэВ–30 ГэВ указывает на ожидаемый избыток излучения от нескольких протяженных остатков сверхновых, включая γ Cygni, IC433 и Monoceгоs [54, 55]. Ожидается проверка этого результата в эксперименте GLAST.

4. В последние примерно пять лет появились надежные данные о тераэлектронвольтном гамма-излучении от оболочек молодых остатков сверхновых RX J1713.7-3946 [56-58], Cas A [59], RX J0852-46 [60] и еще приблизительно трех остатков сверхновых (их идентификация не всегда однозначна), зарегистрированных при обзоре галактической плоскости в области $-30^\circ < l < 30^\circ$, выполненном на установке HESS (High Energy Stereoscopic System) [61], регистрирующей черенковское излучение из атмосферы. Спектр излучения близок к E^{-2} , максимальная зарегистрированная энергия фотонов достигает ~ 40 ТэВ. Вероятнее всего, излучение производится ускоренными до $E \sim 5 \times 10^{14}$ эВ на нуклон протонами и ядрами (см. обсуждение в [56-62]). Электроны также могут быть источником тераэлектронвольтных фотонов через комптоновское рассеяние фонового излу-

Рис. 3. Спектр излучения остатка сверхновой RX J1713.7-3946 и его моделирование [62], F_{γ} — поток фотонов в единицах [см⁻² с⁻¹ зB⁻¹]. Результаты расчетов для синхротронного излучения и гамма-излучения за счет π^0 -распадов соответствуют сплошным кривым; штриховой кривой показан вклад комптоновского рассеяния (IC), штрихпунктирной — тормозное излучение (VB). (ATCA — Australia Telescope Compact Array, ASCA — Advanced Satellite for Cosmology and Astrophysics, CANGAROO — Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback, HESS — High Energy Stereoscopic System.)

чения, но это требует сравнительно малой величины магнитного поля, в пределах 10-30 мкГс (величина поля определяется по отношению величин комптоновского и синхротронного потоков излучения), что в целом не подкрепляется данными наблюдений. По заключению работы [61] наблюдения оболочечных остатков сверхновых в тераэлектронвольтных гамма-лучах свидетельствуют о том, что в протонно-ядерную компоненту космических лучей в среднем переходит примерно 20 % кинетической энергии разлетающейся оболочки сверхновой и остаток сверхновой является источником этого излучения в течение 10^4 лет. Этот вывод подтверждает то, что остатки сверхновых — основные источники космических лучей в Галактике.

На рисунке 3 показан пример расчета излучения остатка сверхновой во всем диапазоне электромагнитного излучения, выполненный в работе [62] для источника RX J1713.7-3946. Следует отметить, что требуемое при моделировании отношение концентрации ускоренных электронов к концентрации протонов оказывается примерно на порядок ниже, чем непосредственно наблюдаемое в космических лучах при энергии 1 ГэВ отношение $\sim 1-2\%$.

6. Ускорение частиц в остатках сверхновых

Перейдем к обсуждению механизма ускорения космических лучей в остатках сверхновых, который является версией ускорения Ферми первого рода [63]. Ускорение происходит в сжимающемся на ударной волне потоке газа благодаря многократному пересечению диффундирующими быстрыми частицами фронта ударной волны [64, 65] (см. также обзоры в [9]). Распределение частиц по импульсам имеет степенной вид: $N(p) \sim p^{-(r+2)/(r-1)}$, где r — сжатие газа в ударной волне, так что $N(p) \sim p^{-2}$ при r = 4 — предельном сжатии в сильной ударной волне в одноатомном газе без высвечивания. Ускорение оказывается весьма эффективным, и при большом числе Маха ударной волны, $M \ge 1$, давление ускоренных частиц на фронте ударной волны достигает величины $P_{cr} = \xi_{cr} \rho u_{sh}^2$,

 $\xi_{\rm cr} \sim 0,5$ [66] (здесь ρ — плотность межзвездного газа, $u_{\rm sh}$ — скорость ударной волны). Столь высокая эффективность ускорения приводит к модификации профиля ударной волны под действием давления космических лучей. В результате спектр ускоренных частиц при очень высоких энергиях становится более плоским (жестким), чем p^{-2} , а при значениях энергии, меньших нескольких гигаэлектронвольт на нуклон, наоборот, приобретает бо́льшую крутизну.

Для ускорения частиц на сферическом фронте ударной волны радиусом $R_{\rm sh}$ необходимо выполнение условия

$$D(p) \leqslant 0, 1u_{\rm sh}R_{\rm sh} \,, \tag{6}$$

где численное значение коэффициента в правой части является приближенным.

Максимальное значение правой части соотношения (6), составляющее порядка $10^{28} (W_{51}/n)^{2/5}$ [см² с⁻¹], достигается в начале стадии Седова эволюции ударной волны, порожденной взрывом сверхновой с кинетической энергией $W = 10^{51} W_{51}$ [эрг] в межзвездной среде с плотностью *п* [см⁻³]. Стандартный коэффициент диффузии космических лучей в межзвездной среде (1) или (2) слишком велик, для того чтобы обеспечить ускорение. Необходимое аномально малое значение коэффициента диффузии может самосогласованным образом обеспечиваться самими ускоряемыми частицами за счет потоковой неустойчивости в предвестнике ударной волны, который имеет характерный размер $D(p)/u_{\rm sh}$ [65, 67]. В качестве наиболее оптимистической оценки возникающего таким образом коэффициента диффузии на протяжении долгого времени использовался бомовский предел в межзвездном поле $D = D_{\rm B} = v r_{\rm g}/3$, что предполагает усиление случайного поля до величины $\delta B \approx B_{\rm ism}$ в масштабах, необходимых для резонансного рассеяния частиц. При этом формула (6) дает оценку максимальной энергии ускоренных частиц $E_{\rm max} \approx$ $\approx 10^{14} Z \, [\mathrm{9B}]$ в начале седовской стадии и слабую зависимость $E_{\rm max} \sim t^{-1/5}$ для более поздних времен. В этих предположениях проводилось численное моделирование ускорения космических лучей и эволюции остатков сверхновых [66, 68].

Развитие теории сильной потоковой неустойчивости космических лучей в предвестнике ударной волны [69–72] показало, что использование гипотезы о бомовском пределе ускорения в межзвездном поле некорректно. При $u_{\rm sh} \ge 10^3$ км с⁻¹ случайное поле усиливается до уровня $\delta B \ge B_{\rm ism}$, а при $u_{\rm sh} < 10^3$ км с⁻¹ случайное поле усиливается до уровня $\delta B \ge B_{\rm ism}$, а при $u_{\rm sh} < 10^3$ км с⁻¹ случайное поле от водет остатка сверхновой из-за диссипации турбулентности. Согласно оценкам [70] в экстремальных условиях, по-видимому, применимых к начальной стадии разлета оболочек сверхновых SN Ib/с (например SN1998 bw), случайное поле может достигать величины

$$\delta B_{\rm max} \sim 10^3 \, \frac{u_{\rm sh}}{3 \times 10^4 \,\,{\rm km} \,\,{\rm c}^{-1}} \, n^{1/2} \,\,[{\rm mk}\Gamma{\rm c}\,]\,, \tag{7}$$

а максимальная энергия ускоренных частиц

$$E_{\rm max} \sim 10^{17} Z \, \frac{u_{\rm sh}}{3 \times 10^4 \,\rm \kappa m^2 \, c^{-2}} \, \frac{\xi_{\rm cr}}{0.5} \, M_{\rm ej}^{1/3} n^{1/6} \, [9B] \qquad (8)$$

(здесь $M_{\rm ej}$ — масса сброшенной оболочки, измеренная в массах Солнца). Как указывалось в разделе 5, наличие

сильного магнитного поля подтверждается рентгеновскими наблюдениями молодых остатков сверхновых. Очень большое усиление поля в молодых остатках является косвенным свидетельством ускорения протонов, которое сопровождается сильной потоковой неустойчивостью. Предсказываемая сильная зависимость $E_{\max}(t)$ позволяет понять, почему тераэлектронвольтное гамма-излучение наблюдается только от сравнительно молодых остатков сверхновых.

Теоретический спектр источников космических лучей в Галактике был вычислен в [72] путем усреднения спектра частиц, ускоренных и инжектированных в межзвездную среду за время жизни остатка сверхновой. Оказалось, что усредненный источник протонов с высокой энергией имеет степенной по энергии частиц вид с резким изломом при значении E_k , близком к энергии колена:

$$Q \sim \xi_{\rm cr} v_{\rm sn} W E^{-2} \quad \text{при} \quad E \leqslant E_{\rm k} \,, \tag{9}$$

где
$$E_{\rm k} = 4 \times 10^{15} (\xi_{\rm cr}/0.5) W_{51} M_{\rm ej}^{-2/3} n^{1/6}$$
 [эВ], и

$$Q \sim E^{-s}$$
 при $E > E_k$, (10)

где *s* = 3,5-5 в разных вариантах модели. Частицы с энергиями *E* < *E*_k ускоряются на седовской стадии; частицы с $E > E_k$ ускоряются на более ранней стадии свободного разлета в условиях, когда максимальная энергия отдельных частиц высока, но полное число частиц, вовлекаемых в процесс ускорения, относительно мало, чем и объясняется крутая форма спектра. Для каждого типа ионов излом находится при значении энергии ZE_k , пропорциональном заряду. Эти представления, в основном, согласуются с наблюдениями спектра и состава космических лучей [73] и, по-видимому, объясняют наличие колена в спектре всех частиц при значении энергии 3×10^{15} эВ. Для уточнения теории необходим популяционный анализ, учитывающий дисперсию параметров, входящих в соотношения (9) (см. [74]).

7. Сверхвысокие энергии

Утверждение об относительно малой по сравнению с галактической концентрации космических лучей в межгалактическом пространстве относится к частицам с не слишком высокой энергией, которые эффективно ускоряются галактическими источниками и хорошо удерживаются в галактических магнитных полях. Наблюдаемые космические лучи с самой высокой энергией, которые, повидимому, имеют внегалактическое происхождение, более равномерно распределены во Вселенной. Спектр частиц с энергиями, превышающими 1017 эВ, по данным установки HiRes (High Resolution Fly's Eye) показан на рис. 4. Резкое уменьшение потока при $E > 6 \times 10^{19}$ эВ свидетельствует о наличии чернотельного обрезания спектра, предсказанного в работах [76, 77], которое возникает вследствие фотопионных потерь энергии за время порядка 4 × 10⁹ лет при взаимодействии частиц (протонов) с фотонами микроволнового реликтового излучения. При энергии протонов 3 × 10²⁰ эВ характерное время потерь составляет ~ 10⁸ лет, так что эти частицы могут приходить на Землю только со сравнительно небольших по космологическим масштабам расстояний. Источниками частиц с самой высокой энергией

Рис. 4. Спектр космических лучей с самыми высокими энергиями по данным установки HiRes [75]. Кривые показывают наличие обрезания спектра при энергии 6×10^{19} эВ.

в принципе могут быть галактики с активными ядрами, взаимодействующие галактики, источники гаммавсплесков и др. (см. обзор [78]).

При интерпретации наблюдаемого спектра частиц сверхвысоких энергий рассматриваются два основных варианта. В одном из них уплощение спектра при энергии 4 \times 10¹⁸ эВ (см. рис. 4) объясняется как переход от галактических к внегалактическим космическим лучам (см. подробнее [79, 80]). При этом спектр внегалактических источников близок к $E^{-2,3}$ и их состав является смешанным, точнее, во внегалактических источниках протоны и тяжелые ядра содержатся в нормальной пропорции. В другом варианте [81] переход от галактических к внегалактическим космическим лучам в наблюдаемом спектре происходит при энергии $\sim 10^{18}$ эВ. В последнем случае спектр источников близок к $E^{-2,7}$ и при чисто протонном составе особенность при $E \sim 4 \times 10^{18}$ эВ объясняется как следствие вклада, обусловленного рождением пар, в общие потери энергии на реликтовом излучении. Выбор между двумя описанными вариантами можно будет сделать после уточнения состава частиц при энергиях $E \gtrsim 10^{18}$ эВ (см. подробное обсуждение [80]). В любом случае требуется, чтобы галактические источники ускоряли частицы до $E \sim$ $\sim 10^{18}\!-\!10^{19}$ эВ, что существенно превосходит оценки, приведенные в разделе 6. Возможно, что проблема решается при учете вклада редких "гиперновых" с большим энерговыделением, $W \approx 3 \times 10^{52}$ эрг [74]. Другая возможность связана с сильным доускорением частиц ансамблем ударных волн в ассоциациях О и В звезд [82] или в галактическом ветре [83]. Не исключен и вклад молодых нейтронных звезд с сильным магнитным полем (≥ 10¹³ Гс) и релятивистским ветром, в которых в принципе возможно ускорение ионов до $E \sim 10^{20}$ 3B [84].

В целом, основное внимание в исследованиях космических лучей сегодня сфокусировано на области высоких энергий. Речь идет об окончательном выяснении природы колена в спектре частиц при $E \approx 3 \times 10^{15}$ эВ (отметим, что эта особенность была экспериментально обнаружена почти 50 лет назад [85]), определении предела ускорения частиц в Галактике и анализе процессов

ускорения частиц сверхвысоких энергий во внегалактических источниках.

Список литературы

- Gaisser T K, in Energy Budget in the High Energy Universe: Proc. of the Intern. Workshop, Kashiwa, Japan, 22-24 February 2006 (Eds K Sato, J Hisano) (Singapore: World Scientific, 2007); astro-ph/ 0608553
- Гинзбург В Л ДАН СССР 76 377 (1951) 2.
- 3. Гинзбург В Л ДАН СССР 92 1133 (1953)
- Гинзбург В Л УФН **51** 343 (1953) 4
- 5. Ginzburg V L Annu. Rev. Astron. Astrophys. 28 1 (1990)
- 6. Гинзбург В Л, Сыроватский С И Происхождение космических лучей (М.: Изд-во АН СССР, 1963)
- 7 Березинский В С, Буланов С В, Гинзбург В Л, Догель В А, Птускин В С Астрофизика космических лучей 2-е изд. (Под ред. ВЛГинзбурга) (М.: Наука, 1990)
- 8. Гинзбург В Л УФН 166 169 (1996)
- Space Sci. Rev. 99 1-373 (2001) 9
- 10 McDonald F B, Ptuskin V S, in The Century of Space Science (Eds J A M Bleeker, J Geiss, M C E Huber) (Dordrecht: Kluwer Acad. Publ.. 2001) p. 677
- 11 Гинзбург В Л, Птускин В С УФН 117 585 (1975); Ginzburg V L, Ptuskin V S Rev. Mod. Phys. 48 161 (1976)
- Ginzburg V L, Khazan Ia M, Ptuskin V S Astrophys. Space Sci. 68 12. 295 (1980)
- 13. Bloemen J B G M et al. Astron. Astrophys. 267 372 (1993)
- 14 Ptuskin V S, Soutoul A Astron. Astrophys. 337 859 (1998)
- 15 Strong A W, Moskalenko I V Astrophys. J. 509 212 (1998)
- Ptuskin V S et al. Astrophys. J. 642 902 (2006) 16.
- 17. Ptuskin V S, Zirakashvili V N Adv. Space Res. 37 1898 (2006)
- Hunter S D et al. (EGRET Collab.) Astrophys. J. 481 205 (1997) 18.
- 19. Strong A W, Moskalenko I V, Reimer O Astrophys. J. 613 962 (2004)
- 20. Breitschwerdt D, Dogiel V A, Völk H J Astron. Astrophys. 385 216 (2002)
- 21. Pohl M, Esposito J A Astrophys. J. 507 327 (1998)
- Berezhko E G, Völk H J Astrophys. J. 611 12 (2004) 22
- de Boer W et al. Astron. Astrophys. 444 51 (2005) 23.
- Atkins R et al. (Milagro Collab.) Phys. Rev. Lett. 95 251103 (2005) 24.
- 25. Prodanović T, Fields BD, Beacom JF Astropart. Phys. 27 10 (2007); astro-ph/0603618
- Sreekumar P et al. Phys. Rev. Lett. 70 127 (1993) 26
- 27. Ginzburg V L Nature Phys. Sci. 239 8 (1972)
- Гинзбург В Л, Озерной Л М Астрон. журн. 42 943 (1965) 28
- 29 Samui S, Subramanian K, Srianand R, astro-ph/0505590
- 30. Топтыгин И Н Космические лучи в межпланетных магнитных полях (М.: Наука, 1983)
- 31. Chuvilgin L G, Ptuskin V S Astron. Astrophys. 279 278 (1993)
- 32. Casse F, Lemoine M, Pelletier G Phys. Rev. D 65 023002 (2001)
- 33. Elmegreen B G, Scalo J Annu. Rev. Astron. Astrophys. 42 211 (2004)
- Goldreich P, Sridhar S Astrophys. J. 438 763 (1995) 34.
- 35 Yan H, Lazarian A Astrophys. J. 614 757 (2004)
- 36.
- Syrovatskii S I Comm. Astrophys. Space Phys. 3 155 (1971) 37.
- Ptuskin V S et al. Astron. Astrophys. 268 726 (1993)
- Hörandel J R, Kalmykov N N, Timokhin A V Astropart. Phys. 27 38. 119 (2007); astro-ph/0609490
- Гинзбург В Л Астрон. журн. 42 1129 (1965) 39
- 40. Ginzburg V L, Ptuskin V S, Tsytovich V N Astrophys. Space Sci. 21 13 (1973)
- 41. Dogiel V A, Gurevich A V, Zybin K P Astron. Astrophys. 281 937 (1994)
- 42. Zweibel E G Astrophys. J. 587 625 (2003)
- Farmer A J, Goldreich P Astrophys. J. 604 671 (2004) 43.
- 44. Пикельнер С Б ДАН СССР 88 229 (1953)
- Parker E N Astrophys. J. 145 811 (1966) 45.
- 46. Кузнецов В Д, Птускин В С Письма в Астрон. журн. 9 138 (1983)
- 47 Parker E N Astrophys. J. 401 137 (1992)
- Zirakashvili V N et al. Astron. Astrophys. 311 113 (1996) 48
- Ptuskin V S et al. Astron. Astrophys. 321 434 (1997) 49.
- 50. Шкловский И С Сверхновые звезды и связанные с ними проблемы 2-е изд. (М.: Наука, 1976)
- 51. Лозинская Т А Сверхновые звезды и звездный ветер: взаимодействие с газом галактики (М.: Наука, 1986)

- 52. Koyama K et al. Nature 378 255 (1995)
- Völk H J, Berezhko E G, Ksenofontov L T Astron. Astrophys. 433 229 (2005)
- 54. Esposito J A et al. *Astrophys. J.* **461** 820 (1996)
- 55. Sturner S J, Dermer C D Astron. Astrophys. 293 L17 (1995)
- Muraishi H et al. (CANGAROO Collab.) Astron. Astrophys. 354 L57 (2000)
- 57. Enomoto R et al. (CANGAROO Collab.) Nature 416 823 (2002)
- 58. Aharonian F A et al. (HESS Collab.) Nature 432 75 (2004)
- 59. Aharonian F et al. (HESS Collab.) Astron. Astrophys. 370 112 (2001)
- 60. Aharonian F et al. (HESS Collab.) Astron. Astrophys. 437 L7 (2005)
- 61. Aharonian F et al. (HESS Collab.) Astrophys. J. 636 777 (2006)
- Berezhko E G, Völk H J Astron. Astrophys. 451 981 (2006); astroph/0602177
- 63. Fermi E Phys. Rev. 75 1169 (1949)
- 64. Крымский Г Ф ДАН СССР **234** 1306 (1977)
- 65. Bell A R Mon. Not. R. Astron. Soc. 182 147 (1978)
- 66. Бережко Е Г, Елшин В К, Ксенофонтов Л Т ЖЭТФ 109 3 (1996)
- 67. Lagage P O, Cesarsky C J Astron. Astrophys. 118 223 (1983)
- 68. Kang H, Jones T W Astropart. Phys. 25 246 (2006)
- 69. Bell A R, Lucek S G Mon. Not. R. Astron. Soc. 321 433 (2001)
- 70. Ptuskin V S, Zirakashvili V N Astron. Astrophys. 403 1 (2003)
- 71. Bell A R Mon. Not. R. Astron. Soc. 353 550 (2004)
- 72. Ptuskin V S, Zirakashvili V N Astron. Astrophys. 429 755 (2005)
- 73. Hörandel J R Astropart. Phys. 19 193 (2003)
- 74. Свешникова Л Г Письма в Астрон. журн. 30 47 (2004)
- Bergman D R (HiRes Collab.) Nucl. Phys. B: Proc. Suppl. 165 19 (2007); astro-ph/0609453
- 76. Greisen K Phys. Rev. Lett. 16 748 (1966)
- 77. Зацепин Г Т, Кузьмин В А *Письма в ЖЭТФ* **4** 114 (1966)
- 78. Torres D F, Anchordoqui L A Rep. Prog. Phys. 67 1663 (2004)
- Allard D, Parizot E, Olinto A V Astropart. Phys. 27 61 (2007); astroph/0512345
- Hillas A M, in Cosmology, Galaxy Formation and Astroparticle Physics on the Pathway to the SKA (Eds H-R Klockner et al.) (Oxford, 2006) (in press); astro-ph/0607109
- Berezinsky V, Gazizov A Z, Grigorieva S I Phys. Lett. B 612 147 (2005)
- Быков А М, Топтыгин И Н Письма в Астрон. журн. 27 735 (2001)
- 83. Völk H J, Zirakashvili V N Astron. Astrophys. 417 807 (2004)
- 84. Blasi P, Epstein R I, Olinto A V Astrophys. J. 533 L123 (2000)
- 85. Куликов Г В, Христиансен Г Б ЖЭТФ 35 635 (1958)

PACS numbers: 74.20.De, 74.20.Mn, 74.72.-h

Уравнения Гинзбурга – Ландау для высокотемпературных сверхпроводников

В.И. Белявский, Ю.В. Копаев

Феноменологическая теория сверхпроводимости [1], созданная В.Л. Гинзбургом и Л.Д. Ландау в 1950 г. (задолго до появления микроскопической теории сверхпроводимости Бардина, Купера и Шриффера (БКШ) [2]), определила многие перспективные направления в физике конденсированного состояния. Введенный в [1] комплексный параметр порядка позволил описать переход в сверхпроводящее состояние как установление фазовой когерентности в электронной системе, а учет градиентного вклада в функционал свободной энергии (в духе теории флуктуаций Орнштейна и Цернике) дал возможность рассматривать поведение сверхпроводящей системы в неоднородных внешних полях, в частности эффект Мейснера. Такие параметры теории Гинзбурга – Ландау, как длина когерентности и глубина проникновения, позволили увидеть различие в поведении разных сверхпроводников и дать их простую классификацию (сверхпроводники первого и второго рода [3]). Уравнения Гинзбурга–Ландау (выведенные исходя из микроскопической теории Л.П. Горьковым [4] в 1958 г.) являются основным инструментом для интерпретации экспериментальных данных и лежат в основе многочисленных технических приложений.

Открытие в 1986 г. высокотемпературной сверхпроводимости [5] и последовавшие за ним активные экспериментальные и теоретические исследования этого уникального явления (в значительной степени подготовленные работами возглавлявшейся В.Л. Гинзбургом группы теоретиков [6]) привели к необходимости объяснения свойств новых сверхпроводников, не вписывающихся в привычную схему теории БКШ.

В.Л. Гинзбург одним из первых обратил внимание на тогда еще неизвестную область температур, лежащую выше температуры сверхпроводящего перехода T_c , в которой проявляются сильные флуктуационные эффекты [7]. В настоящее время считается, что понимание природы этой области псевдощелевого состояния высокотемпературных сверхпроводящих (ВТСП) купратов может дать ключ к пониманию микроскопического механизма сверхпроводимости этих соединений.

Интерес В.Л. Гинзбурга к термоэлектрическим явлениям в сверхпроводниках [8] и к гигантскому диамагнетизму упорядоченных состояний с орбитальными токами [9], проявляемый им в течение более чем полувека, сегодня в связи с наблюдениями аномального эффекта Нернста [10–12] и нелинейного по полю диамагнетизма [13] в области сильной псевдощели ВТСПкупратов разделяется многими исследователями.

Для объяснения всей совокупности свойств ВТСПкупратов как в псевдощелевом, так и в сверхпроводящем состояниях предлагаются различные теоретические схемы, в большинстве основанные на предположении, что эти свойства определяются главным образом сильными электронными корреляциями в медно-кислородных плоскостях [14].

Кулоновское отталкивание, ограничивающее двукратное заполнение узлов решетки атомов меди в купратных плоскостях, приводит к тому, что родительское соединение оказывается антиферромагнитным (AF) диэлектриком. С возрастанием концентрации носителей, вводимых при допировании, дальний AF-порядок сменяется ближним при сохранении диэлектрической щели и создаются условия для возникновения сверхпроводимости с необычной симметрией энергетической щели [15]. Таким образом, сильные кулоновские корреляции приводят не только к диэлектризации, но и к сверхпроводимости купратов.

Возможность появления сверхпроводимости при спаривающем отталкивании, впервые отмеченная Ландау, для изотропного вырожденного электронного газа исследована Коном и Латтинджером [16], а для металлов с двухзонным электронным спектром — Москаленко [17] и Сулом и др. [18]. Оценки, сделанные в этих работах, приводят к весьма низким значениям T_c .

Здесь в рамках схемы Гинзбурга – Ландау представлена феноменология сверхпроводящего спаривания с большим импульсом при кулоновском отталкивании и рассмотрены ее применения к интерпретации фазовой диаграммы допированных купратных соединений.