
Abstract. The physical properties of hot dense matter over a
broad domain of the phase diagram are of immediate interest in
astrophysics, planetary physics, power engineering, controlled
thermonuclear fusion, impulse technologies, enginery, and sev-
eral special applications. The use of intense shock waves in
dynamic physics and high-pressure chemistry has made the
exotic high-energy-density states of matter a subject of labora-
tory experiments and enabled advancing by many orders of
magnitude along the pressure scale to range into the megabars
and even gigabars. The present report reviews the latest experi-
mental research involving shock waves in nonideal plasmas
under conditions of strong collective interparticle interaction.
The results of investigations into the thermodynamic, transport,
and optical properties of strongly compressed hot matter, as
well as into its composition and conductivity, are discussed.
Experimental techniques for high energy density cumulation,
the drivers of intense shock waves, and methods for the fast
diagnostics of high-energy plasma are considered. Also dis-
cussed are compression-stimulated physical effects: pressure-
induced ionization, plasma phase transitions, the deformation
of bound states, plasma blooming (`transparentization' of plas-
ma), etc. Suggestions for future research are put forward.

1. Prologue

It is a great honor for me to take part in the special scientific
session of the Editorial Board of the journal Uspekhi
Fizicheskikh Nauk dedicated to the jubilee of our outstand-
ing compatriot Vitalii Lazarevich Ginzburg, whose person-

ality and works have largely foreordained the contemporary
level and progress of the physical sciences in our country. I,
then a first-year student of the Moscow Institute of Physics
and Technology, was profoundly impressed by the review
lecture dedicated to extreme astrophysical processes which
Vitalii Lazarevich delivered in 1962. Over the years, the
personality of this remarkable man has significantly influ-
enced, directly or indirectly (primarily via Lev Vladimirovich
Al'tshuler (in the center in the photograph), David Abramo-
vich Kirzhnits, Evgenii Grigor'evich Maksimov and, of
course, via the Seminar 1), the kind and direction of my
scientific preferences.

When preparing for this session of the Editorial Board, we
agreed to adhere to the `list at the beginning of the XXI
century', the `physical minimum', which was formulated by
Vitalii Lazarevich in his Nobel Lecture. That is why here I
touch upon items 3, 5, and 9 of this list: 3Ð `metallic
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Photograph. At the dawn of the nuclear era (left to right): Vitalii La-

zarevich Ginzburg, Lev Vladimirovich Al'tshuler, and Veniamin Arono-

vich Tsukerman (Arzamas-16 (Sarov), at V A Tsukerman's house, 1955).

1 See the footnote on p. 331 of this issue of Phys.-Usp. (Editor's comment).



hydrogen, other exotic substances'; 5Ð `some questions of
solid-state physics, metal ± dielectric transitions'; and 9Ð
`fullerenes'.

We will deal with experiments involving intense shock
waves. Foundation of this experiments was laid by Prof.
Al'tshuler, an old friend and colleague of Ginzburg and my
teacher, whose works established a new scientific fieldÐ
dynamic high-pressure physics.

Although I do not intend to delve deeply into the history,
there is no escaping several historical remarks. According to
historical investigations, the first successful experiment
(Fig. 1) involving intense shock waves was supposedly
conducted more than 3000 years agoÐduring the battle
between David and Goliath [1] 2.

According to the Old Testament [1] and the subsequent
two-dimensional gas-dynamic calculations on a supercom-
puter (Fig. 1b), the high-velocity impact of a stone, which was
shot from David's sling, on Goliath's head gave rise to a
shock wave in Goliath's head with an amplitude pressure of
� 1:5 kbar. This pressure was more than two times higher
than the strength of Goliath's frontal bone, which determined
the outcome of the duel, to the great joy of the army and
people of Israel.

Discovered to be successful at that time, this scheme of
action (Fig. 1a) serves as the basis for all subsequent
experiments in the area of dynamic high-pressure physics.

The use of higher-power and more sophisticated accelera-
tion schemesÐchemical and nuclear explosives; gunpowder,
gas, and electrodynamic `guns'; charged particle, laser
radiation, and X-ray fluxes; etc.Ðhas enabled, since the
biblical time of David, increasing the projectile velocity by
three to four orders of magnitude and the shock pressure by
six to eight orders of magnitude to reach pressures ranging
into the megabars and gigabars.

The main development of the physics of shock waves in
the 20th century was intimately related to the entry of our
civilization into the atomic, space, and aviation eras. Strong
shocks play an important part in the hypersonic flights of

aircraft and rockets, as well as in the entry of spacecraft into
the planetary atmospheres of the Solar System. In nuclear
bombs, intense shock waves are employed to initiate chain
nuclear reactions in a compressed nuclear fuel. In thermo-
nuclear charges and in controlled fusion microtargets, shock
and radiative waves are the main tools for the compression,
heating, and triggering of thermonuclear reactions.

In the Soviet Union, the scientific school in the area of
intense shock waves and high energy density physics was
established by the Nobel Laureate academician N N Seme-
nov. The main contribution to this area was made by our
outstanding scientists Lev Vladimirovich Al'tshuler, Yakov
Borisovich Zel'dovich, Yulii Borisovich Khariton, and
Andrei Dmitrievich Sakharov. Two of themÐAl'tshuler, an
experimenter, andZel'dovich, a theorist ± are the real `fathers'
of the physics of shock waves in condensedmedia [2, 3]. I have
the great honor to have been since 1964 a pupil and later on a
colleague of these outstanding personalities and scientists who
I have happened to cooperate with in this fascinating and
multifaceted area. The basic principle of scientific work was
formulated by Yulii Borisovich Khariton: ``We have to know
at least ten times more in basic physics than is pragmatically
necessary to solve the technical problems''.

The aim of this report is to outline several recent scientific
results in studies of a dense nonideal high-pressure plasma
with the help of intense shock waves and to discuss the
prospects for the future.

2. Shock waves and extreme states of matter

The study of a strongly compressed hot substance (plasma) is
of interest for applications as well as for basic science. The use
of high-pressure plasmas is associated with the development
and realization of several promising power-producing pro-
jects and devices like mobile nuclear reactors and nuclear
space propulsors, magnetohydrodynamic and magnetocu-
mulative generators [4], and devices for controlled and
`semicontrolled' nuclear fusion [5], in which the compressed
plasma plays the same part as compressed water vapor in 19th
century heat engines. These and several other applications are
a permanent pragmatic incentive to study substances under
ultrahigh pressures and temperatures.

Target
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Driver
(Accelerator)
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(Impactor)

Shock wave
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Figure 1. Battle between David and Goliath [1], approximately 1000 B.C. The Bible, the Old Testament, 1 Sam. 17: (a) schematic representation of the

battle, (b) two-dimensional computer simulation of the blow (shock) of the stone on Goliath's head, which was shot from David's sling (the diameter of

the stone � 10 cm, its mass m � 500 g, and its velocity w � 20 m sÿ1).

2 Knowing academician Ginzburg's special interest in the `evergreen'

subject of the relation between science and religion, the first reference of

this review is made to the Old Testament.
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Apart from applications, the study of strongly com-
pressed plasmas enriches our general scientific notions
about the fundamental properties of matter [6], because
about 98% of the matter in the Universe (without `dark
matter' if it exists) is in the compressed hot baryon state.
Brown dwarfs, pulsars, supernova, X-ray sources, giant
planets, and the recently discovered extrasolar exoplanets
consist of huge masses of hydrogen, helium, and other
substances compressed by gravitational forces to tremen-
dous pressures. Shock waves play the decisive role in the
laboratory study of these states today.

Shock waves offer at least two significant advantages in
studies of a strongly compressed plasma:

(1) Not only do shock waves compress the plasma, but
they also heat it to produce its thermal ionization, as well
pressure-induced ionization.

(2) Because of inertial confinement of the shock-com-
pressed substance, dynamic techniques enable producing
extremely high pressures and temperatures unattainable
under static conditions.

That is why shock-wave techniques play the leading role
in high energy density physics today [2 ± 9], making it possible
to produce amplitude pressures of the megabar and gigabar
range for many chemical elements and compounds. This
range of peak dynamic pressures is six orders of magnitude
higher than the pressure in Goliath's head upon the stone's
impact (see Fig. 1) and three orders of magnitude higher than
the pressure at the center of the Earth, and is close to the
pressure at the center of the Sun and in inertial confinement
fusion targets [5, 6]. These exotic states ofmatter were realized
during the birth of our Universe, within several seconds after
the Big Bang [4, 6] (Fig. 2). In a sense, we cans say that by
progressively increasing the pressure and temperature in
laboratory experiments it is as if we travel backwards on the
time axis to approach the instant of creation of the
UniverseÐ the Big Bang.

3. Nonideal plasma

The subject of our report is a hot densematter in conditions of
strong interparticle interactionÐ the so-called nonideal
plasma, in which the intense interparticle interaction defines
its physical propertiesÐ thermodynamics, composition, con-
ductivity, radiative and optical properties, and the stopping
power of charged particles [4].

The nonideal plasma occupies a broad domain in the
phase diagramofmatter (Fig. 3). For a physical description of
the properties of this plasma two dimensionless parameters,
G and n�l 3

e , are commonly used.
The Coulomb interparticle interaction between the

charges Zi and Zj in a plasma with a density n � rÿ3

describes by Zi Zj e
2n 1=3. The nonideality parameter

G � Zi Zj e
2n 1=3

Ek

characterizes the ratio between the Coulomb interaction
energy and the kinetic energy Ek of particle motion.

Quantum degeneracy effects are described by the dimen-
sionless parameter ne�l 3

e , where �le � ��h 2=�2pmkT ��1=2 is the
thermal de Broglie wavelength of the electron.

For the classical Boltzmann statistics (when n�l 3 5 1), the
scaler of kinetic energy is Ek � kT and this plasma becomes
more and more nonideal under compression.

In the limit of high-density plasma, the electrons become
degenerate, n�l 3 > 1. For the quantum statistics, the scale of
kinetic energy is the Fermi energy Ek � �h 2n 2=3=2m. That is
why a degenerate plasma becomes more and more ideal as a
result of compression. In our shock experiments we are
capable of producing both the Boltzmann and Fermi
nonideal plasmas.

We see that the physical plasma properties are simplified
in two limiting cases: at high temperatures and at high
pressures. In the first case (high temperatures and low
densities), the interparticle interaction is weak (G5 1) and
the ideal gas approximation applies. In the other limiting case
of high densities, the inner electron shells of atoms and ions
are `crushed' by pressure, which justifies the application of the
Thomas ±Fermi model and then the uniform ideal (G5 1)
electron Fermi gas.

Of concern to us is the area between these asymptotics,
where the interparticle interaction energy exceeds the kinetic
particle energy (G > 1).

Until recently, the majority of plasma investigations
pertained to low-density high-temperature ideal plasma,
where G5 1. In this case, the plasma electrons may be
treated as an ideal classical or quantum gas and the Coulomb
screening effects may be described by the perturbation theory
[4]. A more complicated and interesting regime corresponds
to a `nonideal' plasma possessing a high density and a `low'
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temperature, whereG > 1. In such a plasma, ions are strongly
correlated and the electrons partly degenerate: ne�l 3

e > 1. This
plasma may no longer be treated as a quasi-ideal gas and
therefore cannot be described by perturbation theories.
Theoretically, such an exotic state of matter is an extremely
arduous subject due to a strong interparticle interaction in a
disorderedmediumwith intermediate (between the Fermi and
Boltzmann statistics) types of electron statistics [4, 6].

On the other hand, a nonideal plasma is an inconvenient
subject for experiments as well: its production requires the
cumulation of high energy densities in a densemedium at high
temperatures and pressures. The shock technique turns out to
be the most appropriate tool for the purpose.

4. Shock-wave compression

To produce a strongly compressed plasma with extremely
high temperature and density, we use intense shock waves [4,
7 ± 9] arising from nonlinear hydrodynamic effects in the
motion of matter. In a viscous compression shock termed
the shock front, the kinetic energy of the oncoming flow is
converted to the thermal energy of the compressed and
irreversibly heated medium (Fig. 4). This way of shock
compression (the Hugoniot adiabat in Fig. 5) has no
limitations in the magnitude of the pressure obtained but is
bounded by the short lifetimes of the shock-compressed
substance. That is why the techniques employed for the
diagnostics of these states should possess a high (� 10ÿ6 ±
10ÿ9 s) temporal resolution. It is precisely this temporal
resolution that is inherent in the electrocontact and optical
recording of the time intervals in the motion of shock-wave
discontinuities and contact surfaces; in the pyrometric,
spectroscopic, X-ray diffraction and adsorption, and laser
interferometric measurements, as well as in the recording of
low- and high-frequency Hall conductivity; and in the
detection of piezo- and magnetoelectric effects [4, 7 ± 9].

A characteristic feature of the shock technique is that it
permits obtaining high pressures and temperatures in
compressed media, while the low-density domain (includ-

ing the boiling curve and the neighborhood of the critical
point) turns out to be inaccessible to it. Investigation of the
plasma states intermediate between a solid and a gas is
made by the isentropic expansion technique. This technique
involves the generation of plasma in the adiabatic expansion
of a condensed substance (curve S in Fig. 5) precompressed
and irreversibly preheated at the front of an intense shock
wave.

We see that dynamic techniques in their different
combinations permit realizing and investigating a broad
spectrum of plasma states with a variety of strong inter-
particle interactions. In this case, not only does the actual
realization of high energy density conditions turn out to be
possible, but so does sufficiently thorough diagnostics of
these states, because shock and adiabatic waves are not
merely a means of production, but a specific tool for the
diagnostics of extreme states of matter as well [2, 3, 10].

Dynamic diagnostic techniques rely on the relation
between the thermodynamic properties of a shock-com-
pressed medium under investigation and the experimentally
observed hydrodynamic phenomena occurring in the cumula-
tion of high energy densities in the substance [2, 3]. In the
general form, this relation is expressed by a system of
nonlinear (three-dimensional in spatial coordinates) differ-
ential equations of gas dynamics, whose complete solution is
difficult even with the most powerful modern supercompu-
ters. This is the reason why in dynamic investigations efforts
are made to employ self-similar solutions like a stationary
shock wave and the centered Riemann rarefaction wave [2, 3],
which express the conservation laws in simple algebraic or
integral forms. In this case, in order for these simplified
relations to be applicable, the self-similarity conditions
should be fulfilled for the corresponding flow regimes in
experiments.

When a stationary shock-wave discontinuity propagates
through a material, the conservation laws of mass, momen-
tum, and energy [2] are obeyed at its front. These laws relate
the kinematic parameters, the shock wave velocity D and the
mass material velocity u behind the shock front, with
thermodynamic quantitiesÐ the specific internal energy E,
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Figure 4. Shock-wave compression and the heating of a substance.
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the pressure p, and the specific volume V:

V

V0
� Dÿ u

D
; p � p0 �Du

V0
;

Eÿ E0 � 1

2
� p� p0��V0 ÿ V � ;

�1�

where the subscript 0 indicates the parameters of the
immobile material ahead of the shock front.

These equations permit determining the hydro- and
thermodynamic characteristics of a shock-compressed mate-
rial upon recording any two of the five parameters E, p,V,D,
and u, which characterize the shock discontinuity. Deter-
mined most easily and precisely by standard techniques is the
shock velocity D. The choice of the second recorded
parameter depends on specific experimental conditions. This
is ordinarily the mass velocity u of the shock discontinuity
[2, 3] or the shock-compressed plasma density r � Vÿ1 [10].

An analysis of the inaccuracies of relation (1) shows that it
is expedient, in the case of strongly compressible (`gaseous')
media, to record the shock-compressedmaterial density as the
second parameter. At present, a technique for these measure-
ments has been elaborated, which involves measurements of
soft X-ray radiation absorption by cesium, argon, and air
plasmas [4]. For lower-compressibility materials (condensed
media), acceptable accuracy is afforded by recording the
velocity of mass motion u. In this way, the states of
degenerate metal plasmas and the dense Boltzmann plasmas
of argon and xenon were investigated [2 ± 4, 9].

In experiments involving determination of isentropic
expansion curves for a shock-compressed material, the states
in the centered dumping wave are described by Riemann
integrals [2]:

V � VH �
� pH

p

�
du

dp

�2

dp ; E � EH ÿ
� pH

p

p

�
du

dp

�2

dp ;

�2�
which are calculated along the measured isentrope ps � ps�u�.

By making measurements for different initial conditions
and intensities of shock and rarefaction waves, it is possible to
determine the caloric equation of state E � E � p;V � in the
pÿ V diagram region spanned by the Hugoniot H and/or
Poisson S adiabats. In experiments in dynamic action on the
plasma performed to date, the shock intensities have been
varied by varying the power of excitation sourcesÐby
varying the pusher gas pressure, the types of explosives, and
launching devices. Furthermore, the initial state parameters
were varied in various ways: by changing the initial tempera-
tures and densities (rare gas, cesium, and liquid), or by using
finely dispersed targets to enhance the effects of irreversibility
[2, 3].

Therefore, dynamic diagnostic techniques, which are
based on the general conservation laws, permit reducing the
problem of the caloric equation of state E � E � p;V �
determination to the measurement of the kinematic para-
meters of motion of shock waves and contact surfaces, i.e. to
recording distances and time intervals, which may be done
with a high accuracy.

However, the internal energy E is not a thermodynamic
potential with respect to the variables p and V, and to
construct the closed thermodynamics of a system requires,
in addition, the dependence of the temperature T � p;V � on
the state parameters. In optically transparent and isotropic

media (gases, ionic crystals), the temperature can bemeasured
simultaneously with other parameters of the shock compres-
sion.However, themajority of condensedmedia are, as a rule,
opaque, so that the optical radiation of a shock-compressed
medium is not observable.

The thermodynamically complete equation of state may
be constructed directly from the data obtained in the dynamic
measurements, without introducing a priori assumptions
about the properties and nature of the material under
investigation [10] employing the Fermi method, based on the
first law of thermodynamics and the dependenceE �E � p;V �
known from experiments (for more details, see Refs [4, 10]).
This technique employed in dynamic experiments to con-
struct the thermodynamically complete equation of state is
free from any limiting assumptions as to the properties,
nature, or phase composition of the material under study,
because it relies on themost general conservation laws (1) and
the first law of thermodynamics. In this case, the stationarity
and one-dimensionality conditions should be fulfilled for the
flow of the shock-compressed medium in order for the
conservation laws to be usable in simple algebraic (1) or
integral (2) forms.

It is significant that the shock wave not only compresses,
but also heats the material to high temperatures, which is
especially important for producing plasmaÐan ionized state
of matter. Nowadays, a variety of dynamic techniques are
employed in the experimental study of a strongly nonideal
plasma (see Fig. 5).

The shock compression of an initially solid or liquid
substance enables obtaining, behind the shock front, the
states (of Hugoniot adiabat H, see Fig. 5) of nonideal
degenerate (the Fermi statistics) and classical (the Boltz-
mann statistics) plasmas compressed to maximum pressures
of � 4 Gbar and temperatures of � 107 K [11, 7]. At these
parameters, the specific density of internal plasma energy is
comparable to the nuclear energy density and the tempera-
tures approach the conditions whereby the energy and
pressure of equilibrium radiation begin to play a significant
part in the total thermodynamics of these exotic states.

To reduce the irreversible heating effects, it is expedient to
compress a material by a sequence of incident and reflected
shockwaves [12 ± 16]. As a result, this multistage compression
Hk becomes closer to the `softer' isentropic compression (S1),
making it possible to obtain substantially higher compression
ratios (10 ± 50 times) and lower temperatures (� 10 times) in
comparison with a single-stage shock-wave compression.
Multiple shock compression was used validly for the experi-
mental study of pressure-induced plasma ionization [12 ± 14]
and substance dielectrization [16] at megabar pressures.
Quasiadiabatic compression was also realized in the highly
symmetric cylindrical explosive compression of hydrogen and
rare gases [14]. In experiments involving `soft' adiabatic
plasma compression, in Refs [17, 18] advantage was taken of
the explosive compression of samples by megagauss magnetic
fields.

In another limiting case, when obtaining a high-tempera-
ture plasma is required, it is possible to effect the shock
compression of lower (in comparison with solid) density
targetsÐporous metals Hm [2 ± 4, 19] or aerogels [20]Ð
curveHa in Fig. 5. This provides a way to sharply strengthen
the irreversibility effects of shock compression and thereby
increase the entropy and temperature of the compressed state.

The shock compression of rare gases and saturated alkali
metal vapor by incident H1 and reflected H2 shock waves
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allows studying the Boltzmann plasma in the domain with a
developed thermal ionization [4, 10, 21±25].

The adiabatic expansion of a substance (curvesS in Fig. 5)
precompressed tomegabar pressures by a shock wave permits
investigating an interesting plasma parameter domain located
between a solid and a gas, including the metal ± dielectric
transition region and the high-temperature portion of the
boiling curve of metals with their critical point [4, 9, 26, 27].

Since the metallic bond energy is rather high, the
parameters of the critical points of metals are extremely high
(4.5 kbar and 8000 K for Al, 15 kbar and 21000 K for W) and
unattainable for static experimental techniques. That is why
until recently the critical point characteristics were measured
only for three of all metals, which account for � 80% of the
elements of the Periodic Table [4]. On the other hand, because
the critical temperatures of metals are high and are compar-
able to their ionization potentials, metals in a near-critical
state vaporize directly to an ionized state and not to a gas, as is
the case in the rest of the chemical elements.

This circumstance may lead to exotic `plasma' phase
transitions predicted for metallization by Ya B Zel'dovich
and L D Landau [28] and other theorists for strongly
compressed Coulomb systems (see Refs [29, 30 ± 33] and
references therein).

The experimental quest for these exotic plasma phase
transitions today is among the most interesting problems of
dynamic physics of high energy densities. The sharp rise (by
five orders of magnitude) in conductivity [12 ± 14, 25, 34, 35]
and changing of the adiabatic compressibility [36, 37]
discovered recently for nonideal hydrogen and deuterium
plasmas, which was supported out by quantum-mechanical
calculations by the Monte-Carlo technique [33], supposedly
testifies to the experimental discovery of this plasma phase
transition.

5. Drivers for intense shock waves

Today, a wide variety of ways of generating intense shock
waves is employed in dynamic experiments. These are
chemical, nuclear, and electric explosions; pneumatic, gun-
powder, and electrodynamic guns; concentrated laser and
soft X-ray radiation; and relativistic electron and ion beams
[3, 4, 7 ± 9] (see Table 1).

The first experiments involving the dynamic generation of
a dense plasma and the measurement of its equation of state
and conductivity were carried out on a pneumatic shock tube

and facilities for adiabatic compression [24, 10]. To provide a
high density of saturated cesium vapor (for its subsequent
compression), the experimental devices were heated to a high
initial temperature of � 900 �C. These high heating tempera-
tures (the device is red-hot) and a substantial chemical
aggressivity of cesium made the experiments with nonideal
cesium plasmas extremely difficult and costly.

The majority of subsequent dynamic nonideal-plasma
experiments were performed using condensed chemical
explosives (HE) as the energy source, because they possess a
high specific energy capacity, which exceeds that of electric
capacitors by six orders of magnitude.

In explosion plasma generatorsmade on this principle, the
shock wave in precompressed gases is excited by the
expanding detonation products of condensed explosives,
which fulfill the function of a piston [23]. These explosion
shock tubes were employed for the experimental study of the
equation of state, the low-frequency electric and Hall
conductivities, the fast-ion stopping power, and the optical
properties of a strongly nonideal plasma compressed to
pressures of � 200 kbar [4, 21, 23, 42 ± 44].

Substantially higher pressures of � 1 Mbar in gases and
� 5 Mbar in metals were realized in so-called explosion guns
(Fig. 6a) [3, 4, 8, 9, 19]. In these devices, a high-speed impact
of metal strikers accelerated by detonation products to
velocities of 5 ± 14 km sÿ1 excites in a target a plane shock
wave or a series of reverberating shock waves. The geome-
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Table 1. Schemes for intense shock generation
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Figure 6. (a) Explosion generator for shock-wave plasma compression [13, 19]. (b) Explosion generator of counter-propagating shock waves [15, 16].
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trical parameters of these experimental devices are selected in
such a way as to eliminate the distorting effect of side and rear
dumping waves to ensure the one-dimensionality and
stationarity of gas dynamic flow in the region of recording
the plasma parameters required for the application of the
conservation laws in the self-similar form (1).

Interestingly, the kinetic energy of a metal striker moving
at a speed of 10 km sÿ1 is close [34] to the kinetic energy of a
proton beam in the cyclotron accelerator of the Fermi lab.
And so the high kinetic energy of metal strikers in shock
experiments produces a strongly compressed plasma just as a
relativistic ion collision energy, which produces a quark ±
gluon plasma with enormous energy densities.

To increase the parameters of shock compression, in
several experiments use was made of explosion generators of
counter-propagating shock waves (Fig. 6b), where the
material under investigation was loaded on both sides by the
synchronous impact of steel strikers symmetrically acceler-
ated by explosive charges [15, 16].

To increase the velocity of the throwing and hence the
shock-compressed plasma pressure, advantage is taken of
highly sophisticated gas-dynamic techniques. The technique
of `gradient' cumulation (Fig. 7, [38, 14]) proposed by
Academician E I Zababakhin relies on a successive increase
in the velocity of strikers in planar alternating heavy and light
material layers. This technique is not related to the effects of
geometrical energy focusing and therefore possesses a higher

stability of acceleration and compression in comparison with
the spherical one. The thus made explosion three-stage `layer
cakes' [19] accelerated a one-hundred-micrometer striker to
velocities of 13 ± 14 km sÿ1 and were employed to study the
equation of state and the adiabatic expansion of nonideal
metal plasmas.

Precision spherical explosion generators of intense shock
waves (Fig. 8a) were designed in the USSR [3, 35, 39, 40] for
the study of thermodynamic material properties at pressures
ranging up to � 10 Mbar. Using the geometrical cumulation
effects in the centripetal motion (implosion) of detonation
products and hemispherical shells, in devices weighing
� 100 kg with an energy release of � 300 MJ it was possible
to accelerate metal strikers to velocities of � 23 km sÿ1.

In higher-stability conical explosion generators, use was
made of cumulation effects in the irregular (Mach) conver-
gence of cylindrical shock waves (Fig. 8b) [41]. The combina-
tion of irregular cylindrical and `gradient' cumulation effects
enabled exciting in copper a shock wave with an amplitude of
� 20 Mbar, which is comparable to pressures in the near zone
of a nuclear explosion [7].

Cylindrical explosion cumulation systems (Fig. 9a) are
intended for effecting quasiadiabatic compression of H2, D2,
and rare gases to megabar pressures by way of multi-stage
wave reverberation between the heavy metal shell surface
accelerated by detonation products and the symmetry axis of
a cylindrical plasma volume. In this way, measurements were
made of the conductivity, temperature, light absorption
coefficient, density, and equation of state of a strongly
nonideal plasma. Using this cylindrical devices pressure-
induced metallization was detected, and the plasma phase
transition was observed for the first time [36, 37].

To ensure the adiabaticity of dynamic compression in
experiments [17, 18], the hydrogen plasma was compressed in
cylindrical geometry by a megagauss magnetic field com-
pressed, in turn, by an external metal liner accelerated by the
detonation products of a condensed explosive.

To carry out experiments involving the interaction of an
axial magnetic field with shock-compressed plasmas, explo-
sion shock tubes (Fig. 9b) were developed, which were
equipped with an external solenoid and a system for the
electrocontact measurement of Hall currents [44] and low-
frequency conductivity [4, 23].

In recent years, along with explosion techniques of shock
generation, other methods have been increasingly used for
pulsed energy cumulation. The corresponding facilities
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constructed for inertial confinement fusion and for military
applications are being used to an increasing extent in purely
physical experiments. As a result of `detente' and changes in
defense priorities, costly and complicated high-power devices
have become accessible to high energy density physics: high-
power lasers, high-current Z-pinches and soft X-ray radiation
sources, magnetodynamic guns, and electric-detonation
systems, as well as high-intensity relativistic electron and ion
beams. The advent of this technical equipment has greatly
enhanced the experimental capabilities of generating and
studying the physical processes at high and ultrahigh energy
densities [5, 6].

To study the physics of a high-speed impact and the
dynamics of intense shock waves, use was made of a railgun
accelerator of condensed media [45]. In this electrodynamic
gun, solid plastic projectiles were accelerated to velocities of
� 8ÿ11 km sÿ1 by a plasma arc with a pulsed current of
� 1 MA. This method of acceleration is free from limitations
that are inherent in gas-dynamic throwing methods and arise
from the insufficiently high speed of sound in the pusher gas.
However, the growth of plasma instabilities, strong electrode
erosion, and other factors did not allow a significant increase
in launching velocity.

Experiments with high-power relativistic e-beam genera-
tors (Fig. 10a) enabled obtaining strong shock waves in metal

and plastic targets, as well as effecting the bulk heating of the
plasma of low-density foam targets. In particular, when
recording the dynamics of shock wave motion, an analysis
was made of the effect of intrinsic magnetic fields of the beam
on its absorption in the metal plasma [46].

Due to a substantially shorter (than for electrons) free
path, intense beams of light and heavy ions turned out to be a
more efficient instrument for the generation of high power
densities in the plasma.

One of these pulsed devicesÐ the KALIF high-current
proton beam generator (Fig. 10b) delivers a specific power of
� 1012 W cmÿ2 at the target. This permits accelerating thin
(� 50ÿ100 mm) flyers to velocities of � 12ÿ14 km sÿ1 and
carrying out interesting measurements of the dense-plasma
stopping power for fast protons with a kinetic energy of
� 2 MeV, recording the thermodynamic parameters and
viscosity of the shock-compressed plasma, and finding the
spalling resistance of metals at ultrahigh rates of straining.
One can see from Fig. 11 that the spalling resistance
significantly rises (by 1 ± 2 orders of magnitude) with an
increasing rate of straining to approach its theoretical limit,
which is related to the propagation kinetics of dislocations
and cracks in a pulsed stress field [8, 47].

The relativistic heavy-ion accelerators constructed for
high-energy physics experiments (Fig. 12a) turned out to be
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candidates for controlled nuclear fusion with inertial plasma
confinement and for experiments on the compression and
heating of dense plasmas. Heavy-ion beams with a kinetic
energy of 3 ± 300 MeV nucleonÿ1 were employed in experi-
ments on the heating of condensed and porous targets, the
measurement of plasma stopping power for ions, and the
interaction of charged beams with shock-compressed plasma
produced by miniexplosion driven shock tubes [48].

Fast electric generators of high-power pulsed fluxes (Z,
Sandia; Angara, Kurchatov Institute of Atomic Energy, etc.)
were made for controlled nuclear fusion and for modeling the
damaging action of nuclear explosions. They turned out to be
highly useful as terawatt power sources for intense shock
generation by high-intensity soft X-ray radiation in the Z-
pinch geometry, and also as sources of pulsed megaampere
currents for the electromagnetic acceleration of thin metallic
liners to velocities of� 20 km sÿ1 [49] (Fig. 12b). In this case,
by controlling the current parameters it is possible to effect a
shock-less `soft' compression of targets to a pressure of
� 3 Mbar. By the laser-assisted recording of the parameters
of quasi-isentropic compression, the states were determined
to have lower temperatures than for shock-wave heating.

In experiments conducted at the Angara facility [50]
(Fig. 12c), a pulsed � 4 MA current accelerated a plasma
xenon liner to a velocity of � 500 km sÿ1. The highly
symmetric impact of this liner on the surface of a cylindrical
porous target excited in it a thermal radiative wave, which
emitted soft X-ray radiation with a temperature of� 100 eV.
This high-intensity X-ray radiation emanating from the
cylindrical cavity was employed for generating highly sym-
metric plane shock waves with an amplitude pressure of
� 5 Mbar, exciting thermal radiative waves with a propaga-
tion velocity of � 100 km sÿ1, as well as for accelerating
metallic flyers to 10 ± 12 km sÿ1.

The highest power densities among laboratory devices
were obtained by focusing laser radiation [4 ± 6, 51 ± 54]. A
large number of costly and complicated laser systems
(Fig. 13a) (NIF, Le Laser Mega Joul, Vulkan, OMEGA,
GEKKO, and others) were made for problem of nuclear
fusion with inertial hot-plasma confinement [5, 6]. This
requires obtaining a thermonuclear plasma with extremely
high energy densitiesÐa temperature of� 10 keV, a density
of � 100 g cmÿ1, and a pressure of several gigabars.

Concurrently with the fusion program, also realized at
these facilities is a wide-ranging program of research into the
physical properties of matter and the physical processes in
plasmas with extreme parameters [6, 51 ± 56]. Active works
are underway to study the equation of state and the reflection
of laser radiation, to measure low- and high-frequency
conductivities, to analyze the mechanical properties of
materials at high rates of straining, to convert coherent laser
radiation to soft X-rays, to analyze transient hydrodynamic
effects, to study instabilities, and to model astrophysical
plasmas (Fig. 13b [6]).
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Considerable progress in the experimental physics of
high energy densities was related to the advent of tera- and
petawatt laser systems [53], which enabled a sharp increase
in intensity, up to record high intensities of 1022 ±
1023 Wcmÿ2.

Several interesting and qualitatively new physical effects
emerge in this power range (Fig. 13c [6]). Beginning with
q > 1014 W cmÿ2 (for l � 1 mm), the amplitude pressures of
laser-generated shock waves enter the megabar range.
Beginning from W > 1017 W cmÿ2, the electric intensity in
the laser wave is comparable to the field intensity in the first
Bohr orbit of hydrogen. From approximately the same

intensities, in the absorption region there occurs an
appreciable generation of nonthermal megaelectronvolt
ions and electrons. Beginning with 1018 W cmÿ2, the
plasma electrons are accelerated to relativistic velocities in
the electric field of the laser wave and the ponderomotive
light pressure is comparable to the hydrodynamic pressure.
For J �1021 W cmÿ2, the light pressure is � 300 Gbar. For
higher intensities (� 1030 W cmÿ2), the optical radiation
energy density becomes sufficient for the breakdown of
vacuum and spontaneous production of electron ± positron
pairs and then for the emergence of quark ± gluon plasma.
Further advancement along the laser intensity scale is
limited by our imagination and knowledge of the structure
of matter in the immediate spatio-temporal neighborhood
of the Big Bang.

Since nuclear explosives exceed chemical ones by 6 ±
7 orders of magnitude in specific energy capacity, the highest
man-produced pressures in terrestrial conditions were pro-
duced precisely in underground nuclear explosions (Fig. 14a)
[7, 11]. These costly and complicated experiments yielded a
wealth of new and valuable information about the thermo-
dynamic and optical properties of dense plasmas in the
megabar ± gigabar pressure range.

Figure 14b shows the pressures obtained now in labora-
tory and quasilaboratory conditions using the methods of
shock generation described in the foregoing. The resultant
data pertain to a wide range of nonideal plasma parameters,
making it possible to estimate at ultrahigh pressures the
validity range of the quasiclassical model of a substance Ð
the Thomas ±Fermi model [58]. It was determined that this
model applies beginning with pressures of about 100Mbar on
the Hugoniot adiabat, while its validity range becomes
substantially narrower with increasing temperature (the
shock adiabats of porous materials).
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6. Physical properties of matter under extreme
conditions

The use of shock waves in plasma physics enabled gaining
experimental information in a new and previously inacces-
sible range of condensed densities and megabar pressures. A
strong collective interparticle interaction involving significant
quantum effects is realized in these unusual states of matter.

Even the first experimental data on the thermodynamics
of nonideal plasmas turned out to be rather nonpresumable
and showed how unsound it is to extrapolate notions
obtained for nonideal plasmas to the high-pressure range. It
was determined [4, 24] that the pressure of a nonideal plasma
at constant temperature and enthalpy was much higher than
the pressure of an ideal plasma, whereas this pressure,
according to the concepts developed at that time [2, 57],
should have been lower than the ideal-gas pressure owing to
the plasma polarization. A more detailed analysis revealed [4,
24, 57] that the unusual behavior of thermodynamic plasma
properties was attributable to two physical effects: the
increase in the number of free charges caused by a lowering
of the ionization potential and additional repulsion of the
particles arising from the compression-induced deformation
of the discrete energy spectrum.

At the same time, much evidence on the shock compres-
sion of metals and rare gases demonstrates the `oscillatory'
nature of Hugoniot adiabats, which is caused by thermal
ionization and pressure-induced ionization. This plasma
compressibility lowering, which arises from the deformation
of discrete atomic and ionic energy levels, is reliably recorded
in experiments [4, 7, 14, 19].

Many theoretical nonideal-plasma models have been
proposed to date to describe the shock-wave data in a broad
domain of the phase diagram of matter. They are based on a
superposition of plasma ionization models and cell models of
a condensed state of matter [4, 14, 19, 22, 57].

Figure 15a illustrates the quality with which one of these
theoretical models describes the thermodynamic states in the
range of solid-state densities and high temperatures obtained
by shock compression of porous nickel samples [19]. Inter-
estingly, these experimental data correspond to the metal ±
dielectric transition region (Fig. 15b), where pressure-induced
and temperature ionization effects are significant for the
description of plasma thermodynamics [4, 19, 57].

The great body of thermodynamic data obtained to date
reveals [3] (Fig. 16a) a pressure-induced `smoothing' of the
specific atomic volumes of chemical elements. Indeed, a sharp
non-monotony of a volume V0 of material per nucleus as a
function of the nuclear chargeZ, which is observed at normal
conditions P � 0 (the lower curve in Fig. 16a), is a manifesta-
tion of the quantum nature of material structure. This is
amply reflected in the structure of the Periodic Table and the
chemical reactivity of the elements. The compression of
materials is responsible for the `crushing' and `intermixing'
of electron shells, so that the elements lose their chemical
individuality and their behavior comes to be progressively
more universal [58]. As indicated by experiment [3], with
increasing pressure the observed oscillations become progres-
sively less pronounced (curves P � 1 and P � 10 Mbar),
thereby bearing out the idea of `simplification' of the
structure and properties of a material with its compression.
This consideration substantiated the Thomas ±Fermi model
reliant on the quasiclassical approximation to the self-
consistent field method [58]. The validity range of the

quasiclassical model corresponds, to an order of magnitude,
to ultrahigh pressures exceeding the characteristic value of the
`atomic' pressure P > e 2=a 4

B � 300 Mbar (aB � �h 2=me 2 is
the Bohr radius). It seems likely that the comparison of this
model with shock-wave measurement data made in Ref. [3]
somewhat lowers the limit of applicability of the quasiclassi-
cal model to � 100 Mbar in Hugoniot adiabats.

The shock adiabat for Al [11, 7] shown in Fig. 16b shows
the quality with which theoretical models describe the data on
shock-wave plasma compression in a wide parameter range
up to presently record pressures of � 4 Gbar obtained in the
near zone of an underground nuclear explosion. Interestingly,
the specific plasma energy at these ultrahigh pressures
amounts to tremendous values of � 1 GJ cmÿ3, which is
close to the energy density of nuclear matter. In this
compression regime, the pressure and energy of thermal
radiation are comparable to P and T of kinetic electron and
ion motion. It would supposedly make no sense to increase
the shock compression pressure in experiments beyond these
limits, because this situation would be dominated by the
thermodynamics of the photon gas rather than the material
itself.

Apart from metal plasmas, considerable interest is
attracted to the investigations of shock-wave compression of
a nonideal deuterium plasma, for which purpose use is made
of lasers [54], the electrodynamic Z generator at the Sandia
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Lab [49], and spherical explosion devices [35, 59, 60]
(Fig. 16c). Theoretical estimation show that the shock-
compressed plasma in these experiments is strongly nonideal
(G > 1) with developed ionization ne=nD � 1 and partial
degeneracy ne�l3e � 3. One can see (Fig. 16c) that the models
of nonideal plasmas [14, 19, 57] provide a reasonable
description of the data on explosion and electrodynamic
experiments involving the shock-wave compression of deuter-
ium plasmas.

In recent years, as a result of the implementation of several
international solar observational projects, there have
emerged experimental data on the parameters of seismic
waves and global oscillations of this star [61], which yields
high precision experimental information (10ÿ3%!) about the
thermodynamics of the hot multicomponent solar plasma.
Figure 17a shows a comparison of these data with several

theoretical nonideal-plasma models, which permitted defin-
ingmore precisely the composition and role of bound states in
the thermodynamics of a weakly nonideal multicomponent
plasma.

The plasma conductivity provides valuable information
about the elementary processes of charge transfer [57] and,
most importantly, about the equilibrium plasma composi-
tion, because the transport current is directly defined by the
`free'-charge density. It is pertinent to note that distinguishing
between free and bound charges is a nontrivial task for
nonideal plasmas due to a strong interparticle interaction,
which makes this differentiation somewhat ambiguous. By
measuring the nonideal plasma conductivity, it is possible to
judge the pressure-induced ionizationÐa dramatic manifes-
tation of the interparticle interaction in compressed plasmas
[4, 12 ± 14, 30, 34, 42].
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It is well known that a material can be transformed into a
conduction state (ionized) by way of either heating or
compression [4, 57]. The temperature ionization is presently
the principal and best-investigated mechanism in plasma
physics [57]. It involves the heating of a tenuous plasma to a
temperature comparable to the ionization potential of the
material, T � J. An alternative to the thermal mechanism,
pressure-induced ionization, involves a strong compression of

a `cold' material to densities n � aÿ30 sufficient for the overlap
of atomic orbitals, whose characteristic dimension is the Bohr
radius a0 � aB � �h 2=me 2. To realize this criterion requires
advancing to the condensed plasma density range and, as a
consequence, generating pressures in the megabar range. For
these two ionization mechanisms to be separated in experi-
ment, one has to effect a `cool' (T5 J) compression of the
material by weakening the thermal heating effects. Hydrogen
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proved to be the best-suited subject, because its small
molecular weight leads to the lowest shock-compression
temperatures.

Being the element of greatest abundance (90%) and at the
same time the simplest element in nature, hydrogen has
attracted the attention researchers of different specialties for
almost 250 years. A brief chronology relating to the subject of
our research is given in Table 2.

The vigorous study of the equation of state and con-
ductivity is fostered by the significance of hydrogen plasma
for astrophysics and the physics of giant planets, as well as by
the quest for the high-temperature superconductivity of its
metal phase. This has been a permanent pragmatic incentive
of research over the last 50 years (Fig. 17c) [62].

Experiments aimed at studying the pressure-induced
ionization of hydrogen and rare-gas plasmas were carried
out with the use of amultistage shock compression technique,
which permits effecting quasiadiabatic compression and
thereby significantly (by a factor of � 10) increasing the
compression factor and lowering (to 4 ± 5� 103 K) the
substance temperature [12, 13, 34 ± 37]. The experiments
were conducted in plane and cylindrical geometries in light-
gas guns and explosion launching devices, as well as
cylindrical magnetic cumulation explosion generators [17,
18], which make use of an intense magnetic field to
`isentropize' the compression process.

Numerous experiments revealed a sharp increase (by 5 ± 6
orders of magnitude) in static conductivity of hydrogen in a
narrow condensed-density range at megabar pressures
(Fig. 17b). In this case, the highest conductivity level attained
in these conditions amounted to several hundred Oÿ1 cmÿ1,
which is close to the conductivity of alkali metals and is not
far from the `minimal metallic' Ioffe ±Regel conductivity [65].
That is why the effect under discussion is quite often referred
to as `metallization', which certainly is not quite correct:

according to Refs [28, 65], the concepts of a metal and a
dielectric may be separated only for T � 0. We believe that
the case in point is `pressure-induced ionization' [14, 30]
caused by the overlap of the wave functions of neighboring
atoms, which facilitates their ionization in a dense medium.

Figure 17d shows the geometrical characteristics of a
hydrogen molecule in the isolated state as compared with
the space available to one molecule (Wigner ± Seitz cell
radius) for a selected density r. One can see that the size of
the hydrogen molecule for r > 0:3 g cmÿ3 becomes compar-
able to and then less than the Wigner ± Seitz cell size.
Physically, this corresponds to a strong overlap of the
electron wave functions of neighboring atoms even in the
ground energy state. This overlap creates favorable condi-
tions for the delocalization [65] of electrons and their
quasiunbounded motion in the plasma. The energy spectrum
and effective ionization potential of hydrogenDE as functions
of theWigner ± Seitz cell size are shown in Fig. 17e. Solid lines
(red in the electronic version of the Phys.-Usp. journal)
indicate the upper band edge calculated assuming that the
radial part of the wave function is equal to zero at the cell
boundary, Rnl �rc� � 0. The lower band edge (in blue in the
electronic version, dashed lines in Fig. 17e) was determined
from a similar condition for its derivative, R 0nl �r� � 0 (for
more details, see Ref. [14]). One can see that in the course of
compression with decreasing rc in experiment there occur
broadening of the energy levels, their transformation to
energy bands, and, as a consequence, a decrease in the
effective material ionization potential DE. The thus obtained
quantity DE is in reasonable agreement with the correspond-
ing value that follows from experimental measurements of the
temperature dependence of the conductivity.

Similar conductivity measurement data for quasiadiabat-
ically compressed plasmas were obtained for several other
elementsÐHe (Fig. 17f), D2, Ar, Xe, and a hydrogen ±
helium mixtureÐ the plasma of the Jovian atmosphere [14].

To additionally study the effect of electron shell overlap,
experiments were staged [66] in the quasiadiabatic compres-
sion of the C60 fullerene, whose characteristic molecular size is
far greater than the size of atomic hydrogen (7 A

�
versus 1 A

�
).

As expected, the C60 fullerene `metallization' pressure turned
out (Fig. 18) to be approximately one order of magnitude
lower than for hydrogen.

It is pertinent to note that the models of material
transition to a conduction state introduced by Mott,
Anderson, Lifshits, Hertzfeld, and Likalter (for more
details, see Refs [14, 65]) also predict transitions in the
parameter range close to those of the experiment.

A characteristic feature of the majority of physical
nonideal plasma models is their thermodynamic instability
in the strong-nonideality domain (G > 1) [28 ± 33, 63, 64, 67 ±
69], where experiments aimed at dynamic plasma compres-
sion [12, 13, 34 ± 43] were planned and carried out. This
instability of strongly compressed Coulomb systems corre-
sponds to the `plasma' phase transition predicted with
simplified models by Wigner [29], Zel'dovich and Landau
[28], Norman and Starostin [31], Ebeling et al. [30, 65], and
Saumon and Chabrier [32, 68], as well as supported by
molecular dynamics [69] and quantum Monte Carlo simula-
tions [33, 61]. The corresponding plasma instability domain
(`Debye collapse') predicted by the ringDebye approximation
is indicated in Fig. 17b by the left vertical arrow. The nonideal
hydrogen plasma simulations by the Monte Carlo method,
which makes use of the Feynman path integral technique, are

Table 2.

Year Author and event

1766
1898
1925
1925

1935
1968

1972

1978

1980
1987

1990
1993

1996

1997

2001

2001

2005

Cavendish discovered a `ére gas' ì hydrogen
Duval ë liquid and solid (hydrogen) H2 ì an alkali metal?
Fowler ë stellar H2 ë plasma
Hertzfeld ëClausius ëMossotti: dielectric catastrophe for
0.6 g cmÿ3

Wigner ëHuntington: metallization at 2.5 Mbar, T � 0 K
Ashcroft ì high-temperature superconductivity of metallic
hydrogen
Kormer et al.: multistage explosive spherical compression to
4 Mbar
Hawke et al. ì explosive magnetic compression to 2 Mbar,
4000 K
Mao ëHemley ë Silvera ë static compression to 1 Mbar
Pavlovskii et al. ì explosive magnetic compression to
1 Mbar, 3000 K
Ashcroft ì dissociation and metallization at 3 Mbar
Nellis et al. ì reverberation of shock waves ì semiconduc-
tor properties, high conductivity
Fortov, Ternovoi ì explosive quasiadiabatic compression
ì nonideal plasma
Da Silva, Cauble, et al. ì laser-generated shock waves ì
nonideal plasma
Trunin, Zhernokletov, Fortov, et al. ì spherical explosive
shock waves ì nonideal plasma
Assay, Knudsen ì electrodynamic shock compression to
1 Mbar
Zhernokletov, Mochalov, Fortov et al. ì cylindrical explo-
sive compression, plasma phase transition
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outlined in Refs [33, 63]. One can clearly see from Fig. 17b the
phase plasma stratification with the subsequent formation of
an ordered plasma structure in the nonideal plasma.

Here, it is pertinent to note the general tendency of
strongly compressed Coulomb systems to spatial order-
ingÐa phase transition with the formation of plasma liquids
and crystals. By now Coulomb crystals of this kind have been
observed in several exotic experimental situations: in nonideal
`dust' [70] and colloid [71] plasmas, in ion bunches cooled by
laser radiation in electrostatic traps [72] and cyclotron
accelerators [73], and in the two-dimensional electron gas on
the surface of liquid helium [74, 65].

With the aim of finding the phase transition in a real
electroneutral electron-ion plasma, experiments were staged
[36, 37] in explosive quasiadiabatic compression of deuterium
plasma in cylindrical geometry involving plasma density
measurements by the pulsed X-ray radiography technique
(Fig. 9a). Experimental data (Fig. 19a) revealed a sharp
plasma density jump (� 25%) at a pressure of � 1:2 Mbar
in precisely the parameter range where electrophysical
measurements demonstrate a sharp rise in conductivity (by
5 ± 6 orders of magnitude) (Fig. 17b and the data on
conductivity in Fig. 19a) and where quantum Monte Carlo
simulations [33, 63] lose their stability. The nonideality
parameter estimated for these conditions is G � � 150 ± 200
for a partial plasma degeneracy n�l 3 � 1.

It is believed that the resultant thermodynamic and
electrophysical measurement data are testimony to the
experimental recording of a phase transition in a nonideal
plasma subjected to multistage shock compression.

The shock compression [77] of `simple' metals revealed an
amazing and nontrivial behavior of degenerate strongly
nonideal plasmas in the megabar pressure range [75 ± 77].
According to the notions which had existed to that point, the
electronic properties of alkali metals are described by the
simplest model of a uniform electron Fermi gas with point-
like ions residing inside of it. However, modern sophisticated

quantum-mechanical models [75, 76] predict the formation of
complex crystal structures with large coordination numbers
at high pressures, in which `pairing' of conduction electrons
occurs and, as a consequence, there is a lowering of the
conductivity in the 0.3 ± 1.0 Mbar pressure range.

Experiments in the quasiadiabatic compression of Li, Na,
and Ca performed in this dynamic pressure range [16, 77, 76]
reliably demonstrated this unusual effectÐ the pressure-
induced `dielectrization' of simple metals [16, 77, 76]
(Fig. 19b). One can see that the compression of these metals
initially lowers their conductivity (`dielectrization') and then,
beginning from 1.2 ± 2 Mbar they return once again to the
`metallic' state, which would supposedly persist under further
compression.

To study the `temperature' ionization of dense plasmas,
experiments were staged in the shock-wave compression of
heavy rare gases, whose large molecular weight makes their
shock-induced heating especially efficient. The `Coulomb'
contribution (caused by electron scattering from charges) of
static plasma conductivity derived from the experiments is
shown in Fig. 19c in the dimensionless form: s�� sk=op (sk
is the Coulomb contribution of the conductivity, op �
�4pe 2n 2

e =m�1=2 is the Langmuir frequency). One can see that
the experiments cover a wide parameter range, including the
high-density (up to 3 g cmÿ3) and substantial plasma
nonideality (G > 10) domain. In this domain, the existing
conduction models lead to absurd results (the Spitzer and
Coulomb divergences) arising from the overestimation of the
Coulomb scattering and screening in these models [4, 14, 42].

Subsequently, these conductivity measurements were
supplemented with highly informative measurements of the
Hall conductivity of shock-compressed plasma [78] in a
longitudinal magnetic field, which permitted determining
the carrier density as is customary in semiconductor physics
[65] (Fig. 20a).

Measuring the resonance (for o laser � op) laser radiation
reflection from a shock-compressed plasma enables obtaining
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independent information about the number of `free' electrons
and the electron collision frequency, thereby indirectly
verifying the models of plasma ionization and scattering in a
nonideal plasma. Referring to the data in Fig. 20b, the plasma
reflectivity increases with density to attain high values
characteristic of metallic mirrors.

Measurements of the optical properties of strongly
compressed plasmas also yielded quite unexpected results.
According to the notions elaborated for nonideal plasmas
[57], increasing density should strengthen opacity due to the

broadening of spectral lines and the shift of the bremsstrah-
lung continuum. However, experimental data have shown [4,
21] that in some cases the broadening effects are less
pronounced, while the highly excited states themselves may
be missing from the spectra observed (Fig. 20c). The matter is
that strong interparticle interaction in nonideal plasmas is
responsible for the shift, broadening, and `solution' of
spectral lines (Fig. 17e) as indicated by the observed emission
spectra of hydrogen (Fig. 20c), argon (Fig. 20d), aluminum,
and xenon plasmas. These subtle effects are partly described
by a confined atom model [4, 14, 42].

In the context of this model [4, 14], the plasma are treated
as an equilibrium mixture of electrons, ions, and neutrals.
Their internal electronic structure was calculated by the
quantum-mechanical Hartree ±Fock technique, which per-
mits calculating, subject to the corresponding boundary
conditions, the wave functions and the energy levels
(Figs 17e and 17f) and then the corresponding oscillator
strengths of spectral lines and the cross sections for excita-
tion and ionization [14, 81]. These calculations are exempli-
fied for argon plasmas in Fig. 20d, which clearly shows the
effect of `forcing-out' of the energy levels responsible for its
`blooming' (`transparentization').

To study the physical properties of materials in a wide
range of the phase diagram, method of adiabatic expansion,
(see Refs [4, 19, 26, 27]), was proposed which relies on the
production of high-energy states by the adiabatic expansion
of a material preliminarily compressed and heated at the
shock front to pressures ranging into the megabars (Fig. 21a).
This method permits obtaining in dynamic experiments the
states of a strongly nonideal plasma that are intermediate
(Fig. 5) between a strongly compressed state and rarefied
metal vapor, including themetal ± dielectric transition region,
which is extremely difficult to study, and the high-tempera-
ture portion of the boiling curve in the neighborhood of the
critical points of metals. This experimental method enables us
to continuously connect two extreme states of matterÐ
condensed-density megabar-pressure nonideal plasmas and
the low-temperature rarefied metal vapor domains. It is
significant that in this way it is possible to investigate the
otherwise inaccessible high-temperature portion of the boil-
ing curve of metals up to their critical point [82], where the
substance is highly ionized, stimulating the fast kinetics of
phase transformations [26, 27]. Several experimental results
on the adiabatic expansion of uranium are presented in
Fig. 21a, where advantage was taken of the shock compres-
sion of a porous specimen to increase the entropy of the initial
states prepared for the subsequent expansion. One can see
that the lower portions of adiabats S1 and S4 enter the two-
phase domain to give rise to jumps in adiabatic expansion
velocity (the right-hand side of Fig. 21a).

Direct measurements of the effective glow temperature
Tef of an adiabatically expanding bismuth plasma yield
information about the optical properties of nonideal
plasmas [83]. The expansion from shock-compressed states
for a pressure of � 3:6 Mbar corresponds to the realization
of essentially supercritical bismuth plasma states, where the
nonideality effects are not so significant and the observed
temperature corresponds to an standard [57] calculation,
which takes into account free ± free (f ± f) and bound ± free
(b±f) transitions. The expansion from lower pressure states
(pH � 2:8 Mbar) corresponds to trancritical states, where
nonideality effects markedly affect the discrete energy
spectrum and exclude it (as with experiments on the shock-
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compressed plasma of H2 (Fig. 20c), Ar (Fig. 20d), Xe, and
Al) from photoabsorption.

A characteristic feature of the high-temperature evapora-
tion of metals and their oxides consists in the fact that in the
trancritical region these materials vaporize directly to the
plasma phase rather than the unionized vapor state, as
happens with the majority of other materials [82]. This leads
to several interesting phenomena like the fast kinetics of

evaporation and condensation [26, 27] or `incongruent'
phase transitions caused by ionization and plasma nonide-
ality [84].

The experimental data (Figs 21a and 21b) obtained via the
dynamic technique of adiabatic expansion were employed for
constructing semiempirical wide-range material equations of
state [85]. Having been derived for the numerical simulation
of high-energy processes and for engineering calculations,
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these equations of state provide a consistent description of all
four (solid, liquid, gas, and plasma) states of matter,
reproduce the available data of static and dynamic experi-
ments, and reproduce phase transitions (melting, evapora-
tion, ionization, and polymorphism). In the ultrahigh-

pressure and temperature domain, these equations of state
exhibit correct asymptotics to a Thomas ±Fermi ultrastrong-
compressed substance and Debye ±HuÈ ckel quasi-ideal
plasma models.

The information sources employed for the construction of
semiempirical equations of state are collected in Table 3, and
Fig. 21c shows the form of the corresponding thermodynamic
surface.

7. Conclusion

The use of shock waves in plasma physics hasmade it possible
to obtain in laboratory conditions states of matter with
extremely high energy densities typical for of the first seconds
of the expansion of the Universe after the Big Bang and the
states typical for such astrophysical objects as stars, giant
planets, and exoplanets.

The information gained in dynamic experiments substan-
tially broadens our basic notions about the physical proper-
ties of matter in a vast domain of the phase diagram up to
ultrahigh pressures, which exceed the atmospheric pressure
by 10 orders of magnitude, and to temperatures exceeding the
human body temperature by 7 orders of magnitude.

Naturally, this difference in scales is amazing. However,
Voltaire advised us to remember that ``...in nature this
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Table 3. Source data for the construction of semiempirical wide-range
equations of state.

Static
experiments:

� isotherms T � 293 K
� pressure in the melting curve
� volumes and enthalpy in the melting
� boiling temperature at P � 1 atm
� binding energy
� electron conductivity

Dynamic
experiments:

� shock adiabats of a solid specimen
� shock adiabats of a porous specimen
� expansion adiabats
� electric explosions of conductors
� shock compression temperature
� speed of sound in shock-compressed state

Theoretical
asymptotics:

� Thomas ëFermi theory with quantum and
exchange corrections
� plasma ionization model
� electronic spectrum at low temperatures
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phenomenon is perfectly natural and commonplace. The
domains of some rulers in Germany and Italy, which can be
circled in about a half hour, when compared with the empires
of Turkey, Moscow, or China, give only a faint idea of the
remarkable contrasts that are hidden in all of nature'' [86].

We see that each time we break into a new domain of the
state of matter the plasma properties we measure turn out to
be highly unusual and, as a rule, in sharp contradiction with
the notions and models elaborated earlier. And this is
precisely what makes the advance along the plasma tempera-
ture and pressure axes an especially exciting and fascinating
task.

Due to space limitations, in this paper I could touch upon
only the research I myself participated in or upon closely
related works. Substantially more information on the physics
of nonideal plasmas may be obtained from the reviews and
monographs cited here.

I wish to express my deep gratitude to my colleagues
and friends with whom numerous experiments and calcula-
tions were made: L V Al'tshuler, V Mintsev, V Gryaznov,
G Kanel', I Iosilevskii, B Lomakin, A Starostin, Yu Ivanov,
V Ternovoi, I Lomonosov, G Norman, P Levashev,
V Bespalov, S Anisimov, A Leont'ev, V Yakushev, V Post-
nov, R Il'kaev, A Bushman, R Trunin, A Mikhailov,
M Mochalov, M Zhernokletov, D Hoffmann, M Kulish,
WEbeling, RRedmer, GReÂ pke, B Sharkov, V Sultanov, and
my other colleagues.
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