
Abstract. Application of the impedance model to typical quan-
tum-mechanical barrier problems, including those for structures
with resonant electron tunneling, is discussed. The efficiency of
the approach is illustrated. The physical transparency and
compactness of the model and its potential as a teaching and
learning tool are discussed.

1. Introduction

`Barrier' problems of quantummechanicsÐ that is, problems
on quantum-mechanical motion in a medium with jumps in
the potentialÐ are used as model problems in many scientific
and technical applications. They are extremely important
both from the methodical and pedagogical viewpoints,
especially in connection with modern R&D in nanotechnol-
ogy.

The special features of barrier problems stem from the
interaction of the fields of waves reflected from the potential
jumps. When the interference of the reflected waves is in
phase, the barrier penetration coefficient is zero for an infinite
periodic structure and is minimal for a finite one. When the
interference of the reflected waves is in antiphase, the waves
fully compensate each other, so that the incident wave
resonantly penetrates (by either tunneling through or passing
above) the barrier structure. Such interaction of the reflected
waves leads to the formation of forbidden and allowed bands
in natural crystals and artificial crystal-like structures
(semiconductor superlattices, photon and phonon crystals).
Artificial crystal-like structures form the base of various new
nanoelectronic signal-processing devices.

The common solution to barrier problems by joining the
solutions in regions with different potentials and accounting
for the boundary conditions requires carrying out cumber-
some transformations. Khondker et al. [1, 2] proposed using
the impedance concept for a quantum-mechanical wave. This
model has important physical meaning, possesses sweeping
generality, being based on the impedance concept, and makes
it possible to use the tools of the theory of transmission lines,
thus simplifying the solution process. Despite the obvious
merits, such an approach to solving quantum-mechanical
problems has not gained wide acceptance. In the present note,
I use the impedance model to solve typical barrier problems,
including those involving structures with resonant electron
tunneling. Such tunneling forms the base of signal-processing
nanoelectronic devices. Figure 1 illustrates the problems
examined in this paper.

2. Quantum-mechanical impedance

Impedance (from the Latin impedio, meaning opposing)
characterizes the reaction of a medium to a wave perturba-
tion. At the boundary between media with different impe-
dances the forces of the wave perturbation and medium
reaction differ, which results in the emergence of a reflected
wave.

To define quantum-mechanical impedance, let us examine
the passage of an electron through the boundary between two
media, I and II, with different potentials. We place the
boundary between the media with a potential step of height
V at point x � 0 (Fig. 1a). In medium I, the electron wave
function is given by the formula

c � exp �ikx� � r exp �ÿikx� : �1�

Here, k � ����������
2mE
p

=�h, with m the effective electron mass and E
the electron energy, and r is the reflection coefficient. The first
term on the right-hand side of Eqn (1) represents the incident
wave, and the second represents the reflected wave. Accord-
ing to Ref. [3], r � �1ÿ r�=�1� r�, where r � ������������������������Eÿ V �=Ep
(the case considered in Ref. [3] corresponds to E > V, but the
formula is valid for E < V, too). If the effective electron
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masses mI and mII in media I and II differ, then
r � �����������������������������������

mI�Eÿ V �=mIIE
p

[1].
Equation (1) is similar to that for the current in a

transmission line with distributed parameters (a long trans-
mission line). Here, r � Zload=Z, with Zload being the load
impedance, and Z the wave impedance of the line. Compar-
ison of the expressions for r in the cases of quantum-
mechanical and electromagnetic waves suggests that the
quantum-mechanical impedance Z � �������������������������Eÿ V �=mp

. The
absolute value of the quantum-mechanical impedance can
be found by equating the probability density flux in the
quantum-mechanical medium to the mean power in the
equivalent transmission line [1, 2]: Z � 2

��������������������������
2�Eÿ V �=mp

.
Let us clarify how the wave penetrates through the

boundary between media I and II (e.g., quantum-mechan-
ical waves with E > V). The penetration coefficient tII, equal
to the amplitude of the transmitted wave for a unit
amplitude of the incident wave, is determined from the
boundary conditions: tII � 1� r � 2=�1� r�. In accor-
dance with energy conservation law, the amplitude of the
wave transmitted from medium I to medium II from the side
of medium I is tI �

�������������
1ÿ r 2
p

� 2
���
r
p

=�1� r�. Clearly,
tII � tI=

���
r
p

. Thus, in view of the difference in the impe-
dances of the media, the amplitude of the transmitted wave
undergoes a transformation at the boundary between the
media, and the coefficient of this transformation is equal to
the square root of the impedance ratio. The transformation
of the transmitted wave is accompanied by the generation of
a reflected wave.

The formula that expresses the reflection coefficient in
terms of the impedance ratio is universal for waves of
different origins. The sign in front of the expression depends
on the physical quantity characterized by the wave. For waves
with a reflection coefficient equal to ÿr (for example, the
voltage in the transmission line or the normal component of
the electric field strength vector in an electromagnetic wave),
tII � 2r=�1� r� � ���

r
p

tI. In this case, the transformation
coefficient is equal to

��������
rÿ1

p
.

Within the framework of the impedance model, the
regions of quantum-mechanical media with different poten-
tials and effective electron masses are modelled by segments
of a transmission line with different impedances. Analysis of
the quantum-mechanical structure is reduced to an analysis
of a nonuniform transmission line. Since the characteristics
of reflection and transmission depend not on the absolute
values of the impedances of the media but also on their
ratios, the use of normalized impedances simplifies calcula-
tions.

The impedance model based on the concept of quantum-
mechanical impedance and on transmission-line theory is a
physical one, in contrast to the commonly used mathematical
matrix model.

3. Classical barrier problems

3.1 Single-barrier structures
Let us discuss some typical educational problems, namely, the
passage of an electron through symmetric and asymmetric
single-potential barriers. Within the framework of the
impedance model, the expression for the reflection coeffi-
cient is derived very simply, in contrast to the much more
complicated calculations that have to be done in the
traditional model. In analyzing the results, we will focus on
an important physical effect, viz. the resonant above-barrier
passage of electrons.

Figure 1b illustrates the case of a symmetric single barrier.
The regions occupied by the barrier and the ambient have
different impedances. Let us normalize the barrier impedance
to the ambient impedance. The normalized input impedance
at the barrier's boundary for a wave propagating from left to
right is given by

ZI � Zÿ Z 2A

Zÿ A
: �2�

Here, Z � ��������������������������������
m�Eÿ V �=m1E

p
is the normalized barrier

impedance, with m and m1 being the effective electron
masses in, respectively, the ambient and the barrier, while
V being the barrier height, and A � tanh �ik1a�, with k1 ���������������������������
2m1�Eÿ V �p

=�h being the wave number in the barrier
domain, and a the barrier thickness. Notice that
Z � k1m=km1, where k � ����������

2mE
p

=�h is the wave number in
the ambient. The ratio corresponding to Z is present in the
well-known final expressions for barrier problems. Thus, by
normalizing the impedance at the beginning of calculations
we achieve compactness of the solution. For E < V, the
impedance and the wave number in the barrier domain are
imaginary quantities, which corresponds to electron tunnel-
ing.

The reflection coefficient is represented by the formula
R � �1ÿ ZI�=�1� ZI�. Substituting expression (2) into this
formula, we get

R � �Z 2 ÿ 1�A
2Zÿ �Z 2 � 1�A : �3�

Equation (3) generalizes tunneling and above-barrier passage
of electrons and also takes into account the difference in the
effective electron masses in the ambient and the barrier
domain. It is also valid for a potential well if k and m, and k1
and m1 are interchanged in the expressions for Z and A.

If m � m1, we have Z � k1=k, and since tanh ix � i tan x,
Eqn (3) becomes

R � �k 2 ÿ k 2
1 � sin k1a

�k 2 � k 2
1 � sin k1a� 2ikk1 cos k1a

:

This is the well-known expression for reflection from a
potential barrier [3].

According to energy conservation law, jRj2 � jT j2 � 1,
whereT is the penetration coefficient. In the case of tunneling,
jT j5 1, so that jRjÿ2 � 1� jT j2. Simple transformations in

a
V

0 x

I II

b

Z 11

c

Z1 Z

d

ZIII ZIIZI

e f

Figure 1. Various barrier problems (the behavior of the potential is shown

by the solid line). (a) Potential step. (b) Symmetric potential barrier and

the transmission line that models it; 1 and Z are the normalized

impedances of the ambient and the barrier. (c) Potential barrier with

different base heights; Z1 is the normalized impedance of the ambient to

the left of the barrier. (d) Symmetric double-barrier structure with

resonant electron tunneling; ZIÿZIII are the normalized input impe-

dances at the barrier boundaries. (e) and (f) Symmetric single-barrier

structures with resonant electron tunneling.
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formula (3) yield

jT j � 2
jZj

�����������������eAÿ2 ÿ 1
p
jZj2 � 1

;

where eA � tanh wa, with w � ��������������������������
2m1�Vÿ E �p

=�h. At m � m1,
bearing in mind that cosh2 xÿ sinh2 x � 1 and wa4 1, we
arrive at the well-known formula [3]

jT j � 4

���������������������
E�Vÿ E �p

V
exp �ÿwa� ;

which we can write down as

jT j � 4

��������������������
Ê�1ÿ Ê �

q
exp

ÿÿ5:1 ������������
1ÿ Ê

p ����
V
p

a
�
: �4�

Here, Ê � E=V, m � m0, where m0 is the electron rest mass,
the height of barrier V is measured in electron-volts, and the
barrier width a is measured in nanometers. At Ê � 0:5, we
have jT j � 2 exp

ÿÿ3:6 ����
V
p

a
�
. The values of V � 0:4 eV,

Ê � 0:5, and a � 6 nm correspond to jT j � 2� 10ÿ6.
When electrons pass above the barrier �E > V �, we obtain

A � i tan k1a. If a � nl1=2, where n � 1; 2; . . . , and l1 is the
electron wavelength in the barrier domain, we haveA � 0 and
R � 0, which constitutes the condition for resonant above-
barrier passage of electrons in the general case. It should be
noted that at k1 � 0 the reflection coefficient R 6� 0.

In the particular case where m1 < m, at an appropriate
value of E the impedance Z � 1, which also corresponds to
resonant above-barrier passage of electrons.

Resonant passage of waves is of utmost importance in the
formation of the characteristics of wave structures. Let us
focus on the physical features of the conditions necessary for
such passage. The key issue here is the presence of a standing
wave. The jumps in the barrier potential form a cavity. At the
cavity's eigenfrequencies which correspond to resonant
passage, a standing wave forms in the cavity. A cavity with a
standing wave is a source of waves proper with respect to the
potential barrier (to the wave structure in the general case). At
the cavity's eigenfrequencies, the wave reflected from the
barrier is compensated for by the antiphase wave emitted by
this source. Thus, in the case of resonant passage, the
compensation of the nonuniformities in the wave perturba-
tions of the incident wave at the medium boundaries stems
from the perturbations of the standing wave, so that the
incident wave penetrates through these boundaries as if the
medium was uniform and no reflections occurred.

To put it differently, the jumps in the properties at the
boundaries of the media act as intrinsic sources of waves, viz.
reflected waves. In resonant passage, the action of (the
radiation emitted by) the intrinsic sources is compensated
for by the action of (the radiation emitted by) the natural
source (or sources). This conclusion is universal for wave
structures of different origins. Resonant tunneling, which is
considered below, can also be explained by such self-
compensation.

In the case of a potential barrier with different base
heights (Fig. 1c), we allow for relationship (2) and get

R � Z1 ÿ ZI

Z1 � ZI
� Z1 ÿ 1ÿ �Z1=Zÿ Z�A

Z1 � 1ÿ �Z1=Z� Z�A : �5�

This solution generalizes the particular solutions that depend
on the ratio between the electron energy and the heights of the
barrier and bases. In Ref. [4], where the traditional method
was employed, these solutions are cumbersome, were derived

as a result of cumbersome transformations, and hold only for
equal effective electron masses in the different regions. In the
process, the conditions necessary for resonant above-barrier
passage of electrons remained unnoticed.

If the potential barrier is asymmetric (and generally this is
the case), the conditions necessary for resonant passage are
violated. The coefficient of reflection from one boundary is
smaller than that from the other boundary. In view of such a
decrease, the Q-factor of the natural source is too small to
compensate for the perturbations of the incident wave at a
boundary with a large reflection coefficient. Equation (5)
shows that generally the reflection coefficient cannot be equal
to zero, since the term Z1 ÿ 1 in the numerator is real-valued,
and the next term is imaginary.

In two particular cases, resonant passage is possible only
for one energy value (different in these two cases). Here, the
effective electron mass to the left of the barrier must be
smaller than that to the right, and the following conditions
must be met: Z1 � 1, A � 0 or Z � Z1 � 1. The last
conditions assume that the effective electron mass in the
barrier domain is smaller than in the region to the left of the
barrier.

Resonant passage through an asymmetric barrier is of a
single-mode nature (occurs at a single energy value), in
contrast to the multimode nature of such passage through a
symmetric barrier. The single-mode nature of resonant
passage makes it possible to realize a single-band transmis-
sion characteristic in applications.

3.2 Double-barrier structure
with resonant electron tunneling
The symmetric double-barrier structure is central to under-
standing the physical bases of the formation of band
diagrams, of the principles on which nanoelectronic devices
work, and of the methods of designing such devices. A
remarkable phenomenon occurs in this structure, namely,
resonant electron tunneling in which penetration coefficient is
equal to unity. When tunneling occurs through a single
potential barrier, the penetration coefficient is extremely
small, equal to about 10ÿ6. It would seem that adding
another barrier should decrease penetration coefficient.
However, at certain energies the penetration coefficient of
the double-barrier structure is equal to unity. In textbooks,
only the particular case of a delta-function barrier is
examined [3]. The impedance model leads to new results,
i.e., to analytical expressions for the reflection coefficient and
the eigenvalues of the double-barrier structure.

When examining the double-barrier structure (Fig. 1d),
we must find, in succession, the normalized input impedances
ZIÿZIII at the barrier boundaries. Doing the necessary
transformations, we obtain

ZIII � Z
Z 3A2Bÿ Z 2AB� 2Z 2Aÿ ZA2 � ZBÿ Zÿ AB

ÿZ 3ABÿ Z 2A2 � Z 2Bÿ Z 2 ÿ ZAB� 2ZA� A2B
;

where B � i tan kb, with b being the width of the potential
well.

The reflection coefficient

R � 1ÿ ZIII

1� ZIII

� �1ÿ Z 2��2Z� �Z 2 � 1�AB�A
�Z 4 � 1�A2B� 2Z

���Z 2 � 1�Aÿ Z
��1ÿ B� ÿ ZA2

	 :
�6�
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The condition R � 0 determines the expressions for the
eigenvalues

AB � ÿ 2Z

Z 2 � 1
; E > 0 ; �7�

and A � 0 or Z � 1, for E > V. The last expressions
correspond to the eigenvalues for a single barrier. Notice
that at E � 0 the reflection coefficient R � 1.

Incidentally, Eqn (7) can be transformed to the form
AB � �r 2 ÿ 1�=�r 2 � 1�, where r � �1ÿ Z�=�1� Z� is the
coefficient of reflection from a potential jump of height V.
Thus, within the framework of the impedance model, the
eigenvalues of the symmetric double-barrier structure are
determined by the relative barrier impedance or the coeffi-
cient of reflection from the potential jump. This conclusion
illustrates the fact that the physics of the impedance model is
clear-cut.

At m � m1, Eqn (7) yields

tanh wa tan kb � 2Z
1ÿ Z2

�
���������������������
E�Vÿ E �p
Eÿ 0:5V

; �8�

where Z � w=k. In the tunneling range, which is of the most
interest to us and is examined below, w is real.

For wide barriers, where wa0 1, which corresponds to
a0l1=p, tanh wa � 1 and formula (8) is consistent with the
well-known expression for a potential well [5].

In the case of narrow barriers, where wa5 2, we
have tanh wa � wa, and Eqn (8) becomes tan kb � k�h 2=�
am�2Eÿ V ��. For a delta-function barrier, described by
the function ad�x� (here, a > 0 is a constant), one finds
V � a=a, a! 0. Here, tan kb � ÿk�h 2=am, which coincides
with the results obtained in Ref. [3].

We rewrite Eqn (8) in the form

0 � cosh wa cos kbÿ 1ÿ Z 2

2Z
sinh wa sin kb : �9�

The right-hand side of Eqn (9) is the dispersion characteristic
of a periodic superlattice formed by alternating barriers and
wells [6]. The dispersion characteristic, viz. the function
E�K�, where K is the Bloch wave number, represents the
band energy spectrum of the superlattice. The left-hand part
of the dispersion characteristic contains cosKL, where
L � a� b is the structure's period. At the edges of the
forbidden bands, one has j cosKLj � 1, or KL � nfp
(where nf � 1; 2; . . . is the number of the forbidden band).
Equation (9) corresponds to the values of the dispersion
characteristic near the middles of the allowed bands at
cosKL � 0, or KL � �2na ÿ 1�p=2 (with na � 1; 2; . . . being
the number of the allowed band). The above conditions
imposed on KL in the forbidden and allowed bands
correspond to in-phase and antiphase interference of the
reflected waves. Antiphase interference conforms to reso-
nant electron tunneling. Thus, the expression obtained for
the eigenvalues of the double-barrier structure Ð the base
cell of a superlattice Ð is directly related to the superlattice's
dispersion characteristic.

Let us recast Eqn (8) to the form

thg ppx tan px �
�������������������
Ê jÊÿ 1j

q
Êÿ 0:5

; �10�

where

thg x � tanh x ; Ê < 1 ;

tan x ; Ê5 1 :

�
Here, x � kb=p and p � jÊÿ1 ÿ 1j1=2 a=b. Since x � 2b=l (l is
the electron wavelength in the potential well), x � 1; 2; . . . is
the number of electron half-waves that fit into the potential
well. If we allow for the E-dependence of k, we arrive at
x�Ê � � x�V �Ê 1=2, where x�V � � ����������

2mV
p

b=p�h.
Figure 2a depicts the dependence of the normalized

eigenvalues of the double-barrier structure according to
expression (10) at a � b, and the function x�Ê � at x�V � � 2.
In their entire range, the eigenvalues vary from values that are
approximately equal to the eigenvalues of the structure's
potential well to values determined by the condition of
mutual compensation for the four waves reflected from each
potential jump of the structure: x � n=4, with n � 1; 3; . . . .
The Ê < 1 range conforms to resonant electron tunneling.
The complete spectrum of the eigenvalues of the double-
barrier structure also incorporates the eigenvalues of a single
barrier in the form of vertical lines located at the points
x � 1; 2; . . . in the Ê > 1 range.

The points where curves 1 and 2 intersect determine the
eigenvalues Ê1 � 0:14 and Ê2 � 0:54 at x�V � � 2. This value
of x�V � corresponds to, say, the following parameters:
V � 0:24 eV, a � b � 25 A

�
, and m � m1 � m0.

0

2

1

1 2

a

x
3

Ê

Ê2

Ê1

1

2

0

10

blgT

ÿ2

ÿ4

ÿ6

Ê1 Ê2
Ê

1

2

Figure 2. Characteristics of the symmetric double-barrier structure.

(a) Dependence of the normalized eigenvalues (curves 1) on x and the

function x�Ê � (curve 2). (b) Penetration coefficient of the double-barrier

structure as a function of the normalized electron energy (curve 1) and that

of a barrier of double thickness (curve 2).
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Figure 2b illustrates the dependence of the penetration
coefficient of the double-barrier structure at x�V � � 2 and
that of a single potential barrier on the normalized electron
energy. The Ê1 and Ê2 values comply with those in Fig. 2a.
The single barrier is double the thickness of the structure's
barrier and conforms to a double-barrier structure without
the potential well. Curve 2 was calculated using the approx-
imate formula (4). The results of calculations by the exact and
approximate formulas coincide. As expected, comparison of
the curves shows that far from the eigenvalues of the double-
barrier structure the potential well has practically no effect on
the transmitted wave.

4. Single-barrier structures
with resonant electron tunneling

Analysis of the features of resonant electron tunneling in the
double-barrier structure suggests new simple structures with
such tunneling Ð symmetric single-barrier structures.

Just as with resonant passage of waves, resonant tunnel-
ing is caused by the compensation of the reflected waves as a
result of the formation of a natural compensating source of
waves, namely, a resonance region with a standing wave. In
the double-barrier structure, the cavity forming the standing
wave is placed inside the barrier, so that two barriers with a
potential well between them are formed. We denote such a
structure by the abbreviation TCT, where T stands for a
tunnel barrier, and C for the cavity corresponding to the
potential well. Another solution reduces to placing the barrier
in the field of the cavity's standing wave. This results in
obtaining symmetric single-barrier structures with potential
wells, CTCw, and with steps, CTCs (Figs 1e and f).

For a CTC-structure we have

R �
n��Z 2

1 ÿ Z 4�A2 � Z 2�1ÿ Z 2
1 �
�
Bÿ 2ZZ1�Z 2 ÿ 1�A

o
�
n��Z 4 � Z 2

1 �A2 ÿ 2Z�Z 2 � Z 2
1 �A� Z 2�Z 2

1 � 1��B
� 2ZZ1

��Z 2 ÿ ZA� 1�Aÿ Z
�oÿ1

: �11�

Similar to a TCT-structure, the outer regions have an
impedance Z, a factor A, and a thickness a, while the inner
region has Z1, B, and b. As expected, Eqn (11) coincides
with Eqn (6) at Z1 � 1. The eigenvalues are given by the
formula

B � 2ZZ1�Z 2 ÿ 1�A
�Z 2

1 ÿ Z 4�A2 � Z 2�1ÿ Z 2
1 �
: �12�

Let us rearrange Eqn (12) for the case of equal effective
masses in different regions. For the CTCw-structure subject to
the condition V � Vw, where V is the height of the barrier
measured from the top of the potential well, and Vw is the
depth of the well, we have

thg ppx �
��������������������
jÊÿ2 ÿ 1j

q
sin 2px

2ÿ cos 2px� Êÿ1
; �13�

where

p �
���������������
jÊÿ 1j
Ê� 1

s
b

a
:

For the CTCs-structure with the step height Vs � 0:5V, we
obtain

thg ppx �
2

���������������������������������������
2jÊÿ2 ÿ 3Êÿ1 � 2j

q
tan px

4ÿ Êÿ1 tan2 px� 2Êÿ1
; �14�

where

p �
����������������
jÊÿ 1j
Êÿ 0:5

s
b

a
:

Figure 3 depicts the dependence of the eigenvalues of
CTC-structures according to Eqns (13) and (14). The plots
make it possible to determine the eigenvalues of a structure in
a way similar to Fig. 2a. The curves can also be used to
synthesize structures with fixed eigenvalues.

Figure 4 shows the dependence of the reflection coefficient
of CTC-structures. The potential wells and barriers are
formed by layers of GaAs and AlxGa1ÿxAs, respectively.
The effective electron mass in GaAs is m � 0:0665m0, and
that in AlxGa1ÿxAs is m1 � �0:0665� 0:0835�m0 [8]. The
values of V and x are related as follows: V � 0:7731x [9].
For the sake of comparison, Fig. 4a portrays the dependence
of the reflection coefficient of a potential barrier with the
parameters of the barrier in the CTCw-structure. Each CTC-
structure exhibits two levels of resonant electron tunneling.

Symmetric single-barrier structures with resonant tunnel-
ing are of interest as possible basic structures used in signal-
processing devices for various waves. The idea of selective
devices based on such structures amounts to the following.

Ê

1.2 2.00.4

2.0

1.5

1.0
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b

1 2 2

0.250.05 0.45
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Ê
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13 2

Figure 3.Dependence of the normalized eigenvalues of CTC-structures on

x. (a) CTCw-structures with a=b � 1, 2, and 0.6 (curves 1, 2, and 3,

respectively). (b) CTCs-structures with a=b � 5 and 10 (curves 1 and 2,

respectively).
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The transmission band corresponds to resonant tunneling.
Penetration coefficient at a resonance frequency is equal to
unity. Outside the transmission band, the tunnel barrier has
exceptionally low penetrability, which ensures substantial
signal attenuation.

5. Modeling crystals
and semiconductor superlattices

Themodern theory of metals, semiconductors, and insulators
proceeds fromband theory. The study of the physical grounds
and the modeling of band diagrams are of utmost importance
in educating specialists in physics and technology. Such
knowledge becomes especially significant in connection with
intensive R&D in signal-processing nanoelectronic devices.

A deep understanding and themastering of this subject, as
well as the building of constructive physical analogs, are
guaranteed if one employs the wave interference approach
[10]. Focusing on the similarity of crystals and wave filters is
also important [11]. Yariv [6] used the matrix model to
develop a theory that explains the propagation of electrons
in periodic structures formed by potential barriers and wells.
On the basis of this model, Brennan [12] developed, for
educational purposes, a computer program based on the
FORTRAN programming language in order to be able to
model the formation of band diagrams of crystals and the
characteristics of semiconductor superlattices. The impe-
dance model reduces the program from five pages to one by
using the FORTRAN language, and to half a page by using

Mathcad. Here, in contrast to Ref. [12], above-barrier
passage of electrons is included in the picture. The matrix
and impedance models yield identical results, which makes
bench tests possible.

Figure 5 displays the dependence of the penetration
coefficient of a superlattice calculated by the impedance
model. The results illustrate the formation of a band
diagram. Sections with penetration coefficients close to
unity correspond to allowed bands, and those with small
penetration coefficients to forbidden bands. The first allowed
band with E < V is formed due to resonant electron
tunneling, and the second is formed due to resonant above-
barrier passage of electrons.

This characteristic is typical for educational purposes. In
their laboratory work involving the study of band diagrams
of crystals and semiconductor superlattices, students investi-
gate resonant tunneling and above-barrier passage of elec-
trons, as well as specific characteristics of passage and
reflection, depending on the parameters of the structures.

One must bear in mind that resonance effects are narrow-
band, so that the density of the computed pointsmust be high.
And because this density in the dependence in Fig. 2 taken
from Ref. [12] was not sufficiently high, the maximum of the
penetration coefficient is noticeably smaller than unity,
despite resonant electron tunneling.

Forming the necessary characteristics of superlattices
requires apodization, or varying the parameters of the
potential wells and barriers. Amplitude apodization of super-
lattices has been examined in Ref. [13], phase apodization in
Ref. [14], and edge apodization in Ref. [15].

6. Conclusion

The impedance model provides a new approach to the barrier
problems of quantum mechanics, brings us closer to under-
standing the peculiarities of the formation of band diagrams
of crystals and the characteristics of crystal-like structures,
and simplifies modeling. Using thismodel, a student canwrite
and compile, on their own computer, programs that enable
him or her to simulate various scenarios and analyze the
results. Programming in theMathcadmedium becomes much
simpler: because of the automatic transformation of imagin-
ary arguments there is no need to study resonant tunneling
and above-barrier passage of electrons separately. Problems
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Figure 4. Dependence of reflection coefficients of CTC-structures on

electron energy. (a) A CTCw-structure (curve 1) and a potential barrier

(curve 2): a � 48d, b � 6d, where d is the thickness of the GaAsmonolayer

in the [100] direction (d � 2:82665 A
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Figure 5. Dependence of the penetration coefficient of a superlattice

formed by GaAs and AlxGa1ÿxAs layers on electron energy. The number

of barriers equals 10, a � 5d, b � 20d, and V � 0:2 eV.
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associated with modeling apodized superlattices and other
crystal-like structures and devices based on them form a large
body of degree works of students.
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