
Abstract. The three known property-specific definitions for
forward and backward waves propagating through various
media and waveguides are reviewed. Criteria by which these
waves can be identified according to their definitions are intro-
duced. It is shown that in some cases using these criteria
simultaneously can yield inconsistent or even opposite results.
Usability conditions and ranges of applicability of these criteria
and the above definitions are specified by employing the exam-
ple of electromagnetic waves and waveguides.

1. Introduction

There are three different definitions of forward and backward
time-harmonic waves propagating in various media and
wave-channeling structures Ð waveguides. The first defini-
tion, which can be thought of as classical [1 ± 4], amounts to
the following. A wave is considered a forward (backward)
wave if the directions of its phase and group velocities are the
same (opposite). It is implicitly assumed that the velocities,
being vector quantities, are collinear. This definition is
generalized in a natural manner to the cases of noncollinear
velocities: the scalar product of the phase and group velocities
is positive for a forward wave, and negative for a backward
wave [5].

Another definition differs from the one given above in
that the direction of the group velocity is replaced with the
direction of the wave energy (power) flux [6]. And, finally, the

third definition differs from the classical one (and the second
one) in that the direction of the group velocity (and of the
energy flux) is replaced with the direction of exponential
decay of the wave's field, caused by dissipation and absorp-
tion of the wave energy in the medium or waveguide [7, 8].
And although at first glance the three definitions do not differ
very much from the standpoint of physics, they must be
distinguished because they are related to different properties
of the wave. Onemust also distinguish the conditions inwhich
they can be applied.

The first definition is based on the dispersion properties of
the wave propagation constant with respect to frequency. The
group velocity characterizes the process of propagation of a
group of harmonic waves in the description of pulse
propagation [9]. This definition is usually utilized when the
loss in wave energy in the medium or waveguide is not taken
into account. In this case, the group velocity proves to be
equal to the energy velocity of the wave, i.e., the rate at which
the wave transfers its energy [9 ± 17]. The second definition is
based directly on the energy properties of waves and can also
be used when energy loss is taken into account. The third
definition is grounded on the analytical properties of the
complex-valued wave propagation constant [7, 8]. It is
applied when describing waves with allowance for losses or,
as is usually said, in lossy media and waveguides.

On the whole, the above definitions of forward and
backward waves augment each other, thus expanding the
range of their applicability for the above types of wave. In
some cases, however, simultaneous use of these definitions
leads to contradictions in identifying the type of wave, which
is especially true of backward waves (see below). Hence, as
said earlier, one must distinguish between the usability
conditions and ranges of applicability of each definition,
which makes it possible to have unique and consistent
concepts concerning forward and backward waves.

Note that in the present work we take into account both
known reasons for the emergence of electromagnetic back-
ward waves: the special dispersion properties of the para-
meters of the medium (the permittivity and the permeability)
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and the structure of waveguides that lead to anomalous
frequency dispersion of the wave propagation constant, and
the presence of a negative medium, i.e., a medium with
negative values of the permittivity and the permeability [6]
or the real parts of these parameters with allowance for wave
energy loss [7, 8]. Here, we consider media in which the
permittivity and the permeability (or their real parts) are
negative simultaneously, since we examine waves that
propagate through media or waveguides either with no
damping or with weak damping associated only with wave
energy loss.

2. First definition

Let the wave factor in the expression for the field of time-
harmonic waves propagating in homogeneous media and of
waves propagating along the axis of regular or periodically
irregular waveguides, for example, along the z-axis (with x
and y being the transverse coordinates), be of the form

exp
�
i�otÿ gz�� ; �1�

where o is the field's circular frequency �o > 0�, and g is the
wave propagation constant which for waves propagating in
lossless media and waveguides is a real quantity. The wave
phase and group velocities are described (see Refs [1 ± 5, 9 ±
17]) by the following expressions

vph �
�
g
o

�ÿ1
; vgr �

�
dg
do

�ÿ1
: �2�

The above first definition of forward and backward waves
suggests the following identification criterion by which the
type of wave is determined: if the sign of the coefficient

K � dg 2

do2
� g dg

o do
� 1

vphvgr
�3�

is positive, the wave is a forward one, and if it is negative, the
wave is backward one. The criterion can be expressed by the
following set of inequalities

K0 0 ; �4�

where the upper inequality corresponds to a forward wave,
and the lower inequality to a backward wave.

This criterion gets much simpler when we are dealing with
plane electromagnetic waves propagating in homogeneous
isotropic media for which there exists a simple dispersion
relation

g 2 � o2em �5�

connecting the wave propagation constant with the para-
meters of the medium: the permittivity e, and the permeability
m. In this case, the coefficient

K � 1

2

�
doe
do

m� e
dom
do

�
�6�

is directly related to the frequency dispersion of the medium
or the material dispersion.

The diagrams in Fig. 1 show the typical frequency-
dependent functions oe�o� and om�o� for a lossless med-

ium. The curves correspond to an electromagnetic model of a
medium with dipole particles (molecules or the electromag-
netic particles of an artificial medium) that have electrical and
magnetic resonances at frequencies oe and om, respectively.
FromEqn (6) it follows that if the frequency intervals �oe; �oe�
and �om; �om�, where e and m possess negative values, overlap
(this occurs, for example, in an artificial chiral medium [18,
19]), the right-hand side of Eqn (6) is negative at frequencies
lying in the overlap region, which corresponds to a backward
wave. Here, the wave is a propagating one, since according to
relation (5) it has a real-valued propagation constant. Thus,
for vgr > 0 we have

vph � o
g
< 0 ; g � ÿo���em�1=2�� :

For waves in closed and open waveguides that have a
homogeneous or piecewise homogeneous (in the cross
section) medium [8 ± 17], the dispersion equation and its
solution can be represented in the form

F�g 2; k 2
1 ; k

2
2 ; . . . ; e1; e2; . . . ; m1; m2; . . . ; a1; a2; . . .� � 0 ; �7�

g 2 � f �k 2
1 ; k

2
2 ; . . . ; e1; e2; . . . ; m1; m2; . . . ; a1; a2; . . .� ;

where k 2
n � o2en mn, with em and ml being the permittivity and

the permeability of the homogeneous parts of the medium; aw
are frequency-independent geometric parameters describing
the dimensions of the waveguide and the dimensions of the
homogeneous parts of the medium in the cross section, and n,
m, l, and w are natural numbers. For instance, for waves in a
round metal waveguide with an axisymmetric double-layer
medium [14 ± 16], one finds

F
ÿ�ga�2; �k1a�2; �k2a�2; e1; e2; m1; m2; a=b� � 0 ; �8�

where a is the radius of the inner rod, and b is the
waveguide's radius. For an open round homogeneous
magneto-dielectric waveguide, in Eqn (8) we must put
e2 � e 0, m2 � m 0, and a=b � 0, where e 0 and m 0 are the
free-space parameters [9, 11].

If the functions in Eqns (7) and (8) depend analytically on
their independent variables, the wave identification factor is
given by

K � dg 2

do2
�
X
n

NC
n N

M
n �

X
m

MC
mM

M
m �

X
l

LC
l L

M
l ; �9�

0
o

oe

oe �oe
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0
o
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b

Figure 1.Dispersion curves of the permittivity (a) and the permeability (b)

for a dipole electromagnetic model of a medium without accounting for

wave energy loss in the medium.
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where

NC
n � ÿ

�
qF
qg 2

�ÿ1 qF
qk 2

n

� qf
qk 2

n

� qg 2

qk 2
n

;

MC
m � ÿ

�
qF
qg 2

�ÿ1 qF
qem
� qf

qem
� qg 2

qem
; �10�

LC
l � ÿ

�
qF
qg 2

�ÿ1 qF
qml
� qf

qml
� qg 2

qml
;

NM
n �

dk 2
n

do2
� 1

2

�
doen
do

mn � en
domn
do

�
;

�11�
MM

m �
1

2o
dem
do

; LM
l �

1

2o
dml
do

:

The derivatives in formulas (10) reflect the structural
dispersion of the waveguide, while in formulas (11) they
reflect the material dispersion of the medium. In particular,
if the material dispersion is ignored, one obtains

K �
X
n

NC
n en mn �

X
n

qg 2

qk 2
n

en mn : �12�

It is interesting to note that for waves in closed metal
waveguides filled with a homogeneous medium [9 ± 11], one
has

g 2 � k 2 ÿ g 2 ; �13�

where g is frequency-independent, and the coefficient

K � dg 2

dk 2

dk 2

do2
� dk 2

do2
� 1

2

�
doe
do

m� e
dom
do

�
; �14�

so that the types of waves are determined, as it is in the case of
a plane wave, only by the sign of thematerial dispersion of the
medium (cf. Ref. [8]).

3. Energy velocity

The energy velocity, i.e., the velocity with which the wave
transfers energy [9 ± 17], is defined as

ven � P

W
; �15�

where for plane electromagnetic waves one has

P � 1

2
Re �E�H�� z ; �16�

W � 1

4

�
doe
do
jEj2 � dom

do
jHj2

�
; �17�

and for waves in waveguides it follows that

P � 1

2

�
S

Re �E�H�� z dS ; �18�

W � 1

4L

�
V

�
doe
do
jEj2 � dom

do
jHj2

�
dV : �19�

Here, for a plane wave,P is the power flux through a unit area
that is perpendicular to the direction of the flux, andW is the
wave energy density, while for a wave propagating in a
waveguide, P is the power flux through the waveguide's
cross-sectional area S (for an open waveguide, through the

entire cross section),W is the wave energy per unit length of a
waveguide, L is the length of a section of the waveguide with
volume V, and for a periodic waveguide L is the length of a
period. As usual, E andH are the complex-valued amplitudes
of the electric and magnetic field strengths in the waves, and z
is the unit vector along the z-axis. The medium may be
inhomogeneous over the waveguide's cross section, but it
must be homogeneous or periodically inhomogeneous along
the waveguide's axis.

From formulas (15) ± (19) it follows that they are valid for
both positive �e; m > 0� and negative �e; m < 0� media. When
the derivatives doe=do and dom=do are positive (see Fig. 1),
the wave energyW is positive for both positive values of e and
m and negative values of these parameters, which agrees with
the physical ideas concerning the energy of an electromag-
netic field. Notice that a negative electromagnetic medium
was first predicted theoretically from themodel of an artificial
chiral isotropic medium with a frequency dispersion of the
parameters [18, 19], so that in Ref. [17] I introduced formulas
for the energy W that are more general than Eqns (17) and
(19) and are also valid for a chiral medium whose properties
include the chiral parameter r, in addition to e and m.

As is known (see Refs [9 ± 17]), when e and m are real, i.e.,
in the case of waves propagating through lossless media and
waveguides, one finds

vgr � ven : �20�

As the field frequency approaches the resonance valuesoe

and om (see Fig. 1), the energy of the wave's field tends to
infinity (at finite values of jEj and jHj), while the group and
energy velocities tend to zero. Clearly, all this is an idealiza-
tion of the physical process.

In this connection, let us examine the example of a plane
wave, to which leads the attempt to generalize the concepts of
group and energy velocities to include lossy media. When
losses in the medium are taken into account, the parameters e
and m of the medium and, hence, the wave propagation
constant g are complex-valued quantities

e � e 0 � ie 00 ; m � m 0 � im 00 ; g � g 0 � ig 00 ; �21�

with e 00; m 00; g 00 < 0. When the losses are small, the following
inequalities are valid:

je 00j5 je 0j ; jm 00j5 jm 0j ; jg 00j5 jg 0j : �22�

In this case, the real parts of the derivatives of oe�o� and
om�o� near the resonance frequencies oe and om take the
negative values (Fig. 2). Within this frequency range with

0
o

oe0

oe

a

0
o

om0

om

b

Figure 2.Dispersion curves of the permittivity (a) and the permeability (b)

for a dipole electromagnetic model of a medium accounting for wave

energy loss.
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anomalous dispersion of the medium parameters, the real
part ofW also proves to be negative, which indicates that it is
impossible to interpret it as the energy of the wave's field.
Hence, formula (17) for the energyW and the energy velocity
(15) have no physical meaning in this frequency range (cf.
Refs [9 ± 11]).

Next, if in allowing for small medium loss we think of the
phase velocity as specified by the formula

vph � Re

�
g
o

�ÿ1
� og 0

jgj2 �
�
g 0

o

�ÿ1
; �23�

where the correction term with a quadratically small quantity
on the order of �g 00=g 0�2 is discarded, while the group velocity
is assumed to be given by the formula

vgr � Re

�
dg
do

�ÿ1
� dg 0

do

���� dgdo
����ÿ2 � �dg 0do

�ÿ1
; �24�

where the quadratically small correction term is also dropped,
for the criterion (4) we obtain

K � dg 0 2

do2
� Re

dg 2

do2
: �25�

Here, for the plane wave (5), one has

Re
dg 2

do2
� 1

2

�
doe 0

do
m 0 � e 0

dom 0

do

�
: �26�

If we now apply criterion (4) to Eqn (26), in the frequency
range with anomalous dispersion (see Fig. 2) we find that for
e 0; m 0 > 0 the wave proves to be of the backward type, while
for e 0; m 0 < 0 it is a forward wave, i.e., everything is reversed
in relation to the frequency range with normal dispersion.
Since, as shown earlier, the energy velocity (15) loses all
meaning in the anomalous dispersion range but relationship
(20) still holds, we may conclude that the physical conse-
quences of using the concept of group velocity in the form (24)
in the anomalous dispersion range are meaningless. Notice
that this conclusion is related not simply to the quantitative
aspect of the correction problem but with the fundamental
qualitative aspect of the effect of allowing for losses on the
description of the wave properties.

4. Second definition

When wave energy losses are taken into account, expressions
(16) and (18) for the power flux P retain their physical
meaning, in contrast to expressions (17) and (19) for the
wave energy W, both in the normal dispersion range and in
the anomalous dispersion range. Allowance for small loss
only changes somewhat the quantitative value of P. Hence,
for lossy media and waveguides, i.e., with allowance for losses
in them, it is natural to use not the first definition of wave
types but the second type, replacing the direction (sign) of the
group velocity with the direction (sign) of the power flux.
Here, for waves propagating in lossless media and wave-
guides, the directions (signs) of the group velocity and power
flux coincide as they do, incidentally, in the normal dispersion
range when losses are taken into account.

If the direction of the power flux has been fixed along, say,
the z-axis, then P > 0 for both forward and backward waves
[7, 8]. In this case, the type of wave is determined by the sign of

the phase velocity or, which is the same, by the sign of the real
part of the wave propagation constant g 0 in Eqn (23), since
o > 0. This suggests that, contrary to the first definition but
in agreement with the second definition, in a lossy medium in
the range of anomalous dispersion ofoe 0 andom 0 (see Fig. 2),
as well as in the normal dispersion range, plane waves are of
the forward type when e 0; m 0 > 0, and of the backward type
when e 0; m 0 < 0. As shown in Ref. [7], in the case of small
losses, we arrive at

g 0

o
�

���e 0m 0�1=2�� if e 0; m 0 > 0 ;

ÿ���e 0m 0�1=2�� if e 0; m 0 < 0 :

(
�27�

Only material dispersion is possible in the case of plane
waves. On the other hand, when the properties of waves in a
waveguide are studied, usually only the structural dispersion
(12) is taken into account, while the medium parameters e and
m are assumed to be frequency-independent [8 ± 16]. In this
case, Eqn (19) forW assumes the form

W � 1

4L

�
V

ÿ
ejEj2 � mjHj2�dV : �28�

When e and m are real and positive, the energy W is positive,
too, and has physical meaning, as well as equality (20) holds
true, with the result that both the second and the first
definitions of waves can be utilized. To establish the type of
wave, it is advisable to use (and this is commonly done; see
Refs [8 ± 16]) the first definition, since in this case it is enough
to know the dispersion relation alone. However, to establish
the direction of the power flux and the sign of P, we must also
know (or calculate) the field functions.

For instance, for waves propagating in ametal waveguide,
either circular or rectangular, with an inserted dielectric rod
�e; m > 0�, the propagation constants of some waves have
dispersion curves similar to those depicted in Fig. 3 [14 ± 16].
According to criterion (4), from Fig. 3 it follows that the first
branch of the curves corresponds to a forward wave, and the
second branch to a backward wave.

However, if the permittivity e and the permeability m of an
inserted rod for a closed waveguide or of a rod guiding the
waves for an open waveguide are negative, the situation is
quite different. Now Eqn (28) does not describe the wave
energy and the energy velocity (15), along with equality (20),
lose all physical meaning. In this case, as shown in Ref. [8] for
the example of an open planar waveguide with a negative
�e; m < 0� guiding layer, the second definition yields the
opposite result: the first branch of the curves in Fig. 3
corresponds to a backward wave, and the second branch to

2

o2

g2

1

bag

2

o

1

Figure 3.Dispersion curves of the propagation constants for forward and

backward waves channelled along a metal waveguide with an inner

dielectric rod and a planar waveguide with a negative guiding layer.
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a forward wave. This also follows from the third definition of
the type of waves [8] when loss is taken into account.

5. Third definition

According to what we said earlier, the application of the third
definition of forward and backward waves is possible when
we allow forwave energy losses [7, 8] and is based on the use of
the analytical properties of the complex-valued wave propa-
gation constant

g � g 0 � ig 00 �29�

as a function of the parameters of the medium and the
waveguide. When g is complex-valued, the wave factor (1) in
the wave's field function assumes the form

exp
�
i�otÿ g 0z�� exp g 00z ; �30�

where with g 00 < 0 the wave field decreases in the direction of
the z-axis. From the physics of the problem it follows that this
is possible if the energy (power) flux of the wave points in the
same direction. This suggests that if the sign of the real part of
the wave propagation constant differs from the sign of the
imaginary part, the wave is of the forward type; if these parts
have the same sign, the wave is a backward one. Since the
dispersion relation usually contains g 2, we can introduce a
criterion similar to inequalities (4) for identifying the wave
type:

Im g 2 � 2g 0g 009 0 ; �31�

where the upper inequality corresponds to a forward wave,
and the lower inequality to a backward wave. Notice that if
the wave factor is represented in the form

exp
�
i�gzÿ ot�� � exp

�
i�g 0zÿ ot�� exp �ÿg 00z� �32�

instead of expression (1), the inequality signs in formula (31)
must be changed to their opposites.

To apply the third definition (the same goes for the first
definition), it is enough to know the dispersion equation alone
or its solution for the wave propagation constants. But the
analysis and, even more so, the solution of a complex
dispersion equation, i.e., an equation for the complex-valued
wave propagation constant with complex-valued parameters
of the medium, are much more complicated (see Refs [7, 8])
than for a real-valued dispersion equation. However, when
the loss is small (the imaginary parts of the quantities in
formulas (21) and (22) are small), one can use the analytical
properties of g and perturbation-theorymethods to obtain the
imaginary parts of g and g 2 on the basis of a real dispersion
equation. Of course, this is possible if perturbation techniques
work, i.e., if allowing for losses does not lead to fundamen-
tally new results, such as, as noted earlier, for plane waves in
the frequency range of a medium with anomalous dispersion
of the permittivity and permeability (see Fig. 2). In contrast to
this case, when only the structural dispersion for waves in a
waveguide is taken into account, i.e., when the dispersion of
the wave propagation constant depends solely on the
geometric structure of the waveguide and on the shape of
medium inhomogeneity in the waveguide's cross section,
perturbation techniques can be reasonably employed [8, 9,
17, 20, 21].

Let us illustrate this conclusion with the example of a
dispersion equation and its solution in the form of Eqn (7).
For small imaginary parts of

e � e 0 � ie 00 ; m � m 0 � im 00 ; �33�

where e 00; m 00 < 0, je 00j5 je 0j, and jm 00j5 jm 0j, we obtain
Im g 2 �

X
n

NC
n Im k 2

n �
X
m

MC
m e
00
m �

X
l

LC
l m
00
l ; �34�

with

Im k 2
n � o2�e 0n m 00n � m 0ne

00
n � : �35�

Here, the structural coefficients NC
n , MC

m , and LC
l are

calculated in the same way as in expressions (10), with the
use of the real values of g 2, k 2

n , e, and m.
Using criterion (31) and in view of expressions (33) ± (35)

it is much easier to identify the types of waves than it does by
studying in detail the dispersion equation and its solutions, as
was carried out in Refs [7, 8] for plane waves propagating in a
negative �e 0; m 0 < 0� medium and for waves in a planar
waveguide with a guiding layer of a negative medium.

Above, we examined the interconnections between the
first and second definitions of forward and backward waves
via Eqns (15) ± (20), and between the second and third
definitions via Eqn (30). For the first and third definitions,
such relationships are given by expressions (9) ± (11) and (34),
which reflect in a similar way the structural properties of
waveguides, while the material properties of media are
reflected differently: in the first definition this is done
through the material dispersion of the medium, and in the
second through the material losses (wave energy losses in the
medium).

To what we have said we should add that if neither the
material dispersion of the medium nor wave energy loss are
taken into account, then according to formula (12), in the
absence of any difference in the structural coefficients NC

n

entering Eqns (10) and (12) for waveguides filled with a
negative �en; mn < 0� medium, criterion (4) obtained on the
basis of the first definition of the type of wave does not make
it possible to identify backward waves, i.e., to distinguish
them from forward waves. Waves in homogeneous media (5)
and waves in closed waveguides (13) provide examples of this
fact. In a more general case, such a situation occurs when the
functions describing a dispersion equation and its solution (7)
do not contain em and ml arguments separately from k 2

n or
when these functions are symmetric with respect to the
substitutions

em ! ÿem ; ml ! ÿml : �36�

6. Conclusion

The above treatment of the problems associated with the
three known definitions of forward and backward waves has
confirmed the intuitive assumption that the second definition
is the more general one and combines the other two. The first
definition is equivalent to the second one when wave energy
losses in media and waveguides are not accounted for. If, in
addition, the frequency dispersion of the permittivity and the
permeability of the medium are ignored, then the first
definition is equivalent to the second only if both parameters
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of the medium and waveguide are positive �e; m > 0�. The
third definition is equivalent to the second one when wave
energy losses in media are taken into account.

The criteria for identifying the types of waves, derived
from the first and third definitions, can be effectively used in
specific studies of waves, since they substantially simplify the
calculations associated with the identification of forward and
backward waves propagating in various media and wave-
channeling structures.
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