
Abstract. A system of MHD equations for the description of a
magnetized nonequilibrium astrophysical plasma with neutral
atoms and suprathermal (in particular, relativistic) particles is
formulated. The instabilities of such a plasma, which arise from
the presence of neutral and relativistic components, are consid-
ered. It is shown that the presence of nonthermal particles
interacting with the thermal plasma component via regular
and fluctuating electromagnetic fields is responsible for the
emergence of specific mechanisms of MHD wave generation.
The main generation mechanisms of static and turbulent mag-
netic fields near shock wave fronts in the Galaxy and interpla-
netary space are analyzed. We discuss the application of the
generation effects of long-wave magnetic fluctuations to the
problems of magnetic field origin and relativistic particle accel-
eration in astrophysical objects of various natures.

1. Introduction

An appreciable admixture of neutral atoms and molecules,
along with a charged component, is abundant in many
astrophysical objects. In addition to hot, rarefied, and fully
ionized caverns (temperature T � 106 K, ion concentration
n � 2� 10ÿ3 cmÿ3) in the galactic disk there is a warm phase
(T � 104 K, n � 0:2 particles cmÿ3) with the degree of
ionization on the order of 0.1, which occupies a few dozen
percent of the volume (see Ruzmaikin et al. [1]). In cold
neutral clouds, which are the main star formation sites and
quite often contain young active stars which undergo rapid
evolution, the density of matter is even 2 ± 3 orders of
magnitude higher, while the temperature and the degree of
ionization are lower. The degree of ionization of the
substance in the photospheres of the Sun and numerous
stars is also quite low. It is equal to only about 10ÿ3 in the
solar photosphere. In all previously mentioned objects, and in
many others, apart from the partially ionized background
plasma there are also suprathermal particles, both relativistic
(cosmic rays) and nonrelativistic, whose sources may reside
both inside the object under consideration and far outside it.
It is clear that similar conditions may also exist in objects of
terrestrial origin (the ionosphere).

The aim of our work consists in analyzing the low-
frequency magnetohydrodynamic (MHD) oscillations which
may be excited, sustained, and enhanced in a partially ionized
plasma with populations of suprathermal particles. The
presence of a neutral component can substantially (by many
orders of magnitude) strengthen the dissipation of electro-
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magnetic energy due to ion collisions with neutral atoms. This
effect was estimated and investigated earlier (see the mono-
graphs by Cowling [2] and Pikel'ner [3]). On the basis of the
above studies one might draw the conclusion that the only
effect of the admixture of neutrals is that the dissipation of
MHD oscillations becomes stronger. However, the situation
changes when an extrinsic current produced by an extraneous
(relative to the plasma) source (in our case, the source of
accelerated particles) is induced in the plasma.

The electrical conductivity s is quite high in a high-
temperature fully ionized plasma, resulting in a strong
screening of external current by the background particles.
The screening is maximized in the dissipation-free limit
s!1, and there persists only the Hall component of
extrinsic current, which has a weak effect on the electro-
magnetic field and low-frequency oscillations in the plasma.

In the presence of an appreciable neutral component and a
constant magnetic field, the transverse (relative to the
magnetic field) magnetic viscosity of the medium strongly
increases, with the result that the external current screening
effect proportionally weakens. As a result, the external
accelerated-particle current gains the capability of maintain-
ing and amplifying oscillations in the plasma. Another factor
which serves to significantly decrease the transversal plasma
conductivity is the effective scattering of plasma particles by
small-scale electromagnetic field fluctuations, in particular,
by collisionless MHD turbulence. The occurrence of small-
scale turbulence in the solar wind plasma was revealed by
direct observations in the interplanetary medium. That a very
broad spectrum of electromagnetic fluctuations is present in
the interstellar plasma also follows from direct and indirect
data. The wandering of magnetic lines of force plays a role
similar to scattering. They are caused by the random
harmonics of the magnetic field with scale lengths signifi-
cantly exceeding the gyroradii of thermal particles.

This review is concerned with an analysis of the
consequences emerging from the multicomponent nature of
real cosmic plasmas. The materials generalized in the review
show that the presence of nonthermal particles interacting
with the thermal plasma component via regular and
fluctuating electromagnetic fields is responsible for specific
mechanisms of MHD wave generation. In particular, in the
vicinity of shock wave fronts which accelerate energetic
particles there arises the possibility of nonresonance excita-
tion of long-wave MHD AlfveÂ n type fluctuations with the
increment proportional to the effective magnetic viscosity of
the plasma and the fraction of nonthermal particles. We
analyze the effective electrical conduction and magnetic
viscosity in a multicomponent magnetized plasma with a
neutral component and MHD fluctuations. The existence of
a small, dynamically insignificant neutral component may
efficiently suppress the transversal Coulomb conductivity in
a magnetized plasma and realize the possibility of efficient
nonresonance excitation of long-wave MHD fluctuations in
a medium with nonthermal particles. For scales shorter than
the Coulomb collision length, the conductivity and kinetic
properties of the plasma are determined by scattering from
field fluctuations. In this case, the macroscopic description
of the system in the framework of collisionless hydrody-
namics allows us to investigate the possibility of nonreso-
nance MHD-mode excitation in the medium with a non-
thermal component. We discuss the linkage between the
generation effects of long-wave magnetic fluctuations and
the problems of the origin of magnetic fields and relativistic

particle acceleration in astrophysical objects of various
natures.

Presently, the most popular mechanism of particle
acceleration by shock fronts [4 ± 7] and other statistical
mechanisms are effective only when the scattering of
accelerated particles is strong enough, which is required for
a long confinement of the particles in the acceleration region
[8, 9]. Since particle scattering by the MHD turbulence is
resonant in nature, MHD oscillations with a wavelength on
the order of the Larmor radius of accelerated particles are
needed for effective scattering of high-energy particles.

Until recently, the primary emphasis in the literature was
placed on resonance mechanisms, both linear [10 ± 14] and
nonlinear [15, 16], of turbulence generation by accelerated
particles. Being attractive as a source of small-scale fluctua-
tions, the resonance mechanisms are not necessarily effective
for the production of long-wave modes responsible for the
formation of particle spectra in the region of extremely high
energies. As a rule, the accelerated-particle spectrum
decreases steeply with energy in the range of maximum
particle energies, even though the mechanism of acceleration
by a strong shock wave may provide a gently sloping
spectrum of particles in the domain of their effective
fluctuation-induced scattering. In addition to the resonance
production of the modes, this circumstance calls for an
efficient mechanism of their conversion to long-wave fluctua-
tions [14] or an efficient mechanism for the amplification of
weak background long-wave fluctuations. An advantage of
nonresonance mechanisms for the generation of long-wave
magnetic field fluctuations is the capability of transferring a
substantial amount of energy from nonthermal particles to
themagnetic field, even for the spectra of particles accelerated
by a shock wave with a compression ratio of 94 without an
appreciable modification of the shock prefront. Large-scale
magnetic field fluctuations may be generated by the majority
of particles accelerated by the shock wave, irrespective of the
magnitude of their gyroradius. Therein lies an important
feature of nonresonance mechanisms. This property is quite
significant in the determination of the highest energies of the
particles accelerated by anMHD shockwave. The problem of
determining themaximum energies of particles accelerated by
the shocks waves of supernova remnants, which was for-
mulated more than 20 years ago by Lagage and Cesarsky [17]
(see also the monograph by Berezinskii et al. [18] and the
review by Blandford and Eichler [19]), is still a topical
problem [20 ± 22]. In our review, we shall consider at length
the nonresonance mechanisms of turbulence generation in
plasmas with suprathermal and neutral components. The
mechanisms of nonresonance generation of large-scale
fluctuations depend on the dispersion and dissipative proper-
ties of themulticomponent turbulent plasmawith the possible
presence of a neutral component. In Section 2 we give the
derivation of the basic equations that describe the dynamics
and kinetic properties of the multicomponent turbulent
plasma. We discuss the generalized Ohm law for a multi-
component magnetized collisionless plasma, which is of
significance in astrophysical applications. Considered in
Section 12 are possible observational manifestations of the
nonresonance mechanisms of MHD mode generation in
supernova remnants and shock waves observed in the helio-
sphere, which allow detailed comparisons.

The possibilities for the formation of specific MHD
turbulence spectra and the acceleration of relativistic parti-
cles in the weakly ionized plasma of molecular clouds were
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pointed out in Ref. [23]. The presence of a neutral component
is also significant in the formation of the nonthermal emission
spectra of supernova remnants interacting with molecular
clouds [24].

The nonresonant mechanisms of fluctuation generation in
plasmas with a nonequilibrium high-energy component may
be caused by buoyancy effects of the multicomponent system
with relativistic particles [25] and the occurrence of the
current of nonthermal energetic particles [26 ± 28], as well as
by the instabilities of MHD plasma flows modified by cosmic
ray fluxes in the neighborhood of shock waves [29].
Relativistic particles may play a significant part in disturbing
the hydrostatic magnetized-plasma equilibrium with the
appreciable pressure of cosmic rays in the large-scale
gravitational field of the galaxy [25]. The cosmic-ray pressure
effect gives rise to the effective critical value of the polytropic
index below which a Rayleigh ±Taylor type instability
develops in the system. The critical polytropic index may
depend on the character of cosmic ray propagation regime
(diffusive or convectiveÐ see the discussion in Ref. [18]). In
this review we do not consider the instabilities related to the
gravitational field and restrict ourselves to electromagnetic
interactions. Our main concern is with the analysis of
multicomponent plasma systems with nonthermal particle
fluxes and, in particular, with MHD shock waves. Emphasis
is also placed on the derivation of equations which describe
the macroscopic flows of multicomponent partially ionized
plasma systems with nonthermal particles (Sections 2 and 5),
because different dynamic equations are quite often
employed in research dedicated to this problem. The genera-
tion effects of MHD perturbations by extrinsic currents in a
plasma are considered with the inclusion of screening in
Sections 3 ± 5 and 7 ± 11. Applications of the generation
mechanisms of MHD perturbations to the problem of the
enhancement of large-scale magnetic fields in the shells of
supernova remnants and shock waves in the interplanetary
medium (the only natural laboratory where it is possible to
directly measure plasma, nonthermal particle, and field
parameters) are discussed in Sections 6 and 12.

Including the kinetics of energetic nonthermal particles
in the interstellar plasma may be beneficial to the under-
standing of the origin problem of magnetic fields on a
galactic scale and in galactic clusters [30]. The formation
problem of large-scale static magnetic fields with the
participation of suprathermal particles is discussed in
Section 6 of the present review. The observed structure of
galactic magnetic field calls for the inclusion of a large
number of modes in the dynamo model or for an alternative
model in which the field will be randomly anisotropic, being
related to shear and compressible large-scale flows [31]. In
modern models of a nonlinear dynamo effect, a significant
part can be played by large-scale flows, like a galactic
fountain [32]. One would also expect appreciable effects
related to energetic particles in the multicomponent plasma
which forms large-scale flows (see Ref. [33]). Finally, in
Section 6 we consider the reconstruction mechanisms of
large-scale stationary magnetic fields in the vicinity of
nonthermal particle sources in the arms of the Galaxy.

2. Ohm's law and inclusion
of an extrinsic current

In the framework of magnetic hydrodynamics, the influence
of the microscopic properties of conducting media on the

macroscopic dynamics of the system is normally contained
in Ohm's law in the generalized form, which defines the
relation between the electromagnetic field and the electric
current density in a conducting medium (see Ref. [34]). In
this case, significant distinctions arise in the MHD descrip-
tion of systems with close Coulomb collisions and of
collisionless plasma in which relaxation and transfer pro-
cesses are determined by long-wave fluctuations of the
electromagnetic field of collective excitations. In astrophysi-
cal systems with a wide range of spatial scales, which spans
many decades, either of the regimes may be realized. In this
section we consider Ohm's law in the generalized form both
for a magnetized multicomponent collisional plasma with
neutral atoms and for a system void of Coulomb collisions
and with relaxation due to fluctuating long-wave micro-
fields. We begin with the case of a plasma with Coulomb
collisions.

2.1 Ohm's law in a partially ionized collisional plasma
We take advantage of the quasihydrodynamic approxima-
tion (see Ref. [35]) to establish the relation between the
electromagnetic field and the electric current density in a
moving, partially ionized three-component medium (e
stands for electrons, i for ions, and a for neutral atoms). It
is derived from the kinetic Boltzmann equation with a
model Bhatnagar ±Groos ±Krook collision integral. For
our purpose it would suffice to employ the continuity
equation and the equations of motion of the medium
components:

qna
qt
� Hnaua � 0 ; a � e; i; a ; �1�

nama

�
qua
qt
� �uaH�ua

�
l

� eana

�
E� 1

c
ua � B

�
l

ÿ HlPa ÿ HkP
�a�
kl ÿ nama

X
b

�ua ÿ ub�l
tab

; �2�

where Pa is the partial pressure of sort a particles, P �a�kl is the
viscous stress tensor, and tab are the average times of
collisions between the particles of sorts a and b. The
momentum conservation law leads to the interdependence
of the collision times:

namatÿ1ab � nbmbtÿ1ba : �3�

In the subsequent discussion we go over to a single-fluid
model and consider the conditions whereby all three
components move as an aggregate continuum medium.
We therefore introduce the bulk velocity of the medium

u � nimiui � namaua � nemeue
nimi � nama � neme

; ua � u� va ; �4�

and assume that the deviations of the hydrodynamic
velocities of all three components from the bulk velocity are
small:

va 5 u ; nimivi � namava � nemeve � 0 : �5�

Substituting expression (4) into Eqns (1) and (2) and
neglecting the terms quadratic in small additions permits
writing down three equations of motion for the components
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of the medium:
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� �uH�u

�
� nama

�
qva
qt
� �uH�va � �vaH�u

�
� ÿHPa � Za

�
Du� 1
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H�Hu�

�
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tai

: �8�

The terms of order va=u in small dissipative summands
containing the dynamic viscosity Za were neglected in the
above equations.

We next take into account the quasineutrality of the
medium and introduce the total mass density

r � ni�mi �me� � nama � nimi � nama �9�

and the electric current density

j � eni�vi ÿ ve� ; �10�

as well as the total pressure P � Pe � Pi � Pa and the total
viscosity Z � Ze � Zi � Za. Term-by-term addition of
Eqns (6) ± (8) yields the equation of motion of the medium
as a whole:

r
�
qu
qt
� �uH�u

�
� 1

c
j� Bÿ HP� Z

�
Du� 1

3
H�Hu�

�
:

�11�
From Eqns (1) we obtain the continuity equation

qr
qt
� Hru � 0 : �12�

The friction forces between medium components have not
entered into Eqn (11) by virtue of fulfilling conditions (3).

To obtain the generalized Ohm law, we take advantage
of Eqns (6), (7), and (11). In Eqn (11), the last dissipative
term on the right-hand side is taken to be small and is
dropped. The quantity qu=qt� �uH�u in Eqns (6) and (7) is
expressed with the aid of Eqn (11) and the terms of the form

qvi; e=qt� �uH�vi; e are discarded. The last-named approxima-
tion implies that the frequencies o of the oscillations under
discussion are low in comparison with collision frequencies
tÿ1ab , and the wavelengths are long in comparison with the
particle transport mean free paths La � vTa=

P
b t
ÿ1
ab :

o5 tÿ1ei ; t
ÿ1
ea ; l � 2p

k
4Le; Li ; �13�

where vTa are the thermal velocities. Lastly, we introduce the
mass fraction of the neutral component

F � nama

nama � nimi
� na

na � ni
; �14�

on the assumption that there is only one sort of singly charged
ions in the plasma, so that ma � mi. We also assume that the
ratio between the concentrations of ions and neutral atoms
persists in the collisional plasma in the presence of low-
frequency oscillations, i.e., n 0a=n

0
i � na=ni and F � const,

where n 0i; a are the concentration perturbations.
Then we express the electron and neutral component

velocities, ve and va, in terms of the current density and the
ion velocity vi:

ve � vi ÿ j

eni
; ve ÿ va � vi

F
ÿ j

eni
; vi ÿ va � vi

F
: �15�

Terms of the order of me=mi were dropped. In what follows
we also discard the small terms on the order of
�me=mi�1=2 5 1. Around this order of magnitude has, in
particular, the ratio

metia
mitea

� mevTeLia

mivTiLea
�
�
me

mi

�1=2 sea
sia
�
�
me

mi

�1=2

;

where sia; ea denote the cross sections for collisions between
charged and neutral particles.

On term-by-term addition of Eqns (6) and (7), upon the
above simplifications we derive from the resultant equation
the relation between the ion velocity vi and the current:

vi � F 2tia
nimic

j� B� Fmetia
enimitea

j : �16�

By eliminating the velocity vi from Eqn (7) with the account
for relation (16) we arrive at the generalized Ohm lawÐthe
relationship between the electromagnetic field, the current,
and the hydrodynamic parameters of the medium:

E� 1

c
u� B� 1

eni
H
��1ÿ F �Pÿ Pi

� � j

s
� 1

niec
j� B

� F 2tia
nimic 2

B� �j� B� : �17�

The pressure gradients also enter into this relationship to
produce an additional effective electric field. The quantity

s � e 2nite
me

; where te � teitea
tei � tea

�18�

is the plasma conductivity with due regard for neutral atoms
and in the absence of an external magnetic field. In a `cold'
plasma, wherein the pressure P can be neglected, Ohm's law
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takes on the form

E� 1

c
u� B � j

s
� 1

niec
j� B� F 2tia

nimic 2
B� �j� B� : �19�

If the electric current j � jk � j? is separated into two
components parallel and perpendicular to the magnetic field
B, Ohm's law can be presented as

E� 1

c
u� B � jk

s
� B

niec
j� ek � j?

seff?
; �20�

where ek � B=B, and

1

s eff
?
� 1

s
� F 2B2tia

nimic 2
: �21�

Hence, it follows that the quantities s and s eff
? play the

respective parts of the effective longitudinal and transversal
conductivities of a partially ionized plasma. The relationships
inverse to equation (20) are of the form

jk � sEk ; �22�
j? � s?

�
E? � 1

c
u� B

�
ÿ s?
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?
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c
u?

�
;

where

1
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� 1
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?

"
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�
Bs eff
?

ecni

�2
#
: �23�

In the absence of the neutral component, F � 0, s eff
? �

s � e 2nitei=me, sÿ1? � sÿ1�1� o2
Bet

2
ei�, and we have the well-

known relation for the transverse current
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s

1� o2
Bet

2
ei

�
E? � 1

c
u� B

�
ÿ soBetei
1� o2

Bet
2
ei

�
E� ek ÿ B

c
u?

�
; �24�

where oBe� eB=mec is the electron cyclotron frequency.
Relationships (17) ± (23) show that the inclusion of

neutral particles substantially complicates the current ±
electromagnetic field linkage and enhances its nonlinearity.
We therefore write out the system of equations in a linearized
form with the inclusion of a weak external current j ext, which
will allow us to investigate low-frequency low-amplitude
oscillations. The quantities b � Bÿ B0, E, and u 0 � uÿ u0,
as well as density and pressure perturbations r 0 and P 0, are
assumed to be small. We assume the cold medium approx-
imation: the thermal conduction is neglected, the velocity of
sound cs is below the AlfveÂ n velocity vA � B0=

��������
4pr
p

, and the
kinematic viscosity n! 0. In this case, one has P 0 � c 2s r

0.
The background quantities B0, u0, r, and P are taken to be
uniform. It is pertinent to note that we consider a collisional
plasma and take into account collisions between all three
components. The AlfveÂ n velocity is therefore defined in terms
of the total density of the medium, including the neutral
component.

We employ the equation of motion (11), generalized
Ohm's law (17), and Maxwell equations

HB � 0 ; H� B � 4p
c
�j� j ext� ; H� E � ÿ 1

c

qB
qt

:

�25�

Then, the linearized equations are written out in the form{
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� �u0H� u 0 � ÿ c 2s

r
Hr 0 � B0

4pr
�H� b� � ek ; �27�

qr 0

qt
� u0Hr 0 � rHu 0 � 0 : �28�

Here, the unit vector ek is aligned with B0, and

nm � c 2

4ps
; neff � c 2

4ps eff
?

�29�

are the Coulomb collisional magnetic viscosity and the
effective magnetic viscosity with the inclusion of the neutral
component, respectively. The quantity s eff

? is given by
formula (21) in which B � B0.

To make more lucid the relatively complex structure of
Eqn (26), we write it out for the special case of an
incompressible medium in a simplified geometry, when the
plasma current j and the extrinsic current j ext are directed
transversely to the field B0:

qb
qt
� �u0H� b � �B0H� u 0 � neffDb

ÿ c

4peni
�B0H��H� b� � 4pneff

c

�
H� j ext ÿ j ext ek

B0
H� b

�
� 1

eni
�B0H� j ext : �30�

This equation differs from that which describes the
magnetic field in fully ionized plasma by the value of effective
magnetic viscosity. Let us estimate the ratio

neff
nm
� 1� F 2B 2

0 tias
nimic 2

� 1� F 2�oitia��oetei� ; �31�

where oi; e � eB0=mi; ec are the cyclotron frequencies, for
several typical astrophysical objects (see Table 1). A purely
hydrogenous medium was considered in all cases, with the
exception of the ionosphere. A value of sia � 10ÿ14 cm2 was
taken for the ion ± atom collision cross section. The last
column of Table 1 gives the quantity K � F 2�oitia��oetei�
which characterizes the contribution of neutral atoms to the
evolution of the magnetic field. The penultimate row of
Table 1 lists the parameters of a photoionized intergalactic
medium for a density which corresponds to the domain
200 times above the mean baryon density at z � 0.

As is clear from Table 1, in all the cases considered above,
except for the solar photosphere, the contribution of the

{ Two formulas (26) and (30) were corrected by the authors when proof

reading the English-translated text. (Editor's note.)
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neutral component is quite significant even when the fraction
of neutral atoms is smaller than that indicated in the table.
This circumstance is of significance for particle acceleration
processes near the shock fronts, where the degree of
ionization may be augmented due to the heating of the
medium.

The contribution of the Hall terms to Eqn (30) is defined
by the ratio

cB0

4penineff
� 1

F 2oitia
: �32�

For F 2oitia 4 1, the terms indicated play a small part.
However, the Hall terms prevail over all the remaining ones
in the parameter range defined by inequalities K4 1 and
F 2oitia 5 1.

An important property of equation (30) consists in the
effective magnetic viscosity neff being a common factor for
the dissipative term Db and the term with extrinsic current
H� j ext. That is why the neff

ÿ
Db� �4p=c�H� j ext

�
tandem

can either strengthen dissipation or convert it into oscilla-
tion build-up, depending on the properties of the extrinsic
current.

2.2 Ohm's law in a collisionless magnetized plasma
In several cases of importance, themacroscopic description of
a rarefied plasma with rare Coulomb collisions becomes
possible due to the effects of particle scattering by the
stochastic fluctuations of an electromagnetic field, fluctua-
tions which accompany collective plasma oscillations (see
Refs [34, 36 ± 39]). Below in this section we shall calculate the
effective conductivity of such a plasma for the simplest
stochastic field models under the assumption that the plasma
medium is statistically homogeneous.

We proceed from the kinetic equation for plasma
electrons and ions taking into account the fluctuating
electromagnetic fields and neglecting Coulomb collisions:

qfe; i
qt
� v

qfe; i
qr
� e�E� e� qfe; i

qp
� e

c

�
v� �B� b�� qfe; i

qp
� 0 :

�33�

Here,B andE are themagnetic and electric large-scale regular
fields, and b and e are the fluctuating fields with zero average
values upon averaging over the ensemble of fluctuations. The
Coulomb collision integral is taken to be zero. In the complete
formulation of the problem, the fluctuating fields should be
assumed to be self-consistent and dependent on the particle
distribution functions fe; i, and an investigation should be
made of a strongly nonlinear evolution of the system, which is
presently impossible. We restrict ourselves to the simplest
model of a statistically homogeneous and stationary system,
which serves to illustrate the influence of collective effects on
the plasma conductivity. This will enable us to qualitatively
analyze the influence of these effects on the generation of a

magnetic field in collisionless plasmas with nonthermal
particlesÐ the main objective of our paper. Assuming the
amplitudes of fluctuating fields to be small, we can perform
averaging of Eqn (33) over the ensemble of fluctuations in the
framework of a quasilinear theory. This leads to the equation
for averaged distribution functions Fe; i � h fe; ii:

qFe; i

qt
� eE

qFe; i

qp
� e

c
�v� B� qFe; i

qp
� St �Fe; i� : �34�

The effective collision integral St �Fe; i� is of the form

St �Fe; i��
�
e

c

�2� q2

qva qvb
�FabFe; i� � esmavm

q2

qvs qvb
�CabFe; i�

�
;

�35�

where

Fab �
�1
0

dt
��
heaegib0g � heab?g iE?g B

�
b0b

� heabnib0nb0gegsm
�
vm
c
ÿ emlnb0n

E?l
B

�
�dsb ÿ b0sb0b�

�
;

�36�

Cab �
�1
0

dt
��
hbaegib0g � heab?g i

E?g
B

�
b0b

� hbabnib0nb0gegsm
�
vm
c
ÿ emlnb0n

E?l
B

�
�dsb ÿ b0sb0b�

�
:

�37�

Here, we introduced a unit vector b0 � B=B of the average
field. The pair correlation functions



ba�r; t� bb�r 0; t 0�

�
,


ea�r; t� eb�r 0; t 0�
�
, and



ba�r; t� eb�r 0; t 0�

�
of the fluctuating

fields are assumed to be statistically homogeneous and
stationary. They depend on the differences t � tÿ t 0 and
rÿ r 0 � R�t�, where R�t� is the law of particle motion in the
fields E and B. The motion of magnetized particles in the
weakly inhomogeneous and slowly varying fields B�r; t� and
E�r; t�may be described in the drift approximation.

Let us now consider two simple models of fluctuating
fields and calculate the plasma conductivities by expressing
them in terms of the correlation characteristics of the random
fields.

2.2.1 Small-scale static inhomogeneities. The plasma moves
with a constant and uniform velocity u � const, u5 c,
relative to a reference system selected. In the co-moving
system there are constant and homogeneous fields
B 0; E 0 ? B 0, with E 05B 0, as well as static magnetic
fluctuations b 0 whose spatial scales do not exceed the
gyroradii of thermal particles (small-scale random inhomo-
geneities). There are no electric fluctuations in the co-moving
frame of reference: e 0 � 0. In the selected (`laboratory')
system of coordinates there are, correct to terms of first

Table 1.

Object B0, G na, cmÿ3 ni, cmÿ3 F T, K Lia, cm oitia oetei K

Neutral clouds
Warm intercloud medium
Solar photosphere
Cosmological medium �z < 1�
Terrestrial ionosphere

1:5� 10ÿ5

2� 10ÿ6

1.0
10ÿ9

1.0

20
0.2
1016

5� 10ÿ9

2� 108

0.05
0.03
1013

4� 10ÿ5

106

� 1

0.85
� 1

10ÿ4

� 1

100
104

6� 103

104

103

5� 1012

5� 1014

1� 10ÿ2

2� 1022

5� 105

4� 106

6� 106

8� 10ÿ5

1� 1011

104

5� 104

107

8� 10ÿ3

5� 105

5� 103

2� 1011

5� 1013

6� 10ÿ7

109

5� 107
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order in the parameter u=c5 1, the following fields:

B � B 0; b � b 0; E � E 0 ÿ u

c
� B ; e � ÿ u

c
� b :

�38�
A full-length calculation of the collisional term for this

case can be found in æ 7 of monograph [8]. The equation for
the averaged distribution function may be brought to the
form (hereinafter we shall drop the subscripts e and i for
simplicity)

qF
qt
� v

qF
qr
� eE 0

qF
qp
� oBb0

�
vÿ u;

q
qv

�
F

� e 2Lchb 2i
�me; ic�2

�
vÿ u;

q
qv

�
a

1

jvÿ uj
�
vÿ u;

q
qv

�
a
F ; �39�

where Lc is the correlation length of a stochastic magnetic
field. In view of the small scale of the fluctuations, the
equation is insensitive to their spectral composition.

Our concern will be with the stationary and uniform
particle distribution, when the distribution function depends
only on the momentum F�p�. We pass on to a new
independent variable

v 0 � vÿ u � p

m
ÿ u ; �40�

which stands for the particle velocity in the co-moving system
of coordinates. Equation (39) takes on a compact form

e

me; i
E 0

qF
qv 0
� oBb0 bOOF� 1

2tr�v 0�
bOO 2F ; �41�

where

bOO � v 0 � q
qv 0
� p 0 � q

qp 0
�42�

is the velocity rotation operator, and

tÿ1r �v 0� �
2e 2Lchb 2i
�mc�2v 0 �43�

is the time of distribution function relaxation caused by
particle scattering from small-scale inhomogeneities.

In the stationary regime, the distribution function in the
co-moving frame of reference possesses a small anisotropy,
which corresponds to the smallness of the electric fieldE 0 6� 0.
The distribution function may therefore be represented in the
form

F � 1

4p

�
N�v 0� � 3v 0

v 0 2
J�v 0�

�
; �44�

where J5 v 0N, while the quantities J and N depend only on
the modulus v 0 � jvÿ uj.

Substitution of expression (44) into Eqn (41) permits
finding the equation for the particle density flux J induced
by the electric field:

J� oBtrb0 � J � ÿ etrv 0

3

qN
qv 0

E 0 : �45�

The particle flux is perpendicular to the large-scale magnetic
field. The electric current density j produced by the particles

of one sort can be calculated by the formulas

j � e

�
v 0F d3p 0 � e

�
Jp 0 2 dp 0 : �46�

These formulas do not take into account the currents

�eu
�
Ne; i p

0 2 dp 0 � �ene; iu

arising from the overall motion of the medium, which cancel
out in a quasineutral plasma.

By using Eqn (45) and expression (46), we arrive at the
Ohm law in the ordinary form:

j � s?E 0 ÿ sHb0 � E 0 ; E 0 � E� u

c
� B ; �47�

where the conductivities are given by

s? �
�

s� p 0�
1� o2

Bt 2r
p 0 2 dp 0 ;

sH �
�
s� p 0�oBtr
1� o2

Bt 2r
p 0 2 dp 0 ; �48�

s� p 0� � ÿ e 2tr p 0

3m

qN
qp 0

> 0 :

For a strong magnetization �oBtr 4 1�, we introduce the
averaged velocity v 0 by the formula

1

v 0
� ÿ 1

3n

�
p 0 3

v 0
qN
qp 0

dp 0 �49�

to obtain

s? � ne 2Lc

mv 0
hb 2i
B 2

�50�

Ð an analog of the Drude formula in which the role of a
collision time is played by the quantity

t � Lchb 2i
v 0B 2

:

Formula (50) contains the particle mass in the denominator
and shows that electrons play the dominant part in the
electrical conduction under consideration. In the same limit
sH � ecn=B, and the Hall current is produced due to the
electric particle drift under the crossed fields E 0 � B:

jH �
ecn

B 2
E 0 � B :

The Hall currents of electrons and ions cancel out.

2.2.2 Large-scale AlfveÂ n waves with random phases. In
contrast to the previous case, let us consider nonstatic
fluctuations, where there are magnetic field b 0�r 0; t� and
electric field e 0 � �vA � b 0=c in the co-moving system of
coordinates, where vA � B=

��������
4pr
p

is the AlfveÂ n velocity, and
r 0 � rÿ ut is the radius vector. In the observer frame of
reference we have

b � b 0; e � ÿ 1

c
�u� vA� � b : �51�

Upon averaging over turbulent oscillations, the equation
for the distribution function which depends only on the
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momentum can be written down in the form similar to
Eqn (41), though with a more complex collision integral:

e

m
E 0

qF
qv 0
ÿ oBb0 bOOF � e 2

�mc�2
�
v 0 � vA;

q
qv 0

�
a

�
�


ba�r 0; t� bb�r 00; t0�
�
G�r 0; v 0; t; r 00; v 00; t0�

�
�
v 00 � vA;

q
qv 00

�
b
F�r 00; v 00; t0� d3r 00 d3v 00 dt0 � St �F � : �52�

Here, G�r 0; v 0; t; r 00; v 00; t0� is the Green function which
describes the particle motion in crossed uniform fields E 0

and B over a time t � tÿ t0. The Green function is of the
form

G�r 0; v 0; t; r 00; v 00; t0� � d�v 0 ÿ Vÿ v 00� d�r 0 ÿ Rÿ r 00�Y�t� ;
�53�

where V and R are the velocity and radius-vector changes
during the time t:

V�t; v 00� � v 00?�cosoBtÿ 1� ÿ b0 � v 00 sinoBt ;
�54�

R�t; v 00� �
1

oB
v 00? sinoBt� 1

oB
b0 � v 00�cosoBtÿ 1� � v 00kt :

In a statistically homogeneous medium, the correlation
tensor of AlfveÂ n modes depends on difference arguments:


ba�r 0; t� bb�r 00; t0�
� � Kab

ÿ
R�t; v 00�; t

�
: �55�

We shall assume that the correlation lengths Lc in the
longitudinal and transverse directions are comparable and
they are long in comparison with the gyroradii of thermal
particles: Lc 4 rg. In this case, one may neglect the transverse
particle displacement in the co-moving system of coordinates
and put R � b0v

0
0kt. The correlation time tc will be deter-

mined by the highest of the following three velocities: the
particle velocity v 0T in the co-moving frame of reference, the
AlfveÂ n velocity vA, and the velocity u of the medium. In cold
plasmas �v 0T 5 vA or v 0T 5 u�, in particular, the correlation
time tc � Lc=u or tc � Lc=vA is independent of the thermal
velocity and does not necessitate averaging with the distribu-
tion function. One more simplification emerges when the
distribution of AlfveÂ n-mode wave vectors is axially sym-
metric about the direction of the field B. In this case, the
correlation tensor takes on the form

Kab
ÿ
R�t; v 00�; t

� � K�v 00kt; t��dab ÿ b0ab0b� : �56�
We next pass on to the equation for the electric current by

taking advantage of its representation (46) in terms of the
distribution function. We perform integration with respect to
d3r 00 d

3v 0 and transform the collision integral in the following
way:

e

�
v 0l St �F � d3v 0 �

e 3

�mc�2 eaml ebks

�
d3v 00 F�v 00��v 00 ÿ vA�k

� q
qv 00s

�1
0

dt Kab�v 00kt; t�
ÿ
v 00 � V�t; v 00� � vA

�
m : �57�

The velocity V contains terms proportional to cosoBt and
sinoBt. In the integration with respect to dt, these terms will
be of a �oBtc�ÿ1 5 1-order infinitesimal and may be

neglected. By using representation (56) for the correlation
tensor, we bring expression (57) to a simple form

e

�
v 0l St �F � d3v 0 � ÿ

e 3

�mc�2
�
d3v 0 F�v 0�v 0 ?l

q
qv 0k

ÿ
v 0kK�v 0k�

�
;

�58�
where

K�v 0k� �
�1
0

K�v 0kt; t� dt �59�

and the designation of the integration variable on the right-
hand side of expression (58) is simplified.

Let us consider the limiting cases of cold and hot plasmas.
In the former case, the thermal velocity in the co-moving
frame of reference is low in comparison with the AlfveÂ n and
medium transport velocities: v 05 vA; u. Then, the time
integral (59) can be simplified, so that

K�v 0k� �
�1
0

K�0; t� dt � hb 2itc ; �60�

where the last equality may be treated as the definition of the
correlation time, whose order of magnitude is tc � Lc=u (if
u0 vA). In this case, according to representation (46),
integral (58) is expressed in terms of the transverse electric
current:

e

�
v 0 St �F � d3v 0 � ÿ 1

tr
j ; �61�

where

1

tr
� e 2tchb 2i
�mc�2

is the reciprocal of the relaxation time. We integrate in a
similar way the terms appearing on the left-hand side of
Eqn (52) to obtain the equation for the electric current:

j� oBtrb0 � j � e 2ntr
m

E 0 : �62�

From this equation we obtain Ohm's law in the form of
expression (47), the conductivities for a strong magnetization
�oBtr 4 1� being of the form

s? � e 2ntc
m

hb 2i
B 2

; sH � ecn

B
�63�

and quite similar to those obtained in the context of themodel
of small-scale static inhomogeneities.

In a hot plasma, the thermal electron velocity is high in
comparison with vA and u. The time integral (59) is
approximated by the expression

K�v 0k� �
�1
0

K�v 0kt; 0� dt � hb 2i Lc

jv 0kj
; �64�

with

q
qv 0k

ÿ
v 0kK�v 0k�

� � 2Lchb 2i d�v 0k� :

By calculating expression (58) with the use of distribution
function (44), we arrive at

e

�
v 0 St �F � d3v 0 � ÿ 3e 2Lchb 2i

2�mc�2
�
eJ?�v?�v? dv? : �65�

148 A M Bykov, I N Toptygin Physics ±Uspekhi 50 (2)



Since the electric current j � e
�
J�v�v 2 dv, the integral in

expression (65) differs from the current by only some average
thermal velocity v?; to calculate it requires, as in the case of
expression (49), specifying the distribution function of the
background particles. Eventually we obtain the transversal
conductivity in the form

s? � 3e 2nLc

2mv?
hb 2i
B 2

: �66�

Consideration of the limiting cases of cold and hot
plasmas permits writing down the interpolation formula
which is suitable for estimating the transversal conductivity
of a collisionless plasma involving AlfveÂ n turbulence:

s? � e 2nLc

mev

hb 2i
B 2

; �67�

where the highest of three velocities vTe, vA, and u should be
substituted for v.

Throughout the foregoing text we only considered the
case of a statistically homogeneous medium. When the fields
E and B, as well as the particle distributions, are spatially
inhomogeneous, in Ohm's law there appear additional terms
arising from this large-scale inhomogeneity, which are not
given here.

The expression for the longitudinal current and the
longitudinal conductivity should be considered simulta-
neously with the equation for the longitudinal electric field
(the polarization field). This more complicated problem will
not be considered here (see Refs [39, 40] which discuss the
more general case of the collisional integral). For the
problems considered in this review it would suffice to know
the transverse currents.

Let us give some more information about the plasma
parameters of astrophysical objects. In a rarefied hot plasma,
the mean free path between the Coulomb collisions is
Lc � 1:4� 1012 T 2=nl10 (cm), when the temperature is
measured in eV, the concentration n in cmÿ3, and l10 is the
Coulomb logarithm divided by 10. The temperature range of
interest for astrophysical plasma objects extends from about
1 eV to �10 keVÐthe gas temperature in rich galaxy
clusters. The characteristic plasma densities for the majority
of objects with collisionless shock waves lie in the conven-
tional range between 10ÿ7 cmÿ3 in the intergalactic medium
and �1015 cmÿ3 in accretion disks. The estimated magnetic
fields range from 10ÿ9 G for the intergalactic space to
appreciably more than 1 G in stellar atmospheres.

The frequency tÿ1r of thermal ion scattering by magnetic
fluctuations with scales much longer than the particle's
gyroradius in the mean magnetic field can, as was done in
the foregoing, be estimated by the formula

tÿ1r �
e 2

m 2
i c

2

�1
0

K�v 0kt; 0� dt �
e 2hb 2itc
m 2

i c
2

; �68�

which is valid when tÿ1r 5oB. Hence, we have the following
limitation on the correlation time tc and the r.m.s. fluctuation
amplitude: hb 2i=B 2

0 5 �oBtc�ÿ1. For single-scale fluctua-
tions, the correlation time is defined by this single scale. For
extended Kolmogorov type fluctuation spectra, which sub-
side with decreasing scale:

K�k� � hb 2i aÿ 1

k a ; a5 1 ;
2p
Lc

4 k4
2p
lmin

; Lc 4 lmin ;

�69�

the correlation time is defined by the fluctuations with the
longest scale. In particular, for a! 1 (Bohm's case) we
have

�aÿ 1�ÿ1 ! ln
Lc

lmin
; tc � Lc

2v ln �Lc=lmin� : �70�

3. Linear modes and their damping

We consider the natural oscillations of a partially ionized
medium in the absence of dissipation �nm � neff � 0� and
extrinsic current �j ext � 0�. Assuming that u 0; b; r 0 /
exp �ikrÿ iot�, from Eqns (26) ± (28) we obtain the system
of algebraic equations for the components of the field b:�
o 0 ÿ

v 2Ak
2
k

o 0

�
b � v

2
Ao

0�k 2ek ÿ kkk�bk
o 0 2 ÿ c 2s k

2
� i

B0ckk
4pnie

k� b ; �71�

where o 0 � oÿ ku0 is the frequency in the co-moving frame
of reference. By projecting Eqn (71) onto the directions ek and
k� ek, we find the dispersion relation

�o 0 2 ÿ v 2
Ak

2
k �
�
o 0 2 ÿ v 2

Ak
2
k ÿ

o 0 2v 2
Ak

2
?

o 0 2 ÿ c 2s k
2

�
� o 0 2v 2

Ak
2
k

�ck�2
�1ÿ F �o2

0i

: �72�

Here, the right-hand side is written out in terms of the ion
plasma frequency

o2
0i �

4pnie 2

mi
: �73�

When the scale of field inhomogeneity is sufficiently large,
k5o0i

������������
1ÿ F
p

=c, the right-hand side of the equality is small
in comparison with the terms which enter onto the left-hand
side and it may be placed equal to zero. This signifies
neglecting the Hall current and yields the known dispersion
laws for three MHD modesÐ the AlfveÂ n mode and two
magnetosonic ones:

oA � �vAjkkj ; of; s � �vf; s k ; �74�
v 2
f; s �

1

2
�v 2

A � c 2s � �
1

2

��v 2A � c 2s �2 ÿ 4v 2
Ac

2
s cos

2 #
�1=2

;

where # is the angle between the vectors k and B0. In the
dissipation-free limit, the phase velocities are no different
from the velocities of the modes in fully ionized plasmas.
However, the damping is substantially stronger.

To estimate the wave damping coefficients, we include in
Eqn (71) the dissipative terms from Eqn (26) but omit the
weak Hall current which is not responsible for dissipation:

�o 0 2 ÿ v 2
Ak

2
k � b �

v 2Ao
0 2�k 2ek ÿ kkk�bk
o 0 2 ÿ c 2s k

2

ÿ io 0
n
nmk 2b� �neff ÿ nm�

��k 2ek ÿ kkk�bk � k 2
k b?

�o
:

�75�
To the AlfveÂ n mode there corresponds bk � 0, the vector b in
this mode being aligned with k� ek. Retaining in Eqn (75) the
corresponding terms and putting o 0 � oA ÿ igA, where
gA 5 joAj, we find the damping coefficient

gA �
1

2
�neffk 2

k � nmk 2
?� : �76�
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The damping is primarily accounted for by the high effective
collisional viscosity. This takes place for k 2

k =k
2
?5 nm=neff. In

the absence of the neutral component �neff � nm� we obtain
the known expression gA � nm k 2=2.

In the case ofmagnetosonic waves, bk 6� 0 and the vector b
lies in the �k; ek� plane. The damping coefficient of the fast
and slow modes is given by the expressions

gf; s � neffk 2
v 2
f; s ÿ c 2s

4v 2f; s � 2c 2s � 2v 2
A

: �77�

For the slow mode, which corresponds to the minus sign
ahead of the square root in expression (74), the above formula
is valid for gs > 0 and gs 5 josj.

Prior to investigating the effects of a magnetic-field and
MHD-wave generation in multicomponent plasma systems,
which is the main objective of our work, it would be
instructive to consider the comparatively limited problem
involving prescribed extraneous currents which act on the
electron ± ion magnetoactive plasma.

4. MHD wave excitation by an external current
in a single-fluid plasma model

MHD waves in highly conducting liquids and a plasma may
be generated both by direct mechanical excitation and by way
of external electric currents. The generation problem has been
discussed in different works [41 ± 43] since the discovery of
MHD waves by H AlfveÂ n in 1942. Both excitation mechan-
isms play a significant part in cosmic plasmas, but in a
collisionless plasma the mechanism of field excitation by
electric currents is quite often the dominant one.

We shall briefly discuss the wave generation problem with
the aim of determining the relative role of resonance and
nonresonance mechanisms of wave excitation by external
current j ext. In the formulation of the problem considered by
Akhiezer et al. [43], we have a plasmawith ions of one sort and
a given extrinsic current. Then, the excitation of linear MHD
waves may be investigated by employing the equation of
motion (11) of a single-fluid medium, in which the last terms
on the left-hand side, responsible for viscous dissipation, may
be dropped. The equation for the velocity u�r; t� of the
medium differs from Eqn (11), in particular, in that the force
�1=c�� j ext � B�, which acts on the external current carrier and
not on the plasma, is missing from it:

r
�
qu
qt
� �uH�u

�
� 1

c
j� Bÿ HP : �78�

In this case, the magnetic field is determined by the total
current:

H� B � 4p
c
� j� j ext� ;

which permits excluding from Eqn (78) the proper plasma
current j and obtaining the equation relating the extrinsic
current j ext to the velocity u and the field B in the plasma.

The induction equation, which is derived with the use of
Ohm's law in its ordinary representation j � s�E� u� B=c�,
takes on the form

qB
qt
� H� �u� B� � nmDB� 4pnm

c
H� j ext : �79�

In Eqn (79), we took into account the terms corresponding to
the plasma finite conductivity effects, which are required in
the analysis of the resonance effect of wave generation.
However, unlike Ref. [43], apart from the magnetic diffusion
effect which is described by the term nmDB, we also retained
the last term which contains the extrinsic current and is
proportional to the magnetic viscosity nm. This summand is
different from conventional dissipative terms proportional to
Zk 2 and nmk 2 in that it is a source of the field in the induction
equation.

Let us consider the external current in the form of a
traveling wave, j ext � j0 exp

�
io�z=vph ÿ t��, which permits

introducing in explicit form the phase velocity vph of the
source. The system of coordinates is so selected that its Oz-
axis is aligned with the direction of current wave propagation,
and the unperturbed magnetic field B0 lies in the xz plane.
Upon the conventional linearization procedure, B � B0 � b,
we obtain the equations for the vectors b and u of the AlfveÂ n
wave in a homogeneous stationary plasma with the magnetic
field B0. The AlfveÂ n mode can be marked out as the mode
with the polarization along the Oy-axis:

quy
qt
ÿ B0z

4pr0

qby
qz
� j extx B0z ÿ j extz B0x

r0c
; �80�

qby
qt
ÿ B0z

quy
qz
� nm

q2by
qz 2
ÿ 4pnm

c

�
qj extz

qx
ÿ qj extx

qz

�
: �81�

We define the external current in the form of a traveling
shear wave with j extz � 0 and j extx 6� 0, which secures the
fulfilment of the condition Hj ext � 0. The solution which
describes the forced oscillations in the medium is of the form

uy � ÿ B0z

ior0c

v 2
ph

v 2ph ÿ v 2A � ionm
j extx ; �82�

by � 4pvph
ioc

v 2
A ÿ ionm

v 2ph ÿ v 2
A � ionm

j extx : �83�

These quantities are related as

uy � � by��������
4pr
p vAvph

v 2
A ÿ ionm

; �84�

where vA � jB0zj=
��������
4pr
p

.
The relationship obtained is different from the relation-

ship inherent in the eigenmode in a dissipation-free medium,
i.e., in the AlfveÂ n wave, and goes over into it for nm ! 0 and
vph ! vA.

We also consider wave excitation by an external current
aligned with the direction of wave propagation, i.e., j extz 6� 0
and j extx � 0 (here, H j ext 6� 0). In this case, the corresponding
relationships take on the form

uy � B0x

ior0c

v 2ph ÿ ionm
v 2ph ÿ v 2A � ionm

j extz ; �85�

by � ÿ B0xB0z

iorcvph

v 2ph
v 2
ph ÿ v 2A � ionm

j extz ; �86�

uy � ÿby
v 2ph � ionm
B0zvph

: �87�

The resultant relationships show that forced oscillations
in the medium are excited by external currents with an
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arbitrary phase velocity. The wave propagates with the phase
velocity of the current. When the phase velocity of external
current coincideswith theAlfveÂ n velocity of themedium there
occurs a resonance. The wave amplitude at resonance is
inversely proportional to the magnetic viscosity and is
therefore directly proportional to the electrical conductivity
of the medium. In a dissipation-free medium �nm ! 0�, the
wavemay exist (uy and by may be nonzero) even in the absence
of external current � j ext ! 0�. However, only the eigenmodes
with vph � vA are possible in this case, and the relation
between the velocity and magnetic field amplitudes corre-
sponds to the AlfveÂ n wave:

uy � � by��������
4pr
p : �88�

In the presence of external current, the field ± velocity
relation is different from formula (88) in the general case. The
situation is similar to that which takes place in the emission of
electromagnetic waves in a vacuum. In the domain occupied
by current, the electromagnetic oscillations do not generally
possess the properties of vacuum modes and transform into
them only some distance away from this domain (in the wave
zone).

We emphasize once again: the amplitude of the AlfveÂ n
wave under resonance excitation by an external current in a
medium with one sort of ions is higher, the higher the
conductivity of the medium. A qualitatively different situa-
tion takes place in multicomponent systems with nonthermal
accelerated particles, which we now turn our attention to.

5. Allowance for the accelerated component
in MHD equations

Let us assume that the medium under consideration contains,
apart from the background nonrelativistic plasma and the
neutral component, some population of accelerated charged
particles, relativistic or nonrelativistic, whose velocities v far
exceed all the remaining velocities: v4 vA; cs; u. Being
significantly different from the background particles by
energy, these particles should be considered the fourth
medium component with specific properties. In view of the
high energy of these particles, we neglect their collisions with
the particles of the background medium but include their
interaction with small-scale stochastic turbulent fields. This
may be done by taking advantage of the kinetic equation,
averaged over turbulent fields, for the averaged distribution
function f of the particles involved (see Ref. [8]):

qf
qt
� v

qf
qr
� eE

qf
qp
ÿ ec

E BOO f � I � f � : �89�

Here,B andE are the large-scale regularmagnetic and electric
fields, I � f � is the collision integral which takes into account
the interaction of accelerated particles withMHD turbulence,
and E is the total accelerated-particle energy. Specific
expressions for this quantity within the lowest-order approx-
imation in turbulence amplitude may be found in monograph
[8], and the nonlinear corrections are given in review [44]. In
the case under consideration, the electric field in the ionized
medium owes its origin to the transport velocity and may be
written as

E � ÿ 1

c
u� B ; �90�

making it possible to combine the last two terms on the left-
hand side of Eqn (89) into one, if need be:

qf
qt
� v

qf
qr
� e

c
B

�
�vÿ u� � q

qp

�
f� I � f � : �91�

Hence, it follows that the equation terms proportional to u
contain the small parameter u=v.

To incorporate the accelerated particles into the general
system of equations obtained in the preceding sections, we
impart the hydrodynamic form to Eqn (91). To do this we go
over to the momentum balance equation for accelerated
particles by multiplying Eqn (91) by the momentum of a
single particle and integrating it with respect to d3p. We
denote the momentum density by

PP�r; t� �
�
p f d3p ; �92�

and the momentum flux density by

Pab �
�
pavb f d3p �93�

to arrive at

qPa

qt
� HbPab � 1

c
�j ext � B�a ÿ eNEa �

�
pa I � f � d3p ; �94�

where

j ext � e

�
v f d3p �95�

is the electric current induced by accelerated particles, and N
is their local concentration. The last term in Eqn (94) may be
approximately written down, as follows from its dimension-
ality and physical considerations, in the form�

pa I � f � d3p � ÿPa

ts
: �96�

Here, ts is the time of accelerated-particle distribution
function isotropization under the action of scattering turbu-
lent fields.

Let us compare the resultant Eqn (94) with the momen-
tum balance equation for the background particles, which is
obtained by summing the right- and left-hand sides of
Eqns (11) and (13):

q
qt
�rua� � Hb�ruaub� � ÿHaP� 1

c
�j� B�a : �97�

We discarded from Eqn (11) the dissipative term, assuming
the medium to be cold enough. We add Eqn (94) termwise to
Eqn (97) to obtain

q
qt
�rua � Pa� � Hb�ruaub �Pab�

� ÿHaP� 1

c

��j� j ext� � B��a ÿ Pa

ts
: �98�

The term eNE was cancelled by the corresponding contribu-
tion from the background particles, because the system under
discussion is electroneutral as a whole. In view of the fact that
the spatial scales under discussion are far greater than the

February, 2007 Instabilities of a multicomponent plasma with accelerated particles and magnetic éeld generation in astrophysical objects 151



Debye length, local macroscopic electroneutrality
�N� ni ÿ ne � 0� also occurs.

To somewhat simplify the resultant equation of motion
for a four-componentmedium, we take into consideration the
distinguishing features of an accelerated-particle distribution
function in astrophysical objects. The first feature is the low
accelerated-particle concentration in comparison with the
background-particle concentration. In the galactic disk,
N=�ni � na� � 10ÿ9 on the average. In the acceleration of
particles at the shock front, this ratio depends heavily on the
form of the spectrum and the highest energy to which the
acceleration occurs. We estimate it for typical conditions by
proceeding from the energy conservation law which may be
written out in the form of the relationship

Z
mpu

2

2
n0u �TN0u

0 ; �99�

where Z is the fraction of the primary energy flux transferred
to accelerated particles, u and u 0 are the velocities of the
medium ahead of and behind the front, n0 is the average
proton concentration ahead of the front calculated with the
inclusion of the neutral component, and T is the average
kinetic energy of the accelerated particles. For a power law
spectrum of accelerated protons, i.e.

f0� p; y� � 1

4p
N� p��1� A cos y� ;

�100�
N� p� � �aÿ 3�N0

p aÿ3
0

p a ; pm 5 p5 p0 ;

we obtain

T � aÿ 3

5ÿ a

�
mpc

p0

�5ÿa
p 2
0

2mp
; 5 > a > 4 ; p0 5mpc ;

T � mpc
2 ln

�
pm
p0

�
; a � 4 ; �101�

T � aÿ 3

4ÿ a

�
p0
pm

�aÿ3
Em ; 3 < a < 4 ; pm 4mpc

2 :

We shall not consider extreme situations with a strong front
modification by accelerated particles �a < 4�, restricting
ourselves to a weak front distortion �a � 4� and a moderate
fraction �Z � 0:1� of the energy flux transferred to the
accelerated particles. Under these assumptions, one has

N0

n0
� 0:2

ln � pm=p0�
�
u

c

�2

: �102�

An important characteristic of the distribution function of
the particles accelerated by diffusion mechanisms (for
instance, in the first-order Fermi acceleration near the shock
front) is the high degree of its isotropy. This is due to the fact
that the particles must undergo strong scattering capable of
confining them within the bounded acceleration region for a
long time. That is why the dimensionless anisotropy para-
meterA in expression (100) is small, as a rule. In theGalaxy, it
has, on average, a value of A9 10ÿ3 for proton energies
E9 104 GeV and is on the order of u=c5 1 near the shock
front.

Equation (98) allows some simplifications.With the aid of
distribution function (100), we shall estimate the momentum
density for accelerated particles and find the ratio between it

and the momentum density for the background medium:

P
n0mpu

� N0

n0

cA

u
ln

�
pm
p0

�
� 0:2

Au

c
5 1 ;

if use is made of the estimate (102). By virtue of the relative
smallness of accelerated-particle momentum density, it may
be neglected on the right- and left-hand sides of Eqn (98).
However, the term HbPab � HaPcr should not be dropped,
because the pressure due to the accelerated particles may
amount to a significant fraction of the dynamic pressure of
the gas-dynamic flow. Eventually, we obtain the equation of
motion for the four-component continuous medium in the
form

r
�
qu
qt
� �uH�u

�
� 1

c
�j� j ext� � Bÿ H�P� Pcr�

� Z
�
Du� 1

3
H�Hu�

�
: �103�

In comparison with Eqn (11), in Eqn (103) there appear the
total pressure and the total current, which include the
contributions of accelerated particles. This corresponds to
the assumption that the accelerated particles interact with the
background plasma via the regular field and the stochastic
fields. That is why it turns out that the magnetic force acting
on the current produced by these particles is applied to the
plasma as awhole. In Eqn (103), we wrote the dissipative term
as well, since it underwent no changes as a result of the above
transformations. To Eqn (103) must be added Maxwell's
equations (25). The background-particle current j is related
to electromagnetic fields by Ohm's law (17) or (22), but the
accelerated-particle current j ext does not obey this law and
should be separately calculated employing the distribution
function.

6. Restructuring of the static magnetic field
by relativistic particles near the shock front

The high efficiency of mechanical energy transfer to acceler-
ated particles was noted even in the first papers concerned
with charged particle acceleration by strong MHD shock
fronts in turbulent media [13, 45 ± 47]. The accelerated
component may acquire an energy which amounts to a few
dozen percent of the shock wave energy. This leads to the
result that the accelerated particles exert an appreciable
retraction on the velocity of the plasma stream and the
turbulence near the shock front. Different aspects of these
phenomena have been investigated by many authors [48 ± 50].
In the papers mentioned above and in other papers it was
shown that the accelerated particles deform the hydrody-
namic flow velocity profile and may, under certain condi-
tions, be responsible for a complete smearing of the thermal
jump. Relativistic particles intensively generate hydromag-
netic (primarily AlfveÂ n) perturbations via resonance and
nonresonance mechanisms (see Refs [10 ± 12, 27, 28] and
others).These issues will be systematically outlined in the
sections of our review that follow.

In this section we consider, following Ref. [51], one more
aspect of this problem, namely, the possibility that the electric
current of accelerated relativistic particles generates a static
magnetic field ahead of the shock front. The spatial scale of
this field is on the order of the prefront thickness l � k1=u1,
where k1 is the relativistic-particle diffusion tensor compo-
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nent normal to the front, and u1 is the normal component of
hydrodynamic plasma velocity. For nonrelativistic shock
waves, this scale is far greater than the gyroradius of
relativistic particles. The field generated in the prefront is
added to the primary magnetic field and may substantially
modify it. The plasma flow carries the modified field behind
the front, and its magnitude and geometry have an important
bearing on the acceleration of particles and their emission by
nonthermal mechanisms.

An upper bound on the turbulence energyWmax and the
magnetic induction Bmax which may be generated by the
accelerated particles themselves can be obtained from the
energy conservation law. The energy density of the gas flow
ahead of the front amounts to n0mpu

2
1 =2 (we neglect the

internal energy). In our case, the part of the intermediate
agent is played by relativistic particles, which can account for
a couple dozen percent of the flow energy [50, 52]. Taking this
fraction as Z � 20% and assuming that u1 � 3� 108 cm sÿ1

(the value typical for supernova outbursts and strong stellar
winds, see Lozinskaya [53]), we arrive at the estimates of the
quantities we are seeking:

Wmax � Z
n0mpu

2
1

2
; Bmax �

�����������������������
4pZn0mpu

2
1

q
: �104�

These estimates for the three principal known phases of the
interstellar medium are collected in Table 2. They are several
orders ofmagnitude higher than the observed valuesBobs (see,
for instance, Refs [1, 31, 54]) in the corresponding phases,
which may be indicative of the significance of the effect under
discussion. That is why it is desirable to find for this problem a
self-consistent solution which is based on the conservation
laws and takes into account the dependence of the problem
parameters on the magnetic field being calculated. This has
been possible to achieve for the generation of a static
magnetic field in the simple model considered below.

6.1 Formulation of the problem
In the context of a stationary self-consistent model we shall
consider the one-dimensional problem of magnetic field
generation by the electric current induced by accelerated
relativistic particles with all possible energies. Let a plane
shock front �z � 0� be a source of accelerated protons whose
average energy will be specified below. Atomic nuclei heavier
than protons and electrons make up only a small fraction of
accelerated particles and will be neglected. The background
plasma and background neutral medium will also be assumed
to be purely hydrogenic. The plasma moves along theOz-axis
and the normal component of its velocity experiences a jump
Du � uz�0� ÿ u2 > 0 at the front and is constant behind the
front. The velocity uz�z� ahead of the front �z < 0� may
smoothly decrease from a value u1 far away from the front
to some value uz�0� < u1 if an appreciable fraction of the
energy of the shock wave goes into the acceleration of
particles and the generation of a magnetic field.

The particles are accelerated in the vicinity of the front,
and therefore the source of energetic particles at the front is

specified in the form

Q�z� � q0d�z� ; �105�

which corresponds to a uniform particle injection from the
background plasma into the regime of acceleration by the
shock front. The injection power q0 may be expressed in terms
of a dimensionless parameter w < 1, namely, the fraction of
particle flux injected into the acceleration regime: q0 � n0u1w,
where n0 is the total concentration of hydrogen ions and
neutral atoms ahead of the front. The neutral atoms are
ionized at the front. Accelerated protons are drawn from the
thermal background, and therefore at the front it is required
to define the thermal proton sink

Qth�z� � ÿQ�z� ; �106�

to ensure the conservation of electric charge and the number
of particles.

Let us assume that ahead of the front there is an initial
uniform magnetic field B1 whose direction is defined by polar
angles y and a, and turbulent pulsations containing small-
scale random magnetic fields which scatter particles. Relati-
vistic and thermal particles will execute random wandering in
the turbulent medium. It is essential that the magnetic field
direction not be coincided with the normal to the shock front,
because in this case, for a uniform particle injection into the
acceleration regime at the front, the current may flow only
along the Oz-axis and would not induce a magnetic field on
the strength of symmetry. The diffusion coefficients k for
relativistic protons and similar coefficients D p and D e for
background nonrelativistic protons and electrons have
different values along and across the large-scale magnetic
field. Furthermore, they are different in the domains ahead of
and behind the front. Owing to diffusion anisotropy, the
relativistic and background particles will induce an electric
current which may have projections on all three axes. The aim
of our work is to estimate the magnetic field produced by this
current.

The equation relating the magnetic field to the extrinsic
current and the velocity of the medium is written within the
neff 4 nm approximation and neglecting the Hall term in
Eqn (20). We also neglect the contribution of turbulence to
the conductivity and magnetic viscosity, which was consid-
ered in Section 2.2. Under these approximations, the
magnetic field equation, which may be obtained from
Eqns (20) and (25), takes on the form

qB
qt
� ÿH� �neffH� B�? � H� �u� B� � 4p

c
H� neff j ext? ;

H � B � 0 : �107�

Here, the subscript ? denotes the vector perpendicular to the
field B, u is the regular velocity of the medium in the prefront,
and the quantities B, u, and j ext depend on one coordinate, z.
The magnetic viscosity, which is proportional to B 2�z�, also
depends on this coordinate.

Table 2.

n0, protons cmÿ3 Bmax, G Wmax, eV cmÿ3 Bobs, G Note

20
0.2
2� 10ÿ3

2:8� 10ÿ3

2:8� 10ÿ4

2:8� 10ÿ5

2� 104

200
2

1:5� 10ÿ5

�2ÿ6� � 10ÿ6

?

Neutral clouds
`Warm' intercloud medium
Hot caverns
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6.2 Calculation of the total current
The total extrinsic current in the plasma is induced by
relativistic protons, as well as by background protons and
electrons: j ext � j p � j e. The proton- and electron-induced
currents may be written out as �z 6� 0�

j p
a � ÿekab

qN
qxb
ÿ eD p

ab
qnp
qxb
� eua�N� np� � sp

abEb ; �108�

j ea � eD e
ab

qne
qxb
ÿ euane � s e

abEb ; �109�

where N is the number density of accelerated protons, np and
ne are the nonequilibrium additions to the concentrations of
the background protons and electrons, and E is the electric
field which emerges due to charge separation and satisfies the
equation of electrostatics:

HE � 4pe�N� np ÿ ne� : �110�

Here, we consider the integral concentrations of arbitrary-
energy particles. The quantities s e and s p are the conductiv-
ities of the background plasma, related to its diffusion
coefficients as [55]

s e; p
ab �

D e;p
ab

4pr 2D
; �111�

where rD �
��������������������
T=4pn0e 2

p
is the Debye radius, T is the

temperature, and n0 is the equilibrium number density of the
background protons or electrons.

In the stationary case, the total current j ext � j p � j e, as
well as the currents of relativistic and nonrelativistic protons
and electrons taken separately, satisfies the equations

H j ext � H j p � H j e � 0 : �112�

As noted above, we shall consider the one-dimensional
case and treat the number densities and the currents as
functions of one spatial coordinate, z. The relativistic
particles are scarcely affected by the self-consistent electric
field, and in the equation for the number density N it would
therefore suffice to account for only the diffusion of the
particles and their convective transfer by the motion of the
medium. For a steady-state acceleration, the equation is of
the form

d

dz

�
ÿk1; 2 dN1; 2

dz
� u1; 2N1; 2

�
� q0d�z� : �113�

Here, the subscripts 1, 2 refer to the domains ahead of (1) and
behind (2) the shock front, and k1; 2 are the values of diffusion
coefficient kzz in the corresponding domains. Similar notation
will be used for the coefficients D p and D e in the subsequent
discussion. The diffusion coefficients k and D themselves are
considered tomean the quantities which are averaged over the
energy spectra, respectively, of relativistic and thermal
particles and which depend on z in the general case.

On the right-hand side of Eqn (113) we replace the source
by the boundary conditions [8]

N1 � N2 ; k1
dN1

dz
ÿ k2

dN2

dz
ÿ DuN1; 2 � q0 for z � 0 ;

�114�

to find the solutions of equation (113):

N1�z� � N0 exp
�ÿz�z�� ; N0 � q0

u2
;

z�z� �
� 0

z

uz�z 0� dz 0
k1�z 0� ; z4 0; �115�

N2 � N0 ; z5 0 :

The condition z�l � � 1 defines the distance l by which the
accelerated particles are able to move upstream before they
are carried behind the shock front.

The concentrations of nonrelativistic particles readjust to
the distribution of relativistic protons and should be
determined in the z > 0 domain using Eqns (112). These
equations have the form

d

dz

�
ÿeD p

1

dnp
dz
� euz�z�np � s p

zzEz

�
� 0 ;

�116�
d

dz

�
eD e

1

dne
dz
ÿ euz�z�ne � s e

zzEz

�
� 0 :

We integrate this system and take advantage of formula (111)
to obtain

Ez � 4per 2D

�
dnp
dz
ÿ uz�z�

Dp
1

np

�
� ÿ4per 2D

�
dne
dz
ÿ uz�z�

D e
1

ne

�
:

�117�

This permits, in view of formulas (108) and (109), writing out
the components of the total current:

j extx � ÿekxz dN
dz
� euz�z�

�
D e

xz

D e
1

ne ÿD p
xz

Dp
1

np

�
;

j exty � ÿekyz dN
dz
� euz�z�

�
D e

yz

D e
1

ne ÿ
D p

yz

Dp
1

np

�
; �118�

j extz � 0 ;

where N�z� is given by formulas (115). Attempts to perform
the subsequent calculation in the general form do not meet
with success, and it calls for additional assumptions.

(1) The parameter�
urD
k1

�2

�
�
3urD
vLk

�2

5 1 �119�

is small for the interstellar medium phases under considera-
tion. For relativistic particles and nonrelativistic shockwaves,
the ratio 3u=v < 1. The parameter rD=Lk has a very small
value not exceeding 10ÿ13, if the average over the galactic
disk, Lk � 1018 cm, is involved (see Ref. [18]). Even an
increase in the magnetic field strength and the turbulent
pulsations by several orders of magnitude near the front
cannot compensate for this smallness.

From the smallness of the above parameter, on the
strength of Eqns (110) and (117) there follows the plasma
quasineutrality condition

N� np ÿ ne � 0 ; �120�

which is fulfilled with an accuracy of order the magnitude of
the aforementioned parameter. The inhomogeneity scale for

154 A M Bykov, I N Toptygin Physics ±Uspekhi 50 (2)



the background particle distribution is the same as for
accelerated protons, and therefore to an order of magnitude
one has n 0p; e � �u=k1�np; e.

When the thermal-particle diffusion coefficients are low
enough, namely

D p; e
1 5 k1 ; �121�

the terms with derivatives in Eqn (117) may be neglected,
which gives np=ne � ÿD p

1 =D
e
1 . The quasineutrality condition

permits finding

np � ÿN�z� D p
1

Dp
1 �D e

1

; ne � N�z� D e
1

Dp
1 �D e

1

�122�

and obtaining under this approximation the current density in
the prefront domain:

j extx � euz�z�
�
D e

xz �D p
xz

D e
1 �D p

1

ÿ kxz
k1

�
N�z� ;

�123�
j exty � euz�z�

�
D e

yz �D p
yz

D e
1 �D p

1

ÿ kyz
k1

�
N�z� :

(2) When condition (121) is not fulfilled but the diffusion
of thermal particles is ambipolar, as is the case in neutral
clouds and the thermal phase [1], protons and electrons
diffuse jointly with equal effective diffusion coefficients
D e

mn � D p
mn which by an order of magnitude are close to the

lesser of them. In this case, with the help of the quasineutrality
condition, from Eqns (118) we obtain

j extx � euz�z�
�
Dp

xz

D p
1

ÿ kxz
k1

�
N�z� ;

�124�
j exty � euz�z�

�
Dp

yz

D p
1

ÿ kyz
k1

�
N�z� :

In the case of ambipolar diffusion, expressions (123) and
(124) coincide.

The resultant expressions show that a nonzero current
density in the model under discussion may emerge only in the
presence of cross diffusion coefficients kxz, kyz and of similar
coefficients for background particles. In this case, the curl of
the current, which enters into Eqn (107) as a source, is
nonzero. Let L denote the transport mean free path of
particles along the regular magnetic field B; then, in the
system of axes, one of which coincides with B, we will have
the longitudinal, transverse, and Hall diffusion coefficients
(see, for instance, Ref. [8])

kk � 1

3
vL ;

k? � kk
r 2g

r 2g � L2
; �125�

kH � kk
rgL

r 2g � L2
:

Here, v is the velocity of a particle, and rg � cp=eB0 is its
gyroradius. The thermal-particle diffusion coefficients are
expressed in a similar way, but their Larmor radii are
substantially shorter than for relativistic protons and their
mean free paths are determined by entirely different physical
factors. That is why it is highly unlikely that the terms in
braces in expressions (123) and (124) cancel out.

The diffusion coefficients entering into formulas (123) and
(124) are expressed through relationships (125) as follows:

kxz � �kk ÿ k?� sin y cos y cos aÿ kH sin y sin a ;

kyz � �kk ÿ k?� sin y cos y sin a� kH sin y cos a ; �126�
k1 � kk cos2 y� k? sin2 y :

The angles y and a define the direction of the large-scale field
in the coordinate system with the polar axis aligned with the
normal to the plane of the shock front. The background-
particle diffusion coefficients possess a similar structure. On
permutation of the indices x, z and y, z on the left-hand sides
of formulas (126), the sign in front of kH on the right-hand
sides should be changed.

We note that the electric current in a system in which the
electric charge is compensated for with a high degree of
accuracy and its macroscopic displacements are lacking
arises from the nonuniformity of the distribution of the
Larmor circles of individual particles, both accelerated and
background. The current under discussion is similar to the
magnetization current j � c rotM in macroscopic electrody-
namics, where M is the nonuniform magnetization of the
medium.

The currents induced by relativistic protons and back-
ground particles enter into expressions (123) and (124) with
different signs, which reflects the screening effect. Never-
theless, any appreciable local cancellation of these currents in
a large spatial domain, in our view, necessitates special
conditions. This would signify the readjustment of back-
ground-particle diffusion coefficients to the values of relati-
vistic-proton diffusion coefficients. As noted in the foregoing,
no physical mechanisms have been established for such a
readjustment. At the same time, the electric charge balance
condition (120) is fulfilled with a high degree of accuracy due
to the action of Coulomb forces. For these reasons we do not
assume, as some general principle, that the total current is
equal to zero, j ext � j p � j e � 0, as is done in several papers.
This situation is only possible in some special cases (a uniform
magnetic field and so on).

6.3 Self-consistent magnetic field calculation
We write out the conservation laws assuming that the plasma
ahead of the shock front is cold and its pressure is negligible,
Pg � 0. The plasma velocity u1 far away from the front has
only one z-component, i.e., is normal to the front. However,
not far from the front there appears a tangential component
defined by the magnetic field. The corresponding system of
equations should include the magnetic field and in this sense
generalize the relations given in Ref. [50]. We have the
following system which expresses the constancy of mass,
momentum, and energy fluxes:

J � mpn�z�uz�z� � mpn0u1 � const ; �127�

Juz�z� � Pc�z� � B 2
t �z�
8p

� Ju1 � B 2
1t

8p
; �128�

Jut�z� ÿ 1

4p
B1zBt�z� � ÿ 1

4p
B1zB1t ; �129�

1

2
Ju 2

z �z� �
gc

gc ÿ 1
uz�z�Pc�z� ÿ k1�z�

gc ÿ 1

dPc

dz

� 1

4p
uz�z�B 2

t �z� � qm�z� � 1

2
Ju 2

1 �
1

4p
u1B

2
1t : �130�
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Here, J � mpn0u1 is themass flux density, gc is the index of the
Poisson adiabat for the relativistic gas of accelerated
particles, and qm�z� is the runaway-particle energy flux. To
calculate it requires knowing the accelerated-particle energy
spectrum. In formulas (127) ± (130), Bt �

ÿ
Bx�z�;By�z�

�
denotes the projection of the total magnetic field onto the
�x; y� plane parallel to the shock front. It includes both the
initial field B1 and the additional field generated by the
accelerated particles. Similarly, one finds that

B�z� �
������������������������������������������
B 2
x �z� � B 2

y �z� � B 2
1z

q
is the absolute value of the total magnetic field.

Maxwell's equations (107) in combination with Eqn (129)
permit an easy derivation of the first integrals for the one-
dimensional case under consideration:

neff�z� dBx

dz
ÿ neff�z�By

�
dBx

dz

By

B 2
ÿ dBy

dz

Bx

B 2

�
ÿ uz�z�Bx � B 2

1z

4pJ
Bx

� 4p
c

neff�z� j exty �z�ÿ
4p
cB 2

neff�z�� j extx Bx� j exty By�Byÿ u1B1x ;

�131�
neff�z� dBy

dz
� neff�z�Bx

�
dBx

dz

By

B 2
ÿ dBy

dz

Bx

B 2

�
ÿ uz�z�By � B 2

1z

4pJ
By

� ÿ 4p
c

neff�z� jx�z�� 4p
cB 2

neff�z�� j extx Bx� j exty By�Bxÿ u1B1y ;

with Bz�z� � B1z � const. In the self-consistent calculation,
the dependence of all diffusion coefficients on the total
magnetic field should be taken into account. In particular,
the trigonometric functions in formulas (126) should be
expressed as follows:

cos y � B1z

B�z� ; sin y cos a � Bx�z�
B�z� ; sin y sin a � By�z�

B�z� :
�132�

According to the estimate made at the beginning of this
section, the ratio B 2

1z=4pJu1 9 10ÿ4 in the main phases of
the interstellar medium, and therefore the terms
B 2
1zBx; y=4pJu1 are discarded in what follows.
The solution of Eqns (131) essentially depends on the ratio

between the accelerated-particle and magnetic-field diffusion
coefficients. The inhomogeneity inmagnetic field distribution
arises from accelerated particles, and therefore the derivative
jB 0x; yj9 �u1=k1�jBx; yj. From this estimate it follows that the
ratio neff=k1 determines the relative contribution of the terms
that do and do not contain the derivatives of the magnetic
field with respect to z on the left-hand sides of Eqn (131). We
shall consider two cases.

(1) neff=k1 5 1. The terms with the derivative may be
neglected, which gives the solution

Bx�z�� ÿ 4pneff�z�
cuz�z�

�
j exty ÿ By

B 2
� j extx Bx� j exty By�

�
� u1
uz�z� B1x ;

By�z�� 4pneff�z�
cuz�z�

�
j extx ÿ Bx

B 2
� j extx Bx � j exty By�

�
� u1
uz�z� B1y :

�133�

(2) neff=k1 4 1. This case calls for a numerical solution,
but for a semiqualitative analysis of the physical picture it
would suffice to estimate the derivatives by the order of
magnitude: dBx; y=dz � �u1=k1�Bx; y. We substitute this esti-
mate into Eqn (131) and find an approximate solution:

Bx�z� � 4pk1�z�
cu1

�
j exty ÿ By

B 2
� j extx Bx � j exty By�

�
� B1x ;

�134�
By�z� � ÿ 4pk1�z�

cu1

�
j extx ÿ Bx

B 2
� j extx Bx � j exty By�

�
� B1y :

Even after the simplificationsmade above, equalities (133)
and (134) are complex integral equations in Bx�z� and By�z�,
because the particle diffusion coefficients depend on these
quantities. The coefficient k1 defines, via integral (115), the
thickness of the layer in which the field is changed by
relativistic particles. However, when our concern is only
with the magnetic field at the front �z � 0�, the integral
(115) vanishes and relationships (133) and (134) transform
to transcendental equations in Bx�0� and By�0�.

To calculate them we preset the fraction Z of the dynamic
pressure of the plasma flow, which is transferred to acceler-
ated particles and the magnetic field they generate:

Z � Pc�0� � B 2�0�=8pÿ B 2
1 =8p

Ju1
: �135�

From Eqn (128) we find

uz�0�
u1
� 1ÿ Z : �136�

In the subsequent estimates the value of Z will be set at a level
not exceeding 20%, although it may be several times greater
under intense acceleration of particles.

The flux density q0 � N0u2 of particles injected into the
acceleration regime can also be expressed in terms of the
relative value Z of the dynamic pressure.We take into account
the relation between the pressure Pc of relativistic particles
and their average kinetic energyT :

Pc � 1

3

�
vpN�p� p 2 dp � vp

3
N0 � �gc ÿ 1�TN0 : �137�

With the help of relationship (135) we find

q0 � n0u2
gc ÿ 1

mpu
2
1

T

�
Zÿ B 2

t �0� ÿ B 2
1t

8pJu1

�
; �138�

where u2 is the plasma velocity behind the shock front.
We begin estimating the field at the front in the case that

neff 4k1. We consider the regime of intense particle accelera-
tion at the front, capable of furnishing a small value of the
diffusion coefficient. In this regime, the transport mean free
path assumes the least possible value of L � rg, i.e., comes to
be on the order of the gyroradius (the Bohm limit). The
reasoning in favor of the realization of this situation is given
in Section 11 of our review.

In this case, relationships (125) give

kk � vp
3

c

eB
� 2k? � 2kH : �139�

Here, the over-bar denotes averaging over the spectrum of
accelerated particles. It may be performed with the aid of
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relationship (137). As regards the tensor D p
mn we make only

one assumption: we put D p
H � 0 because of the smallness of

the Larmor radii of thermal particles and because these
coefficients for protons and electrons are opposite in sign. In
this case, it is not necessary that D p

k 4D p
?, since the random

component of the magnetic field may partly isotropize these
coefficients. Under the assumptions that B1z 6� 0, B1y 6� 0,
and B1x � 0 we also introduce the dimensionless quantities

X � Bx�0�
B�0� ; Y � By�0�

B�0� ; �140�
B 2�0� � B 2

1z

1ÿ X 2 ÿ Y 2
; d � Dp

?
D p
k ÿD p

?
5 0 ;

and the parameter with the dimensionality of the square of the
magnetic field induction, viz.

b 2 � 2pgcJu1Z�
gcB

2
1

4
: �141�

This parameter characterizes the free energy density of the
flow of matter with an initial magnetic field. The index of the
Poisson adiabat for the relativistic gas is gc � 4=3. The
magnetic field b is of the same order of magnitude as the
previously calculated field Bmax [see formula (104) and
Table 2]. For a strong shock wave, it is higher by at least
two orders of magnitude than the field observed in the
corresponding phases.

The possible values of the field at the shock front should
be determined from the system of equations (134), into which
one should substitute the current components (124), put
z � 0, and express all quantities in terms of X, Y, d, and b
with the help of formulas (140) and (141). Eventually, an
awkward system of equations containing fractions and
radicals results. We give here simple linear equations written
down in the approximation jX j5 1, jY j5 1:

X � ÿ b 2

B 2
1z

�
X� B1z�dÿ 1�
jB1zj�d� 1� Y

�
;

�142�
Y � b 2

B 2
1z

�
ÿY� B1z�dÿ 1�

jB1zj�d� 1� X
�
� B1y

jB1zj :

This system has the unique solution

Bx�0� � ÿB1y
B1zjB1zjd�
b 2�1� d 2

� �
; By�0� � B1y

B 2
1z

b 2�1� d 2
� �
;

�143�
where d� � �dÿ 1�=�d� 1�. Here, b 2 4B 2

1z and the para-
meter d� does not exceed unity: 04d 2

� 4 1. That is why the
parallel components of the initial field at the front turn out to
be suppressed by the secondary field generated by the electric
current of accelerated particles. The suppression factor (on
the order of 104 under intense acceleration) is quite signifi-
cant. Even when the fraction of energy transferred to
accelerated particles lowers to Z � 10ÿ4, there persists a ten-
fold suppression of the field components directed along the
front. Other shock transition regimes, if any, are to be
determined from the unsimplified system of equations. But
its numerical solution shows that all real roots of this system
are small in comparison with unity. All possible solutions are
therefore exhausted by formulas (143) Ð that is, near the

front there actually persists only the magnetic field compo-
nent normal to the front for uniform particle injection.

This state of a strongly nonequilibrium plasma system is
an example of self-organization of a plasma with a magnetic
field. The transition of the system to this state has a simple
physical meaning. For a normal orientation of the magnetic
field relative to the shock front, the subsequent field
generation terminates by virtue of the system symmetry, and
such a configuration is stable in this sense. The system tends
to change to precisely this stable state. If there is a tangential
field component far away from the front, it decreases in
magnitude as the front is approached. The degree of
suppression is determined by the energy stored by the
accelerated particles inducing the secondary field.

The resultant solution does not allow the passage to the
limit B1z ! 0, because in this case the conditions jX j5 1 and
jY j5 1 are incompatible with the equation X 2 � Y 2 � 1,
which follows from expressions (140). That is why the case of
a front-parallel initial magnetic field should be treated
separately.

At B1z � B1x � 0, the value of Bx�0� � 0 transforms the
first equation (134) to an identity. From the second equation,
upon substituting into it the corresponding quantities, in
particularBy�0� � �B�0�, we obtain two quadratic equations

�1� 4�B 2 � 4B1yBÿ 1

gc
b 2 � 0 : �144�

One of them has a solution satisfying the physical require-
ment B�0� > 0:

B�0� �
����������������������������
4

25
B 2
1y �

4b 2

5gc

s
ÿ 2

5
B1y � 2b�������

5gc
p 4B1y : �145�

The remaining roots are either negative or complex.
The field generated by accelerated particles in this case,

i.e., in the absence of a primary field component normal to the
front, may exceed by approximately 100 times typical fields in
the cold and warm phases of the interstellar medium.
However, the question of whether this state is stable is still
open. Conceivably, the small fluctuations in the normal
component, as well as the density fluctuations in the prefront
medium, might transfer the system to the above-considered
state with B1z 6� 0, in which the tangential field component at
the front is strongly suppressed.

We next investigate the case with k1 4 neff. The generated
field is, according to expression (133), proportional to the
effective magnetic viscosity neff. We represent it, according to
formulas (21) and (29), in the form neff�z� � n0B 2�z�=B 2

1 ,
where B1 is the average field in the corresponding phase,
and n0 is the magnetic viscosity corresponding to the average
field. The main difference from the previous case consists in
the different dependences of neff and k1 on the magnetic field.
We perform the calculation to find for the case of B1z 6� 0:

Bx�0� � B1y
2B 2

1B1zd�
B 2
1zH�1ÿ Z��1� d 2

� �
;

�146�
By�0� � ÿB1y

2B 2
1

jB1zjH�1ÿ Z��1� d 2
� �
;

where

H � 1

h
�8pJu1Z� B 2

1 � ; h � 2�gc ÿ 1�cT
en0

: �147�
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The average accelerated-particle energy, which enters into
formula (147), depends on the shape of the energy spectrum.
For a sufficiently strong acceleration, the exponent of the
momentum spectrum in the phase space is close to four. In
this case, the average energy is given by [50]

T � cp0
3�gc ÿ 1� ln

�
2pm
mpc

�
;

where p0 � mpu1 is the injection momentum, and pm is the
greatest momentum reached in the course of the acceleration
(in the subsequent discussion we assume that pm � 100mpc).
This yields T � 0:8� 10ÿ4 erg. The ratio H=B1 �
102ÿ105 4 1 for typical parameter values in the warm phase
and in neutral clouds. Again, the tangential field component
at the front is therefore strongly suppressed, with only the
normal component persisting.

But result (146) is inapplicable for B1z ! 0, and the
orientation of the initial field along the front should be
considered separately. We set B1z � B1x � 0, jB1yj � B1 6� 0,
and introduce new variables X � Bx�0�=B1, Y � By�0�=B1.
We seek the solution with X � 0. For the determination of Y
we obtain the equation

Y 4 ÿ hH

B 2
1

Y 2 � h

B1
Y� h

B1�1ÿ Z� � 0 : �148�

Here, the upper signs correspond to the condition By�0� > 0
and the lower signs to the opposite condition, By�0� < 0. The
coefficients of Eqn (148) significantly differ in magnitude:
hH=B 2

1 > 104, h=B1 < 10 in the warm phase and neutral
clouds for Z � 20%. This equation therefore has large and
small roots which may be approximately found by dropping
in turn the small terms in the equation. ForY5 1, we discard
the term Y 4 in Eqn (148) and from the quadratic equation we
obtain

By�0� � �B1y

��������������������
jB1yj

H�1ÿ Z�

s
5B1 : �149�

For Y4 1, we retain the first two terms in Eqn (148) to find

By�0� � �
�������
hH
p

;
��By�0�

��4B1 : �150�

Therefore, in this case there are two shock front states
with low and high magnetic fields. The possibility of several
stationary solutions is a natural result for an open and
strongly nonequilibrium system. The realizability of the
corresponding regimes in nature should be elucidated by
investigating their immunity to small perturbations. This is a
separate problem which is not considered here (for an
example of the solution to a similar stability problem of a
shock front with relativistic particles, see Ref. [56]).

The magnetic field generated in the prefront of the shock
wave is carried behind the front by the flux of matter. Its
subsequent evolution depends on the physical conditions
behind the front and, in particular, on the structure of the
velocity field. The field in spherical supernova remnants was
calculated in Ref. [57] for an arbitrary structure in the domain
ahead of the shock front.

The theoretically predicted result concerning the suppres-
sion of the tangential magnetic field signifies, as applied to the
quasispherical supernova remnants, that the field should be
radial in structure near the remnant boundary. This conclu-

sion is confirmed by the observed data on the polarization of
synchrotron radio emission. The radial magnetic field in
young supernova remnants (Tycho, Kepler, 1006, Cassio-
peia A) was noted byReynolds andGilmore [58]. (For amore
detailed discussion, see Ref. [57].)

It should be emphasized that the assumption about the
uniform injection of particles into the acceleration regime is
highly important to the problem under consideration. When
the injection is nonuniform, which may be caused, for
instance, by the density nonuniformity of the medium ahead
of the front, in the prefrontal region there are bound to
emerge currents parallel to the front, which may be respon-
sible for the generation of an additional parallel field.

A significant limitation on the investigation conducted is
also the assumption that the plane front is unbounded in
dimensions, from which follows one-dimensionality of the
problem. In reality, owing to the boundedness of the shock
fronts in real objects, each such front is a source of large-scale
electric current which spreads over the entire Galaxy and is
able to generate a magnetic field away from the front, and not
only in the prefrontal region (see Ref. [59]). The solution of
these more realistic problems in a nonlinear self-consistent
formulation with nonuniform (and nonstationary) injection
and with shock fronts bounded in dimensions is supposedly
possible only by numerical methods.

7. Accelerated-particle current driven
by a weak MHD wave

We now address ourselves to the investigation of nonsta-
tionary turbulent motions and calculate the electric current of
accelerated particles, which emerges under the action of a
weak MHD wave, in order to elucidate the possibility of
exciting oscillations. The distribution function unperturbed
by the field of the MHD wave is taken in the form of
expression (100). It is assumed to be stationary and is
characterized by the anisotropy parameter A5 1 and a
power-law shape of the particle momentum spectrum (y is
the angle between the uniform field B0 and the particle
momentum).

The accelerated-particle distribution function
f �r; p; y;f; t� perturbed by an external field satisfies the
kinetic equation

qf
qt
� v

qf
qr
� eE

qf
qp
ÿ ec

E �B0 � b�OOf � I � f � ; �151�

where OO is the momentum rotation operator defined
according to expression (42), and E, b is the external
electromagnetic field of the MHD wave.

Let us linearize kinetic equation (151) by assuming the
external field to be weak and separating out from the
distribution function f � f0 � df the small part df caused by
this field:

qdf
qt
� v

qdf
qr
ÿ ec

E B0OOdf � ÿeE qf0
qp
� ec

E bOOf0 � I �df � :
�152�

The last term in Eqn (152) takes into account the relaxation of
the distribution function df resulting from the interaction of
accelerated particles with the background particles and
stochastic fields. We assume this effect to be weak and write
down the collision integral in the relaxation frequency
approximation: I �df � ! ÿndf, where n! �0. This term will
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subsequently allow us to correctly integrate singular expres-
sions. We consider a plane MHD wave in which the field
vectors E; b / exp �ikrÿ iot� are related by Maxwell's equa-
tions

k� E � o
c
b ; E � ÿ o

ck
ek � b : �153�

Here, k is a real vector, and the frequency o may assume a
complex value.

From Eqn (152) it follows that the coordinate and time
dependence of the distribution function is the same as for the
electromagnetic field. The equation may therefore be written
in the form

q
qf

dfÿ 1

O

�
nÿ i�oÿ kkvk ÿ k?v? cosf�

�
df � Q�f� ; �154�

where f is the azimuth angle of relativistic particle momen-
tum counted about the regular magnetic field, so that

B0OOdf � B0
q
qf

df ; O � ceB0

E ;

and the right-hand side of Eqn (154) contains known
quantities:

Q�f� �
�
eE

O
ÿ ec

EO b� p

�
qf0
qp

: �155�

For definiteness, henceforward we shall assume all acceler-
ated particles to be strongly relativistic protons and make use
of the formulas v � c, E � cp, and p0 � mpc.

The solution to Eqn (152) may be written out in the form

df �
� f

�1
Q�f 0� exp �h�f� ÿ h�f 0�� df 0 ; �156�

where

h�f� � 1

O

n�
nÿ i�oÿ kkvk�

�
f� ik?v? sinf

o
; �157�

and the signs� of the lower limit of integration are selected so
that the integral converges at infinity. Calculating the
quantity Q�f� with the use of distribution function (100)
and relationships (153) yields

Q�f� � eN0 p
aÿ3
0

4pOp a�1

�
�
Aÿ okk

ck 2
�aÿ 3��a� �a� 1�A cos y

��
sin y�bef�

ÿ �aÿ 3�eN0 p
aÿ3
0

4pOp a�1
ok?
ck 2

�
a� �a� 1�A cos y

�
sin y sinf�bek� ;

�158�

where ef is the unit vector in the ek � p direction. Subsequent
integration with respect to the azimuth angle f 0 in expression
(156)may be performed with the help of the known expansion
of the exponential in the Bessel functions:

df � ÿ eN0 p
aÿ3
0

4pOp a�1

�
Aÿ okk

ck 2
�aÿ 3��a� �a� 1�A cos y

��
sin y

�
X1

n�ÿ1

�
iJ 0nkk

�a� in�k? bk � nJn
b�a� in�k? b�ek � k�

�
� exp �ÿinf� ib sinf�

� �aÿ 3�eN0 p
aÿ3
0

4pOp a�1
ok?
ck 2

�
a� �a� 1�A cos y

�
sin y bk

�
X1

n�ÿ1

iJ 0n
a� in

exp �ÿinf� ib sinf� : �159�

Here, we introduced the notation

a � 1

O

�
nÿ i�oÿ kkvk�

�
; b � k?v?

O
; �160�

with the Bessel function Jn�b� and its derivative everywhere
having b as their argument.

The electric current of accelerated particles is calculated
by the well-known formula

j ext �
�
evdf � p; y;f� p 2 dp sin y dy df : �161�

Further in this section we shall consider the case where the
extrinsic current is produced by strongly relativistic protons
and the background medium is purely hydrogenic, i.e.,
mi � mp, p0 � mpc, v � c, E � cp, and oi � eB0=mpc. The
integration with respect to df reduces the calculation of the
current to taking the double integrals

j ext? �
1

2
e 2cN0 p

aÿ3
0

� pm

p0

dp

Op aÿ1

�
� p

0

sin3 y dy
��

Aÿ okk
ck 2
�aÿ 3��a� �a� 1�A cos y

��
�
X1

n�ÿ1

�
iJnJ

0
n

b�a� in� b? �
n 2J 2

n

b 2�a� in� ek � b

ÿ Jn�1Jnÿ1kkbk
�a� in�k 2

?
ek�k

�
� �aÿ 3��a� �a� 1�A cos y

� o
ck

bk

�
X1

n�ÿ1

iJ 0n
�a� in�k

�
nJnk?
b
ÿ iJ 0nek � k

��
; �162�

j extk �
1

2
e 2cN0 p

aÿ3
0

� pm

p0

dp

Op aÿ1

�
� p

0

sin2 y cos y dy
��

Aÿ okk
ck 2
�aÿ 3��a� �a� 1�A cos y

��
�
X1

n�ÿ1

�
iJ 0nJnkk
�a� in�k? bk � nJ 2

n

b�a� in�k? b�ek � k�
�

� �aÿ 3��a� �a� 1�A cos y
�
bk

ok?
ck 2

X1
n�ÿ1

iJ 0nJn
a� in

�
: �163�

Although the resultant expressions are rather cumbersome,
their general structure is rather simple:

j ext? � ÿscrek � b� gb� wbk
ek � k

k?
;

�164�
j extk � Ebk � Z

b�ek � k�
k?

;

where g, scr, w, E, and Z are the complex kinetic coefficients
whose representation in the form of double integrals is easily
established by comparing expressions (162) ± (164). Gener-
ally, their calculation should by performed by numerical
methods. However, on simplifying the geometry it is possible
to obtain a relatively simple result in the analytical form.
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Let the wave vector direction make a small angle with
the direction of an external magnetic field B0, i.e., k?5 jkkj.
We shall consider sufficiently small k, for which b �
�k?=k�krg 5 1, where rg � cp=eB0 is the gyroradius of a
relativistic particle. In this case, the wavelength of the MHD
oscillation may be on the order of or greater than the
relativistic particle gyroradius:

krg 9 1 : �165�
In the lowest approximation in the parameter b, the extrinsic
current is strongly simplified: j extk � 0, and

j ext? �
1

4
e 2cN0 p

aÿ3
0

� pm

p0

dp

p aÿ1

�
� p

0

sin3 y dy
�
Aÿ okk

ck 2
�aÿ 3��a� �a� 1�A cos y

��
� b? � aek � b

O�a 2 � 1� : �166�

To calculate the remaining integrals, we can conveniently
transform the denominator of the integrand:

1

O�1� a 2� �
1

2O

�
1

1� ia
� 1

1ÿ ia

�
� 1

2

�
1

O� oÿ kcx� in
� 1

Oÿ o� kcxÿ in

�
; �167�

where x � cos y. At this stage, we may direct the low
relaxation frequency n to zero and employ Sokhotskii's
formulas. Furthermore, we take into account the inequality
o5O, which may be written in the form krg 5 c=vA and
which is fulfilled by virtue of inequality (165), since vA 5 c in
our case. This permits representing the denominators of
interest in the form

1

O�1� a 2� �
1

2ck

� P
x� x

ÿ P
xÿ x

� ip
�
d�x� x� ÿ d�xÿ x���;

a

O�1� a 2� � ÿ
i

2ck

� P
x� x

� P
xÿx� ip

�
d�x�x� � d�xÿx���:

�168�
Here, we introduced the designation x � O=ck and made use
of the condition o5O and the principal-value symbol P.

We apply representations (168) to bring the relativistic-
proton current to the form

j cr � b
o2

0

32poi

�
ck

oi

�aÿ3�
Aÿ a�aÿ 3� okk

ck 2

�
�
�� x0

0

�
4x� 2�1ÿ x 2� ln

���� x� 1
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�����xaÿ3 dxÿ i
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a�aÿ 2�
�

� iek � b
�a� 1��aÿ 3�o2
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�
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oi

�aÿ4

� A

�� x0
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�
8

3
ÿ 4x 2 ÿ 2x�1ÿ x 2� ln

���� x� 1

xÿ 1

�����xaÿ3 dx

� i
4p
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�
; �169�

where we introduced the notation

o2
0 �

4pe 2N0

mp
; oi � eB0

mpc
; x0 �

oi

ck
: �170�

The frequencyo0 differs from the ion plasma frequencyo0i in
that the latter contains the background-proton concentration
ni, whileo0 contains the concentration of relativistic protons.

As a result, for the current induced by relativistic particles
we obtained the expression

j cr � ÿ�s 0cr � is 00cr�ek � b� �g 0 � ig 00� b ; �171�

which is linear in the magnetic field, with the kinetic
coefficients

s 0cr �
�aÿ 3�o2

0

8�aÿ 1�oi

�
ck

oi

�aÿ3 oA
ck

;

s 00cr �
�a� 1��aÿ 3�o2

0o
60p�aÿ 4�o2

i

A ;
�172�

g 0 � o2
0

12�aÿ 3�poi

�
Aÿ a�aÿ 3�okk

ck 2

�
;

g 00 � ÿ o2
0

8a�aÿ 2�oi

�
ck

oi

�aÿ3�
Aÿ a�aÿ 3�okk

ck 2

�
:

In the passage to the limit a! 4, it is required to make the
change �aÿ 4�ÿ1 ! ln x0 � 8=15.

The kinetic coefficients scr and g are pseudo-scalars,
because the current is written down in terms of the magnetic
induction pseudo-vector. On the right-hand sides of expres-
sions (169) and (172), the projections of the polar vectors onto
the direction of the regular magnetic field B0 are pseudo-
scalars, i.e., the quantities A and kk. The accelerated-particle
current is also nonzero for an isotropic unperturbed distribu-
tion function, to which there corresponds A � 0. The
dispersion properties of a multicomponent plasma are
anisotropic and allow perturbation-induced currents. In this
case, the preferential direction is produced by external fields,
primarily by the quasiuniform magnetic field B0.

Let us estimate the relative magnitude of the kinetic
coefficients obtained. The exponent a has a value of 4.7 in
galactic cosmic rays for proton energies E9 3� 106 GeV,
and a value of 4 in the acceleration at a strong shock front.
The ratio g 00=g 0 � �ck=oi�aÿ3 becomes small for k5oi=c �
1=rg� p0�, where rg� p0� � 1012 cm for an average field
B0 � 3� 10ÿ6 G in the galactic disk. The quantities s 0cr and
s 00cr are smaller than g 00 by a factor on the order of
o=ck � vA=c5 1. Therefore, the main part in the case
involved is played by the coefficient g 0, and g 00 turns out to
rank next in significance. The signs of each of the four
coefficients for a real value of the frequency o may be
positive or negative, depending on the signs and absolute
values of the factors o, kk, and A.

8. Linear growth rate of MHD oscillations

The current (171) was obtained in the geometry wherein the
MHDwave propagated at a small angle to the direction of the
field B0. That is why use can be made of Eqn (30). In the
initially immobile medium u0 � 0, and the velocity of matter
in the wave is determined from Eqn (27):

u 0 � ÿ B0kk
4pro

b : �173�

We substitute the current (171) and the velocity (173) into
Eqn (30) and project both parts of the equation onto the axes
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perpendicular to B0. Taking into consideration that
k� b � kkek � b, bk � 0 in the geometry involved, we obtain
the system of equations in the form

C1bx � C2by � 0 ; ÿC2bx � C1by � 0 �174�

for the field components. Here, the notation was used:

C1 � o2 ÿ v 2
Ak

2 � B0kko
eni

g 0 � 4pneffkko
c

s 0cr

ÿ i

�
neffk 2oÿ B0kko

eni
g 00 ÿ 4pneffkko

c
s 00cr

�
;

�175�
C2 �

B0kko
eni

s 0cr ÿ
4pneffkko

c
g 0

� i

�
B0kko
eni

s 00cr �
B0ck

2
ko

4peni
ÿ 4pneffkko

c
g 00
�
:

The condition that the determinant of the system is equal
to zero may be written in the form of two equalities
C1 � iC2 � 0, which give the dispersion relations between
the frequency and the wave vector for MHD eigenmodes:

o2 ÿ v 2
Ak

2 � B0ckko
4peni

� B0kko
eni

�g 0 � s 00cr�

� 4pneffkko
c

�s 0cr � g 00�

ÿ i

�
neffk 2o

�
1ÿ 4pkk

ck 2
�s 00cr � g 0�

�
ÿ B0kko

eni
�g 00 � s 0cr�

�
� 0 :

�176�

Generally, these dispersion equations give several oscillation
branches. They are easy to analyze only when the terms due to
theHall current and the current of accelerated particles can be
taken as small. Right away we emphasize that the latter
condition is not always fulfilled. However, if the imaginary
part of the frequency, g � Imo, as well as the real correction
o�1� to the frequencyo�0� � �vAk are small, they can be easily
determined from relation (176):

g � ÿ 1

2
neff k 2

�
1ÿ 4pkk

ck 2
�s 00cr � g 0�

�
� B0kko�0�

eni
�g 00 � s 0cr� ;

�177�
o�1� � �B0ckk

8peni
ÿ 2pneff kk

c
�s 0cr � g 00� ÿ B0kk

eni
�g 0 � s 00cr� :

In each of equalities (177) it is possible to discard the last
(Hall) terms which possess smallness of order �oitia�ÿ1 5 1
(an estimate of oitia is given in Table 1) in comparison with
another single-type terms:

g � ÿ 1

2
neff k 2

�
1ÿ 4pkk

ck 2
�s 00cr � g 0�

�
: �178�

When the relative magnitudes of the kinetic coefficients g and
scr, noted at the end of the previous section, are also taken
into account, we arrive at a conclusion that the term
containing g 0 makes the main contribution to the dispersion
relation. The terms containing g 00, s 00cr, and s 0cr are small. It is
significant that the termwith g 0may vary in sign. That branch
of the oscillations to which the negative value of the factor
1ÿ 4pkkg 0=ck 2 � 1ÿ 4pjg 0j=ck corresponds is unstable, and

its amplitude will build up for wave vector values satisfying
the inequality

k < kcr � 4pjg 0j
c

: �179�

The imaginary part g � Imo of the frequency in this case is
positive and for g5 joj assumes the value

g � 1

2

�
4pjg 0j
ck
ÿ 1

�
neff k 2 � 2pjg 0jneff k

c
: �180�

The last-given approximate value of the increment takes place
for k5 kcr.

As follows from formulas (172), the conclusion about the
existence of growing modes holds also for an isotropic
accelerated-particle distribution function, i.e., at A � 0. To
verify this conclusion and formula (178), let us calculate the
increment by other means, on the basis of the energy balance
of the magnetic wave field without invoking dispersion
relation (176). Let there be a wave propagating in the
direction B0 or in the opposite direction:

b � b0 exp �ikrÿ iot� ; k � kkek ; kk9 0 ; �181�

In this case, the realo 0 � Reo and imaginary g � Imo parts
of the complex frequency may be arbitrary in sign. At this
stage of our calculation, the magnitude of g is assumed to be
unknown but small: jgj5o. Let us consider the time
variation of magnetic energy averaged over the oscillation
period T � 2pc=o 05 gÿ1. From the explicit form of the
magnetic field (181) we find

q
qt
jbj2
16p
� 1

8p
Re b�

qb
qt
� 2g

jbj2
16p

: �182�

On the other hand, by using Maxwell's equations (25) we
bring Eqn (182) to the form

q
qt
jbj2
16p
� ÿ c

8p
Re
ÿ
E�H� b��� : �183�

Here, we took into consideration that H�E� b�� � 0 on the
strength of the uniformity of the system. We next express the
electric field in terms of H� b, and the extrinsic current (171)
with the help of Ohm's law (20) and the second equation (25):

E � c

4ps eff
?

H� bÿ 1

s eff
?

j ext ÿ B0

c
u 0 � ek : �184�

The Hall terms were discarded here owing to their smallness.
We eliminate the velocity u 0 with the aid of expression (173).
Upon substitution of the electric field into Eqn (183) we have

q
qt
jbj2
16p
� ÿ2g jbj

2

16p
ÿ c 2k 2

2ps eff
?

jbj2
16p
ÿ ckk
8ps eff

?
Re i�ek � b�� j ext :

�185�
The last term on the right-hand side is transformed with

allowance made for the circular polarization of the MHD
wave. This gives Re i�ek � b��b � �jbj2, with the signs
corresponding to different senses of the rotation of the vector
b around B0. Eventually, we obtain

Re i�ek � b�� j ext � jbj2�s 0cr � g 0� :
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We equate the right-hand sides of Eqns (182) and (185) to find
the increment (decrement) which precisely coincides with
expression (178).

The quantity neff may be far greater than the magnetic
viscosity of a fully ionized plasma due to the neutral
component and a strong magnetization (see Table 1), and
therefore the situation is not ruled out whereby g > Reo
and even g4Reo. This corresponds to a rapid aperiodic
build-up of turbulent pulsations which will differ radically
in properties from AlfveÂ n and magnetosonic low-amplitude
waves. The linear theory developed above permits determin-
ing only the threshold for the emergence of this strong
instability.

It is well to bear in mind, however, that the great
magnitude of neff is due to ion collisions with neutral atoms.
This process is quantitatively characterized by the collision
mean free path Lia. The collisional mechanism works
effectively for oscillations with a wavelength l > Lia, i.e.,
provided

k < ks � 2p
Lia

: �186�

When ks < kcr, it is precisely condition (186) rather than
condition (179) that limits the action of the nonresonance
mechanism from the side of high k values. For k > ks,
however, when the plasma may be treated as being
collisionless, the resonance oscillation build-up mechanism
considered below in Section 10 comes into effect.

Let us estimate here the increment of MHD oscillation
growth in a warm partially ionized phase of the interstellar
medium of the galactic disk, which occupies a substantial part
(a few dozen percent) of the disk volume.Using the data given
in Table 1, we estimate the effective magnetic viscosity
neff � 1021 cm2 sÿ1. The relativistic particle number density
in the interstellar space is assumed to beN0 � 10ÿ10 cmÿ3 and
the exponent of the momentum spectrum a � 4:7 (see the
reference book [60]). We also estimate vA � 2� 106 cm sÿ1

and oi � 0:02 rad sÿ1. The anisotropy A of galactic cosmic
rays is known from observations and amounts to about 10ÿ3

for proton energies close to 1 TeV [18]. Of the same order of
magnitude is the second term a�aÿ 3�okk=ck 2 �
a�aÿ 3�vA=c � 5� 10ÿ4 in parentheses in the expression for
g 0 [formula (172)]. Using the above data we find g 0 �
2:6� 10ÿ8 sÿ1 and the shortest wavelength lcr � 2p=kcr �
2� 1017 cm � 0:1 pc from which the amplitude growth of
magnetic inhomogeneities can set in. According to observa-
tions, the longest scale of stochastic inhomogeneities in the
disk is on the order of 100 pc [18]. The typical time of
inhomogeneity build-up for the minimal wavelength is
around gÿ1 � 1:5� 106 years, and for a wavelength on the
order of 100 pc this time runs to 109 years, which supposedly
does not exceed the disk lifetime. A natural result of the build-
up of large-scale magnetic inhomogeneities due to the
anisotropic cosmic ray distribution is an approximate
equidistribution of the energy densities in these two sub-
systems (magnetic turbulence and relativistic particles), which
is observed in the galactic disk.

We estimate the increment-to-frequency ratio in the case
involved to obtain g=o � 3� 10ÿ3. For the realization of the
situation g=o > 1 discussed above, it would suffice, all other
conditions being the same, to increase the concentration of
accelerated particles by three orders of magnitude, which is
quite possible in cosmic ray sources.

9. Excitation of nonresonance oscillations ahead
of the shock wave front

From the previous section it follows that the MHD-oscilla-
tion excitation mechanism under discussion operates even in
the galactic disk where the density of relativistic particles is
quite low on average. Clearly this turbulence enhancement
mechanism is applicable near shock fronts which are sources
of accelerated particles and where their number is much
greater than, on average, in the Galaxy (see Ref. [28]). The
neutral component required for the operation of the mechan-
ism is present in the supernova remnants interacting with
neutral clouds (for instance, IC 433), whichmay be confirmed
by the emission spectra of these remnants [24]. Some fraction
of the neutral atoms of hydrogen, helium, and metals reaches
the shock front also in the case of a supernova remnant
embedded in a rarefied medium. They are observed in optical
and UV spectra of the shock front as the superposition of a
broad line and a narrow line (in particular, for the Ha line) in
the SN1006, Kepler, Tycho, RCW86, Cygnus Loop, etc.
remnants and represent an efficient method of estimating the
shock front velocity [61, 62].

We calculate the accelerated-particle current in the plane
prefront of a nonrelativistic shock wave propagating through
a partially ionized turbulent medium. In the exact definition
of this problem, it is essentially nonlinear and calls for a self-
consistent simultaneous calculation of the absolute number
and spectrum of accelerated particles in combination with the
spectrum and intensity ofMHD turbulence which determines
the diffusion coefficient and thereby the efficiency and rate of
particle acceleration. At present, attempts to solve the self-
consistent nonlinear problem fail, and therefore we a priori
assume the occurrence of sufficiently strong turbulence to
subsequently verify (at the level of estimates) from the
calculated increment the consistency of the assumptions
made. We employ the frame of reference in which the shock
front is immobile. The accelerated particles in the turbulent
medium possess a weakly anisotropic distribution function
which may be written down as (see Ref. [8])

f0�z; p� � 1

4p

�
N� p; z� � 3

pv
pJ� p; z�

�
; J5 vN ; �187�

where

Ja � ÿkab qN
qxb
ÿ p

3

qN
qp

u0a �188�

is the differential flux density of accelerated particles, kab is
their diffusion tensor, and u0 is the velocity of the medium. In
order to simplify the geometry of the system, we shall assume
that the velocity u0 of the medium and the regular magnetic
field B0 are directed normally to the plane front.

The isotropic part N�p; z� of the distribution function in
the region ahead of the shock front is easily calculated in the
stationary case in the probe-particle approximation:

N�p; z� � �aÿ 3�N0
p aÿ3
0

p a exp

�� z

0

u0 dz
0

kk� p; z 0�
�
; �189�

z4 0 ; p0 4 p4 pm :

Here, N0 is the concentration of relativistic particles with all
energies, a � 3u0=Du is the exponent of the momentum
spectrum, and Du > 0 is the velocity jump at the front.
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Solution (189) corresponds to the case where only a small
fraction of the shock energy is expended on particle accelera-
tion and the velocity of themedium in the prefront regionmay
be treated as being approximately constant: u0 � const. For a
moderately strong front, the exponent a > 4, and in the case
of a strong shock wave a4 4 (see, for instance, Ref. [50]). The
specific value of a depends not only on the Mach number of
the wave, but also on the rate of particle injection into the
acceleration regime. For a < 4, the bulk of energy belongs to
the highest-energy particles with E9 Em � cpm, and a few
dozen percent of the total stream energy is expended on the
particle acceleration. We shall restrict ourselves to the values
a5 4 and assume a moderate acceleration rate whereat the
total kinetic energy of accelerated particles does not exceed
10% of the total energy of the system but the highest particle
momentum pm is far greater than the injection momentum:
pm 4 p0 � mpc. For these values of the exponent of the
momentum spectrum, the total energy of accelerated parti-
cles at the front �z � 0� is a logarithmic function of pm:

wcr �
� pm

p0

cpN�p; 0� p 2 dp � N0mpc
2 ln

pm
p0

: �190�

At present, attempts to reliably calculate the turbulence
spectrum and the accelerated-particle diffusion coefficient
defined by this spectrum do not meet with success, and we are
therefore led to take it from model considerations. There is
good reason to consider the most commonly employed
models.

(1) Strong turbulence, whereat the diffusion coefficient
approaches the Bohm limit, i.e., the transport mean free path
L� p� of a particle is on the order of its Larmor radius:

L� p� � rg� p� � cp

eB
; kk � cL

3
; p0 4 p4 pm ; �191�

where p0 and pm bound the range of momenta under
consideration, the case pm 4 p0 being of peculiar interest.
The turbulent and regular fields are taken to be on the same
order of magnitude: B � B0. This condition, generally speak-
ing, is not at variance with the assumption that the energy
fraction transferred to accelerated particles is small: in a
strong shock wave under typical astrophysical conditions,
the mechanical energy density is several orders of magnitude
higher than the energy density of the primary magnetic field
(see the estimates at the beginning of Section 6).

In Section 11, on the basis of a semiphenomenological
scheme for the description of statistically homogeneous
incompressible MHD turbulence, we shall give a substantia-
tion of the possible realization of the Bohm diffusion
coefficient in the conditions under consideration.

(2) The transport mean free path and the longitudinal
diffusion coefficient are constant in the energy range
involved:

Lk � const ; kk �
cLk
3
� const ; p0 4 p4 pm : �192�

This situation is realized for magnetic turbulence with the
spectrum of the form hb 2ik � kÿ2. In this case, the transport
mean free path would be naturally identified with the Larmor
radius of the highest-energy particles: Lk � rg� pm�. The field
in the largest-scale turbulence harmonics is comparable with
the regular field in this case, but the smaller-scale harmonics
are weak and ensure a strongly anisotropic diffusion with a
constant longitudinal mean free path Lk � rg� pm� � const
for particles with p5 pm.

Naturally, both assumptions are inherently model in
character, because attempts to self-consistently and simulta-
neously treat the particle acceleration and the turbulence
generation do not meet with success.

The most significant distinction between distribution
function (187) and distribution function (100) considered
above is the former's inhomogeneity: in the prefront region,
accelerated particles occupy a layer of finite thickness on the
order of l� p� � k� p�=u0, which depends on their energy. As
follows from the results obtained in the previous section, the
instability increment is proportional to the number density
N�z� of accelerated particles with all energies, and therefore of
interest is the distribution of this quantity in the prefront for
different diffusion coefficients. The case of a constant
diffusion coefficient (192) is the most simple: the particle
distribution over the prefront decreases exponentially, viz.

N�z� � N0 exp

�
z

lm

�
; lm � c

3u0
L � const : �193�

The prefront thickness is given by the value of lm, which is
independent of the shape of the accelerated-particle spectrum
and is defined by the highest-energy particles.

The situation is somewhatmore complicated in the case of
the Bohm diffusion model. By integrating, in view of the
dependence kk� p� � crg� p�=3 / p, expression (189) with
respect to p 2 dp, we find

N�z� � �aÿ 3�N0z
3ÿa
0

�
G�aÿ 3; zm� ÿ G�aÿ 3; z0�

�
; �194�

where G�aÿ 3; z� is the incomplete gamma-function (see the
Tables of Integrals, Sums, Series and Products (Moscow:
GIFML Publ., 1963) by Gradshtein and Ryzhik), and

z0�z� �
3eu

c 2p0

� 0

z

B�z 0� dz 05 0 �z4 0� �195�

is the dimensionless distance. The quantity zm differs from
expression (195) by the substitution of pm for p0. In the
limiting cases, we have

G�aÿ 3; z� � G�aÿ 3� ÿ zaÿ3

aÿ 3
; z5 1 ;

z aÿ4 exp �ÿz� ; z4 1 ;

8<: �196�

where G�aÿ 3� is the ordinary gamma-function. From these
asymptotics we obtain N�z� � N0 for short distances �z5 1,
zm 5 1�, and

N�z� � �aÿ 3�N0z
3ÿaz aÿ4m exp �ÿzm�

� �aÿ 3�N0

�
p0
pm

�aÿ3
exp �ÿzm�

zm

for long distances �z0 4 zm 4 1�. In the intermediate range
z0 4 1, zm 5 1 of principal interest, we find

N�z� � G�aÿ 2�N0z
aÿ3
0 � G�aÿ 2�N0�c 2p0�aÿ3

�3u0e
� 0
z B�z 0� dz 0�aÿ3

: �197�

For a moderate acceleration at a strong front �a � 4� and
a uniform magnetic field, we have a slow particle concentra-
tion decreaseN�z� / jzjÿ1 in the domain under consideration.
However, when the magnetic field decreases with distance to
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the shock front, which is natural in the generation ofmagnetic
fluctuations by accelerated particles, the decrease in particle
concentration will slow down still further. To summarize
these estimates, it is valid to say that the accelerated-particle
number density is approximately constant in a layer of
thickness l0 � crg� p0�=3u0 and decreases by a slower than
1=jzj law in the layer between l0 and lm � crg� pm�=3u0 4 l0.
The exponential decay takes place at the distances jzj4 lm.
Therefore, the prefront thickness is determined in this case,
too, primarily by the highest-energy particles.

We now turn to the calculation of accelerated-particle
current in the prefront region. We take advantage of the
above-noted approximate prefront uniformity over a thick-
ness lm and calculate the current near the front, in the domain
jzj5 lm. This calculation may be performed inmuch the same
way as the solution of the similar problem in Section 7, with
the wavelengths of the MHD oscillations under discussion
being bounded from above by the prefront thickness:
k0 2p=lm, lm � lm. The addition df to the accelerated-
particle distribution function should contain the same
exponential nonuniform factor as the unperturbed functions
(187) and (189): df / exp

�
i�krÿ ot� � u0z=kk

�
. That is why,

the infinitesimal n in Eqn (154) is replaced by the finite
quantity

n � vku0
kk� p� : �198�

According to expressions (187) ± (189), the unperturbed
distribution function takes the form

f0�z; p; y� � �aÿ 3�N0 p
aÿ3
0

4pp a

�
1� �aÿ 3� u0

v
cos y

�
exp

u0z

kk� p� :

�199�

Comparing this expression with formula (100) shows that the
anisotropy of the distribution function in the prefront region
of the shock wave is given by

A � �aÿ 3� u0
v
: �200�

We next present the results relating separately to the cases
of relativistic �v � c, p0 � mpc, E � cp� and nonrelativistic
�v5 c, p � mpv, E � mpc

2, p0 � mpu0, pm 5mpc� particles.
In what follows, the upper value a� 1 in a two-component
column corresponds to relativistic particles, and the lower
value a� 2 to nonrelativistic ones. For the quantity Q�f� we
have

Q�f� � �aÿ 3�eN0 p
aÿ3
0

4pp aO

�
(
Ek

�
�aÿ 3� u0

v
ÿ a cos yÿ �aÿ 3� a� 1
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ÿ Ee?
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v

cos y
�
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� �aÿ 3� cpE
u0
v

bef sin y

)
; jzj5 lm : �201�

The last inequality signifies that we are considering the
domain near the front, where the exponential in expression
(199) may be replaced by unity. Expressions (199) ± (201)
embrace the cases of the Bohm and constant diffusion
coefficients.

In the subsequent discussion we assume, as in Section 4,
that k?5 jkkj. Expression (167) will now contain a finite
quantity n defined by formula (198). By comparing its
absolute value with other items in the denominators, we
ascertain that for relativistic particles the imaginary part in
expression (167) is small in comparison with the real part:
vku0=kkO � 3u0=c5 1 for the Bohm diffusion coefficient,
and vku0=kkO � 3u0 p=cpm 5 1 for a constant transport
mean free path. For nonrelativistic particles, the requisite
smallness will take place provided L� p�4 3rg0, where
rg0 � cmpu0=eB is the gyroradius of a proton with the
velocity u0. In all these cases, Sokhotskii's formulas (168)
may be used as approximate relationships (bearing in mind
that the small quantity n may now have either sign).

Upon performing the corresponding calculations we
arrive at the previous expression (171) for the current, where
the kinetic coefficients have the following values:
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in the relativistic case, and
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c
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�
in the nonrelativistic case. When passing to a � 4, it is
required to make the change �aÿ 4�ÿ1 ! ln x0 � 8=15.

The local oscillation increment near the shock front
should now be calculated from the dispersion relation

o 0 2 ÿ v2Ak 2
k � ineff k 2o 0

�
1� 4pkkg 0

ck 2

�
� 0 �204�

similar to Eqn (176), in which we discarded all terms that are
small under ordinary conditions. Because of the general
transfer of the medium in the prefront region with the
velocity u0, in the dispersion relation (204) there enters a
frequency o 0 � oÿ u0kk containing the Doppler shift. The
quantity g 0 in expressions (202) and (203)was defined in terms
of the initial frequencyo. For vA 5 u0, which is often the case,
expressions (179) and (180) for the critical wave vector and
the oscillation increment remain valid. The constraint (186) is
also in force.

10. Resonance generation of oscillations
by relativistic particles

We compare the new nonresonance turbulence enhancement
mechanism under consideration with the previously known
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mechanism of MHD wave generation by accelerated parti-
cles, whose theory was elaborated in Refs [10 ± 14]. To this
end, let us calculate the increment of the resonance low-
frequency �o5oi�wave build-up by relativistic particles in a
fully ionized homogeneous collisionless plasma by employing
the Maxwell equations (25) but not using, of course, Ohm's
law. The model of a collisionless medium also applies to the
plasma with a neutral component considered in the previous
section, provided the oscillation wavelengths l � 2p=k are
shorter than the particle transport mean free paths Lia and
Lei.

We shall express the electric current j of the background
particles in a collisionless plasma in terms of its permittivity
(see, for instance, Akhiezer et al. [43]) and the external
harmonic electric field:

j? � ÿ
io
4p
�e? ÿ 1�E? � o

4p
qE� ek ; �205�

jk � ÿ io
4p
�ek ÿ 1�Ek :

Only the transverse current is required for our purposes; in
the frequency range o5oi and in a cold plasma, it is defined
by the quantities

e? ÿ 1 �
�

c

vA

�2

; q �
�

c

vA

�2 o
oi

; �206�

where qek � q is the gyration vector. The relativistic-particle
current (171) should also be expressed in terms of the electric
field:

j cr? �
ckk
o

��s 0cr � is 00cr�E? ÿ �g 0 � ig 00�E� ek
�
: �207�

It should be recalled that the relativistic-particle current
(207) is produced by waves propagating at small angles to the
vector B0 � B0ek in the forward or backward direction. Here,
we are not concerned with longitudinal oscillations. We only
consider large-scale MHD type modes, in which the quasi-
neutrality of the medium is fulfilled with a high accuracy. We
can therefore make use of the condition HE � ikE � 0.
System of equations (25) takes the following form on
substituting expressions (205) and (207), as well as eliminat-
ing the magnetic field of the wave:

k 2E? � o2

c 2
�e? ÿ 1�E? � io2

c 2
qE� ek

� i
4pkk
c

��s 0cr � is 00cr�E? ÿ �g 0 � ig 00�E� ek
�
: �208�

We write it down as

A1E? � iA2E� ek � 0 ; �209�

where

A1 � o2 ÿ v 2
Ak

2 ÿ 4pkkv 2A
c
�s 00cr ÿ is 0cr� ;

�210�
A2 � o2v 2

A

c 2
qÿ 4pkkv 2A

c
�g 0 � ig 00� :

We vectorially multiply Eqn (209) by ek to obtain an equation
of the form

ÿiA2E? � A1E� ek � 0 : �211�
The compatibility condition for Eqns (209) and (211) may be
written in the form of two equalities

A1 � A2 � 0 ; �212�
which show in combination with equation (209) that the
eigenmodes are circularly polarized. They lead to dispersion
relations

o2 ÿ v 2
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2 � o3

oi
ÿ 4pkkv 2A

c
�s 00cr � g 0�

� i
4pkkv 2A

c
�s 0cr � g 00� � 0 : �213�

In the absence of relativistic particles, the dispersion
relations take on the form

o2 ÿ v 2
Ak

2 � o3

oi
� 0 ; �214�

where the last term on the left-hand side (the item due to the
Hall current) is small in the o5oi frequency range. For an
arbitrary direction of wave propagation, Eqn (214) assumes
the form�

o2

v 2A
ÿ k 2

k

��
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v 2
A
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�
ÿ o4

v 4
A

o2

o2
i

� 0 : �215�

Neglecting the small Hall term, from the dispersion relation
we obtain the frequencies of two modes,

oA � �jkkjvA; oms � �kvA ; �216�

the AlfveÂ n and fast magnetosonic modes, with no damping in
a cold plasma. For a longitudinal propagation, to which
Eqn (214) corresponds, the mode frequencies degenerate and
become equal.

The inclusion of accelerated-particle current gives rise to
imaginary terms in dispersion relation (213), which may have
different signs. This signifies that growing and damped
oscillation branches emerge. Their growth (damping) rates g
and corrections o�1� to the real parts of the frequencies are
easily found when they are small:

g � 2pkkv 2
A

co�0�
��g 00 ÿ s 0cr� ; �217�

o�1� � 2pkkv 2A
co�0�

�s 00cr � g 0� � o�0� 2

2oi
;

where o�0� � �kvA. Positive g values correspond to oscilla-
tion build-up. Since the kinetic coefficients g 00 and s 0cr, as well
as the frequency o�0�, may have different signs, it is always
possible to select the signs in Eqn (217) in such a way that
g > 0 and oscillation build-up occurs. This is also possible in
the case of an isotropic accelerated-particle distribution
function �A � 0�, because there is medium anisotropy
produced by the magnetic field B0.

Expression (217) for the increment may be obtained from
the magnetic energy balance in the MHD wave following the
scheme [see expressions (181) ± (185)] identical to that
employed for the nonresonance increment. All one needs to
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do is to express the magnetic energy in terms of the electric
field:

jbj2
16p
� c 2k 2jE j2

16pjoj2 �
c 2jE j2
16pv 2

A

:

We simplify the expression for the growth rate (217) by
taking advantage of the estimate of the relative magnitude of
kinetic coefficients at the end of Section 7:

g � � 2pkkv 2
A

co�0�
g 00

� � po2
0

2a�aÿ 2�oi

�
ck

oi

�aÿ3�
A� a�aÿ 3� vA

c

�
vA
c
: �218�

Here, the signs in the last parentheses and the signs in front of
the whole expressionwere independently selected, because the
sign of the frequency o�0� � �vAjkkj is independent of the
sign of the projection kk or the accelerated-particle flow rate
sign (the anisotropy A). That is why there is no limitation on
the magnitude or sign of the anisotropy parameter A
impeding the oscillation build-up. For an isotropic acceler-
ated-particle distribution function in the system, the back-
ground medium anisotropy remains, which is produced by
the field B0 and the AlfveÂ n velocity. It is precisely this
anisotropy that defines the oscillation excitation increment
(218) at A � 0. The factor �ck=oi�aÿ3, which depends on the
exponent of the accelerated-particle spectrum,may be written
down in different forms:�

ck

oi

�aÿ3
� �rg0k�aÿ3 � N�p5 pr�

N0
; �219�

where rg0 � cp0=eB0 � mpc
2=eB0 is the Larmor radius of

lowest-energy particles, pr � eB0=ck is the resonance particle
momentum defined by the condition rg� pr� � kÿ1, and
N�p5 pr� is the number density of particles with momenta
exceeding its resonance value.

We compare the increments in the nonresonance (177)
and resonance (217) cases. The resonance increment is
expressed in terms of the kinetic coefficients g 00, s 0cr of
accelerated-particle current, which arose from the terms
containing delta functions in formulas (168) for the transfor-
mation of singular denominators. These terms express the
resonance conditions

O� o� kkvk � 0 : �220�

The nonresonance increment contains the kinetic coefficients
g 0, s 00cr, which arose from the nonresonance principal values in
formulas (168). The second important distinction consists in
the nonresonance increment containing, as a factor, the high
effective magnetic viscosity. When the threshold condition
(179) is fulfilled, k < kcr, this viscosity leads not to damping
but to enhancement of oscillation excitation, impeding the
screening of accelerated-particle current by the background
particles.

We compare the effectiveness of resonance and nonreso-
nance turbulence build-up near the shock front by employing
the theory elaborated. Let there occur acceleration to an
energy Em � 3� 106 GeV (the energy of the bend in the
proton spectrum) in the warm interstellar medium. We
assume a moderate acceleration rate (Z � 0:1 is the energy
fraction transferred to accelerated particles) and a weak

modification of the shock front by accelerated particles
�a � 4�. In this case, according to estimate (102), the fraction
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�
u

c

�2

� 1:4� 10ÿ2
�
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c

�2

of the total proton concentration n0 (i.e., the concentration of
ionized and neutral atoms) ahead of the front transforms to
the relativistic component. Taking advantage of this estimate
and putting A � �aÿ 3�u=c � u=c, most often with u4 vA,
we write out the ratio between the resonance increment and
the oscillation frequency as�
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�
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i

�
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c
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; �221�

whereo2
0t � 4pn0e 2=mp is defined by the total number density

n0. From this estimate it follows that the increment-to-
frequency ratio is inversely proportional to the squared
magnetic field B 2

0 , and the increment itself decreases with
the magnetic field as Bÿ10 . We calculate the requisite
frequencies employing the data collected in Table 1 and find
o2

0t � 6� 104 (rad sÿ1)2, oi � 2� 10ÿ2 rad sÿ1 to obtain�
g
o

�
res

� 7:5� 105
�
u

c

�3

:

From formulas (172) and (180) we find the corresponding
ratio in the nonresonance case:�
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o

�
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� o2
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i

neffoi

cvA

u

c
: �222�

Since neff / B 2
0 , the ratio (222) is independent of B0 in this

case. But it is sensitive to the fraction of neutral atoms, for it is
proportional to the factor F=�1ÿ F �. We make use of
formula (21) and the data given in Table 1 and, in
particular, put F � 0:85 to arrive at the estimate�

g
o

�
nr

� 7:5� 108
�
u

c

�3

:

Neither ratio contains the wavelength (the wavenumber)
and the nonresonance increment exceeds the resonance one
by three orders of magnitude.

However, it is well to bear in mind that the growth rates
derived above are applicable under different conditions, to
which there correspond different oscillation wavelengths. The
resonance increment was calculated for collisionless plasma
and is therefore applicable to oscillations with wavelengths
shorter than the least of the two transport mean free paths,
Lia � Lea and Lei. The nonresonance increment is applied
when ion collisions with neutral atoms take place, in which
case the oscillation wavelengths should exceed Lia. In the
warm phase of the interstellar medium we have
Lia � 5� 1014 cm and Lei � 5� 1016 cm.

In evaluating the supernova outburst, we take the
mechanical explosion energy E to be 1051 erg and the
dumped mass to be DM � �0:1ÿ1:0�M� [53] to find the
velocity of the free shell expansion at the initial stage of
remnant dilation:

umax �
���������
2E

DM

r
� �1ÿ3� � 109 cm sÿ1 :
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At this stage, u=c � 0:03ÿ0:1, and both formulas, the
resonance and nonresonance ones, lead to the ratio g=o4 1,
i.e., a very rapid field generation occurs. In this case, the
analytical formulas (180) and (218), which were obtained by
employing the condition g5o, are inapplicable. At the
Sedov stage, when the rake-in mass of the medium comes to
exceed the shell mass, the front velocity decreases and its
typical magnitudes are on the order of u �
�2ÿ3� � 108 cm sÿ1. In this case, u=c � 10ÿ2, and the
resonance increment comes to be lower than the frequency,
while the nonresonance increment is high in comparison with
the frequency as before, provided the fraction of neutral
atoms is sufficiently large and the factor F=�1ÿ F � in
formula (222) is not too small. Neutral atoms are observed
in the optical and UV spectra of a shock front as the
superposition of a broad line and a narrow line (in
particular, for the Ha line) in the remnants of SN 1006,
Kepler, Tycho, RCW86, Cygnus Loop, etc. and provide an
effective means for estimating the velocity of a shock wave
[61, 62].

11. Formation model
of MHD fluctuation spectrum

The linear fluctuation growth increments for the magnetic
field of the AlfveÂ n type investigated above do not allow a
conclusion about the enhanced field magnitudes. The
magnitude of the steady-state magnetic field and its spectral
properties are amenable to a consistent study only in the
framework of nonlinear models. Accurate theories of the
nonlinear time evolution normally invite three-dimensional
nonstationary simulations of systems with widely varied
scales and are still unrealizable even with the most powerful
computers. That is why recourse is often made to strongly
simplified estimates. The simplest coarse estimates of the
magnitude of the magnetic field on the basis of the linear
increment can be made on the assumption that a certain free-
energy fraction of the plasma stream is transferred to MHD
fluctuations. In this case, the instability saturation mechan-
ism is not defined concretely and estimates are made of some
spectrum-integrated energy density of the magnetic field.
Estimates of this kind yield the upper limit for the magnitude
of the magnetic field, provided the efficiency of energy
transfer to the fluctuations exceeds several percent.

To estimate the nonlinear instability saturation level,
advantage can also be taken of semiphenomenological
schemes for the description of statistically homogeneous
incompressible turbulence, which have been used for more
than 50 years in the theory of developed Kolmogorov type
turbulence produced by interscale spectral energy transfer
(Kolmogorov [63], Monin and Yaglom [64]). These methods
were employed, in particular, for the construction of model
turbulence spectra of the interstellar medium [65, 66].
Modelled in this scheme is the spectral energy density
WA�k; r; t� of AlfveÂ n type fluctuations. We shall relate it to a
unit mass, as is customary in the theory of hydrodynamic
turbulence. The foundation of the method is a model balance
equation for the spectral energy density of fluctuations, which
takes into account their generation, the spectral energy
transfer over scales in the inertial range, and the possibility
of mode damping:

q
qt

WA � �uH�WA � q
qk

PA�k� � 2 g�k�WA : �223�

To investigate the nonlinear instability saturation
regimes, we take the spectral mode-energy transfer rate
PA�k� in the form commonly employed for the description
of strong turbulence (see Ref. [71]):

PA�k� � C
ÿ3=2
K k 5=2 W

3=2
A : �224�

The Kolmogorov constant CK represents the principal
dimensionless model parameter in this theory. Investigations
of theCK magnitude are of importance for applications, in the
theory of turbulent transfer, in particular. The simulations of
three-dimensional incompressible MHD turbulence per-
formed in Ref. [67] yield CK � 3:6. However, different
results are also known: in particular, a value of CK � 1:7
proposed in the review [68]. The growth and damping rates of
the turbulent modes in Eqn (223) are included in g�k�.

Equation (223) with the spectral mode-energy flux (224),
supplemented with the corresponding initial and boundary
conditions, allows a numerical solution, as well as an
analytical solution by the method of characteristics. We
shall consider the fluctuation spectrum formation in the
vicinity of an MHD shock wave with accelerated particles.
As shown in Section 9, the initial fluctuations in the
wavenumber range k1 < k < kcr build up with the increment
(180) in the prefront of a shock wave (of size L1 � 2p=k1). In
the rest frame of the shock wave, the plasma inflows a front
with a velocity u1 exceeding the sound and AlfveÂ n velocities.
In the case of a wave with a large AlfveÂ n Mach number, the
fluctuation build-up time is therefore limited and is approxi-
mately equal to ta � L1=u1.

In the stationary regime, the turbulence level is deter-
mined by the balance between the mode amplitude growth
due to the instability of amultifluid system (see Sections 8 and
9), the nonlinearmode-energy cascade towards shorter scales,
and the convective transport of the enhanced modes beyond
the boundary of the unstable region. Let the wave spectrum
W1�k� unperturbed by the shock wave with accelerated
particles be defined in the oncoming flow. The stationary
solution of the nonlinear equation (223) in the prefrontal
region 04 z4L1 may be represented in the form of a one-
parametric family of characteristics (with the parameter
s5 0):

k � �sCÿ3=2K � k
ÿ2=3
0 �ÿ3=2 ; �225�

W�s; k0� � kÿ5=3
�
2

3

� s

0

g
ÿ
k�s�� ds� k

5=6
0 W 1=2

1 �k0�
�2
; �226�

z � 2u1
3

� s

0

k 5=6�s�W 1=2
ÿ
k�s�� ds : �227�

By performing integration successively in expressions
(225) ± (227) and solving the relations z � z�s; k0� and
k � k�s; k0� for s and k0, it is possible to calculate with the
aid of expression (226) the desired spectral energy density
W�z; k� for a given asymptotic spectrum of fluctuations in the
oncoming flow W1�k�.

For low-amplitude initial fluctuation distributions, a
regime of linear growth is realized, which is limited by the
finite time of fluctuation growth during the time ta of
convective mode transfer in the prefront of the shock wave
and which proceeds without significant nonlinear cascade
effects.When the initial fluctuation level is not too low (which
is often the case in shock waves in interstellar and inter-
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planetary media), the stationary regime is possible, with
fluctuation level saturation due to the nonlinear cascade. In
this regime, the fluctuation spectrum formed in the instability
region will depend only slightly on the initial spectrum shape,
because only the initial amplitude is of importance.

Below we shall consider a simplified model convenient for
a qualitative analysis of fluctuation spectrum parameters in
the prefront of a strong shock wave in the Galaxy. Let the
oncoming flow of matter be characterized by a statistically
homogeneous background turbulence of the Kolmogorov
type, which is sustained at a stationary level by different
sources in the galactic disk (most likely, primarily by super-
novae explosions). We accept this hypothesis as a simple
working model which does not contradict the available
observed data, being fully aware that the galactic medium is
much more complex than an incompressible liquid. The
sources of turbulence deposit their energy into perturbations
with the fundamental (highest) scale, which is supposedly
close to L0 � 100 pc for the galactic disk.

In the presence of accelerated particles in the prefront, the
turbulence will be strengthened by the nonresonance and
resonance mechanisms in a layer of thickness L1 and in some
wavenumber range in accordance with the results obtained in
Sections 8 ± 10. With an increase in wavenumber, the
increments change sign and transform into decrements, and
the dissipation of turbulent energy will result in a spectrum
cutoff.

Let the prefront thickness L1 be small in comparison with
the fundamental scale L0, and let the corresponding wave-
numbers satisfy the condition k1 4 k0. On the interval
k1 0 k5 k0, in the stationary case Eqn (223) becomes
simpler, the coordinate derivative vanishes due to the
homogeneity of the background turbulence, and the equa-
tion with a source takes the form

q
qk

PA�k� � Ed�kÿ k0� ; PA�k� � 0 for k < k0 : �228�

Its solution corresponds to a constant flux (224) along the
spectrum, PA�k� � E � const, and leads to the Kolmogorov
dependence of the energy density on the wavenumber:

W 0
A�k� � CKE 2=3kÿ5=3 : �229�

For k5 k1, the nonresonance mechanism of turbulence
generation by accelerated particles is engaged in the prefront,
and the system under consideration becomes inhomogeneous.
To estimate the inhomogeneity, we average the stationary
equation (223) with a source over the prefront thickness. As a
result of averaging, the term with the coordinate derivative
takes the form

ÿ u1
L1

� L1

0

qWA

qz
dz � ÿ u1

L1

�
WA�L1; k� ÿWA�0; k�

�
: �230�

We identify the term WA�0; k� with the averaged energy
density in the prefront, and the quantity WA�L1; k� with the
background Kolmogorov turbulence outside of the layer.
Eventually, we arrive at the equation

q
qk

PA�k� � 2geff�k�WA � Ed�kÿ k0� � u1
L1

W 0
A�k� ;

PA�k� � 0 for k < k0 :
�231�

Here, geff�k� � g�k� ÿ u1=2L1 takes into account the removal
of the MHD modes being generated from the prefrontal
region, following which they cease to grow.

Equation (231) does not allow the separation of
variables, but it may be easily solved by numerical methods
and analyzed in the limiting cases. When the turbulence is
not strengthened in the prefront, g�k� � 0, the equation
takes on the form of Eqn (228) and has the Kolmogorov
spectrum (229) for its solution. In the second limiting case,
the mode strengthening in the prefront may be quite
significant, so that the energy density WA will far exceed
the background level: WA 4W 0

A. This situation is highly
probable in the case of strong shock waves produced by
supernova outbursts. According to the estimates made at
the beginning of Section 6, the energy density of accelerated
particles which strengthen the turbulence in the prefront is
several orders of magnitude higher than the magnetic field
and background turbulence energy densities. Under these
conditions, it is possible to omit the inhomogeneous term
containing W 0

A�k� (however, only on the wavenumber
interval k5 k1) in equality (230) and Eqn (231):

q
qk

PA�k� � 2geff�k�WA � Ed�kÿ k0� : �232�

By solving this equation with the flux (224) along the
spectrum, we obtain the solution usability condition

E 1=3 � 2CK

3

� k

k0

geff�k� kÿ5=3 dk5 0 ; �233�

and the solution itself

WA�k� � CK

k 5=3

�
E 1=3 � 2CK

3

� k

k0

geff�k� kÿ5=3 dk
�2
; �234�

where one must put geff�k� � 0 for k < k1. On this spectral
interval there is only the Kolmogorov turbulence.

The second term in brackets in expression (234) describes
the turbulence generated by accelerated particles in the
prefront. For a strong generation, it is far greater than the
first term for k > k1. The quantity E, viz. the flux of back-
ground turbulence energy along the spectrum, may be
expressed in terms of the observable parameters of turbu-
lence in the Galaxy. By integrating expression (229) over the
entire spectrum from k0 to 1 and equating it to the
observable turbulence energy density eB 2

0 =4p, where eB0 is the
magnetic field induction of the largest-scale fluctuations, we
obtain

E �
eB 3
0 k0

�6pCKr�3=2
; �235�

where r is the density of themedium. In the warm phase of the
galactic disk, putting k0 � 2� 10ÿ20 cmÿ1, we find
E � 10ÿ2 erg gÿ1 sÿ1.

When there are neutral atoms in the flux incident on the
front, the increment gnr�k� is determined for k > k1 by the
nonresonance effect of oscillation build-up and is defined by
formula (180). The interval of values in which this effect
shows itself is bounded by the smallest of the quantities kcr
and ks [see expressions (179) and (186)]. In the warm phase of
the interstellar medium, ks 5 kcr, and for k > ks the para-
meter neff therefore rapidly decreases to values nm 5 neff and
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the nonresonance build-up becomes ineffective. For k > ks,
the main part is played by the resonance mechanism and the
corresponding increment gres�k� is given by formula (217)
depending on the spectrum of accelerated particles (with
exponent a). When a � 4, which corresponds to a moderate
acceleration at a strong shock front, gres�k�, as well as gnr�k�, is
proportional to the wave vector.

The small-scale turbulence dissipation mechanism in
this model is related to viscous loss due to the finite
electrical conductivity. As shown in Sections 1 ± 3, the
effective conductivity is determined both by the possible
presence of a neutral component and by turbulent fluctua-
tions of the different scales. The resonance mode-energy
absorption by particles may also be a significant factor,
whose consistent inclusion calls for the solution of a self-
consistent nonlinear problem of the retraction of turbulent
fluctuations on the injection and acceleration of nonther-
mal particles. The nonlinear simulation of the resonance
effects of mode generation with the inclusion of their
retraction on particle acceleration by a strong shock wave
was performed by the Monte Carlo method in Ref. [69].
The nonresonance mode generation mechanism, which was
discussed at length in the foregoing, should also be
included in the consistent model.

In the general case, the effective MHD-mode growth rate
in a multifluid system (with allowance made for viscous
damping), obtained in Sections 8 and 9, is, broadly speak-
ing, a second-degree polynomial in the wavenumber k. When
the MHD-mode generation effect prevails, the effective
increment geff�k� / ka in the k9 kcr region (with kcr 4 k1).
According to expression (234), the spectral energy density
exhibits asymptotic behavior WA�k� / k 2aÿ3. At a � 1, we
have an intermediate asymptoticsWA�k� / kÿ1. On the scale
interval k1 < k < kcr, the fluctuation spectrum slopes more
gently than WA�k� / kÿ1. The extent of the spectrum
depends on the magnitude of kcr=k1 by approximately a
linear law. The maximum of spectral mode amplitude is
Wm / k 2

cr. As an illustration, Figure 1 shows the calculated
spectral mode-energy densities (normalized on Wm30 �Wm

at kcr=k1 � 30) for kcr=k1 � 10 and kcr=k1 � 30. In this
calculation it was assumed that neff k 2

1 ta � 1. This calcula-
tion shows the possibility of a strong increase in the energy
density of instability-generated fluctuations on specific
intervals of the wavenumber k (the solid and dashed lines in
Fig. 1) in comparison with the initial Kolmogorov fluctuation
spectrum (the dotted line in Fig. 1).

In the framework of the quasilinear theory of resonance
energetic-particle scattering by MHD waves, the energy
dependence of the particle diffusion coefficient is defined
by the mode spectrum WA�k� (see, for instance, monograph
[8]). To the power function WA�k� / kÿ1 there corresponds,
in the energy range of particles resonant with the corre-
sponding modes, the Bohm diffusion law (191) discussed
above. Therefore, the model predicts the Bohm diffusion
coefficient with a linear dependence on the particle
momentum even for moderate amplitudes of magnetic field
fluctuations characteristic of the applicability of the quasi-
linear theory. The use of the Bohm diffusion coefficient is
commonly considered to be phenomenologically reasonable
for strong turbulence (see, for instance, reviews [48, 70], as
well as Ref. [20]).

It should be emphasized once again that the model
considered in this section can yield satisfactory quantitative
estimates only when the energy of the turbulence generated is

low in comparison with the energy of accelerated particles.
When the densities of these two energies become approxi-
mately equal, using the linear increment in Eqn (231) proves
to be incorrect. The level of turbulence saturation in this
strongly nonlinear case may be coarsely estimated in the same
way that the possible magnitude of the secondary magnetic
field was estimated at the beginning of Section 6.

In this model, use was made of a simple local dependence
of the spectral mode-energy transfer rate PA�k� on the
spectral energy density WA. Nonlocal functional depen-
dences are discussed at length in the book by Monin and
Yaglom [71]; as a rule, their employment does not change the
power in the asymptotic form of spectral energy density for
short waves �k4 k1�. Short-wave MHD turbulence appears
to be essentially anisotropic and equation (231) invites
modifications to take into account the anisotropy of the
mode cascade for a high average magnetic field B0 4 dB in
the small-scale domain (see, in particular, the monograph [68]
and references cited therein). According to Ref. [68], the
degree of transverse turbulence anisotropy increases
/ �k?L0�1=3 (where L0 is an energy-containing scale). In this
case, the small-scale MHD turbulence is described by a local
two-dimensional model with a cascade over transverse
wavenumbers. Large-scale strong MHD turbulence with
dB > B0 is supposedly close to quasi-isotropic turbulence
with intermittent nonlinear structures.

The spectral energy density (234) permits estimating the
attainable energy density of long-wave fluctuations under the
assumption that the linear instability saturates due to the
nonlinear effect of energy transfer over the AlfveÂ n type mode
spectrum and that no depletion of the energy source occurs.
In real applications, the assumption that the system is
incompressible is apparently not always realized. The long-
itudinal long-wave fluctuations of the magnetosonic type
experience a substantially stronger Landau damping and in
the turbulent medium they decay due to the Fermi accelera-
tion of nonthermal particles (see Ref. [44]).
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Figure 1.Model distribution of spectral energy densityWA�k� in the shock

prefront normalized on Wm�kcr=k1 � 30� �Wm30. The solid line denotes

the distribution for kcr=k1 � 30, the dashed line the distribution for

kcr=k1 � 10, and the dotted line the background Kolmogorov spectrum

(see Section 11).
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12. Enhancement of magnetic fields behind
the fronts of astrophysical shock waves

Different-scale magnetic fields play a significant part in mass,
energy-momentum, and angular momentum transfer in
astrophysical objects of various natures in the accretion of
matter on compact massive objects (e.g., Refs [72, 73]), in
interstellar medium dynamics [1, 74, 75], and in galactic
clusters [30]. We shall discuss the applications of the
instability of a multicomponent plasma with accelerated
particles to the problem of the origin of strong magnetic
fields in the shells of supernova remnants which are
traditionally considered as cosmic ray sources (see, for
example, Refs [18, 20, 76]).

12.1 Magnetic fields in the shells of supernova remnants
Supernova remnants have long been known as powerful
sources of nonthermal radio emission. In shell remnants,
like Cassiopeia A (Cas A), the synchrotron emission of
relativistic electrons is considered to be the principal genera-
tion mechanism of rf radiant flux. The possibility of
constructing spatially resolved X-ray spectra of supernova
remnants emerged with the commencement of operation,
during the last decade, of orbital X-ray telescopes with
about an arcsecond angular resolution (see, for instance,
review [77]). As a result, in the nonthermal continuum of
several remnants (SN 1006, Cas A, RCW 86, etc.) the X-ray
radiation components with power-law spectra in which there
were no spectral lines have been discovered. These compo-
nents are commonly interpreted as synchrotron X-ray
radiation [78 ± 80].

In many cases, shock waves propagate through a partially
ionized medium. For supernova remnants interacting with
molecular clouds (for instance, IC 443), the existence of a
neutral component ahead of the shock front may give rise to
special features in a high-energy particle acceleration regime
(see, for instance, Ref. [81]) and has a strong influence on the
emission spectra of these remnants [24]. Some fractions of
neutral hydrogen, helium, and metal atoms also reach the
shock front of a supernova remnant that resides in a rarefied
medium [62].

Let us consider the implications of the above mechanism
of AlfveÂ n type wave generation for the shock wave of the
supernova remnant SN 1006 (G327.6� 14.6). This is one of
the young remnants known from ancient historical chronicles
(see Ref. [53]), which appears to be classed with Ia type
supernovae. The distance to the remnant is estimated at
2.1 kpc, and the dimension at about 18 pc [82]. A character-
istic feature of the X-ray radiation from the SN 1006 super-
nova remnant is bright thin segments located in the north-
eastern (NE) and southwestern (SW) parts of the almost
spherical shell with diameter close to 30 0 of arc (Fig. 2).
Detailed investigations of the bright NE domain were
recently carried out with the Chandra X-ray Observatory
(see Refs [83, 84]). The X-ray spectrum of the thin bright NE
segment was dominated by a nonthermal continuum which is
usually interpreted as the synchrotron emission of electrons
with energies on the order of 10 ± 100 TeV in the vicinity of a
shock wave [79]. The high spatial resolution (on the order of
1 00) of the CCD ACIS detector of the Chandra X-ray
Observatory permitted K Long and co-workers to discover
an abrupt jump in radiation intensity (see Ref. [83]). The
authors revealed that the intensity of radiation with photon
energies above 1.2 keV immediately ahead of the front did not

exceed 1.5% of the highest brightness in the domain
immediately behind the shock front [83]. The width of the
bright NE segment of X-ray synchrotron radiation was about
10 00 (1 00 � 3:3� 1016 cm at an estimated distance of 2.1 kpc to
SN 1006). The problem of the existence of a weak radio
galactic halo in OCH and estimates of the diffusion coeffi-
cients for relativistic electrons were earlier discussed by
Achterberg et al. [85]; however, the upper limit for the
brightness of the synchrotron halo, established by Long et
al. [83], is the most severe (see Ref. [86]).

The optical and UV spectra of SN 1006 [87, 88] show the
presence of neutral atoms in the vicinity of the shock front.
The remnant map in the Ha line, obtained by Winkler et al.
[82], shows a more uniform distribution of the optical
radiation over the limb of SN 1006. There are optical
filaments in the NE part, which correlate with bright X-ray
filaments, but there are also even brighter optical filaments in
the SW part of the remnant, where X-ray filaments are not
pronounced. The observations are consistent with the
estimates of the neutral component fraction F � 0:1 in the
prefront of a shock wave propagating with a velocity vsh �
2300 km sÿ1. An estimate of the gas density ahead of the front
of the NE sector of the shock wave in SN1006 gives
ni � 0:1 cmÿ3. Using the hydrogen charge exchange rate
constant for a temperature of about 104 K, we obtain the
charge-exchange mean free path of atomic hydrogen equal to
theminimal instability wavelength l0 � 2pkÿ10 � 2� 1016 cm
(since k0 4 kcr), as well as an estimate of the magnetization
factor oBiti 0 107 � B�Fnÿ1�ÿ1. Here, B is measured in mG,
and the plasma number density nÿ1 in units of 0.1 cmÿ3.
Therefore, we employ relationship (30) to obtain the char-
acteristic mode build-up time � 6� 102 � �N0=ni�ÿ1 (s),
which permits enhancing magnetic fields with scale lengths
on the order of l0 during the lifetime of SN 1006 if the rate of

Figure 2. X-ray image of the SN 1006 supernova remnant, obtained with

the Chandra satellite (Credit: NASA/CXC/Rutgers/J.Hughes et al.) in the

0.5 ± 3 keV range (see Ref. [83]). The image clearly shows the nonthermal-

continuum filaments interpreted as the synchrotron X-ray radiation of

ultrarelativistic electrons accelerated by shock waves with enhanced

magnetic fields in the prefront (see Section 12.1).
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proton injection into the regime of acceleration by the shock
wave allows the values N0=ni 0 10ÿ7. By using relationship
(99), one can ascertain that the energy density of accelerated
particles in this case is equal to a fraction of one percent of the
kinetic energy density of the oncoming plasma flow. If we
restrict ourselves to the injection rates that allow cosmic-ray
energy densities wcr on the order of several percent of the
kinetic energy density �� mpniv

2
sh� of the flow, we arrive at the

possibility that magnetic field fluctuations with amplitudes
dB � 30 mG can be generated ahead of the shock front. The
compression R � 4 of the transverse field component at the
jump in a strong shock wave (here, we consider a single-fluid
wave without a lengthy prefront, because we are investigating
the case of a low proton injection rate) will permit obtaining
magnetic fields of about 100 mG in the region behind the
shock front. Magnetic fields on the order of 100 mG behind
the shock front of SN 1006 permit attributing the narrow
X-ray continuum brightness distribution observed in the NE
segment of the shock wave [83, 86, 89] to the rapid
synchrotron cooling effect of relativistic electrons behind the
shock front. In the case when magnetic fields are generated in
a partially ionized medium, no appreciable pressure
�� mpniv

2
sh� of the nucleon component of cosmic rays is

required in the prefront region, which was assumed in the
model built in Ref. [89]. The upper limit for the ratio between
the synchrotron luminosity in the prefront region and the
highest luminosity in the transverse segment of the shock
wave is evaluated as RÿG, where G is the photon exponent of
the synchrotron radiation spectrum above � 1:5 keV. In our
case of compression in a strong single-fluid shock wave with
R � 4 and a synchrotron exponent G � 3, we obtain the
specific luminosity ratio of about 1.5%, which is consistent
with the limit established by Long et al. [83]. In the
comparison analysis of the synchrotron radiation (radio and
X-ray) and optical �Ha�maps, it should be borne inmind that
the magnetic fluctuation growth rate is, apart from the
neutral particle fraction F, also proportional to the local
density of nonthermal particles, which is largely determined
by the local injection rate. The mechanisms of particle
injection into the regimes of acceleration by shock waves so
far do not allow making quantitative predictions, but it is
hypothesized that ion injection is stronger in the quasiparallel
part of the shock wave (see Refs [48, 70, 90]).

The presence of radio wave filaments in the neighborhood
of the galactic center may be an interesting implication of the
physical mechanism of magnetic field generation by a shock
wave in a plasma medium with a neutral component. The
observations of Yusef-Zadeh et al. [91] are indicative of the
possible relation of some of the filaments to supernova
remnants. Neutral particles can substantially simplify the
problem of magnetic field generation in the reverse shock
wave propagating through the expanding supernova ejection
in the nonlinear model of particle acceleration by the reverse
shock [92].

12.2 Magnetic fluctuations in interplanetary shock waves
Anatural (and quite frequently the only) laboratory for direct
observations of collisionless MHD shock waves is the Sun
with the processes proceeding in the near heliosphere.
Collisionless waves and nonthermal particles in the inter-
planetary medium have been observed since the late 1960s,
and a wealth of observational material has been accumulated
(see, for instance, Refs [93 ± 95]). The results of observations
may be summarized as follows. AlfveÂ n perturbations quite

often prevail in the interplanetary plasma (see Refs [93, 94]);
in regions of collisions of solar wind flows with different
velocities, however, an important part is played by large-scale
compressible perturbations. Outside of the regions of colli-
sion of fast flows and masses ejected by the solar corona,
Leamon et al. [96] give a fluctuation power spectrum of the
form W�n� on the interval from n �ÿ1:46�0:01� to n �ÿ1:93�0:02� in
the frequency range (in the rest frame of the detector aboard
the Wind spacecraft) 0:01 < n < 0:4 Hz. For n > 0:4 Hz, the
power spectra were obtained from n �ÿ2:00�0:02� to n �ÿ4:43�0:01�.
The data by Leamon et al. [96] were derived from the analysis
of 33 one-hour-long observations with the MFI magnetic
field detector aboard the NASA's Wind spacecraft. These
data were interpreted as relating to a turn-over from the
inertial interval to the dissipative domain in the frequency
range near n � 0:4 Hz. The mean spectrum in the inertial
interval is nÿ1:66, which is in perfect agreement with the
Kolmogorov law.

The problem of spectral energy transfer and MHD
turbulence dissipation is essential, in particular, to the
understanding of the heating mechanisms of solar wind
plasma. The heating mechanism is required for interpreting
the observed decrease/ rÿ0:8 (or rÿ1:0) in proton temperature
with the heliocentric distance, which is much slower than the
conventional law T / rÿ2�gaÿ1� for expanding wind with an
adiabatic index ga (see, for example, Refs [96, 97]). The
heating of the solar wind plasma by the processes occurring
in the dissipative domain of the turbulent cascade is a
promising model. MHD turbulence modeling in the inertial
interval and the dissipative domain is carried out with the
inclusion of the two-dimensionality effects of the small-scale
MHDmode cascade in the plane perpendicular to the average
magnetic field [97 ± 99].

The turbulence and accelerated-particle spectra in the
immediate vicinity of the shock wave in the interplanetary
mediumonNovember 12, 1978were comprehensively studied
byKennel et al. [100]. The authors revealed that the spectra of
magnetic fluctuations in the vicinity of the shock wave in the
n < 0:1 Hz frequency range, obtained from three 2.5-min
intervals, are gently sloping (/ nÿd with an exponent d9 1).
Furthermore, they discovered a strengthening of turbulence
in the high-frequency (n > 0:1 Hz) range outside of the
domain resonant with the gyrofrequencies of accelerated
ions, where the magnetic-field power spectrum decreases
rapidly with frequency. Ion fluxes accelerated by the shock
to energies on the order of 150 keV were detected in the
neighborhood of about �2ÿ3� � 1010 cm, the prefront region
dimensions depending on the particle energy. The ion
spectrum is satisfactorily described by a power-law velocity
distribution with an exponent � 4:2. Kennel et al. [100]
estimated the accelerated-particle energy density in the 3 ±
200-keV energy range at 1:6� 10ÿ9 erg cmÿ3. The measured
number density of thermal particles was ni � 4 cmÿ3. The
shock front velocity was estimated at 640 km sÿ1, and the
AlfveÂ n Mach number of the shock atMA � 3:5.

Let us consider the possibility that the mechanism
described in Section 11 generates magnetic field fluctua-
tions. It is possible to estimate the relative nonthermal-
particle concentration N0=ni � 10ÿ3 and then find the
magnitude of the critical wavenumber kcr (179) along with
the mode build-up increment from formula (180). The
estimate kcr � opi=c�N0=ni �MA � 2� 10ÿ10 cmÿ1 yields
a scale several times shorter than the domain of accelerated-
particle distribution in the prefront. The frequencies of the
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growing MHD modes in the detector rest frame lie in the
�1ÿ5� � 10ÿ3 Hz range. For effective magnetic viscosities
neff � 1015 cm2 sÿ1, the MHDmode build-up increment (180)
and the fluctuation spectrum amplitude (234) permit one to
quantitatively describe the observed power spectra of large-
scale magnetic field fluctuations. The calculation of effective
magnetic viscosity in the framework of the fluctuation
conductivity models for collisionless plasmas, considered in
Section 2 [see formula (67)], allows explaining the above
values of neff if it is assumed that the amplitudes of (small-
scale) field fluctuations, which are responsible for the
scattering of thermal electrons, are dB=B � 10ÿ3. The
fluctuation spectrum (234) predicted by the model is gently
sloping in the low-frequency domain (with an exponent4 1)
in accordance with observations [100, 101]. At the same time,
Kennel et al. [100] pointed out that the spectrum of theMHD
fluctuations resulted from resonance wave generation by
accelerated particles would have an exponent 7=4, which is
at variance with observations.

The nonresonance mechanisms of large-scale magnetic-
field fluctuation generation by the current of accelerated
particles in the neighborhood of MHD shocks, considered
in Sections 7 ± 9, permit forming magnetic fields with
amplitudes which are many times higher than the unper-
turbed (asymptotic) magnitudes of magnetic field induction
ahead of the shock front. An important feature of these
mechanisms is that the generation of the magnetic field is
not associated with a strong modification of the shock
prefront by the pressure of accelerated particles, as is
assumed in the models of Refs [15, 89] and in an earlier
paper [102]. Therefore, strong large-scale magnetic fields may
be generated in a shock prefront even for a particle
acceleration efficiency on the order of 10% and particle
spectra with exponents a0 4 (and the nonthermal compo-
nent pressure determined by particles with moderate ener-
gies). In resonance mechanisms, efficient generation of large-
scale magnetic fields implies gently sloping particle spectra
with nonthermal-particle pressure determined by high-energy
particles. The nonresonance generation of small-scale fluc-
tuations was recently considered by Bell [27], while aniso-
tropic MHD cascades and the part played by two-wave
scattering processes in turbulence formation are discussed in
Refs [103, 104]. It is not inconceivable that the nearly
Kolmogorov fluctuation spectrum observed in the interpla-
netary medium constitutes a complex superposition of an
anisotropic transverse cascade and a gently sloping spectral
distribution of AlfveÂ n waves propagating along the average
magnetic field [105].

The generation of magnetic fluctuations, of course, takes
place immediately in the formation of the front of a
collisionless shock wave in a plasma, which was considered
by Sagdeev [36] as the main mechanism of collisionless
relaxation in a shock wave. The Weibel instability of
transverse mode growth in a plasma with an anisotropic
velocity distribution [106, 107] supposedly plays a significant
part in collisionless relaxation in the shock fronts. Numerical
particle-in-cell (PIC) simulations of the structure of the
collisionless shocks demonstrate the growth of small-scale
filamentous magnetic-field structures on the scale of hun-
dreds of inertial ion lengths c=opi (see, for instance, Refs [108,
109]). However, the level of magnetic field amplitudes far
away from the front and the degree of particle thermalization,
which are related to the decay of magnetic structures, invite
further analysis [110]. Even the highest-power modern

computers do not enable employing PIC codes for the
simulation of astrophysical shock structures on the scales
where accelerated particles play a significant role. Modeling
that relies on the employment of kinetic equations considered
in the foregoing therefore remains the main means of
investigation of multicomponent plasmas with energetic
particles.

13. Conclusions

Our review contains a derivation and detailed discussion of
the basic equations describing the macroscopic dynamics of
the cosmic plasma with the inclusion of nonthermal particles,
fluctuating electromagnetic fields, and neutral atoms. We
analyzed the implications of themulticomponent character of
the cosmic plasma that pertain to the generation or enhance-
ment of magnetic fields with different spatial scales. Primary
emphasis was placed on the role of suprathermal (including
relativistic) particles, as well as the role of the neutral
component.

In this review it was demonstrated that both small
additions of neutral particles and small-scale stochastic
magnetic fields can change the effective electrical conductiv-
ity and magnetic viscosity of astrophysical plasmas by many
orders of magnitude. This has the consequence that extrinsic
currents substantially grow in importance; these are produced
by suprathermal and, particularly, relativistic particles in the
neighborhood of active astrophysical objectsÐ the sources of
accelerated particles. An extrinsic current induced by relati-
vistic and background particles in a magnetized plasma
generates a secondary large-scale magnetic field. As a result,
the initial large-scale field may be enhanced or lowered by one
or two orders of magnitude under typical conditions.
Detailed observed data on magnetic fields in quite different
astrophysical objects ranging from the cosmological medium
to the heliomagnetosphere are given in ValleÂ e's reviews [111].

The accelerated component of the cosmic plasma also
exerts a strong influence on the MHD turbulence. In the
neighborhood of shock fronts, which accelerate energetic
particles, there emerges the possibility of the nonresonance
excitation of large-scale AlfveÂ n type MHD fluctuations with
an increment proportional to the effective magnetic plasma
viscosity and the fraction of suprathermal particles. The
excitation of these oscillations substantially increases the
efficiency of particle acceleration by shock fronts. The
turbulence strengthening mechanism considered above does
not involve an appreciable modification of the velocity profile
and the transfer of the major part of gas-dynamic energy to
the accelerated particlesÐ therein lies its advantage over the
processes of turbulence generation near the shock fronts
discussed earlier.

We have come up with a formation model of MHD
fluctuation spectrum and shown that the mechanism investi-
gated leads, in a broad scale range, to a spectral energy density
inversely proportional to the fluctuation wave vector. This
spectrum shape may give rise to the Bohm dependence of the
fast-particle diffusion coefficient on the momentum, whereat
the transport mean free path gets on the order of the particle
gyroradius.

In our review, turbulence was described in the conven-
tional way involving the use of correlation tensors and
spectral energy densities. Recent years have seen the develop-
ment of a different approach in which the turbulent state is
treated as the result of self-organization of a strongly

172 A M Bykov, I N Toptygin Physics ±Uspekhi 50 (2)



nonequilibrium and nonlinear system. Readers may familiar-
ize themselves with this circle of ideas and methods from the
review [112].

The multicomponent plasma instabilities investigated are
invoked to explain the observed data on the nonthermal
radiation from supernova remnants and on fast particles, as
well as on the MHD turbulence near shock fronts in the
interplanetary space.

This work was partly supported by the Russian Founda-
tion for Basic Research (grant Nos 06-02-16844, 04-02-16595,
07-02-00245).
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