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Abstract. Theoretical and experimental results of investigations
into the quantum noise of multimode laser radiation are con-
sidered. The feasibility of generating light with a photon-num-
ber-squeezed (sub-Poissonian) photon distribution by a
multimode laser with a homogeneously broadened line is ana-
lyzed. The conditions of noisy and noiseless (regular) pumping
are considered. Photon-number fluctuations of the net laser
radiation summed over all generated modes are calculated in
the approximation of equidistant equal modes, as are photon-
number fluctuations in an individual mode inside and outside the
resonator. Qutput-radiation noise spectra and photon-number
fluctuations are calculated for solid-state (neodymium glass,
Nd:YAG) and semiconductor lasers. Theoretical results are
compared with a number of experimental data obtained for
semiconductor lasers in recent years.

1. Introduction

1.1 Photon noise and squeezed light

The quantum nature of light introduces fundamentally
irremovable fluctuations and noise into the radiation of
both natural and artificial electromagnetic-field sources. The
level of photon-number fluctuations in the electromagnetic
field induced by deterministic classical currents corresponds
to the shot-noise level. The electromagnetic field produced
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under these conditions resides in a quantum-mechanical
coherent state with a Poissonian photon-number distribu-
tion, in which the variance of the number of photons is equal
to their average number: <(An)2> = (n). The quantum
coherent state, which is the ecigenstate of the field photon
annihilation operator, is of the fundamental importance in
quantum optics. The nonclassical field states that are
characterized by a photon-number fluctuation level below
the standard shot-noise level which is characteristic of the
coherent state, and these fluctuations are such that

(Bn)*) < {m),

are referred to as sub-Poissonian states.

The variances of field quadratures p= (a™ —a)i/2,
g=(a™ +a)/2, the momentum and the coordinate in the
phase space of the harmonic oscillator of normal field modes,
where ¢ and «a are the photon production and annihilation
operators, are equal in the coherent state: <(Ap)2 > =
{(Ag)*) = 1/4, and minimize the Heisenberg uncertainty
relation

1
((Ap)){(89)°) = 1¢ -

The fluctuations in quadrature field components, corre-
sponding to the coherent state, constitute the fundamental
limit of the electromagnetic field fluctuation level and,
consequently, define the limiting accuracy of its measure-
ment. A lowering of noise in one of the field quadratures to a
level below this limit and the corresponding rise in noise in the
canonically conjugated quadrature represent essentially
nonclassical effects.

The electromagnetic field states described in the foregoing
and referred to as squeezed states are characterized by a
lowered level of field photon-number and/or phase noise, as
well as of quadrature field components [1—4].
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The pursuance of precision optical experiments employ-
ing different light sources generated a need for profound and
systematic investigations into the quantum fluctuations of
electromagnetic fields, which in turn led to the discovery of
several new physical effects caused by the quantum nature of
light and matter (see the following reviews and thematic
collections of papers [1 -3, 5—15]). Among them is the effect
of light quadrature squeezing and the existence of light states
with a photon-number fluctuation level below the level of
quantum shot noise (sub-Poissonian states). This effect arises
from well-known nonlinear optical processes like lasing [5, 14,
16— 62], parametric scattering [1 —3, 6—8], optical bistability
[1, 2, 63, 64], and four-wave scattering [1—3, 65], as well as
some others [15, 66].

The phenomenon of squeezing is of practical signifi-
cance. Basic investigations into the quantum phenomena
emerging in the interaction of light with a medium underlie
the rapid progress along new promising lines of theoretical
and experimental research into optical information transfer
[10, 67, 68], quantum cryptography [67, 68], and quantum
computers [11]. The use of electromagnetic field observables
pertaining to a quadrature with a lowered noise level (for
instance, the field intensity Foca—a'’) opens up the
possibility of measuring low-intensity quantum fields with
an accuracy which exceeds the fundamental limitation
arising from the irremovable quantum fluctuations of a
vacuum. Among the applications of squeezed light, mention
should also be made of low-noise optical communication,
high-precision atomic spectral measurements, and precise
interferometric experiments [12, 13, 69, 70], as well as its
employment in the photodetection of weak optical signals
[65]. Quantum noise related to the preparation of a signal
and its measurement defines the upper bound for the
information capacity of a channel. The eigenstate of the
photon-number operator, or the Fock state of light,
whereby the photon-number fluctuations are equal to zero,
is optimal for optical communication, because the ideal
limit for the information capacity of an optical channel is
realized in precisely the Fock state of a signal [10].
Furthermore, the employment of a single-photon light
state for optical information transfer eliminates the possibi-
lity of intercepting the transmitted data, even for an open
communication channel.

The squeezed-state electromagnetic field finds use in the
implementation of quantum nondestructive measurements of
electromagnetic field characteristics [12, 13, 71], as well as in
high-precision experiments in atomic interferometry and in
the refinement of frequency standards [12, 13, 69]. In
particular, the employment of sub-Poissonian light in atomic
Ramsey spectroscopy was shown to improve the signal-to-
noise ratio [69].

The quest for reliable light sources possessing non-
classical properties, i.e., obeying sub-Poissonian photon-
number statistics or squeezed in amplitude or phase
quadrature of the field, is now one of the most topical
problems of quantum optics. The mathematical apparatus
elaborated during the last 30 years for the quantum theory
of open systems, i.e., systems possessing fluctuations and
dissipation, permits conducting quantitative investigations
of quantum-statistical radiation properties. The progress in
experimental investigations achieved in recent years causes
us to anticipate that practically required sources of
strongly squeezed light will be developed in the not distant
future.

1.2 Quantum noise in single-mode lasers

At present, the main sources of coherent radiation are lasers
and quantum optical traveling-wave amplifiers. Detailed
quantitative investigations into the quantum fluctuations
and noise of the electromagnetic field produced by these
devices are a topical problem of today. The development
and improvement of ways of solving this problem, as well as
the quest for laser generation schemes which permit control-
ling the level of light noise and fluctuations arising from the
interaction of the light with the amplifying medium, are the
central problem of quantum optics. Solving this problem
would open the way to the development of practical
applications reliant on novel technologies and broaden the
potentialities for employing lasers as instruments of basic
physical research.

The fluctuations in laser radiation intensity are deter-
mined by two factors: intensity fluctuations due to technical
factors, and those arising from the quantum nature of light —
matter interactions, so-called quantum fluctuations. Consid-
ered as quantum fluctuations are the spontaneous emission of
atoms of the active laser medium (polarization fluctuations in
the active medium), fluctuations of the electromagnetic
vacuum, and also the quantum fluctuations in laser pumping
(fluctuations in level populations of the active medium). The
fluctuations arising for technical reasons and the possible
chaotic dynamics of lasing may be removed almost comple-
tely under experimental conditions, while quantum fluctua-
tions are inherently fundamental and are inevitably present in
the quantum-statistical laser dynamics. The Poissonian
photon statistics (the shot noise), which are typical for laser
radiation when the lasing threshold is exceeded, may be
interpreted in the framework of quantum mechanics as a
consequence of the quantum fluctuation processes mentioned
above.

The feasibility of lowering the level of laser intensity
fluctuations to a level lower than the fundamental Poisson-
ian level has been carefully considered in several investiga-
tions during the last 20 years. These investigations suggest
that the number of photons in the laser radiation when the
lasing threshold is exceeded may, under special conditions,
obey sub-Poissonian statistics. The level of quantum noise of
single-mode laser radiation was shown to be in direct
quantitative dependence on the parameters of the active
medium, the excess over the lasing threshold, and the kind
of pumping [16—29].

An efficient method for generating sub-Poissonian light is
to employ noiseless (regular) pumping [16]. As shown in
Refs [16, 28], in the absence of pump fluctuations for a large
excess of the lasing threshold, the photon-number fluctua-
tions in the resonator of a three-level laser may, neglecting the
population depletion of the lower atomic level, attain the
minimal level defined by only the electromagnetic vacuum
fluctuations. This is an indication that the spontaneous
emission fluctuations are completely suppressed under these
conditions. In this case, the squeezing in the fluctuation
spectrum of the output-radiation intensity turns out to be
complete (100% squeezing). The influence of atomic coher-
ence on the magnitude of photon-number and field-phase
fluctuations was also considered in Refs [25, 26] for a pump
with different statistical properties. As shown by the authors
of Ref. [26], the atomic coherence created by preparing the
active atoms in a coherent superposition of the states
participating in lasing in the regular-pump case results in the
complete suppression of spontaneous noise. In this case, the
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photon statistics are sub-Poissonian, i.e., the photon-number
variance is below the shot-noise level.

It was found in Refs [18 — 24, 29] that the quantum photon
noise is also settled below the standard Poissonian level under
noisy (Gaussian) pumping in three- and four-level laser
schemes upon exceeding the lasing threshold. Approximate
numerical and analytical calculations have shown that the
noise produced by spontaneous emission and the pumping is
effectively suppressed for specific ratios between the sponta-
neous decay constants of atomic energy levels. The fluctua-
tion minimum is equal to 3/4 of the average number of
photons in the laser resonator in the three-level scheme, and
to 2/3 in the four-level scheme. In this case, the noise level of a
laser output radiation is two times lower than the shot-noise
level for a three-level laser, and five times for a four-level laser.
This phenomenon is referred to as the dynamic suppression of
quantum laser noise [19, 21].

A single-atom laser, which has been actively investigated
in recent years, may serve as a source of sub-Poissonian light
[14, 30—40]. The feasibility of generating strongly squeezed
light by a single-atom single-mode laser was theoretically
demonstrated for two-, three-, and four-level schemes in
Refs [30, 36, 37]. Experimental research which is being
pursued at the present time as well has confirmed the
feasibility of squeezed-state generation both by a single-atom
laser [35] and a few-atom laser (N, ~ 10) [36].

A quantum-dot laser can also be placed among single-
atom lasers capable of generating sub-Poissonian light. It was
predicted in Refs[31—33] that the level of the photon noise for
this laser may, under certain lasing conditions, be substan-
tially lower than the shot-noise level. The theoretical results
were experimentally borne out in Ref. [34]. The theory of a
quantum-dot laser demonstrates that this laser may be
considered as a potential source of single-photon Fock states
of light, which find use in optical information transfer and
quantum cryptography [14].

Successful experiments on the production of sub-Poisson-
ian light by means of semiconductor lasers with regular
pumping were carried out in Refs [41 —45]. Measurements of
the photocurrent fluctuation spectrum and the photon
statistics of the radiation from the semiconductor lasers
revealed the existence of substantial squeezing. In particular,
the attainment of 85% squeezing (— 8.3 dB) with a complete
suppression of pump noise was reported in Ref. [44].

The idea of producing sub-Poissonian light by means of a
feedback laser was developed in Refs [15, 41, 48, 72]. The
feasibility of lowering the photon noise of semiconductor
laser radiation with the help of a feedback circuit was
investigated in Refs [41 —44]. When use is made of negative
electronic feedback, the variable (fluctuation) component of
the current in the photodetector which measures the output
laser field intensity is, upon inverting its phase and amplifica-
tion, mixed with the pump current which, in turn, modulates
the intensity of output laser radiation received by the
photodetector. The photon-number fluctuations measured
in Ref. [41] in this closed feedback circuit turn out to be well
below the Poisson level and may run to 0.26 of the average
number of photons. However, extracting the squeezed light
from the closed circuit by means of a beam splitter turned out
to be impossible, because the vacuum field arriving at the free
input of the beam splitter disturbed the quantum correlations
between the intensities of the two fields emanating from the
beam splitter. As a consequence, the field extracted with the
help of the beam splitter exhibits super-Poissonian photon

statistics for a fluctuation level substantially higher than the
level of shot noise. The authors of Ref. [41] proposed a way of
extracting squeezed light from the feedback loop with the aid
of a nondestructive photon-number measurement using a
nondestructive detector reliant on the optical Kerr effect. In
this scheme, the photon flux of laser radiation is transmitted
through the transparent Kerr medium to modulate the
refractive index in the medium according to the temporal
dependence of the photon flux N(7). An additional probe field
passes through the Kerr medium with the modulated
refractive index and acquires a phase delay reflecting the
temporal dependence of the photon flux N(¢). The probe field
next arrives at an optical phase detector [41], which fulfills the
function of reading the temporal dependence of the photon
flux without destroying it.

The current fed from the optical phase detector is then
mixed with the pump current of the semiconductor laser in the
electronic feedback circuit. As shown in Ref. [41], in
circumstances where the uncertainty in the measurement
data obtained by the phase detector is insignificant and the
feedback circuit possesses a high gain, the fluctuations in laser
output photon flux can be suppressed to an arbitrarily low
level.

The method of nondestructive photodetection for low-
ering the laser radiation fluctuation level, proposed in
Ref. [41], still remains experimentally unrealized. It is
pertinent to note that the fundamental complexity of
performing the nondestructive measurement is due to dis-
sipation processes proceeding in the Kerr medium [71], as well
as to the weakness of the cubic nonlinearity of the medium.

A different scheme of a feedback laser for generating sub-
Poissonian light was conceived in Ref. [48]. The authors of
this work considered a laser in which the output mirror
transmission was controlled by the current of the photo-
detector measuring the intensity of the light transmitted
through the mirror. Theoretical calculations predicted a
photon-number fluctuation level 25% below the shot-noise
level.

The level of quantum fluctuations in a single-mode ring
neodymium laser (Nd:YAG) was theoretically and experi-
mentally investigated in Refs [46, 47] for the injection of an
external signal with different photon statistics. The results of
calculations and experiments revealed that the use of a weak
external signal permits lowering the level of laser radiation
noise and results in sub-Poissonian light generation in this
scheme.

1.3 Quantum noise in multimode lasers

The first works dedicated to the theoretical investigation of
the quantum fluctuations in multimode laser radiation date
back to the mid-1960s. In Ref. [73], the fluctuation spectra for
the photon numbers inside a resonator for the total field,
summed over all field modes, and for the field in an individual
resonator mode were calculated on the basis of Langevin
equations with a phenomenological inclusion of dissipation
processes and the fluctuations in the field and atomic
variables of the laser. The author of Ref. [73] arrived at the
conclusion that the fluctuations in total laser radiation
stabilize to attain the shot-noise level (the Poissonian photon
distribution) on exceeding the lasing threshold. At the same
time, the radiation in an individual mode resides in the
thermal equilibrium state (the Bose—Einstein distribution)
for an arbitrary excess of pump power over the lasing
threshold and an arbitrary number of modes participating in
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the laser emission. To carry out the calculations of Ref. [73],
use was made of rate (balance) equations for radiating modes
with identical parameters.

A similar conclusion was reached in Ref. [74], where the
calculations relied on the kinetic equations for the diagonal
elements of the system’s density matrix in the equivalent-
mode approximation. The same approach was employed in
the analysis of multimode laser fluctuations in a more recent
work [75] for the case of different modes. The conclusions of
the authors of Ref. [75] repeat the conclusions made in
Ref. [74].

It has been known [76, pp. 523—525] that when the
radiation contains Q equally filled independent modes of an
electromagnetic field in an equilibrium state with the Bose —
Einstein photon statistics, the field summed over all modes
possesses a Poissonian photon distribution with the average
(n) = Q(ny), where (n,) is the average number of photons in
the gth mode, for Q > (n). The calculations of Refs [73—75]
for the radiation of a multimode laser led to the same results.

The theoretical calculations and experimental research
carried out for a multimode dye laser in Ref. [77] allowed its
authors to draw conclusions about the level of quantum
fluctuations in multimode laser radiation, which are radi-
cally different from the theoretical predictions in Refs [73, 74].
The investigations showed that significant photon-number
fluctuations in an individual laser mode are attributable to the
complex chaotic dynamics of the multimode generation
inherent in dye lasers, with the level of quantum fluctuations
turning out to be insignificant in this case. Substantial
fluctuations typical for thermal radiation and comparable to
the average photon-number value emerge only in the
immediate vicinity of the oscillation threshold for a given
mode. Further theoretical and experimental investigations of
the fluctuations in multimode lasers bore out the conclusions
made in Ref. [77].

The development of the quantum theory of multimode
laser generation opened the door to carrying out ab initio
calculations of photon-number fluctuations. Invoking the
general Heisenberg—Langevin equations which correctly
describe the interaction of the atomic and field laser
subsystems with the reservoirs responsible for dissipation
processes and fluctuations resulted in the discovery of
complex quantum-statistical properties of multimode laser
radiation.

The authors of Ref. [50] predicted the feasibility of
generating multimode laser radiation with nonclassical
statistical properties. As shown in Refs [50, 51], the photon-
number fluctuations may be both above the shot-noise level
(the Poissonian distribution) and substantially below this
level (the squeezed state of light), depending on the laser
parameters. A similar conclusion was drawn by the authors of
Ref. [52] who experimentally discovered the intensity squeez-
ing of the total radiation from a diode laser with a regular
pump which did not introduce additional quantum noise. The
calculations carried out in Ref. [52] revealed that the
fluctuations in both the overall intensity and the radiation
intensity in an individual mode were substantially lower than
the fluctuations in equilibrium thermal radiation.

Numerous experimental works [53—61], which followed
Refs [50—-52] and were carried out for different multimode
semiconductor lasers, confirmed the conclusions made in
these latter papers.

Sub-Poissonian radiation statistics in an individual mode
of a multimode diode laser using an external optical signal are

predicted, in particular, by the calculations performed in
Ref. [62].

2. Quantum theory of a multimode laser
in the approximation of a spectrum
of equivalent modes

We treat an electromagnetic field in a resonator as its
expansion in terms of normal resonator eigenmodes. For the
atomic subsystem, advantage is taken of the Lax— Louisell
four-level model whereby an atom excited by an incoherent
pumping changes from the ground state |0) to the upper
energy state |3). Then the electron experiences a nonradiative
transition (with a high transition probability) from the latter
state to the upper laser level |2) which is related to the lower
laser level |1) by a radiative transition. Therefore, efficient
pumping occurs directly to level |2), and state |3) may be
excluded from the analysis of laser dynamics.

In the rotating-wave approximation, the Hamiltonian of
the system comprising an electromagnetic field experiencing a
dipole interaction with a two-level atom is represented in the
form

Hs = Hso + Vint = Zhwqa;aq + Z heoy(17)71),,
q j=0,1,2

+in > " ugla (10G21), = (12)(11),a4]

where Hyg is the sum of the energy operators of the atom and
the field, Viy is their interaction operator, and a' is the
production operator for the photons in the gth normal
discrete cavity mode. In the derivation of the last term,
which characterizes the multimode field—atom interaction,
we employed the dipole approximation; in this case, the
coupling constant is given by

where d); is the transition matrix element of the atomic dipole
moment operator, V is the resonator volume, w, = ncq/A,
A is the resonator length, ¢ is the speed of light in vacuum, and
¢ is an integer. The small difference in coupling constants for
different modes will be disregarded in the subsequent
calculations. Therefore, we will consider the equivalent
mode approximation, which is valid for lasers with inter-
mode frequency separations that are much smaller than the
resonator eigenfrequencies, even for a large excess over the
lasing threshold. We will also assume that the eigenfrequency
of one of the resonator modes is close to the |2) — |1) atomic
transition frequency.

We proceed from the assumption that the total Hamilton-
ian consists of the Hamiltonian Hg of the system and the
Hamiltonians of the atomic (Ra) and field (Rf) subsystem’s
reservoirs, as well as the interaction of the corresponding
reservoirs with the atomic and field subsystems:

H=Hs+ RA + Rp+VaRr+VErR.

We expand the atom —reservoir interaction operator in
terms of the basis operators made up of the eigenvectors of the
atomic states basis:

VAfR = hmen| m><n| .

m,n
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Here, f,, is the operator pertaining to the atomic reservoir. In
a similar way, the field—reservoir interaction operator is
taken as follows:

VF,R:ihZ(a;quFq*aq),
q

where I'; is the operator of the reservoir relating to mode ¢.
The last expression was obtained in the rotating-wave
approximation.

To exclude the reservoir variables from the differential
equations of motion for the operators of the system, in the
framework of a stochastic description of the system’s
dynamics we take advantage of the Markovian approxima-
tion for stochastic reservoir operators. The system’s operator
variations arising from their interaction with the reservoirs
will be calculated on a finite time interval Af longer than the
reciprocals of the eigenfrequencies of these operators in the
Heisenberg approximation, but shorter than the reservoir
operator correlation times 7 (the quantities corresponding to
the system —reservoir ‘collision times’), and then Az will be
turned to zero. The contribution from reservoirs to the
system’s operator dynamics is reflected in the presence of
relaxation terms in the equations for average quantum-
mechanical quantities. The interaction with the reservoirs
gives rise to transitions between the atomic-subsystem states,
as well as to field damping in the resonator modes. The
stochastic equations of motion required for studying fluctua-
tions may be derived according to Langevin’s approach from
the equations for the averages by supplementing them with
random noise-source operators. We thereby obtain the
system of quantum-mechanical stochastic equations for the
operators of the field and atoms.

The Heisenberg—Langevin system of the equations of
motion for a three-level multimode laser with a homoge-
neously broadened line, which was consistently derived in
Ref. [50], is of the following form

d Y .
3 %= —3‘1 ag + p,0 exp (i44a1) + Fy(1), (1)
d Vo +'}) "
a (a(f,aq”) = —% al;r,aq// =+ Bq’q”
+F;;(l) aq” +a;Fq”(l‘), (2)
d Q
M ="TNi+ Y B+ Fu(o), (3)
q=1
d Y
ENZ = —F2N2+NAW02—Z qu-l—Fzz([), (4)
q=1
d g .
Frid —I'o+ 1 Hytq €xp (—1d4at) Na(022 — o11) + Fia(2),
=
(5)
if

By (1) = pyagaexp (idgiat) + pyno “agrexp (—id at),

(6)

Agn = 0y — w4,

where af(a,;) are the photon production (annihilation)
operators for the gth mode of the electromagnetic resonator
field, a}a,» are the cross operators for different field modes
when ¢” # ¢’ or the photon-number operators for an
individual field mode when ¢” =¢’, N; and N, are the
population operators of lower |1) and upper |2) atomic laser
levels:

Na

N =S (1)), i=

n=1

1,2,

g is the operator of atomic polarization (total induced dipole
moment summed over all atoms) of the medium,
o= (11)(2]), exp (ioat), Na is the total number of
active atoms in the medium, and wy, is the pumping rate of
the upper laser state |2) produced by exciting the lower
electronic state |0) of the three-level system. The dissipation
coefficients y,, 7,1, 7gr> 15 T2, I' = T'ph + (I'y + I';)/2 (where
I'ph is the phase relaxation constant for the atomic dipole
moment, arising from elastic collisions) entering into the
equations carry information about external reservoirs and
are expressed in terms of the integrals of the correlators of
reservoir-related operators. The operators F,(7), o = ¢,
q',q",11,12,22 on the right-hand sides of Eqns (1)—(5) are
the Langevin sources of quantum noise arising from the
interaction of the system observed with external reservoirs.
Due to the assumption of the Markov property made above,
the Langevin sources possess d-correlated second momenta
which are time-dependent in the general case. The statistical
properties of stochastic Langevin operators ensure the
conservation in time of the commutation relations between
Heisenberg operators for the system undergoing dynamical
transformation with the inclusion of fluctuations and dissipa-
tion [78, 79].

The equivalent-mode approximation which is employed
in the subsequent calculations consists in the assumption that
the field loss rates are equal, as are the atom — field coupling
constants for all field modes, viz.

V:qucw;7 = Hy X /Wq, g=12,...,0. (7)

The cubic dependence of the field losses through the
resonator mirror follows from the quantum-mechanical
relationship 7y, :27tp(wq)],uq(wq) ®, where p(wy) is the
density of field states in empty space [76].

Under conditions where the decay rates of medium
polarization (I') and atomic populations (I'y and I';) are
much higher than the field damping rate y, it is possible to
perform the adiabatic elimination of atomic laser variables
from Eqns (1)—(7) [50]. Then, the Heisenberg—Langevin
equations for a multimode laser take on the following form

d Y

%=

11D .
ag + 2 Z aqr exp (1dgqt) + Gy, (8)
q,

d np .
T (ajagn) = —paiagn + - Z [aagrexp (1444:1)
q

+afiagexp(=idg )] + Ny + Gyrgr,  (9)

D — .
4= Mgt 1Dng+ == Byy+1IN> + Gy, (10)
a'#q
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(;—Nf yN+HDan+—ZZ Byy

9 q'#q
+QHN2+ZG,M,
q

dD
E:—F2D+(F1—F2)N1+R—2HDZ”4
~1D Y Byyr + Gy — Gy, (12)
q'#q"
dn,
W:—F1N1+HDan Zqu”+G]7(13)
q q'#q"
dN, iy =
5 = N+ R- HDZn,I 5 S By + G,

q'#q"
(14)

where the terms bilinear in field operators and responsible for
the coherent field —atoms interaction are written as

Byyr = agagrexp (i44401) + H.c. (15)

Here, we introduced the notation

_

DENz—Nl, R = =T

woa VA ,

New random sources in Eqns (8)—(14) are expressed in the
following form

G = NAF11+ZNAFBW Gy = Nafpn — ZNAFBW

Fp, :% {athlz exp [— i(wa — wg) 1]
+ FlzaqC exp [ i(a — wy) t] } ,

age = ag(t—¢), ¢—0,

N, .
G,, = LY Fryexp [i(w,

T —(A)A)l‘}—‘rFq,

Gq/q” 7(,1(]ch 1Agre + = T {a;c Fyexp [— l(a)A — (,l)q/f) [}

+ Flhagreexp [i(wa — og) t]} aGa, + G, agre.

For a complete description of the quantum laser dynamics by
Eqns (8)—(14) it is also required to define the quantum-
statistical properties of the operators of the random Langevin
forces appearing in Eqns (8)—(14). To this end, we take
advantage of the following approach (see also Refs [50, 51]).

In the general case, the stochastic Heisenberg—Langevin
equations for an arbitrary operator M, of the system may be
written as

D) = 4,00+ G,
where 4, is the displacement operator for the given equation,
and G, is the Langevin operator of the equation for operator
M,. Then, the diffusion coefficients of the stochastic equa-
tions (8) (14) of motion, having the form (2D,s) =
(AM,(t) AM(1))/At, may be calculated from the general-

ized Einstein relation

£ 00 My(0)) = 2(Dogl0) + (4s00) My(1)

+ (M (1) Ap(1)) .

which follows from the identity

AM,, (1) AMy(1) = A (M, (1) Mg(1))
Ay () AMp(t) + AM, (1) Ap(1),
where
AM (1) = M (t+At) — M (1), x=u,p,
A (M(1) Mp(1)) =M, (t + At) Mp(1 + At) — M, (t) My(1) .

Assuming that the random Langevin sources G are o-
correlated (the Markovian approximation), we find for the
corresponding diffusion coefficients [23]:

(Gi(1) Gj(u)) = (2Dij) 8(t — u), (16)

(2D11) = T (Ny) + SITY “(ng) + 11 (N2) Q + 21,

q

(17)

(2D2) =R+ I'y(Ny)+SITY “(ng) + I (N2) Q + Xy, (18)
q

(2D5) = fsnz ng) — I(N>) Q — %, (19)
(2D, ) =7(ng) + SH{ng) + I{N2), (2Dp,n, ) =224, (20)
(2D1,,) = SH{(ng) + I1{N2) + 2, (21)
(2D2,,) = —SM{ny) — II(N2) — 2, (22)
where we introduced the notation
Si=1 {(a)ay)exp (idyqt)(Ny)
q'#q"
+ (aq/a;,,> exp (fiAqrqvt)<N2>}, (23)
Sy =1 {{aja,)exp (idgqt)(N))
q'#q
+ (aga, ) exp (— i440)(N2)}, (24)
S=(N1) +(N2).

3. Stationary averages of laser variables
(the working point of a laser)

With the goal of subsequently calculating the photon-number
fluctuations in laser radiation, we shall find the stationary
solutions of exact equations (1)—(5) for the quantum-
mechanical averages of the operators of the system. To do
this, we set the time derivatives d/dz(...) equal to zero in
Eqns (1)—(7) averaged over the system’s and reservoir
variables. Considering that the average of Langevin source
operators, taken over the variables of the corresponding
reservoirs, is zero, we arrive at the following system of
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algebraic equations
d Y

T {ag) = =2 () + o) exp i4gar) = 0, 25)
& {agiagr) = —y(ajiagn) + (Bygr) =0, (26)
[
% (o) =T (o) + Z,u<aq(N2 — Np))exp (—idgat) =0,
q=1
(27)
[
5 V1) =—Tu(N) + ;wqq) =0, (28)
d [
4y (N2) = —T2(N2) + Nawor — ;<qu> =0, (29)
DENQ*N]:NA(0227O']])7 AqAECOq*(UA, (30)
RENAWoz. (31)

We find the stationary average population inversion from
Eqns (25) and (26) for the field and polarization:

— 2 ag) + u(o) exp (idyar) = 0, (32)

2

0
o)+ > u(ayD)exp (—idgat) = 0.
q=1

(33)

Then we assume that the atomic and field variables exhibit no
mutual correlation on exceeding the lasing threshold:

(a4D) = (aq)(D), (34)
which is valid for a large number of active atoms and a large
number of photons in every field mode [79].

From Eqn (32) it follows that

2 .
(ag) = o (o) exp (i44at), Vg, (35)

Y .
(o) = % (aq) exp (—idgyat). (36)
In view of approximation (34), from expression (33) we

obtain

S Z ag) (D) exp (—idyat) . (37)
From relationships (35) and (37) it follows that

u .
@ =F > {ag)(D) exp (—idgat)

p
= - {ag) exp (<id,at), Vg, (38)

=3
Let us sum equality (38) over ¢:
_ _K
o =000 =1 3 (Tt

q
iAqAZ)

z D)exp (—iAq/At)> .

D) exp (— iAq/At))

(ag) exp (

H‘E %’\\

Making the change ¢ — ¢’ in the last equality and introdu-
cing the notation for S =, (ay) exp (—14,/a1), we arrive at

Qu

_ 7
= (D)S =5,

2u

whence we obtain a relationship for the population inversion:

oy
P =300 " 1o

(39)

From relationship (39) it follows that the population
inversion in the case of multimode generation is substantially
lower than for single-mode generation (Q = 1). Therefore,
the effect of gain saturation in the multimode case is
substantially stronger than in the single-mode case. It is
pertinent to note that the suppression of photon-number
fluctuations in the laser radiation upon exceeding the thresh-
old of generation is due to the saturation effect.

Let us consider the terms By~ (¢) which enter into the
system of equations (1)—(5) and are responsible for stimu-
lated emission; they are defined in expression (6) as

By (1) = [ppaioexp (idgat)

+ pgno Fagrexp (—idgat)]. (40)
In much the same way as was done in expression (34), it will be
assumed that (cFag), ~ <o+)(aqw}, (ajio)y =~ (aJ,)(a).. By
also setting u =y, Vg, we substitute formula (36) into
expression (40). Then, for the quantum-mechanical average
we obtain

exp (i401)

(Byrgr (1)) = 1 % [exp (—idgat){a,)(a,

+ (a))(agn) exp (idgnat) exp (=idgat)] .

Consequently, it can easily be shown that
7 .
(Byrgr (1)) =5 ((a Mag) + (agi)(agn) exp (idgn11)

Vg, q', q", (41)

=9(a ) ay) exp (id4ry1)

because
(agr)exp (i4gqrt) (42)

(a,)exp (—idgqnt).

(ag) = (ag) exp (idgqrt) =

a,r) exp (—idyyt) =

Then we find the stationary averages for laser level popula-
tions and the number of photons from the equations for Ny,
N, and aq*,aqn.

To do this, we take advantage of Eqns (28) and (29) and
relationships (39) and (41). Straightforward calculations yield

— TNy +R=Y By,
q

=—-I2Ny+R- Z y{ay Mag) =0,
q

—I'iNi + Z a, Mag) =
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We introduce the designation p = (a,")(a,). Using expres-
sions (42), from Eqn (43) we obtain

R—QOyp
=— 4
Ny T (45)
Substituting formula (45) into Eqn (44) gives
I (IIRQ
=g ( 72 _1>‘ o

So, we have obtained the stationary average values of the
atomic variables Dy, Ny, Ny, and p. Now, from Eqns (26) for
(ajiagr) we find (ny) and Npno = Z?:l (ng) — the average
value of the number of photons in an individual field mode
and the total number of photons in all field modes,
respectively.

For ¢’ = ¢” we have

d

qr (ng) = —y(ng) + (Byg) =0,

(Bygg) = "/<aq+><aq> =P,

whence it follows that

no = (o) = 200 72 _, (47)
s s
Therefore, we have shown that
(1) = la a) = (0 )a) = s (2 =1) . @)
Similarly, one finds
(afiagn) = nyexp (i4g141t). (49)

4. Quasilinearization procedure for balance
equations and calculation of photon-number
fluctuations in a resonator

To calculate photon fluctuations, let us resort to the balance
equation approximation. To do this, we average over time the
terms rapidly oscillating in time and being proportional to
B, 4 (1), which are defined by expression (15) and enter into
the right-hand sides of Eqns (10)—(14). We apply the ergodic
theorem and replace the time averaging with the quantum-
mechanical averaging over the ensemble of realizations,
namely

I1D
T Bl[’t]”(t)

11D . 11D
= T aq*,aqw exp (IA,]qul) + T

1D 11D '
- <T Bq,q,,(z)> - <T “J“q”> exp (idgrqr1)

11D .
+ <T a;,,aq/> €Xp (—IAq/qN[) .

We next employ the assumption concerning the factorization
of atomic and field variable correlators of the form
(a)ra; D) ~ (a([faq/r)<9>. Since the time-averaged quantities
do not depend on this assumption, by taking into account

X .
a, vl exp (—idggnt)

(50)

relationship (49) and substituting the average stationary
values of Dy and ny into the averaged terms we arrive at the
following system of stochastic balance equations for laser
variables:

Vull) (1) + D) 1)+ Co, 4 Gu), (51)
) N (0) 4 TD() N (1) + Cig + G 1), (52)
P _ _1aD(t) + (1)~ ) Ny(0) — 211D(0) Nyn(1) + R
+Co+Gall) = Gi(0), (53)
di\gt(’) — LN+ ID() N (1) + C1 + Gi(1). (54)

The values of constants {C;} (average values) depend on the
selection of the working point of laser oscillation. In
particular, for the working point (39), (45), (48) we obtain
Co,=yno(1 = 1/0)=Cu,,/Q, Cnyy==Ch, = Cy,,=—Cp/2.

It is easy to verify that the stationary solutions of
quantum-mechanical averaged approximate kinetic equa-
tions (51)—(54), namely

dnq deh Q le -0

dt /)’ de /7 \de /) \ dt /
coincide with the working point (39), (45), (48), which was
found above by way of the solution of exact equations of

motion.
We write down the equations in the following variables

Any(t) = ny(t) —ng, ANp(t) = Npu(t) — Npno, (55)

AD([) = D(l) — Dy, AN](Z) = N](Z) — Ny,

which characterize the departure of variables from their
average stationary values.
Neglecting the terms nonlinear in small deviations gives

dAdD[(l) = —AD(t) + (I'y — ) ANy (1)
— 20I1(Dg ANy () + ADNyo (1)) + Ga(1) — G (1) ,(56)
‘m%;(’) = —T'1AN (1)
+ I1(DoAN (1) + Nono AD(1)) + Gy (1) (57)
G AN (1)
+ IT(DoANw (1) + NpnoAD(1)) + Gry (1), (58)
dAZZ(t) = —9An,(t) + I (DoAny(1) + noAD(t)) + Gy, (1).

(59)

We next perform the standard Fourier transform for the
system of equations (56)—(59):

- 1wAD(w) = —FzAD(C()) + (F] - Fz)AN] (w)

- 2H(DO ANph (0)+AD(w) Npho) +Gh(w) — G (), (60)
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— iwAN, () = —T'|AN; ()

+ I (DyANph (@) + NphoAD(w)) + Gi(w),  (61)
— iwANp (0) = —pANph (@)

+ [T (DoANo (0) + NpnoAD(0)) + Gy, (@), (62)

—iwAny(w) = —yAny(w)

+ I (DoAny(w) + ngAD(w)) + Gy, () . (63)
From Eqns (60) and (61) we then obtain
1
AD((D) = @ [(F] — Fz) nDoANph(w) — ZzGl(w)
— ZHD()ZlANph(U)) -+ zle(w)} , (64)
where
z=—-lo+TI;, j=1,2, (65)
{ EZ[Zz—I-(ZQ—l-Zz) HNph0~ (66)

Substituting Eqn (64) into Eqn (62) gives
_ —HZszhoGl (w)+HZlehoG2(a))+ CGNph ((U)

A =
Non(e) {i(w) ’
(67)
(= {4+ 21107 Npyo, (68)
Efia)+y<lfé>, z=z1+2. (69)

According to the Wiener —Khintchin theorem, the fluctua-
tion spectrum of a stationary random process A4(¢) satisfies
the relation

Sa(w) = <A+(a))A(co)>:JOO

—00

drexp (—iwt){4 (1) 4(0)),

where A(w) is the Fourier transform of A(r). By setting
A(1) = AN(t) we arrive at

(AN* () AN(w)) = San(w)

_ f do' (AN () AN(0'))
_ Jx do'(AN?(0)) 8( + o) = (AN*(0)),

where use was made of the d-correlatedness of the Fourier
transforms of Langevin random sources (F,(w) Fg(w')) =
(2Dyp) 8(w + ') entering into the Fourier transforms of
quasilinearized equations of motion.

Now, to express ((AN)?) in terms of (AN2(w)) we take
advantage of the Wiener — Khintchin theorem:

(av@) ="

—00

drexp (—iwt)(AN " (1) AN(0)) .

By integrating with respect to @ we obtain

JOC dcu<AN2(cu)>

—00

_ J: (J: exp(—iw?) da)> de(AN* (x) AN(0))

_ ro de 2m8(x) (AN (1) AN(0)) = 2( (AN(0))?)

i.e., for stationary photon-number fluctuations one has

{((AN)*) = % JZ do (AN* (o)) .

By using expression (67), for stationary fluctuations of the
number of photons in the resonator we find

((ANp)?) = L r; do (AN, (@) ANy (@)

2n

2n

O _
:—J dCL)|C1| 2{|HNph022|2<2D11>+|HNph()Z]‘2

X (2Dn) + | {|* (2D n) — ITNpho 2Re (250)(2D1y,)

+ IINpno 2 Re (z70)(2Dan, ) — (ITNpho)’ 2 Re (z521)(Di2) }
(70)

(2D1n,,) = Q(2D1y), (2Daw,,) = Q(2Dyy) ,

<2DNp]\Nph> = Q(anqnq) + Q(Q - 1)<2an nq;> .

The diffusion coefficients which appear in expressions (70)
may be obtained from Eqns (16)—(24) by substituting the
average stationary values of Ny, by, N19, and Dy; the formulas
for them were given in Section 2.

The stationary diffusion coefficients are found from Eqns
(16)—(24) by substituting the average stationary quantities
Npho, 19, Nig, Do, and (aqfaqw)o, which pertain to the
corresponding working point. As is evident from Eqns (23)
and (24), the diffusion coefficients depend on the cross field
terms; to calculate them, we take advantage of relationship
(49). By neglecting small terms we find

(2D11) = I'' N1o + ISy NpnoQ (71)
(2D2) = I'yNyg + R+ 1Sy NpnoQ, (72)
(2D12) = —IISyNpnoQ, (73)
(2D1n,) = —(2Day,) = ISoneQ , (74)
(2D0,) = 1108y + M Sone0, (75)

where 8, is the Kronecker delta. The small terms QII N»y and
QZIINy are neglected when the generation threshold is
substantially exceeded.

For the Fourier transform of the departures from the
photon-number average in an individual mode, in view of
Eqn (63) we obtain [50]

Any (o) = aGi (o) + BGa(w) + pGy(w) +v3 2,2, Gy (@)
o A(w) + (0~ 1) Bo) ’
(76)
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where

= —ZzHI’l(),

B = zi1lny,
¢

=— B(Q —
p=—7 4+ BQ-2),
p=__ B¢

- A-B’

zyllng

A ={4+ ,
B(w) = H”Q‘”Z (77)

Then, for photon-number fluctuations in an individual
field mode one finds

(Ang?) =5 Ji@ do]A(0) + (0 — 1) B(w)[

x {|o*(2D0) + B (2D22) + W " (2Dy1y0)

q'.q9"#q

+ |H|2<2qu> +2Re(v7p) Z<2Dq’q>
q'#4q

+2Re(o"B)(2D12) + 2 Re(B* 1) (2Da,)
+2Re(x"v) 3 (2Dgn) +2Re(f) Z<zbq,2>} . (78)

q'#q q'#q

5. Photon-noise spectrum of radiation emanating
through a resonator mirror

The electromagnetic field outside a resonator comprises the
field emanating through the resonator mirror and the field
of the electromagnetic thermal reservoir of the continuous
mode spectrum of the empty space outside the resonator.
For every mode ¢ of laser-generated radiation, the field
outside the resonator is represented as the following super-
position [80]:
out \/_aq q >(t), (79)

where a,(t) is the line-s ectrum operator for the field inside
the resonator, and bq )(1) is the continuous-spectrum
operator for the field outside the resonator. The subsequent
calculations will allow us to find the form of this operator.

The field relaxation (the resonator loss) stems from the
interaction of the discrete modes of the field inside the
resonator and the reservoir of the continuous spectrum of
the electromagnetic field outside the resonator. The Hamilto-
nian of the interaction responsible for the field damping in the
resonator (the loss in transit through the mirrors) may be
written as

Vi-r = hz g_,;,,(b,-a;’ + aqu+) )
hq

where g; , is the coupling constant which may be expressed in
terms of the loss rates for the resonator mirrors:
g.q = |84/ exp (i¢; ,). The coupling constant phase ¢, , is
arbitrary and is defined by the geometry of the problem.

The Heisenberg equations for the field operators a,(f) and
b;(t) are derived in the form

) i
aq(’):*% 1Zg,q

bi(t) =

t)exp (id4;t), (80)

—ig; a,(1) exp (—idg; 1) -

The last term in the former equation corresponds to the
random source in the Langevin equations for resonator
modes. It is easily seen that the random sources are
expressed in terms of reservoir operators as F,(t) =
—1); 8¢ bj(0)exp (idy;1), 44 = w4 — w;. The resonator
loss rates 7, may be expressed in terms of the coupling
constant and the density of field states: y, =
2m|g(cq) ) p(wg) = 7, where g(w,) = g4 for w; = m,, and
p(w) is the density of states of the empty space [81]. For the
coupling constant we now have

7
2np(o)

Let us perform the formal integration of the Heisenberg
equation for b;(r) and substitute the so-obtained solutions,
which contain dependences on the field operators a,, into the
following expression for the operator of the total field beyond
the resonator:

‘g(wq)‘ =

N2
a‘;(’m)(l):iexp (1(;5(/)2 <m> bj(t) exp( 1Al// )

which we write down in photon flux units. In the resultant
expression we replace the summation over the reservoir
modes j with integration and apply the Markovian approx-
imation [81] to obtain the following relations:

al (1) = EGL(0) + ES (1)

= exp (id )Z < 2m; )Usz(O) exp (—id, ;1)
Ve @e,) "
+V7ay(t). (79a)
Here, the operators E (ﬁe)e( t) and E (stl)me(l) describe the free

evolution of the reservoir field and the evolution of the field of
a laser source, which is transmitted through the mirror. Since
the radiation measured at the laser output contains the
component of laser radiation transmitted through the mirror
and the component of reservoir field reflected from the
mirror, for the phase of the coupling parameter
g(wy) = |g4] exp (i¢,) we assume the value of ¢, = .
Therefore, we have determined the total external field
operator (79a) which comprises both the reservoir field
operators and the operator of the laser field of the gth
resonator mode, emanating through the mirrors. It is easily
seen that relation (79a) coincides with relation (79) when

im0 =3 (

7 p(wf)wq

2nw;

12
> bj(0)exp (—idy ;1) .

The Heisenberg operator a ©*V* (£) a ("0 (¢) represents the
operator of the number of photons emanatmg through a
mirror per unit time. The operators aéou ) and b ") satisfy the
commutation relations for continuous- spectrum Bose opera-
tors of the form [by™ (1), b M ()] = 8(1 — u) 8, 4. For the
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operators of a reservoir which is in equilibrium at a
temperature 7" we have [80, 81]

<bq(in)+(l) b;i,n)(u» = ﬁqTS(t —u) Sqq’ ,

(B (1) b () = (81)
It may be shown that the operators by™ (7) are related to
Langevin random source operators F,(¢ ), which appear in
Eqn (1), by the relation F,(1) = /7 by “‘5]( 0).
It would be well to express the field operators inside and
outside the resonator in terms of amplitude and phase
operators:

a, (1) = (rq

az;OUL)+([) _ (r;(?ut) (l) + Aréout

(g +1)8(t — u) 84y -

o(1) + Ary(1)) exp {—i[d,o(1) + Ad,(1)]},

) exp { =il (1)+ Av, (1]},

(82)
ay(1) = exp {i [y (1)

a;"u‘)( =exp {i[Y,0

+ A¢q( )] } (l‘q()(t) + Al’q([))’
+Alﬁq( )]}( (out)( ) +Ar(0ut)( ))

Here, 1y, r ;0 t), (f)qo, and l,bqo are the average values of field
amplitudes and phases, Ar, Arf, A¢,. and Ay, are the
operators of the fluctuations in field amplltudes and phases;
the amplitude and phase operators are expressed in the form
rq(t) = rq0(t) + Ary(2), oy (1) = by (1) + Ad, (1), etc. The Her-
mitian operators of the amplitude and phase of a given form
may be correctly defined in the framework of the approach
introduced by Pegg and Barnett (see, for instance, Ref. [76]).
In this case, the following relations

ny(0) = (rae) + Ary (1))
n;out)(l) _ (régut)(t) + Ar;out)([))Z

are fulfilled. We substitute expression (82) into relation (79) to
find

Aout )

(83)

V7 Arg(1)
- % [exp (i, (1)) B3 (1) b, ) (1) exp (— iy, (1))]. (84)

In the derivation of expression (84), use was made of the
relationships cos (Ay, — A¢,) =~ 1, (A¢,) = (Ay,) =0, and
$40 = ¥ ,0» the last of which follows from Eqn (79a).

Since it follows from relations (83) that

Angy(t) AI‘(OM>(Z) _ A’Z{;OUL)(I)

Arc (l) = ’ )
! 2rg0(1) ! 2r(§8m)(1)

nig" (0 = ().
we find from expression (84) that

A (1) = pAng (1) — Fry(1)

where

Fut) = 2 ful0)
Falt) =5 (exp (i, (1) b

Taking into account expressions (81), it is easy to verify that

a0 ) =5 (mar+5 )-8, (87)
_ 1
(Ft) F () = 290 (nqr + i) S(t—u)8, . (88

For the total-photon-number operator N = Z(?:l n, we have

AN (1) = pAN(1) — F.(1),
1) =27 Y /g0 frgl1) (89)
(F.(t) FF (1)) = 2yNo 8(t — u) ,
(90)

I/_qu<1, \V/q

The quantity that characterizes the statistics of laser
radiation as it passes through the output mirror of a laser
resonator is the stationary photon-number fluctuation spec-
trum (spectral density) of the following form

Sgut)(w) = <(Ax(0ut)(w))2>

:J <Ax(out)+(w) Ax(out)(w/)> do’

= Jj}o <(Ax(0ut)(a)))2> 3(w—w')dw', x=AN, Any .
o1)

With the help of Eqns (85) and (89) we find, in view of
formulas (67) and (76) for the Fourier transforms AN () and
Ang(w), as well as of the relationship (G G, )=
(2Dy)d(w — '), x,y=1,2,q,q’, the total-photon number
fluctuation spectrum (spectral noise density) at the resonator
output:

S0 (@) = y2(AN* (@) + 7Ny — 7 [(AN* () F. ()
+ (F*(0) AN(®))].

In much the same way we obtain the photon-number
fluctuation spectrum for an individual mode:

(92a)

S(out) (

2
An, =7 <An

) Fr (a))>
(92b)

) +m0—3[{An (o
+ (F(w) Ang(w))] .

Let us calculate the spectral correlation functions which enter
into the fluctuation spectra of the form (92). To do this, we
take advantage of expression (67) for the Fourier component
of the operator AN(w) of total-photon-number fluctuations
inside the resonator. Substituting Eqn (67) into expression
(92a) gives the following expression for the spectral Fano
factor defined as V0" = %% () /(yN):

San (@)

out), \ _ B - 2
Vit (@) = =, Ll [Nez P 2y

AN ?No
+ [IINoz1 |*(2D) + [ (2Dww)
—IINy2Re (ZQ*C)<2D1N> + IINy2 Re (ZI*C)<2D2N>

(i‘) +1, (93)

— (ITNo) 2Re (5321)(2D)] } = 25°
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where
(2D1y) = Q(2D1y,), (2D2n) = Q(2D2,),

(2Dww) = Q(2Dupn,) +(Q = 1) Q(2Du,n, ), q" # g (94)

Along similar lines, the spectral Fano factor S g’jut) (w)/(yno)
for laser radiation intensity in an individual mode is
determined from expression (92b). The spectral photon-
noise density V(w) normalized to the shot-noise level [the
spectral Fano factor (93)] assumes a value smaller than 1 in
the squeezing at a fixed frequency in the case of inhomoge-
neous squeezing of laser radiation, or turns out to be less than
1 at all frequencies for a homogeneous squeezing.

6. Calculated results for the photon-noise
spectrum of multimode laser radiation

Among known three-level multimode lasers are neodymium-
glass and Nd:YAG lasers. Experiments with the neodymium-
glass laser have demonstrated the feasibility of lasing for a
large number of modes with intensities close in magnitude
[82]. This oscillation regime of a laser with a three-level
scheme of atomic energy levels in the active medium is closest
to the theoretical model under consideration. In this connec-
tion, we carried out calculations of the quantum fluctuations
in laser radiation with the use of parameters typical for the
solid-state lasers indicated above. Typical values of para-
meters for these lasers are as follows [82—85]: resonator loss
rate y = 108 s7!, gain parameter IT = 107 s~!, and laser-
level relaxation rates I'; = 107 s=1, I’y = 103 s~!.

For a noisy pumping with standard (Poissonian) noise
characteristics, as shown in Fig. 1, the maximum total-
photon-number squeezing of the field emanating from the
resonator is achieved for the optimal value of the excess &y
over threshold for every number Q > 1 of modes. For
frequencies in the w < y range, the spectral Fano factor
assumes values below 1. For the values of ¢ > ¢y, the
magnitude of squeezing lowers and the fluctuations reach,
upon a further increase in &, the shot-noise level (Poissonian
photon distribution). For the accepted values of laser

1.5

1.0

0)

VAN<(U

0.5

Figure 1. Spectral density of fluctuations at a frequency w = 0 for the total
number of photons of laser radiation as a function of excess & over lasing
threshold for a different number Q of modes. Laser parameters are as
follows:y = 10° s™!, [T =107 s7!, ', =107 s™!,and I'» = 10° s~!. Solid
curves show the results for a noisy pumping, and the dashed lines for a
regular (r) pumping.
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Figure 2. Spectral density of fluctuations at a frequency w ~ 0 for the
number of photons in an individual laser-radiation mode as a function of
excess ¢ over lasing threshold for a different number Q of modes. Laser
parameters are as follows: y = 10° s=!, [T =10~ s~!, I'; = 107 5!, and
I'y = 10° s~1. Solid curves show the results for a noisy pumping, and the
dashed lines for a regular pumping.

parameters 7y, I'y, I'», and II, appreciable squeezing is
possible for greater Q and ¢. The maximum squeezing
Van =0.5 is reached at Q=101 and ¢, ~100. For
Q > 101, the magnitude of squeezing decreases, and at
Q =~ I'1/T; the noise level assumes a value of Vy =1 (shot
noise) for all &.

An unrestrictedly large photon-number squeezing for the
total laser radiation is possible with the use of a regular
(noiseless) pump. As shown in Fig. 1, a ten-fold increase in
squeezing is reached at ¢ = 70 for Q = 3. We emphasize thata
substantial pump-over-threshold excess is required to achieve
strong squeezing in the case of a regular pump and a large
number of modes. An important prerequisite for the squeez-
ing of the total output laser radiation is the fulfillment of the
strong inequality I'y > I'; for the decay rates of the upper and
lower atomic levels involved in lasing transition.

Laser radiation in an individual mode at the resonator
output also exhibits pronounced nonclassical properties. As
shown in Fig. 2, in the excess-over-threshold range
2 < & < 100 considered, sub-Poissonian photon statistics in
an individual field mode are observed for any number of
modes Q > 1 participating in lasing. In this case, the noise
level monotonically lowers with increasing the number Q of
modes. Employing a regular pumping improves the radiation
noise characteristics; in this case, the efficiency of applying a
regular pumping rises as the excess over lasing threshold
increases and as Q decreases. With an increase in the number
of modes, the use of a regular pumping does not lead to an
appreciable lowering of the quantum noise in an individual
laser mode.

As with the total radiation of a multimode laser, the
magnitude of squeezing depends on the ratio between the
decay rates of atomic levels involved in laser action. A higher
decay rate of the lower laser level compared with the upper
laser level, I'y > I'>, is an important prerequisite for the
attainment of strong squeezing of the total laser radiation.
However, the magnitude of squeezing in an individual field
mode depends only slightly on the above ratio. For instance,
as laser parameters change (I'} = 10% s7!, ', = 10* s7!) there
is no squeezing of the total radiation at Q = 3, while there is
almost a two-fold increase in squeezing of individual-mode
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radiation for all £. With retention of the inequality I'} > I,
and an invariable y value, the photon-number fluctuations
both inside and outside the resonator depend only slightly on
the magnitude of IT.

7. Comparison of theoretical and experimental
data on quantum photon-number fluctuations in
multimode laser radiation

The problem of generating photon-number-squeezed (sub-
Poissonian) radiation by multimode lasers has attracted
considerable attention from researchers since the mid-1990s.
In Ref. [52], where the phenomenon of multimode laser
radiation squeezing was experimentally examined for the
first time, it was ascertained that the radiation of a
semiconductor laser (laser diode) in the multimode oscilla-
tion regime exhibited sub-Poissonian photon statistics, being
integrated over all modes. In this work, use was made of a
regular pumping of the laser diode, whereby there were no
current fluctuations. The theory employed in Ref. [52] to
interpret the experimental data also predicted the settling of
sub-Poissonian photon-noise level in an individual laser-
radiation mode for a high excess above the lasing threshold.
Under the oscillation conditions typical for a semiconductor
laser, the radiation spectrum comprised the dominant central
mode and two side modes with substantially lower intensities
in comparison with the central mode intensity. The effect of
photon-number fluctuation anticorrelation for different
modes, which was experimentally established in Ref. [52],
was considered by the authors of the work as the reason for
the squeezing of the laser radiation integrated over all modes.

Subsequent research performed by several authors [53—
62] for laser diodes confirmed the conclusions reached in
Ref. [52]. Presented in Ref. [52], where measurements were
made of the integrated radiation of a laser diode with regular
pumping, was the dependence of the Fano factor of total laser
radiation, which is qualitatively consistent with the results of
our calculations. It is noteworthy that the effective two-level
theory describing the oscillation of a semiconductor laser
corresponds to the theory of a three-level laser, which we
consider in the context of adiabatic elimination of active-
medium polarization and under the assumption that the
decay rate of the lower laser level is far greater than the
decay rate of the upper laser level, viz. I'j > I',. Our
calculations suggest that this ratio between the laser level
relaxation rates is optimal for the production of the squeezed
laser-radiation state.

In several experimental laser-diode investigations, regular
pumping turned out to be insufficient for the generation of
squeezed-state light [53, 55—57, 59, 61]. In these cases, the
technique of phase and frequency mode locking, which
enabled attaining a nearly two-fold photon-number squeez-
ing for the light generated by multimode lasers, was efficient
[49, 53].

Photon-number fluctuation measurements were per-
formed in Refs [54, 58, 61] for the total radiation of a laser
diode in the absence of regular pumping, for a pump current
with Poissonian fluctuations. The investigations showed that
the integrated-radiation squeezing is also present in the case
of external mode locking. For strengthening the squeezing
effect use was made of the feedback technique and the
injection of an external signal at the frequency of the central
laser mode. Under conditions inherent in a laser diode, when
lasing is quasisingle-mode in character, employing the feed-

back technique, whereby a part of the radiation emanating
through the resonator mirror is fed back into the resonator
with the aid of a diffraction grating, resulted in the
suppression of the side modes participating in the lasing. At
the same time, the lasing was effected in the quasisingle-mode
regime and the photon-number distribution squeezing in this
case was observed in the field integrated over all modes,
including the wealth of side modes with intensities that were
low in comparison with the central-mode intensity. As a result
of locking in the presence of an external feedback signal, the
intensities of a large number (~ 100) of the side modes were
almost equalized. It was determined in Refs [54—57] that the
presence of a large number of laser modes in the measured
radiation spectrum is, in the case under consideration, a
necessary condition for photon-number squeezing of light,
even though the side mode intensities may be much lower
than the central-mode intensity. This effect stems from the
nonclassical quantum anticorrelation between different laser
field modes.

Figure 3 demonstrates the data calculated for the
spectrum of noise produced by the total number of laser
radiation photons for parameter values typical of a laser
diode: y=10"2?s"!, M= 3x103s7!, 'y =102 s7!, and
', = 10° s~ [52—58]. Shown for comparison are the experi-
mental data of Ref. [54], in which the feedback technique was
employed for diode-laser mode locking. Under the experi-
mental conditions, whereby a small fraction of the output
laser radiation at the frequency of the dominant central mode
was fed back to the resonator with the help of a diffraction
grating, the intensities of a large number of side modes were
equalized. The intensity of the feedback field fed to the
resonator was rather low—1 ~ 101, where I, is the
intensity of the output radiation at the central-mode
frequency. As is evident from Fig. 3, the experimental data
obtained with an excess £ < 10 over lasing threshold are close
to the theoretical values. At ¢ = 2, the experimental value is
nearly equal to the theoretical one for a number of modes
equal to Q =3. As the pumping becomes stronger, a
constantly increasing number of modes come to participate
in multimode lasing. In particular, the experimental data at
& =3 are close to the theoretical data obtained for Q = 11.
When ¢ increases from 3 to 10, the experimental data are

Figure 3. Comparison of the data calculated for the spectral density of
fluctuations at a frequency w ~ 0 in the total number of laser-diode
radiation photons for parameter values y = 10'2 s7!, [T =3 x 10° s7!,
' =102 57! and I'; = 10° s7! (curves) with the experimental data of
Ref. [58] (squares) and Ref. [54] (triangles and a diamond).
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quantitatively consistent with the theoretical ones for a fixed
number of modes equal to Q = 11.

As shown in Refs [53—157], injecting a weak signal at the
central-mode frequency leads to the locking of side modes
without their suppression, giving rise to total-laser-radiation
squeezing, now in the multimode regime, as observed in
Refs [55-57].

Figure 3 gives the experimental data obtained in Refs [54,
58], where laser-diode mode locking was achieved by injecting
a weak signal at the central-mode frequency from another
laser. As in the experiments of Refs [S5—57], a large number
of the weak side modes generated by the laser were also
equalized in intensity. The experimental data obtained under
these conditions in Ref. [58] at & =8 agree well with the
experimental data of Ref. [54], as well as with our calculated
data. Referring to Fig. 3, the noise spectrum is quite close to
the theoretical one for Q = 31.

It is pertinent to note that a significant photon-number
fluctuation squeezing for the total laser radiation was
experimentally discovered also in free-running lasing with-
out recourse to an external signal [54]. The experimental value
Van(w = 0) = 0.8 given in Fig. 3, which was obtained in the
free-running lasing regime in Ref. [54], at £ = 33 coincides
quantitatively with the theoretical result for Q = 7.

Our calculated results are compared in Fig. 4 with the
experimental data obtained in Ref. [52] using a regular
(noiseless) pumping of a laser diode. In Ref. [52], a direct
measurement of the noise spectrum of the laser diode with a
regular pumping for different threshold values of the pump
current at different temperatures was performed. Referring to
Fig. 4, the theoretical findings are in quantitative agreement
with both groups of experimental data obtained for different
values of the threshold pump current. As in the case of
employing an external signal discussed above, with increas-
ing & the experimental data come to agree with the theoretical
data as the number of modes participating in the lasing
increases. In particular, the experimental data at £ =~ 2.5 are
close to the theoretical ones for Q = 1 (single-mode lasing), at
¢ =~ 3 an agreement with the experiment is attained for Q = 3,
and at ¢ & 10 the theoretical and experimental data agree for
Q =41. For a group of experimental results obtained for a

=0)
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Figure 4. Spectral density of total-photon-number fluctuations at a
frequency o ~ 0 for the radiation of a laser diode with a regular pumping
for the parameters y = 10" s™!, T =3x10*s!, I' =10 s7!, and
I'y = 10° s7! (curves). The squares and triangles represent the experimen-
tal data of Ref. [52], which were obtained for different temperatures and
threshold values of the pump current.

lower threshold value of the pump current (in these condi-
tions, experimenters managed to achieve a greater excess over
the pump threshold — & > 30), a good agreement with the
theory is also reached for Q = 41.

Notice that both the theoretical data obtained by other
authors [62] and the experimental measurements of Refs [54,
60] have demonstrated the feasibility of suppressing the
photon noise in individual modes (in the dominant central
mode, in particular), when the oscillation threshold is
substantially exceeded.

The photon-number radiation fluctuations in a vertical-
cavity surface-emitting semiconductor laser oscillating in a
two-mode regime were measured in Refs [59, 61]. Under the
experimental conditions considered, the laser generated two
transverse modes with close intensities. As with an ordinary
laser diode, the total-photon-number radiation fluctuations
for regular pumping were found to be substantially below the
Poissonian level. It was experimentally established in Ref. [61]
that producing the photon-number-squeezed state of light
was possible in two cases: first, for perfect single-mode lasing,
and, second, for perfect two-mode lasing whereby the
intensities of both modes were equal.

A squeezed state of the radiation of a quantum-well laser
diode was experimentally discovered in Ref. [60]. In that
paper, the total-photon-number laser-diode radiation squeez-
ing was observed in free-running lasing by two dominant
longitudinal resonator modes. An analysis of the experimen-
tal data allowed the authors of Ref. [60] to draw a conclusion
about the occurrence of light squeezing in both of these modes
as well. These experimental data are in qualitative agreement
with the predictions of Refs [50, 51].

The data of most recent ab initio calculations [62]
performed for the specific case of the three-mode oscillation
of a semiconductor laser with external mode locking are also
in good agreement with experimental data. Described in
Ref. [62] is the regime of squeezed-field-state production for
the individual central mode in the case of lasing with a
fluctuating pumping in the presence of a weak external
signal. In this case, it was noted that total-radiation squeez-
ing was possible even for a low intensity of the external signal,
while the central-mode squeezing required the higher degree
of locking, attainable upon increasing the signal intensity.
Photon fluctuations in an individual side field mode are
abruptly reduced in the case of three-mode lasing with
complete mode locking, considered by the authors of Ref. [62].

We emphasize that a lowering of photon-number fluctua-
tions in an individual field mode was discovered in one of the
early papers [86] concerned with measurements of the
fluctuation level of a quasisingle-mode semiconductor laser.
On exceeding the oscillation threshold, the fluctuation
suppression with increasing pumping level was found to
occur both for the dominant central mode and for weak side
modes.

8. Conclusions

Experimental research into the photon statistics of the
radiation from multimode lasers, performed during the last
15 years, unambiguously points to the feasibility of using
them as sub-Poissonian nonclassical light sources. The
squeezing of light is possible both in the total laser radiation
integrated over all modes and in an individual field mode. Our
consistent quantum-mechanical calculations of the statistical
properties of multimode laser radiation, discussed in this
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paper, suggest that photon-noise suppression (its two-fold
reduction in comparison with the shot-noise level) which is
substantial and limited in magnitude is feasible for the total
laser radiation for the optimal number of generated modes.
The number of modes optimal for producing the squeezed
state of light is determined by the parameters of the active
medium and laser resonator. The magnitude of squeezing of
total radiation, integrated over all modes, is limited by the
occurrence of additional quantum noise of the laser pumping.
Lowering the pump noise or completely eliminating it
(regular pumping) permits an unbounded reduction of the
photon-number fluctuations in total laser radiation for the
optimal selection of relaxation parameters for the active
medium.

The squeezing of radiation in an individual laser mode
may be quite significant (the noise spectrum near the zero
frequency Va, < 1) even for a noisy (Poissonian) pumping at
a large number of generated modes. However, like for total
radiation, the optimal ratio between the relaxation rates of
atomic laser states is the necessary condition for achieving the
nonclassical character of the radiation in an individual mode:
the lower-level relaxation rate must exceed the upper-level
relaxation rate (I'; > I'»). In this case, it turns out that the
pump noise, which makes a large contribution to the photon
noise of the total laser radiation, is completely suppressed in
an individual mode due to the large number of generated
modes. Under these conditions, the pump noise is divided
between the numerous modes of equal intensity, with the
result that its contribution to the noise of each field mode
turns out to be insignificant. This mechanism of lowering the
noise level below the shot-noise level is characteristic of a laser
model with a homogeneously broadened line, when all field
modes interact with the same ensemble of active atoms.

The multimode lasing regime with a homogeneous line
broadening for the spectrum of equivalent modes considered
in our work is a clear demonstration of the significant
potentialities of a laser for producing high-intensity squeezed
light. Qualitative agreement with experimental data confirms
the validity of approximations employed in our calculations.

Examples of the practical application of squeezed (sub-
Poissonian) light in different areas of spectroscopy and
quantum informatics are well known today, the area of
application of the light with reduced noise level becoming
progressively broader. In this connection, the investigation
into the theoretically predicted generation of sub-Poissonian
photon-number-squeezed light by means of multimode lasers
remains a topical problem for both theorists and experimen-
ters in many laboratories in a number of countries.
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