
Abstract. A new approximation obtained in terms of the Max-
well approach is proposed for the effective conductivity of a
macroscopically disordered medium. In contrast to the stan-
dard Maxwell approximation, this approximation is valid over
a much wider concentration range and can qualitatively de-
scribe the presence of the percolation threshold. The relation
of the proposed approximation to the PadeÂ approximant of the
standard Maxwell approximation is also discussed.

1. Introduction

Effective kinetic coefficients and, in particular, effective
conductivity, are the main characteristics of macroscopically
inhomogeneous media. These have been calculated in numer-
ous monographs (see, e.g., Refs [1 ± 9]) and boundless-in-
number papers (inquire about, for example, effective con-
ductivity, on the sites Arxiv.org or Elsevier). Although
effective conductivity is now calculated by rather fine
methods (such as the path-integral approach [10]), the
Maxwell, Maxwell ±Garnett, and Bruggeman (self-consis-
tent field) approximations, which are simple and obtained
from physically transparent considerations, have received
wide acceptance, especially among experimentalists. These
approximations cover a rather wide range of parameters,
attract the attention of theorists up to the present day, and are
still being generalized [11]. Of course, they cannot be used to
describe the percolation threshold quantitatively, in particu-
lar, to describe the critical conductivity indices. The percola-
tion theory, which was first formulated by Broadbent and
Hammersley [12], is a geometrical analog for the theory of
second-order phase transitions, and the quantitative determi-

nation of its characteristics, such as the critical indices,
requires specific mathematical methods or numerical calcula-
tion [1 ± 10, 12 ± 14].

The Maxwell approximation, which is one of the first
approximations, can only be applied to a low inclusion
concentration and cannot be used even qualitatively near
the percolation threshold. The Bruggeman self-consistent
field approximation [15] (see also Ref. [16]) well describes
virtually the entire concentration range and coincides with the
numerical mesh computation, apart from a narrow region
near the percolation threshold. In this region, the approxima-
tion only gives a qualitative description, and the critical
indices evaluated with this approximation do not coincide
with the numerically calculated or experimental indices.

The paper outline is as follows. In the second section, we
present basic definitions and briefly derive the Maxwell
approximation. In Section 3, we use the Maxwell approach,
i.e., the solution to the problem of an individual inclusion,
and obtain a new approximated expression for the effective
conductivity that qualitatively describes the percolation
transition.

2. Derivation of the standard Maxwell
approximation

Let us at first formulate some definitions. A macroscopically
inhomogeneous conducting medium is considered to be a
medium that obeys locally Ohm's law

j �r� � s�r�E �r� ; �1�

and the effective conductivity relates volume-average fields to
currents, namely

h j i � seffhEi : �2�

Next we will consider a two-phase medium consisting of a
well-conducting phase with conductivity s1 (for brevity, a
black phase) and poorly conducting phase with conductivity
s2 (white phase). The main problem is to find the form of the
seff � seff�s1; s2; p� dependence, where p is the black-phase
concentration.
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Maxwell was one of the first scientists to formulate the
problem of the effective coefficient calculation, and he solved
this problem using a certain approximation, which is now
called the Maxwell approximation. Although the derivation
of the Maxwell approximation is well known [17], we will
briefly repeat it.

We now analyze well-conducting spherical inclusions
embedded in a poorly conducting matrix and assume that
the inclusion concentration is p5 1. To derive an expression
for seff, we have to solve two problems.

The first problem consists in finding the field in one
inclusion at a given uniform field E1 set at infinity. Its
solution has the form

E1 � 3s2
2s2 � s1

E1 : �3�

The second problem is the construction of the Maxwell
approximation proper. To solve this problem, we will
consider the integral h jÿ s2Ei, where h. . .i � Vÿ1

�
V . . . dV

is the volume integral with a characteristic size much larger
than the interinclusion distance. On the one hand, this
integral equals

h jÿ s2Ei � 1

V

�
� jÿ s2E� dV � 1

V

�
�sEÿ s2E� dV

� V1

V
�s1 ÿ s2�E1 � �s1 ÿ s2� pE1 ; �4�

where V1 is the first-phase volume, E1 � 1=V1

�
V1

E dV, and
p � V1=V. On the other hand, according to effective con-
ductivity definition (2), we obtain

h jÿ s2Ei � h ji ÿ hs2Ei � �seff ÿ s2� hEi : �5�

Since the first problem considered one inclusion in an infinite
medium, we have E1 � hEi. Substituting formula (3) into
Eqn (4) and setting it equal to Eqn (5), we arrive at the
effective conductivity in the Maxwell approximation:

sBW
eff � s2

�
1� 3p

s1 ÿ s2
2s2 � s1

�
: �6�

Here, the superscript BW (black in white) indicates that we
analyze well-conducting (black) phase inclusions in the
poorly conducting (white) phase.

Figure 1 depicts the concentration dependence of sBW
eff in

the Maxwell approximation (6). In the case of a strong
inhomogeneity (for s1 4 s2), a percolation transition takes
place in a random medium: the behavior of the effective
conductivity changes sharply near the percolation threshold,
i.e., near a concentrationp � pc atwhich a connectedpath (the
so-called infinite cluster) first forms in the system along the
well-conducting phase. It is generally accepted that the
Maxwell approximation, which is based on the one-inclusion
problem, cannot describe this transition even roughly. Indeed,
the curve indicating the behavior of effective conductivity (6)
near the percolation threshold passes by p � pc, as if it
overlooks the threshold. Based on the assumption that
rBWeff � 1=sBWeff , the effective resistivity expression

rBWeff �
1

sBWeff
�
�
s2

�
1� 3p

s1 ÿ s2
2s2 � s1

��ÿ1
� r2

�
1� 3p

r2 ÿ r1
2r1 � r2

�ÿ1
�7�

is also valid only at low concentrations.

An approximation that is sensitive to the percolation
threshold is the Bruggeman self-consistent field approxima-
tion [15]. Although this approximation is also based on the
one-inclusion problem, it takes into account the `parity'
between inclusions of different phases. First, the field E1 in a
black inclusion that is embedded into a medium with a
conductivity equal to the desired effective conductivity seff is
found, and then the same procedure is performed for the field
E2 in a white inclusion:

E1 � 3seff
2seff � s1

E1 ; E2 � 3seff
2seff � s2

E1 : �8�

The self-consistency condition consists in the fact that, in a
medium with a black-phase concentration p and a white-
phase concentration 1ÿ p, the average field represents the
sum pE1 � �1ÿ p�E2, so that

pE1 � �1ÿ p�E2 � hEi ; E1 � hEi : �9�

Substituting Eqn (7) into self-consistency condition (8), we
arrive at a quadratic equation for seff, and its solution is given
by

seff � 1

4

h
�3pÿ 1� s1 � �2ÿ 3p� s2

�
����������������������������������������������������������������������������3pÿ 1� s1 � �2ÿ 3p� s2

�2 � 8s1s2
q i

: �10�

As is seen in the figure, the concentration dependence in the
Bruggeman approximation for s1 4 s2 does abruptly change
its behavior at the percolation threshold, which is equal to
pc � 1=3 in this case. Of course, the critical indices of the
effective conductivity that can be obtained from Eqn (10) do
not coincide with the indices that are calculated using the
percolation theory or numerical simulation.

Thus, at first glance (which is reflected in numerous
monographs), the Maxwell approximation well describes the
concentration behavior of the effective conductivity at a low
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Figure 1.Concentration dependence of the effective conductivity: thin line

conforms to Maxwell approximation (6), thick line to new approximation

(17), and dashed line to Bruggeman approximation (9). The ordinate axis

is represented on a logarithmic scale. As an example, the conductivity of

the well-conducting phase is taken to be s1 � 104, and the conductivity of

the poorly conducting phase s1 � 1 (arbitrary units). Up to the percola-

tion threshold, approximation (17) is seen to virtually coincide with

approximation (9).
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inclusion concentration (being coincided with the Bruggeman
approximation), is invalid at high inclusion concentrations,
and can in no way describe the percolation threshold at all
events.

3. New approximation

Let us demonstrate that the Maxwell approach contains
much more than Eqn (6) can reflect. To this end, we again
calculate the effective conductivity of the macroscopically
inhomogeneous medium.

As earlier, the first problem is to calculate the field and
current in an inclusion. In contrast to the standard Maxwell
approximation, we specify a current rather than a field at
infinity: j1 � h j i. An individual inclusion cannot affect fields
and currents at infinity. Therefore, taking into account that
the medium conductivity is s2, for j1 we can write down the
expression

E1 � r2 j1 ; �11�

whence it follows, with allowance for formula (3), that

j1 � s1E1 � 3s2
2s2 � s1

s1
s2

s2E1 � 3r2
2r1 � r2

h j i : �12�

Note that, at first glance, the current j1 should be determined
from formula (3) as

j1 � s1E1 � 3s2
2s2 � s1

s1E1 � 3s2
2s2 � s1

s1hEi ; �13�

and we then should move from hEi to h j i using the relation-
ship hEi � reff h j i for the effective values.

However, the use of the relationship hEi � reff h j i in the
first problem is invalid, since the first problem, namely, the
determination of the fields and currents in an individual
inclusion with conductivity s1 in a medium with conductivity
s2, is quite independent and is in no way related to the second
problem, namely, to the determination of the effective
conductivity.

We can derive an expression for current j1 in the inclusion,
without using the considerations given above, as the solution
to the mathematical physics problem if we assume
j �r!1� � h j i at infinity and a continuous potential and
continuous normal current components at the inclusion
boundary.

The second problem is the Maxwell approximation
proper. On the one hand, we have

hEÿ r2 j i �
V1

V

1

V1

�
V1

�r1 ÿ r2� j dV � p�r1 ÿ r2� j1 ;
�14�

and, on the other, one finds

hEÿ r2 ji � hEi ÿ hr2 j i � reff h j i ÿ r2 h j i : �15�

We equate the right-hand sides of formulas (14) and (15), take
into account formula (13), and obtain

reff � r2

�
1ÿ 3p

r2 ÿ r1
2r1 � r2

�
; �16�

or

seff � s2

�
1ÿ 3p

s1 ÿ s2
2s2 � s1

�ÿ1
: �17�

Equation (17) is seen to differ radically from Eqn (6): the
concentration dependence of the effective conductivity seff in
the case of a high inhomogeneity s1 4 s2 (s1 !1) has a
singularity for p! pc � 1=3, where the effective conductivity
diverges. Up to pc � 1=3, the concentration dependence of the
effective conductivity coincides with the Bruggeman approx-
imation and, thus, with numerical mesh simulation. At low
concentrations, Eqn (17) coincides with Eqn (6).

Thus, it is surprising that new approximation (17), which
is based on the Maxwell approach, qualitatively describes the
percolation threshold. 1

Of course, the fact that theMaxwell approximation can be
utilized to detect the percolation threshold does not minimize
the importance of the percolation theory, which can be used
to describe and calculate new concepts in the field of kinetic
phenomena in disordered media, such as critical behavior,
critical indices, and scaling, to name but a few.

In conclusion, note that a Maxwell approximation
analogous to Eqn (17) can also be obtained for poorly
conducting inclusions embedded in a well-conducting matrix:

seff � s1�s2 � 2s1�
5s1 ÿ 2s2 � 3p �s2 ÿ s1� : �18�

4. Conclusion. Small addition regarding
the PadeÂ approximants

To describe critical phenomena, researchers often employ the
PadeÂ approximant technique (see, e.g., monograph [18]). The
PadeÂ approximant of an f �x� function is the ratio of two
polynomials whose coefficients are found from a comparison
of the power series expansions of the PadeÂ approximant and
the f �x� function in smallness x. The PadeÂ approximants give
an analytic continuation of a power series outside the radius
of convergence. In terms of the PadeÂ approximant, effective
conductivity sBWeff (6) is the power series expansion of a certain
function, which can comprise a singularity, in concentration.
It is readily seen that representing the PadeÂ approximant in
the form

seff�p� � a

1ÿ bp
; �19�

expanding it as a power series in concentration to the first
order, and equating the multipliers before concentrations p
having the same powers we will arrive, as a result, at a � s2
and b � 3 �s1 ÿ s2�=�2s2 � s1�.

Thus, effective conductivity (17) represents nothing but
PadeÂ approximant (6).

Acknowledgment. I should like to thank A P Vinogradov for
many helpful discussions which offered a more complete
formulation of the statements made in this paper.

1 It is pertinent to note that it is not the only example where the Maxwell

theory `runs ahead'. The system of electrodynamic equations is known to

have been written out by Maxwell in a relativistically invariant form

almost half a century before the concepts of the relativistic theory were

formulated.
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