
Abstract. Feynman's method for disentangling noncommut-
ing operators is discussed and applied to nonstationary pro-
blems in quantum mechanics, including the excitation of a
harmonic oscillator by an external force and/or by time-
varying frequency; spin rotation in a time-varying magnetic
field; the disentangling of an atom (ion) Hamiltonian in a
laser field; a model with the hidden symmetry group of the
hydrogen atom; and the theory of coherent states. The Feyn-
man operator calculus combined with simple group-theoreti-
cal considerations allows disentangling the Hamiltonian and
obtaining exact transition probabilities between the initial
and final states of a quantum oscillator in analytic form
without cumbersome calculations. The case of a D-dimen-
sional oscillator is briefly discussed, in particular, in applica-
tion to the problem of vacuum pair creation in an intense
electric field.

1. Introduction

In the 1940s, Richard Feynman proposed several novel and
original approaches to be used in quantum theory: the

continual integral `over all paths' [1, 2], the diagram
technique in perturbation theory [3 ± 5] (later named after
Feynman), and the method of disentangling1 expressions
with noncommuting operators [6]. The first two approaches,
which became universally accepted and were further devel-
oped, are now widely used in different fields of theoretical
physics, from quantum field theory and statistical physics to
hydrodynamics and the theory of turbulence. These methods
are described in more detail in many textbooks and mono-
graphs. In contrast, the Feynman disentangling method
(FDM) appears to be poorly known to physicists; it is used
by few researchers and rarely mentioned in the physics
literature. The present paper aims to bridge this gap,
expounding the main aspects of the FDM as applied to
quantum mechanics, and considering some related group-
theory problems.

The organization of this paper is briefly as follows. The
main notions and formulas of the FDM (including the
Feynman theorem of disentangling an exponential factor,
important for the subsequent discussion) are presented in
Section 2. Section 3 contains an elegant solution [6] of the
problem of a constant-frequency harmonic oscillator
excited by an arbitrarily time-dependent external force
f �t� (see also Refs [7 ± 9]). Section 4 treats the FDM as
applied to the spin rotation problem [10] for a particle with
a magnetic moment in an external magnetic field H�t�.
These examples are convenient for describing the FDM
because they allow focusing on certain details of the
method that are usually disregarded in the literature. In
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Sections 5 ± 8, we are more concise; as a rule, we only state
a problem and present final results, referring the reader to
original papers for detailed calculations. Also considered in
these sections are transition probabilities in a quantum
oscillator with time-varying frequency [11, 12]; the general
case of an oscillator with varying parameters o�t� and f �t�;
the disentanglement of the atom (ion) Hamiltonian in a
strong laser field; and the application of the FDM to the
perturbation theory [6], to a model Hamiltonian with the
`hidden' symmetry group of the hydrogen atom [11], to the
theory of coherent states, etc. The closing Sections 9 and 10
offer conclusions and describe prospects. Additional pro-
blems and computation details are discussed in the
Appendices. Appendix A deals with the so-called Fock ±
Bargmann representation, in which wave functions of the
oscillator and the hydrogen atom have the simplest form.
Appendix B presents oscillator excitation parameters n and
r [see formulas (3.15) and (5.12) in Sections 3 and 5].
Appendix C considers the Riccati equation for spin rotation
in an alternating magnetic field. The unitarity condition is
considered in Appendix D.

The application of the FDM to specific physical problems
is substantially facilitated by group theory, which permits
markedly simplifying calculations. The plethora of relevant
information from group theory can be found in books [13 ±
18]. Elementary data on unitary representations of noncom-
pact Lie algebras are necessary for understanding thematerial
in Sections 5 and 6; a rather popular exposition of this theory
is offered in Ref. [19].

We now give the commutation relations for generators of
the unitary group SU�2� and the quasi-unitary group
SU�1; 1� that are necessary for further discussion; they can
be written in the unified form

�Ĵ�; Ĵÿ� � 2ZĴ0 ; �Ĵ0; Ĵ�� � �Ĵ� ; �1:1�

where

Ĵ� � Ĵx � iĴy ; Ĵ0 � Ĵz ; �1:2�

Z � 1 for SU�2� ;
ÿ1 for SU�1; 1� ;

�
�1:3�

Ĵ� is the creation operator and Ĵÿ is the annihilation operator
when acting on eigenfunctions of Ĵ0:

Ĵ0jmi � mjmi ; Ĵ0Ĵ�jmi � �m� 1� Ĵ�jmi : �1:4�

The generators Ĵa commute with the Casimir operator Ĵ 2

(`the square of the angular momentum' on the group), whose
eigenvalue specifies the irreducible representation:

�Ĵ 2; Ĵa� � 0 ; a � �; 0 ; �1:5�

Ĵ 2 � Ĵ 2
z � Z�Ĵ 2

x � Ĵ 2
y � � Ĵ 2

0 �
1

2
Z�Ĵ�Ĵÿ � ĴÿĴ�� : �1:6�

The SU�2� group is compact and has finite-dimensional
unitary irreducible representations, which are well known
from quantum mechanics and on which the operator
Ĵ 2 reduces to a c-number:

Ĵ 2jci � j � j� 1� jci ; j � 0;
1

2
; 1;

3

2
; . . . �1:7�

( j is the spin or angular momentum); the noncompact
SU�1; 1� group has no such representations. 2 The difference
between the two groups is illustrated by the example of
matrices of rotation about the x axis: for the spinor
� j � 1=2� representation of SU�2�, we have

gx�#�� exp

�
ÿ i

2
#sx

�
�

cos
#

2
ÿi sin #

2

ÿi sin #
2

cos
#

2

0BB@
1CCA; 04#4 p ;

�1:8�

and in the case of SU�1; 1�, with #! ib, we have

gx�b� � exp

�
1

2
bsx

�
�

cosh
b
2

sinh
b
2

sinh
b
2

cosh
b
2

0BB@
1CCA; 04b <1 :

�1:9�

Evidently, the latter representation is finite-dimensional but
not unitary.

In Section 4, instead of Ĵa, we use the spin operator ŝa that
satisfies commutation relations (1.1) with Z � 1.

2. Principles of the Feynman
disentangling method

We first explain the term `disentangling of operators.'
Expressions widely used in quantum mechanics and field
theory have the form

Ĥ � exp �aÂ� bB̂� gĈ� . . .� ; �2:1�

where Â; B̂; . . . are noncommuting operators (e.g., x̂ and p̂,
â and â�), and a; b; . . . are certain constants or numerical
functions. The presence of noncommuting operators in the
exponent hampers calculations. Feynman proposed a pecu-
liar operator calculus [6] in which an ordering index s is
introduced to specify the order of operator action and enable
the use of standard rules of calculus. By definition, the
operator with a larger value of the index acts later:

ÂsB̂s 0 � ÂB̂ ; s > s 0 ;
B̂Â ; s < s 0 ;

�
�2:2�

where B̂Â can be written as either B̂1A0 and or Â0B̂1 (the
indices 0 and 1 may be replaced by others, not necessarily
integers; e.g., Âÿ1:5B̂0:3 � B̂Â, becauseÿ1:5 < 0:3). The index
smay be a continuous variable, e.g., time (see Sections 3 ± 6).
We consider an example [6] where Â � exp â and B̂ � exp b̂;
then,

B̂Â � exp �â0 � b̂1� �
X1
n� 0

1

n!
�â0 � b̂1�n

� 1� â� b̂� 1

2
�â 2 � 2b̂â� b̂ 2�

� 1

6
�â 3 � 3b̂â 2 � 3b̂ 2â� b̂ 3� � . . . �2:3�

2 As is known from [16, 19], noncompact groups have no finite-

dimensional unitary representations, except for a trivial (unit) one.
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because

�â0 � b̂1�n �
Xn
k� 0

n
k

� �
â k
0 b̂

nÿk
1 � n!

Xn
k� 0

�
k!�nÿ k�!�ÿ1b̂ nÿkâ k

(in the standard notation).
By the use of FDM, expression (2.1) is transformed to the

form

Ŝ � exp �~aÂ� exp �~bB̂� exp �~gĈ� exp �dD̂� . . . ; �2:4�

called `disentangled': here, each factor contains a single
operator, and therefore functions of this factor, such as
exp �Â�, are defined unambiguously, e.g., by a power series.

The coefficients â; ~b; . . . are to be found from relevant
equations (which are usually differential) starting from the
original a; b; . . . . This may lead to the appearance of new
operators in (2.4) (denoted as D̂) that were absent in the
original expression. Representing the operator Ŝ in form (2.4)
sometimes permits easily calculatingmatrix elements Smn that
describe transitions between different quantum states. Spe-
cific examples of the application of this procedure are given
below.

In this paper, we frequently use the Feynman theorem of
disentangling an exponential factor. LetF �M̂�s�; N̂�s�; . . .

�
be

a functional of operators M̂; N̂; . . . and s be an ordering
parameter. In the case of unitary transformation
M̂ 0�s� � Ûÿ1M̂�s�Û, where Û is an s-independent constant
operator, the factor between the operators in the product
M̂�s� ds�N̂�s� entirely cancels: UUÿ1 � 1; hence,

F �M̂ 0�s�; N̂ 0�s�; . . .
� � Ûÿ1 F �M̂�s�; N̂�s�; . . . �Û : �2:5�

The case of an s-dependent operator Û�s� is much more
interesting. Here,

Û�s� ds�Ûÿ1�s� � 1� P̂�s�ds

� exp

�
P̂

�
s� 1

2
ds

�
ds

�
; ds! 0 ; �2:6�

that is, the full compensation of the factors Û�s� ds� and
Ûÿ1�s� no longer occurs; the operator P̂�s� arising between
them is determined from the equation

dÛ�s�
ds
� P̂�s� Û�s� : �2:7�

The argument s� �1=2�ds of P̂ automatically sets its correct
position in the product of operators entering the functional
F ; therefore, multiplication yields the factor exp

�� s1
s0
P̂�s� ds�.

As a result, there is the relation (the Feynman theorem)

F �M̂ 0�s�; N̂ 0�s�; . . .
� � Ûÿ1�s1� F

�
M̂�s�; N̂�s�; . . .

�
� exp

�� s1

s0

P̂�s� ds
�
Û�s0� ; �2:8�

where

M̂ 0�s� � Ûÿ1�s�M̂�s�Û�s� ;
�2:8 0�

Û�s� � exp

�� s

s0

P̂�s 0� ds 0
�
Û�s0� :

Specifically, if P̂�s� � a�s�P̂s (where a�s� is an arbitrary
numerical function), the operator P̂s is not explicitly
dependent on s, 3 and U�s0� � 1, then

exp

�� s1

s0

a�s�P̂s ds

�
F �M̂�s�; N̂�s�; . . . �

� exp

�
P̂s1

� s1

s0

a�s� ds
�
F �M̂ 0�s�; N̂ 0�s�; . . . � ; �2:9�

M̂ 0�s� � exp

�
ÿP̂s

� s

s0

a�s 0� ds 0
�
M̂�s� exp

�
P̂s

� s

s0

a�s 0� ds 0
�
:

�2:9 0�
We note that the functional F in formulas (2.8) and (2.9)
should not be regarded as a pre-exponential. These formulas
(see Eqns (16) ± (20) in [6]) give the disentanglement rule for
the exponential factor exp fP̂ � s1s0 a�s� dsg from expressions of
type (2.1). All operators are assumed to be ordered in
accordance with (2.2).

In what follows, time plays the role of s and the ordering
of operators as proposed by Feynman corresponds to the
T-product. For example, the operator of quantum system
evolution is

Ŝ�t1; t0� � lim
N!1

YN
i� 1

�
1ÿ i

�h
Ĥ�ti�Dti

�

� Texp

�
ÿ i

�h

� t1

t0

Ĥ�t 0� dt 0
�
; �2:10�

where Ĥ is the Hamiltonian and Dti � �t1 ÿ t0�=N! 0.
We finish the introductory discussion of the FDM here,

referring the reader for more details to Feynman's paper [6]
(see also Appendix A in [6] describing a more rigorous
derivation of the above formulas). We now move to the
FDM in quantum mechanics.

3. Excitation of a harmonic oscillator
by an external force

We start with a problem considered by Feynman [6, 7] and
described as ``the main problem of quantum electrodynamics
when formulated in the most general form'' [6, p. 114]:

Ĥ � 1

2
� p̂ 2 � o2q̂ 2� ÿ f �t�q̂

� 1

2
o�ââ� � â�â� ÿ f �t�������

2o
p �â� â�� : �3:1�

Here and hereinafter, we choose the system of units where
�h � m � 1; in this case, � p̂; q̂� � ÿi, with â� and â being the
operators of creation and annihilation of oscillatory quanta:

â� � 1������
2o
p �oq̂ÿ ip̂� ; â � 1������

2o
p �oq̂� ip̂� ; �â; â�� � 1 ;

�3:2�
âjni � ���

n
p jnÿ 1i ; â�jni � �����������

n� 1
p jn� 1i ; �3:3�

�Ĥ; â� � ÿoâ� �2o�ÿ1=2f ; �Ĥ; â�� � oâ� ÿ �2o�ÿ1=2f :
�3:4�

3 Such a case is often encountered in applications, with the index s attached

to Ps defining only the order of operator action relative to other operators

�M̂; N̂; . . .� in (2.8); in what follows, it is omitted for brevity.
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As regards the external force f �t� acting on the oscillator, it is
only assumed that f �t� ! 0 as t! �1. The problem is to
find transition probabilities between the initial �jmi� and final
�jni� states of the oscillator with given numbers of quanta.

Applying the Feynman theorem to the oscillator evolu-
tion operator

Ŝ�t; t0� � T exp

�
ÿi
� t

t0

Ĥ�t 0� dt 0
�
; �3:5�

we first disentangle the operator Ĥ0 � �1=2�o�ââ� � â�â�
associated with the free oscillator:

â�t� � exp �iĤ0t� â exp �ÿiĤ0t� � â exp �ÿiot� ; �3:6�
â��t� � â� exp �iot� ;

this operation corresponds to the transition to the interaction
representation. Hence,

Ŝ�t; t0� � exp
�ÿiĤ0�tÿ t0�

�
� T exp

�
i������
2o
p

� t

t0

f �t 0��â exp �ÿiot 0� � â� exp �iot 0��dt 0�:
�3:7�

Now, the FDM can be applied to disentangle the term with
â�. The relations

â 0 � exp �ÿibâ� â exp �ibâ�� � â� ib ; �3:8�
â� 0 � exp �ÿibâ� â� exp �ibâ�� � â� ÿ ib ;

which can be verified by differentiating them with respect to
the parameter b taking the commutation relations and the
initial condition â 0�b � 0� � â into account, 4 allow finding
the amplitude of transition between the initial jmi and final
jni states of an oscillator with a given number of quanta as

Anm � 1����������
m! n!
p 


0
��â n exp �ib �â�� exp �ibâ� â�m��0� ; �3:9�

where, in accordance with (3.7),

b�t; t0� � 1������
2o
p

� t

t0

f �t 0� exp �ÿiot 0� dt 0 : �3:10�

We next assume that t0 ! ÿ1, t!1, and b � b�1;ÿ1� is
the parameter determining the degree of oscillator excitation
during the entire action time of the external force f �t�.
Permuting the factors exp �ibâ� and â�m, â n, and
exp �ib �â��, and using that

jni � �n!�ÿ1=2â�nj0i ; âj0i � h0jâ� � 0 ; �3:11�
h0jâ�nâmj0i � n! dmn ; exp �ibâ� j0i � j0i ;

we finally obtain [6]

Anm � 1����������
m! n!
p 


0
���â� ib ��n�â� ÿ ib�m��0�A00

� A00

X
r

����������
m! n!
p

r!�nÿ r�!�mÿ r�! �ib
��nÿr�ÿib�mÿr ; �3:12�

where 04 r4 min �m; n� and A00 is the vacuum± vacuum
transition amplitude [7],

jA00j2 � exp

�
ÿ 1

2o

�1
ÿ1

exp
ÿÿiojtÿ t 0j� f �t� f �t 0� dt dt 0�

� exp
ÿÿjbj2� : �3:13�

Feynman first derived formulas (3.12) and (3.13) by
another method (using the Lagrangian form of quantum
mechanics) in Ref. [7]. He noticed that the sum entering
(3.12) could be expressed via a Laguerre polynomial, but
``such representation has no advantage whatever'' [7, p. 451].
This last statement does not seem altogether self-evident.
Soon after Refs [6, 7] appeared, Schwinger obtained (in a
different way) a more compact expression for the transition
probabilities [9]:

wnm � jAnmj2 � n<!

n>!
exp �ÿn�n k�L�k�n<

�n��2 �3:14�

(a relatively simple derivation of this formula based on the
Fock ±Bargmann representation is given in Appendix A).
Here,

n< � min �m; n� ; n> � max �m; n� ; �3:15�
k � n> ÿ n< � jmÿ nj ; n � jbj2 ;

and the generalized Laguerre polynomials are defined
following [20, 21]:

L
�k�
0 �x� � 1 ; L

�k�
1 �x� � k� 1ÿ x ;

L
�k�
2 �x� �

1

2
�k� 1��k� 2� ÿ �k� 2�x� 1

2
x 2 ;

L�k�n �x� �
�n� k�!
n! k!

ÿ �n� k�!
�nÿ 1�! �k� 1�! x� . . .� �ÿ1�

n

n!
xn :

Schwinger formula (3.14) is equivalent to (3.12) but is more
convenient for large quantum numbers because it permits
using the known asymptotic expressions for the Laguerre
polynomials. For the `diagonal' �m � n� transitions, we have

wnn � 1ÿ �2n� 1�n� 3

2

�
n 2 � n� 1

3

�
n 2 ÿ . . . ; n! 0 ;

�3:16�

for n4 1 and any n,

wnn �
h
J0
ÿ ����������������������

2�2n� 1�n
p �i2 �O�nÿ3=4� ; �3:16 0�

where J0 is the Bessel function (a Hilb-type formula, see
formula 10.15.2 in [20]). As the excitation parameter n
increases, the transition probabilities change nonmonotoni-
cally (except in the case of small quantum numbers m; n), as
can be seen in Fig. 1. We note that asymptotic expression
(3.16 0) as n! 0 differs from the exact expansion (3.16) by the
coefficient at n 2 containing n 2 � n� 1=4 instead of the
correct factor n 2 � n� 1=3. In the limit n4 1 (a strongly
excited oscillator),

wnm � exp �ÿn� n
m�n

m! n!

�
1ÿ 2mnnÿ1 �O�nÿ2�

�
: �3:17�

In certain cases, formulas (3.12) and (3.14) are simplified.
For example, they reduce to the Poisson distribution for4 It is implied here that the parameter b is independent of â and â�.
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transitions either from or to the ground level:

wn0�n� � w0n�n� � exp �ÿn� n
n

n!
; n � 0; 1; 2; . . . : �3:18�

For transitions from the first excited level of the oscillator,

w01 � exp �ÿn�n ; wn1�n� � exp �ÿn� n
nÿ1�nÿ n�2

n!
;

�3:18 0�

and for diagonal transitions,

wnn�n� � exp �ÿn�
� Xn

k� 0

n!

�nÿ k�! k!2
�ÿn�k

�2
: �3:18 00�

It follows from (3.10) that the harmonic oscillator is
excited only by the spectral component of the external force
whose frequency coincides with the oscillator eigenfrequency
o, due to the linearity of this system.

To conclude this section, a few remarks are in order.
(a) Schwinger derived formula (3.14) when solving the

following quantum electrodynamics (QED) problem. Let the
states of an isolated (free) electromagnetic field be specified
on space-like surfaces s1 and s2, one obtainable from the
other by parallel transition. In the region between s1 and s2,
the field interacts with an external current Jm�x� that
depends on time but vanishes on s1 and s2. The problem
is to find the probability of excitation of different states of
the electromagnetic field. The solution has the form (see
formula (39) in [9])

p�n; n 0� �
Y
lk

�
n<!

n>!

ÿjJj2�n>ÿn<�L�n>ÿn<�n<

ÿjJj2��2 exp �ÿjJj2�� ;
�3:19�

where n and n 0 are the numbers of quanta with momentum k
and polarization l in the initial and final states of the field.
Formula (3.14) is a special case of (3.19) for a one-oscillator
model. Schwinger used these expressions to consider the
semiclassical limit, in which n; n 04 1 and Dn �
jnÿ n 0j5 n; n 0.

Reference [9] belongs to the known series of Schwinger's
works devoted to the construction of quantum field theory

based on a common dynamic principle; the series also
includes Refs [22, 23]. Surprisingly, neither [9] nor other
publications in this series contain references to any earlier
works by Feynman [6, 7].

(b) Using (3.18) and (3.18 0), it is easy to show that for
m � 0 and 1,X1

n� 0

wnm�n� � 1 : �3:20�

Certainly, unitarity condition (3.20) must be satisfied for an
arbitrary initial state jmi; however, this is not easy to verify
directly from expressions (3.12) and (3.14).

(c) Transition probabilities wnm depend on a single
parameter n given by formulas (3.10) and (3.15) as t! �1.
When the characteristic force action time is greater than the
oscillator periodT � 2p=o and the force f �t� varies smoothly
(the adiabatic limit), the excitation parameter n is small (see
Appendix B) and transitions are restricted to the neighboring
levels:

wn�1; n � �n� 1�n�O�n 2� ;
wnn � 1ÿ �2n� 1�n� . . . ; �3:21�
wnÿ1; n � nn� . . . ;

and, in the general case,

wn�k; n�n� � �n� k�!
n! k!2

n k � . . . ;
�3:22�

wnÿk; n�n� � n!

�nÿ k�! k!2
n k ; k � 1; 2; . . . :

(d) The Hamiltonian

Ĥ � 1

2
p̂ 2 � 1

2
o2
ÿ
q̂ÿ x�t��2 �3:23�

corresponds to an oscillator whose equilibrium point shifts
(oscillates) in an arbitrary mode. In this case,

Ŝ�1;ÿ1� � exp �ÿij�

� T exp

�
ÿi
�1
ÿ1

�
1

2
� p̂ 2 � o2q̂ 2� ÿ o2x�t�q̂

�
dt

�
; �3:24�

1.0

wnn

n

0.8

0.6

0.4

0.2

0 2 4 6 8 10

n � 0

n � 1

n � 2

a

n � 3

n � 10

1.0

wnn

n

0.8

0.6

0.4

0,2

0 2 4 6 8 10

b

Figure 1. Excitation of a harmonic oscillator by an external force: `diagonal' �m � n� transition probabilities depending on n for n � 0, 1, and 2 (a); n � 3

and 10 (b). Figures at the curves denote values of the quantum number n.
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where j is a phase that has no effect on transition
probabilities. Therefore, all the preceding formulas now
hold with

n � 1

2
o3

�����1ÿ1 x�t� exp �ÿiot� dt
����2 : �3:25�

Thus, the FDMnaturally leads to the exact solution of the
problem of excitation of a harmonic oscillator in the case of
an arbitrary form of the external force f �t�. An essential point
is that Hamiltonian (3.1) contains only two operators, â and
â�, whose commutator is a c-number. In other cases,
application of the FDM encounters more difficulties.

4. Particle with an arbitrary spin
in an external magnetic field

The SchroÈ dinger equation for the spin wave function [24, 25]

i _c � ÿgÿH�t�ŝ�c ; c �

cs

csÿ1
..
.

cÿs

0BBB@
1CCCA �4:1�

(g is the gyromagnetic ratio, �h � 1) with the explicit form of
spin matrix elements ŝss 0 taken into account reduces to a
system of 2s� 1 rather cumbersome coupled equations for
the components cs. The FDM may be used to find the
solution of this system with an arbitrary time dependence of
the magnetic fieldH�t�.

We note that

�Hŝ� �
X1
m�ÿ1

Hm�t�ŝm ; H� � 1

2
�Hx � iHy� ; H0 � Hz ;

�4:2�
where the operators ŝm are defined as in (1.2). The evolution
operator Ŝ can be written in the form of a T-exponential,
although in this case the operators Hŝ are noncommuting at
different time instants. 5 We try to represent Ŝ in the
`disentangled' form

Ŝ�t; t0� � exp �aŝ�� exp �bŝ0� exp �cŝÿ� ; �4:3�

where a, b, and c are certain functions of time. Because the
expressions exp �cŝÿ� js 0i and hsj exp �aŝ�� contain only a few
nonzero first terms of the series expansion of the exponential,
it is easy to use (4.3) to deduce from [10] a formula resembling
(3.12) for probabilities of transition from one spin state to
another �s 0 ! s�:

wss 0 �
��Sss 0 �t; t0�

��2 ; ÿs4s ; s 04 s : �4:4�

The solution can be presented in a more compact form.
Following [10], we write

Hŝ � wŝ� � �H� ÿ w�ŝ� �H0ŝ0 �Hÿŝÿ �4:5�

without fixing the function w�t� a priori, and apply the
Feynman theorem on disentangling exponential factors to

the first term,

Ŝ�t; t0� � exp
ÿ
a�t�ŝ�

�
� T exp

�
ig
� t

t0

��H� ÿ w�ŝ 0� �H0ŝ
0
0 �Hÿŝ 0ÿ

�
dt 0
�
; �4:6�

where, in accordance with (2.8 0),

a�t� � ÿig
� t

t0

w�t 0� dt 0 ; ŝ 0m�t� � exp �ÿaŝ�� ŝm exp �aŝ�� :
�4:6 0�

Differentiation of (4.6 0) with respect to a and recalling
commutators (1.1) with Z � 1, we obtain

ŝ 0� � ŝ� ; ŝ 00 � ŝ0 � aŝ� ; ŝ 0ÿ � ŝÿ ÿ 2aŝ0 ÿ a 2ŝ� : �4:7�

Substituting (4.7) in (4.6), we require that the operator ŝ�
be disentangled completely; this yields the Riccati equation
for a�t�:

_a � ig�H� �H0aÿHÿa 2� ; a�t0� � 0 : �4:8�
Proceeding further, we arrive at explicit (even if rather
cumbersome) [10] expressions for the functions b�t� and c�t�.
There is no need to do this, however, as we see shortly.

Because Eqn (4.1) involves s 2, the transformation of the
wave function is a spatial rotation:

Sss 0 �t; t0� � D
�s�
ss 0 �j; #;c� � exp

�ÿi�sj� s 0c��d s
ss 0 �#� ;
�4:9�

where c, #, and j are t-dependent Euler angles and D
�s�
ss 0

is a finite rotation matrix in the SU�2� group or a Wigner
D-function [13, 18, 26]. The probability of changing the
particle spin projection on the z axis is expressed as

wss 0 � jSss 0 j2 �
��d s

ss 0
ÿ
#�t����2 : �4:10�

The functions d s
ss 0 �#�, corresponding to the rotation through

an angle # about the Ox axis are well known and tabulated
[26], e.g.,

d j
j j�#� � d j

ÿj;ÿj�#� �
�
cos

#

2

�2j

; d j
j;ÿj�#� � i 2j

�
sin

#

2

�2j

;

in the general case, they are expressed in terms of Jacobi
polynomials [18].

It remains to specify the relation of the angle #�t� to a�t�.
Equation (4.8) contains g and the external magnetic field but,
unlike Eqn (4.1), does not explicitly involve the particle spin s.
Therefore, the sought relation can be found for any spin s, i.e.,
for any irreducible representation of the unitary group SU�2�.
It is natural to choose the simplest representation in which
ŝ� � �1=2��sx � isy�, ŝ0 � �1=2�sz, and si are the Pauli
matrices:

ŝ� � 0 1
0 0

� �
; exp �aŝ�� � 1 a

0 1

� �
;

ŝ0 �
1

2
0

0 ÿ 1

2

0B@
1CA ; exp �bŝ0� �

exp

�
b

2

�
0

0 exp

�
ÿ b

2

�
0BB@

1CCA ;

ŝÿ � 0 0
1 0

� �
; exp �cŝÿ� � 1 0

c 1

� �
; ŝ 2� � 0 :5 Except in the trivial case where the magnetic field retains its direction in

space: �H1 ŝ;H2 ŝ� � i�H1 �H2�ŝ.
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Multiplication of the matrices in (4.3) gives

Ŝ�t; t0� �
exp

�
b

2

�
� ac exp

�
ÿ b

2

�
a exp

�
ÿ b

2

�
c exp

�
ÿ b

2

�
exp

�
ÿ b

2

�
0BB@

1CCA
�4:11�

and comparison with the standard expression [13, 18] for the
Wigner functions

D �1=2��c; #;j� � a ÿb �
b a �

� �
;

a � cos
#

2
exp

�
i�c� j�

2

�
; b � i sin

#

2
exp

�
i�cÿ j�

2

�
;

finally yields c � a exp
�
i�cÿ j�� and

tan2
#

2
� ��a�t���2 : �4:12�

Thus, a single function a�t�, which is determined from
Riccati equation (4.8), is needed6 to calculate the transition
probabilities wss 0 in the case of a particle with an arbitrary
spin s.

As an illustration, we give spin transition probabilities for
the lower spins s � 1=2 and 1:

w1=2; 1=2 �
ÿ
1� jaj2�ÿ1 ; wÿ1=2; 1=2 � jaj2

ÿ
1� jaj2�ÿ1 ;

w11 �
ÿ
1� jaj2�ÿ2 ; w01 � 2jaj2ÿ1� jaj2�ÿ2 ; �4:13�

wÿ1; 1 � jaj4
ÿ
1� jaj2�ÿ2 ;

and for a particle with any spin s:

wss � �2s�!
�s� s�!�sÿ s�! jaj

2�sÿs�ÿ1� jaj2�ÿ2s ; �4:14�

assuming the maximum spin projection, s 0 � s, at the initial
instant.

It may seem that this approach holds only until the instant
t � t1 at which a�t� becomes infinite [which corresponds to
complete reorientation of the particle spin, as follows from
(4.13)]. This is not the case, however; it suffices to pass from
(4.8) to the equation for the function ~a�t� � 1=a�t�, i.e., to the
Riccati equation

_~a � ig�Hÿ ÿH0~aÿH�~a 2� ; �4:15�

in which ~a�t1� ! 0.Using these two equations alternately, it is
possible to continue the solution of a�t� to arbitrarily large
times t. Examples of the application of the Riccati equation
are given in Appendix C.

It is worthwhile to note that Eqn (4.8) was derived by
Majorana (naturally, without application of the FDM) as
early as 1932 [25], but it was not used in concrete calculations.
The dynamics of spin s � 1=2 in a magnetic field of the form
B�t� � fBx; 0;Bztg, where Bx and Bz are some constants, was
considered in [25]. In this case, the z component of the field
vanishes at t � 0 and spin reorientation is possible even if the

magnetic field changes slowly (at macroscopic distances) as a
result of broken adiabaticity. Majorana proposed the solu-
tion of SchroÈ dinger equation (4.1) in the form of a contour
integral on the complex plane and computed the probability
of spin reorientation; the Riccati equation corresponding to
this example is presented in Appendix B [see formula (B.7)].

Paper [27] contains interesting historical comments on
Majorana's work to the effect that it has a direct bearing on
the theory of nonadiabatic transitions between quasi-inter-
secting levels, e.g., for slow atomic collisions. 7 This problem
was considered (using different methods) by Landau [30],
Zener [31], and StuÈ ckelberg [32] in the same year of 1932.
These results are well known to atomic physicists, although
their relation to Majorana's work [25] was noticed only
recently [27].

It is worth noting that Majorana first used an elegant
technique to consider a particle with an arbitrary spin s as a
set of 2s `particles' with spins 1=2 assumed to be parallel and
rotating independently in the magnetic field. This approach
was many times used in later studies [33, 34] (see also [24,
Section 114]) and is presently described in textbooks.

Equations (4.1) and (4.8) represent the nonrelativistic
case. If a particle with a magnetic moment travels with a
relativistic speed in an electromagnetic field Fmn and its orbital
movement may be regarded as classical, a change in the spin
(or in the particle polarization vector) can be found from the
Bargmann ±Michel ± Telegdi equation (see [35, 36] and also
[37, Section 41]):

ds m

dt
� e

2mc

�
gF mnsn � �gÿ 2� u mF abuasb

�
; �4:16�

where g is the gyromagnetic ratio, u m � dx m=dt is the
4-velocity of the particle, and t is the proper time. Some
solutions of this equation are presented in [37]. Reference [38]
reports the angular velocity of spin rotation [found based on
(4.16)] in the rest frame of a particle rigidly linked to its
trajectory. 8

5. Quantum oscillator with varying frequency

In this case, theHamiltonian has form (3.1) with f �t� � 0, but
the frequency o now varies with time. The limits

o�t� ! oÿ ; t! ÿ1 ;

o� ; t! �1
�

�5:1�

are assumed to exist, which allows introducing the initial and
final states of the oscillator with a definite number of quanta
(m and n, respectively) and exploring transitions between
them. It is assumed that o� > 0, although o2�t� < 0 at finite
t; this situation corresponds to an unstable oscillator (or sub-
barrier region in quantum mechanics, t! x).

We represent the evolution operator

Ŝ�t; t0� � T exp

�
ÿi
� t

t0

�
1

2
p̂ 2 � 1

2
o2�t 0�q̂ 2

�
dt 0
�
�5:2�

6 This fact was overlooked in [10], which somewhat complicated the

calculation.

7 GuÈ ttinger [28] appears to have been the first to discuss computation of

probabilities of nonadiabatic transitions in quantum mechanics. Some

inaccuracies in his work were corrected by Schwinger [29].
8 An analog of the Frenet trihedron for a four-dimensional trajectory

x m�t� in Minkowski space.
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in the disentangled form. The commutation relations

� p̂ 2; q̂ 2� � ÿ2i� p̂q̂� q̂p̂� ;
� p̂ 2; p̂q̂� q̂p̂� � ÿ4ip̂ 2 ; �5:3�
�q̂ 2; p̂q̂� q̂p̂� � 4iq̂ 2

indicate that the operator algebra closes, which allows using
the FDM. Setting

Â � 1

2
q̂ 2 ; B̂ � 1

2
p̂ 2 ; Ĉ � 1

4
� p̂q̂� q̂p̂� ; �5:4�

we have

�Â; B̂� � 2iĈ ; �B̂; Ĉ � � ÿiB̂ ; �Ĉ; Â� � ÿiÂ : �5:5�

Using the same approach as in (4.5) and (4.6), we set
Ĥ � wÂ� �o2 ÿ w�Â� B̂, where w�t� is to be determined in
the process of disentanglement. Taking the relations

Â 0 � Â ; B̂ 0 � B̂� 2iaĈÿ a 2Â ; Ĉ 0 � Ĉ� iaÂ ;

a�t� � i

� t

t0

w�t 0� dt 0

into account, with the operators Â0�t� and others defined as in
(2.8 0), leads to [11]

Ŝ�t; t0� � exp

�
ÿ 1

2
aq̂ 2

�
exp

�
c

2
� p̂q̂� q̂p̂�

�
exp

�
ÿ 1

2
bp̂ 2

�
;

�5:6�

where the operators are completely disentangled, the
T-product sign may be omitted, and the function a�t� is to be
found from the Riccati equation

_a � i
�
o2�t� ÿ a 2

�
; �5:7�

with b�t� and c�t� expressed through it in quadratures:

b�t� � i

� t

t0

exp
ÿÿ2ic�t 0�� dt 0 ;

�5:7 0�
c�t� �

� t

t0

a�t 0� dt 0 :

In calculating the transition amplitude

Anm �


n;o�

��Ŝ��1;ÿ1���m;oÿ� ; �5:8�

it is convenient to use the wave function of the initial state
jm;oÿi in the p-representation and the wave function of the
final state jn;o�i in the q-representation, using the explicit
form of eigenfunctions of the Ĉ operator. This accomplished,
the problem may be considered solved in principle, even
though the arising integrals (especially for arbitrary quan-
tum numbers m and n) are rather cumbersome.

Computations are simplified if the FDM is supplemented
by group-theory considerations. The operators

Ĵ� � Ĉ� i

2
�Âÿ B̂� � � i

4
�q̂� ip̂�2 ;

�5:9�
Ĵ0 � 1

2
�Â� B̂� � 1

4
� p̂ 2 � q̂ 2�

satisfy commutation relations (1.1) with Z � ÿ1. Direct
calculations using the explicit form of operators (5.9) give

Ĵ 2 � Ĵ 2
0 ÿ

1

2
�Ĵ�Ĵÿ � ĴÿĴ�� � ÿ 3

16
: �5:9 0�

Because the Casimir operator Ĵ 2 reduces to a c-number, we
here have an irreducible [14 ± 17] representation of the
SU�1; 1� group (or algebra, to be precise). If J 2 � j� j� 1�,
then j � ÿ1=4 or ÿ3=4, which means that two irreducible
representations (with specified `weights' j ) are realized on the
oscillator wave functions; these representations are unitary
(because S�S � 1 for the evolution operator in quantum
mechanics) and infinite-dimensional. 9

It is clear from (5.9) that the operator Ĵ0 has the form
ln � �2n� 1�=4 Ô n � 0; 1; 2; . . . . For even n � 2k, ln � kÿ j
with j � ÿ1=4, and for odd n � 2l� 1, ln � lÿ j with
j � ÿ3=4, where k; l � 0; 1; 2; . . . are integers. Transitions
occur between states jm;oÿi and jn;o�i with equal parity,
in compliance with the parity of the oscillator potential. The
transition amplitude Anm is expressed through the Wigner
functions, i.e., énite rotation matrices for the above repre-
sentations:

Anm � D j
mn�c; b;j� � exp

�ÿi�mc� nj�� f � j �mn �b� ; �5:10�
wnm � jAnmj2 �

�� f � j �kÿj; lÿj�b�
�� ; 04b <1 ;

with

j � ÿ 1

4
; k � n

2
; l � m

2
; �5:10 0�

for even oscillator levels and

j � ÿ 3

4
; k � nÿ 1

2
; l � mÿ 1

2
�5:10 00�

for odd levels; in either case, kÿ j � �1=2��n� 1=2� and
lÿ j � �1=2��m� 1=2�. The quantum transition probabil-
ities are expressed (omitting technical details of computa-
tion) as [11]

wnm � L!

K!2 S!

G�Lÿ 2j�
G�Sÿ 2j�

� rK�1ÿ r�ÿ2j�2F1�ÿS;Lÿ 2j;K� 1; r��2 ; �5:11�
where L � max �k; l�, S � min �k; l�, K � Lÿ S � jmÿ nj=2,
r � tanh2 �b=2� is the parameter describing the degree of
oscillator excitation �04r < 1�, 2F1 �. . .� is the Gauss
hypergeometric function, and b is the angle of hyperbolic
rotation in the group SU�1; 1� that can be found from the
classical equation of motion �x� o2�t�x � 0 or from Riccati
equation (5.7):

a�ÿ1� � oÿ ; r � lim
t!�1

����o� ÿ a�t�
o� � a�t�

����2 ; �5:12�
b � ln

1� ���
r
p

1ÿ ���
r
p :

9 This is not surprising because SU�1; 1� is a noncompact group (as can

already be seen from the fact that matrix elements (1.9) are unbounded).

Such a situation is more familiar to physicists from the example of the

homogeneous (or proper) Lorentz group [39 ± 41]. The mathematical

theory of Lorentz group representations is considered at length in [42,

43]; the theory of unitary (infinite-dimensional) representations of

noncompact Lie algebras is expounded in [19]. In [18], the SU�1; 1� group
is denoted as QU�2�.
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For example, if o�t� � oÿy�ÿt� � o�y�t� [where y�t� is
the Heaviside step function] describes an instantaneous
jump in the oscillator frequency from oÿ to o� [see also
formula (B.6)], then

b � ln
o�
oÿ

; r � tanh2
b
2
�
�
o� ÿ oÿ
o� � oÿ

�2
: �5:13�

Because S5 0 in (5.11) is an integer, the hypergeometric
function always reduces to a polynomial. We consider a few
specific cases.

The formulas are markedly simplified for transitions from
the two lower oscillator levels (m � 0 and 1):

wn0 �
G
ÿ�n� 1�=2�
�n=2�!G�1=2� r

n=2
�����������
1ÿ r

p
; n � 0; 2; 4; . . . ;

�5:14�
wn1 �

G
ÿ�n� 2�=2�

G
ÿ�n� 1�=2�G�3=2� r �nÿ1�=2�1ÿ r�3=2;

n � 1; 3; 5; . . . :

Expressions (5.14) coincide with those obtained in Refs [44 ±
47]. In the case of `diagonal' �m � n� transitions, the
probabilities wnn can be expressed in terms of the generalized
hypergeometric series [11]:

wnn �
�����������
1ÿ r

p
3F2

�
ÿn; n� 1;

1

2
; 1; 1; r

�
; �5:15�

which is convenient, for example, in the adiabatic case, where
r5 1:

wnn�r� � 1ÿ 1

2
Nr� 1

32
�3N 2 ÿ 4Nÿ 3� r 2

ÿ 1

576
�5N 3 ÿ 28N 2 � 11N� 48� r 3 � . . . ; �5:16�

with N � n 2 � n� 1. The small parameter is here given by
n 2r, the coefficient at r k being a kth-degree polynomial inN.
Transition probabilities withm 6� n at r! 0 rapidly decrease
with increasing jmÿ nj � 2K:

wnm � n>!

�2KK !�2n<!

�
rK ÿmn� �m� n�=2� 1

2�K� 1� rK�1 � . . .

�
:

�5:17�

As the excitation parameter r increases, the transition
probabilities vary in a rather peculiar manner, as can be seen
in Fig. 2 (as compared to Fig. 1) and Figs 3 and 4. Figure 4
depicts probabilities of upward transitions from themth level
W
���
m �P n>m wnm. For small r, upward transitions predo-

minate over downward ones:

W ���
m � 1

4
�m� 1��m� 2�

�
rÿ 1

16
�3m 2 � 5mÿ 4� r 2 � . . .

�
;

�5:18�
W
�ÿ�
m

W
���
m

� m�mÿ 1�
�m� 1��m� 2�

�
1�O�r�� ; �5:19�

the same is true at r � 1, as follows from numerical
calculations in [11]. With the exception of the two lower
levels, the dependence of the transition probabilities wnm on r
is nonmonotonic and undergoes oscillations. Specifically,
transition probabilities vanish at r values corresponding to
zeros of the Legendre functions.

In the semiclassical limit m; n4 1, averaging the wmn over
fast oscillations characteristic of quantum mechanics leads to
a representation corresponding to the classical oscillator:

hwnmi � 2

p
����������������������������������nÿ n1��n2 ÿ n�p ; n1; 2 � m exp ��b� ; �5:20�

as is apparent from Fig. 3d, e. Here, n1; 2 are the turning
points, and transition probabilities decrease exponentially for
n < n1 and n > n2 [46].

In the case where m � n, Eqn (5.11) can be represented as

wnn �
�����������
1ÿ r

p h
Pn

ÿ �����������
1ÿ r

p �i2
; �5:21�

wherePn is the Legendre polynomial. A similar expression for
arbitrary quantum numbers m and n was deduced (using a
more complicated method) by directly solving the SchroÈ din-
ger equation in [46].

In the adiabatic case, expression (5.11) is preferred to
(5.21). It is worth noting that the transition probabilities wnm

were computed in the adiabatic approximation by Dykhne
[48]; his results were somewhat refined in Ref. [11] [see
formulas (4.6) and (4.7) in that work].

Themain result in this section is formula (5.11), which was
derived in Ref. [11] by means of a heuristic analytic

n � 4

a

3
2

1

0

1.0

wnn

r

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

n � 5

n � 10

b
1.0

wnn

r

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

Figure 2. Oscillator with varying frequency. Transition probabilities wnn�r� at (a) 04 n4 4 and (b) n � 5 and 10.
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continuation of Wigner function (4.9) from the group SU�2�
to the quasi-unitary group SU�1; 1�. In this case, the unitarity
for finite-dimensional representations is broken, as follows
from (1.9). Nevertheless, the unitarity condition is satisfied in
the specific case of finite-dimensional representations with
weights j � ÿ1=4 and ÿ3=4:X1

n� 0

wnm�r� � 1 ; m � 0; 1; 2; . . . ; �5:22�

which substantiates the above results (see also Appendix D in
connection with this).

6. Oscillator with varying parameters

We consider Hamiltonian (3.1) in which both the frequency
o and the force f are arbitrarily time-dependent. Calcula-
tion of commutators of the operators entering the Hamilto-
nian,

� p̂ 2; q̂ 2� � ÿ2i� p̂q̂� q̂p̂� ; � p̂ 2; p̂q̂� q̂p̂� � ÿ4ip̂ 2 ;

�q̂ 2; p̂q̂� q̂p̂� � 4iq̂2 ; � p̂ 2; q̂� � �p̂; p̂q̂� q̂p̂� � ÿ2ip̂ ;
�q̂ 2; p̂� � �q̂; p̂q̂� q̂p̂� � 2iq̂ ; � p̂; q̂� � ÿi ; �6:1�

shows that the operator algebra closes, which suggests the
possibility of applying the FDM to the evolution operator Ŝ.
The procedure described in Section 5 leads to

Ŝ�t; t0� � exp

�
ÿ a

2
q̂ 2

�
exp

�
c

2
� p̂q̂� q̂p̂�

�
exp

�
ÿ b

2
p̂ 2

�
Û ;

�6:2�

where a�t�, b�t�, and c�t� are the same functions as in (5.6),

Û�t; t0� � T exp

�
i

� t

t0

�
u�t 0�q̂� v�t 0� p̂�dt 0� ;

u�t� �
� t

t0

f �t 0� exp�ic�t 0��dt 0 ; �6:3�

v�t� � ÿi
� t

t0

f �t 0�b�t 0� exp �ic�t 0�� dt 0 :
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Figure 3. Distribution of transition probabilities wnm from the mth level of the oscillator: (a) r � 0:25, m � 0��� and m � 1���; (b) r � 0:5, m � 2;

(c) r � 0:8, m � 2; (d) m � 6, r � 0:096; (e) m � 20, r � 0:12. Dashed curves in Figs d and e correspond to distribution (5.20) in classical mechanics.
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It now remains to disentangle the operator Û, i.e., represent it
as a product exp �iu1q̂� exp �iv1p̂�; but it is more convenient to
act in a different way. We note that the first three factors
in (6.2) coincide with the right-hand side of (5.6), and the
operator Û alone depends on the external force. Using the
completeness condition, we can write the transition matrix
element as

Smn �
X
m 0

Anm 0Um 0n ; �6:4�

where the factor Anm 0 is the same as in (5.8) and (5.10); the
second factor, related to the oscillator with a constant
frequency oÿ,

Um 0n�t�

�
�
m 0;oÿ

����T exp

�
i

� t

t0

�
u�t 0�q̂� v�t 0� p̂�dt 0�����m;oÿ� ;

�6:5�

is easily calculated by passing to the operators â and â�. Thus,
the problem is solved in principle: the evolution operator is
completely disentangled, although determination of the
probabilities wnm for arbitrary quantum numbers m and n
requires very cumbersome calculations.

We confine ourselves to the physically most interesting
case, where the oscillator is initially in the ground (non-
excited) state:

c0�x; t� � hx; tj0;oÿi �
�
oÿ
p

�1=4

exp

�
ÿ 1

2
oÿ�x 2 � it�

�
:

It follows from the SchroÈ dinger equation that the wave
function remains a Gaussian packet at any instant t,

c�x; t� � exp

�
ÿ 1

2

�
a�t�x 2 � 2b�t�x� c�t�

��
; �6:6�

if [44]

i _a � a 2 ÿ o2 ; i _b � ab� 2f ; _c � i�aÿ b 2� �6:7�

with the initial conditions a � oÿ, b � 0, and c �
ioÿtÿ �1=2� ln �oÿ=p� as t! ÿ1. The transition matrix
element

hn;o�jŜj0;oÿi

/
�1
t0

exp

�
ÿ 1

2

�
�a� o��x 2 � 2bx

��
Hn� �������o�
p

x� dx

is calculated analytically (Gaussian transformation, see
formula 10.13.30 in Ref. [20]). As a result [46, 47],

wn0� w00
r n=2

2nn!

����Hn

� �������������
n

sinh b

r
exp �ÿij�

�����2; n � 0; 1; 2; . . . ;

�6:8�

where sinhb � 2
���
r
p

=�1ÿ r�. Specifically, for the vacuum±
vacuum transition and transition to the first level,

w00 �
�����������
1ÿ r

p
exp

�ÿn�1ÿ ���
r
p

cos 2j�� ; �6:9�
w10 � n�1ÿ r�w00 ;

and in two limit cases,

w00 �
exp �ÿn�

�
1� r 1=2n cos 2j

� 1

2
r�n 2 cos2 2jÿ 1� � . . .

�
; r! 0 ;�����������

1ÿ r
p

exp �ÿ2n sin2 j� ; r! 1 :

8>>>>><>>>>>:
Here, r � tanh2 b=2 and the parameter n describes oscillator
excitation by an external force: n � jd j2, where d�t� is the
displacement of a point depicting the classical oscillator state
on the phase plane under the effect of the force f �t� andHn is
the Hermit polynomial. The quantities d and n and the phase
j are exactly defined in Refs [44, 49].

We consider limit cases. If the frequency o�t� changes
slowly (adiabatic case), i.e., if r5 1, then

wn0 � exp �ÿn� n
n

n!

�
�
1� ���

r
p �

nÿ �n 2 ÿ n�nÿ1
�
cos 2j�O�r�

�
; �6:10�

for n 2r 1=2 5 n5 rÿ1=2. As r! 0, this formula becomes
Poisson distribution (3.18), and the first correction to it has
the order

���
r
p

(rather than r).
When n5 1, distribution (6.8) has different forms for even

and odd n. For n � 0; 2; 4; . . . , it turns into (5.14), and for
n � 1; 3; 5; . . . ; into

wn0 � 8G�n=2� 1����
p
p

G
ÿ�n� 1�=2� r �nÿ1�=2 �1ÿ r�3=2n�O�n 2� : �6:11�

The formulas become more complicated for arbitrary m and
n: in the general case, the transition probabilities wnm can be
expressed [49] through generalized Hermit polynomials in
two complex variables. The semiclassical limit for wnm is
considered in Refs [47, 49].

To conclude, we note that relations (6.1) acquire a more
symmetric form when passing to creation and annihilation
operators:

J0 � 1

4
�aa� � a�a� ; J� � i

2
a�2 ; Jÿ � ÿ i

2
a 2 : �6:12�

In this case,

�J�; Jÿ� � ÿ2J0 ; �J0; J�� � �J� ; �6:13�

J 2 � 1

16

��ââ� � â�â�2 ÿ 2�â 2â�2 � â�2â 2�	 � ÿ 3

16
;

�6:14�

�J0; a� � 1

2i
�Jÿ; a�� � ÿ 1

2
a ; �J0; a�� � i

2
�J�; a� � 1

2
a� ;

�6:15�
�J�; a�� � �Jÿ; a� � 0 ; �a; a�� � 1 ;

where �h � m � o � 1. Equations (6.13) fully correspond to
the SU�1; 1� generators and the relation �a; a�� � 1 corre-
sponds to theHeisenberg (nilpotent) algebra. Thewhole set of
ten commutation relations defines a certain Lie algebra,
which is no longer semisimple, however.
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7. Multidimensional case

We briefly consider generalization of the above results to the
case of a D-dimensional oscillator. 10 Let

Ĥ � 1

2

XD
i� 1

�
p̂ 2
i � o2

i �t�q̂ 2
i

	
; � p̂j; q̂k� � ÿidj k : �7:1�

Using the FDM, the evolution operator is found as a product
D of operators of type (5.6) that commute for different i. The
vacuum± vacuum transition probability is

w
�D�
00 �

����������������������������������������������������������
�1ÿ r1��1ÿ r2� . . . �1ÿ rD�

p
; �7:2�

in particular, for an isotropic oscillator,

w
�D�
00 � �1ÿ r�D=2 �

�
cosh

b
2

�ÿD
; �7:3�

where b is the hyperbolic rotation angle in the SU�1; 1� group.
The weight of the irreducible representation is j � ÿD=4;
hence, the probability of the transition j0;oÿi ! j2n;o�i is
expressed as

w
�D�
2n; 0 �

G�n�D=2�
n!G�D=2� r n�1ÿ r�D=2 ;

X1
n� 0

w
�D�
2n; 0 � 1 �7:4�

(only even levels are excited in the case of the oscillator
ground state). At D � 2, formula (7.4) assumes the form

w2n; 0 � �1ÿ r� r n ; n � 0; 1; 2; . . . ; �7:5�

and describes the distribution with respect to the number of
pairs n of charged scalar (spinless) bosons created from the
vacuum under the effect of a uniform electric field E�t�. This
assertion is conveniently clarified using group theory. In this
case, the Klein ± Gordon equation reduces [53] to the
equation �x� o2�t�x � 0 for field oscillators, where

o2�t� � m 2 � p 2�t� ; p � pÿ � e

� t

ÿ1
E�t 0� dt 0 ; �7:6�

and p�t� is themomentum of a classical particle in the external
field E�t�. We consider the Heisenberg operators âp�t� and
b̂ÿp�t� for particles and antiparticles. The equations ofmotion
for them have solutions in the form of Bogolyubov's
canonical transformation

âp�t� � u�t�âp�t0� � v�t�b̂�ÿp�t0� ; �7:7�
b̂�ÿp�t� � v ��t�âp�t0� � u ��t�b̂�ÿp�t0� ;

where
��u�t���2 ÿ ��v�t���2 � 1, i.e., transformation (7.7) belongs

to the group SU�1; 1�. The mean number of bosonic pairs
created in the state with this momentum is

hnpi � lim
t!�1



0
��â�p �t�âp�t���0� � ��v�1���2 � r

1ÿ r
; �7:8�

where j0i is the initial vacuum vector and the distribution over
pair numbers has form (7.5). In other words, the problem of

vacuum pair creation under the effect of a uniform field EE�t�
can be reduced to the problem of excitation of a two-
dimensional varying-frequency oscillator, where the para-
meter r coincides with the coefficient of reflection from the
barrier given by the function o2�x�; t! x (see examples in
Appendix B).

We now assume (see Ref. [53]) that

J� � a�b� ; J0 � 1

2
�a�a� b�b� 1� ; Jÿ � ba � ab :

�7:9�

For brevity, we omit the index p (in the fermionic case, ps,
where s is the spin projection) labeling the creation and
annihilation operators. Because �a; a�� � �b; b�� � 1, opera-
tors (7.9) satisfy the same commutation relations as the
SU�1; 1� generators. Similarly, for fermions �s � 1=2�,
fa; a�g � fb; b�g � 1, where f. . .g is the anicommutator
and the operators

J� � a�b� ; J0 � 1

2
�a�a� b�bÿ 1� ; Jÿ � ba � ÿab

�7:10�
are generators of SU�2�. The Casimir operator is given by

J 2 � j� j� 1��1ÿ �a�aÿ b�b�2� ; �7:11�

j �
ÿ 1

2
; s � 0 ;

1

2
; s � 1

2

8>><>>:
(for the vacuum state, aj0i � bj0i � 0 and J 2 �
j� j� 1� � ÿ1=4 or 3/4). The probability of creating n pairs
in the state with a momentum p is given by the squared
Wigner function d

� j �
nÿj;ÿj�y� for the corresponding representa-

tion. In the bosonic case, it is the infinite-dimensional unitary
representation of SU�1; 1� with weight j � ÿ1=2; for fer-
mions, it is the spinor � j � 1=2� representation of SU�2�. In
the latter case, only two values are possible: n � 0 (no pairs
are created) and n � 1, with the respective probabilities
cos2 y=2 and sin2 y=2. This accounts for the difference
between the cases where s � 0 and s � 1=2. 11

For a pulsed field of the special form E�t�� E0=cosh2 ot,
expression (7.6) looks like the Eckart potential [64] if the
parameters o� ando0 are properly chosen (see formula (B.7)
in Appendix B). This immediately gives formulas [53] for the
parameter r at spin values s � 0 and 1=2, which entirely
coincide with the results in Ref. [65], where they were deduced
directly from the Klein ±Gordon ±Dirac equations (allowing
an exact solution in this case).

The uniform electric field E�t� is an idealization over-
estimating the number of created pairsN. An electromagnetic
wave always has a magnetic field that decreasesN (as known,
pairs are not created from the vacuum at all in a purely
magnetic field or in a plane wave of an arbitrary intensity and

10 The problem of a D-dimensional oscillator with time-dependent

parameters was also considered in Refs [50 ± 52]; the last reference

contains an extensive bibliography.

11 But we note that for E5 Ecr � m 2c 3=e�h (which can be realistically

expected in experiment [54 ± 60]), the excitation parameter of field

oscillators is exponentially small, r / exp �ÿpEcr=E�, and just a single

pair can be created from the vacuum. In this situation, the difference

between bosonic and fermionic cases disappears. Here, Ecr is the so-called
critical field in QED [61 ± 63]: Ecr � 1:3� 1016 V cmÿ1 for e�eÿ, Ecr �
1021 V cmÿ1 for p�pÿ.
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spectral composition) [63]. The authors of Refs [58, 59]
considered a realistic three-dimensional model of a focused
laser pulse based on the exact solution of Maxwell equations
in the vacuum. Numerical integration over a momentum
4-volume permitted exploring the dependence of the number
N of created e�eÿ pairs on the parameters in this problem (the
focal spot radius R, the diffraction length L � R=D, and the
focusing parameter D � c=oR � l=�2pR� differentiating a
laser pulse from a plane wave) and on the radiation
polarization. Physical aspects of the e�eÿ pair creation from
the vacuum after focusing superpowerful laser radiation are
beyond the scope of this paper. They are paramount in view of
rapid progress in laser technologies and are considered in
many other publications (see, e.g., Refs [54 ± 60] and the
references therein).

We also note that the problem of a quantum oscillator
with varying frequency pertains not only to the QED in
strong fields but also to the theory of particle creation in the
gravitational field near the cosmological singularity [66 ± 68].

8. Further applications
of the Feynman disentangling method

We here consider several more problems where the use of the
FDMmay be helpful.

(1) The first example is borrowed from Feynman's work
[6]. The introduction of an ordering index s for arbitrary
operators â and b̂ gives

exp �â� b̂� � exp

�� 1

0

�â� b̂� ds
�
� exp â exp

�� 1

0

b̂ 0�s� ds
�
;

�8:1�

where, in accordance with (2.8 0),

b̂ 0�s� � exp

�
ÿ
� s

0

â ds 0
�
b̂ exp

�� s

0

â ds 0
�

� exp �ÿsâ� b̂ exp �sâ� : �8:2�

This expression is formally exact, but the integral over s in
(8.1) is hardly possible to calculate in the explicit form, for all
its apparent simplicity, because �â; b̂� 6� 0. We suppose that
the operator b̂ is small in a certain sense and use this in the
perturbation theory:

exp �â� b̂� � exp â�
� 1

0

exp
��1ÿ s�â� b̂ exp �sâ� ds� . . . :

�8:3�

In the representation where the operator â is diagonal and has
eigenvalues an,

âjni � anjni ; hmjni � dmn ; �8:4�

it is easy to show that (8.3) implies a perturbation-theory
formula for matrix elements,

exp �â� b̂��

mn
� dmn exp an � exp am ÿ exp an

am ÿ an
bmn �O�b 2�

�8:5�
[cf. Eqn (2) in Ref. [6], where it is demonstrated that the use of
the FDM permits obtaining standard results of the theory of
time-dependent perturbations].

(2) The SchroÈ dinger equation for an atom's electron in the
field of an electromagnetic wave has the form

i
qc
qt
� Ĥc ; Ĥ � 1

2
p 2 � V�r; t� �U�r� ; �8:6�

where V�r; t� � ÿeEE�t�r is the dipole approximation,
EE�t� � ÿcÿ1 qA=qt is the electric field of a plane light wave,
and U�r� is the potential describing the electron interaction
with the atomic backbone. Equation (8.6) corresponds to the
so-called `length gauge' used by Keldysh in [69] and by many
authors after him.

Setting Â � �1=2�p 2, B̂ � EEr, and Ĉ � EEp, we have
�Â; B̂� � ÿiĈ ; �B̂; Ĉ� � iEE 2Î ; �Ĉ; Â� � 0 ; �8:7�

where Î is the unit operator (commuting with all the others).
The operator algebra thus closes, and it is possible to use the
FDM:

Ŝ�t; t0� � T exp

�
ÿi
� t

t0

Ĥ�t 0� dt 0
�

� exp

�
i
e

c
A�t�r

�
exp

�
ÿ i

2

� t

t0

P 2�t 0� dt 0
�
: �8:8�

The Wolkow wave function [37, 70]

cp�r; t� � Ŝ exp �ipr�

� �2p�ÿ3=2 exp
�
i

�
P�t�rÿ 1

2

� t

t0

P 2�t 0� dt 0
��

�8:9�

is frequently used in the theory of atomic ionization and
excitation by laser light. Here, P � pÿ �e=c�A�t� is the
generalized momentum.

Expression (8.8) corresponds to the interaction between
the atom and the external field chosen in the form

V�r; t� � 1

c
A�t�p� 1

2c 2
A2�t� ; �8:6 0�

and is referred to in the literature as the `velocity gauge.'
These two gauges are used in numerous works on the theory
of atomic ionization and excitation by intense laser radiation
(see, e.g., reviews [60, 71]). Our aim is to demonstrate that
using the FDM for disentangling operators contained in the
Hamiltonian makes it easy to pass from one wave function to
another. When disentangling operators in Ŝ�t; t0�, we assume
U�r� in (8.6) to be a short-range potential, which is a good
approximation in the case of ionization of one-charge
negative ions like Hÿ, Liÿ, or Naÿ (see, e.g., Refs [72, 73])
Ð the limiting case represented by the model of the zero-
radius potential, well-known in atomic and nuclear physics
[47].

(3)We consider a model with the hidden symmetry group:

Ĥ � Ĥ0 � x1�t�L� x2�t�A ; Ĥ0 � 1

2
p 2 ÿ 1

r
; �8:10�

where L � r� p is the orbital momentum,

A � 1

2

��L� p� ÿ �p� L�	� r

r

is the Laplace ±Runge ±Lenz vector, and the frequencies o1

ando2 are the given functions of time. The operator Ĥmay be
regarded as the projection of the hydrogen atomHamiltonian
in alternating electric and magnetic fields on the subspace of
fixed-energy states.
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As is known from Refs [17, 24], the hydrogen atom is
characterized by the so-called `accidental' degeneracy of
levels with given n � �ÿ2E �ÿ1=2 and orbital momenta l �
0; 1; . . . ; nÿ 1. This degeneracy is explained by the Hamilto-
nian Ĥ0 having not only the manifest geometric symmetry
group SO�3� but also the hidden symmetry group of the
Coulomb potential, i.e., the group SO�4� for discrete
spectrum states and the Lorentz group SO�3; 1� for the
continuous spectrum [17, 74 ± 78].

In the former case, settingM � �ÿ2H0�ÿ1=2A, we obtain
�L;L� � �M;M� � iL ; �L;M� � iM ; �8:11�
L2 �M 2 � �ÿ2H0�ÿ1 ÿ 1 � n 2 ÿ 1 ;

in correspondence with commutation relations for generators
of the four-dimensional rotation group SO�4� �
SO�3� 
 SO�3�. Passing to the commuting operators I1; 2 �
�L�M�=2, we have

Ŝ�t; 0� � exp �ÿiEnt� exp �ÿiX1I1� exp �ÿiX2I2� ;
�8:12�

X1; 2�t� �
� t

t0

�
x1�t 0� � 1

n
x2�t 0�

�
dt 0

for the evolution operator.
Further disentanglement of the operators I�, I0, and Iÿ is

performed by the FDM exactly as in the spin rotation
problem (see Section 4).

In the case of continuous-spectrum states with an energy
E � k 2=2 > 0, the operator M becomes non-Hermitian and
must be replaced with the operator N � �2H0�ÿ1=2A. This
leads to the commutation relations

�L;L� � iL ; �L;N� � iN ; �N;N� � ÿiL ; �8:13�

corresponding to the Lorentz group generators. 12 Further
computations are analogous to (4.12). The following nota-
tion was used in the foregoing discussion: �A;B� � iC means
that �Âj; B̂k� � iej k lĈl, where ej k l is the totally antisymmetric
3-tensor �e123 � 1� and the indices j, k, and l take values 1, 2,
and 3. Most of these equations correspond to the known
commutation rule [24]: �L;V� � iV, where L is the angular
momentum operator in the SO�3� group andV is an arbitrary
three-dimensional vector; the last of relations (8.13), differing
in sign from the two others, corresponds, in terms of group
theory, to the effect of Thomas precession in relativistic
quantum mechanics [79 ± 82].

In group theory, it is possible to write matrix elements of
transitions between states jn; l;mi of the hydrogen atom with
a fixed principal quantum number n. For En � ÿ1=2n 2 < 0,
these are Wigner functions for the representation D� j1; j2� of
the SO�4� group with j1 � j2 � �nÿ 1�=2; for the energy
E � k 2=2 > 0, they relate to the infinite-dimensional unitary
representation D�0; r� of the Lorentz group of the so-called
principal series [43]. The eigenvalue of the scalar F̂ is then
given by

F̂ � 1

2
M mnMmn � L2 ÿN 2 � ÿ

�
1� r 2

4

�
; �8:14�

where Mmn � xmpn ÿ xnpm is the orbital 4-momentum opera-
tor. This expression is derived from (8.11) by the replacement
n! ir=2, whence r � 2=k. The second invariant of the
Lorentz group (a pseudoscalar) is zero [it differs from zero
only when the particle has a spin [39 ± 42], but the electron
spin is neglected in (8.10)].

(4) Onemore example has amathematical slant. Let Â and
B̂ be operators commuting with �Â; B̂�:�

Â; �Â; B̂�� � �B̂; �Â; B̂�� � 0 : �8:15�

Formally introducing a parameter t (on which operators Â
and B̂ do not depend), we have

Ŝ�t� � exp
��Â� B̂�t� � exp

�� t

0

�Â� B̂� dt 0
�
:

Using the FDM, we then disentangle the first factor as

Ŝ�t� � exp �Ât� exp
�� t

0

B̂ 0 dt 0
�
; �8:16�

where, in accordance with (2.8 0),

B̂ 0�t 0� � exp �ÿÂt 0� B̂ exp �Ât 0� � B̂ÿ �A; B̂� t 0 :

Using the FDM procedure further and taking condition
(8.15) into account, we arrive at the Glauber formula [83]:

exp
��Â� B̂�t	 � exp �Ât� exp �B̂t� exp

�
ÿ 1

2
�Â; B̂�t 2

�

� exp �B̂t� exp �Ât� exp
�
1

2

ÿ�Â; B̂�t 2�� : �8:17�

Clearly, for noncommuting operators, exp �Â� B̂� 6�
exp Â exp B̂; this is the main difficulty in noncommutative
analysis to be overcome with the aid of the FDM.

Operators satisfying condition (8.15) are fairly frequent in
theoretical physics [47, 83, 89]; therefore, identity (8.17) is
quite useful. It is a special case of the Baker ±Hausdorff series
known from group theory:

exp Â exp B̂ � exp

�
Â� B̂� 1

2
�Â; B̂�

ÿ 1

12

��
Â; �Â; B̂��� ��Â; B̂�; B̂��� . . .

�
: �8:18�

The exponent in the right-hand side involves a formal power
series whose convergence is not discussed.We refer the reader
to Refs [84, 85] for the next terms of this series.

(5) We consider the operator U�a� � exp �aâ� ÿ a �â�,
which is unitary for any complex a:

U��a� � exp �a �âÿ aâ�� � U�ÿa� � Uÿ1�a� : �8:19�

It can be easily disentangled using relation (8.17):

U�a� � exp

�
ÿ 1

2
jaj2
�
exp �aâ�� exp �ÿa �â�

� exp

�
1

2
jaj2
�
exp �ÿa �â� exp �aâ�� : �8:20�

12 In the traditional realization of the Lorentz group, N̂i is the boost

operator (i.e., operator of a proper Lorentz transformation without axis

rotation) along the ith axis of the reference frame [39, 42].
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Hence,

U�a�j0i � exp

�
ÿ 1

2
jaj2
�X1

n� 0

a n����
n!
p jni � jai ; �8:21�

i.e., the operator U�a� maps the vacuum state j0i into the
coherent state jai preserving the normalization: hajai �
h0j0i � 1.

Here are more relations:

U��a� â U�a� � exp �ÿaâ�� â exp �aâ�� � â� a ;
�8:22�

U��a� â�U�a� � exp �a �â� â� exp �ÿa �â� � â� � a � ;

U�a�U�b� � U�a� b� exp �ij� ; j � Im �ab �� ; �8:23�

by virtue of which the operator U�a� is sometimes called the
displacement (shift) operator.

These relations, as well as the coherent states jai
themselves first introduced by SchroÈ dinger [86, 88], are still
extensively used in quantum optics to describe coherent
properties of laser light (see, e.g., Refs [87 ± 89]).

(6) The natural question whether the operators â and â�

have eigenfunctions is most easily answered in terms of the
Fock ±Bargmann representation for oscillators [90 ± 92], to
be considered inAppendixA. It turns out that the spectrum of
the annihilation operator â continuously fills the entire
complex plane, whereas the operator â� has no eigenfunc-
tions (see also Ref. [47]). This shows that non-Hermitian
(non-self-adjoint, to be precise) operators, such as â and â�,
may have very unusual properties.

(7) One more formula is worth noting [8]:

exp Â exp B̂ �
X1
n� 0

1

n!
B̂n ; �8:24�

where B̂0 � B̂ and B̂n�1 � �Â; B̂n�; its use typically results in an
infinite sequence of operators. Sometimes, however, the
process terminates:

if �Â; B̂N� � 0 ; then B̂N�1 � B̂N�2 � . . . � 0 ; �8:25�

and the system of a finite number of operators becomes closed
with respect to commutation relations. In this case, the FDM
may also be helpful.

The above examples give some idea of the advantages of
the FDM when used in quantum mechanics and mathema-
tical physics.

9. Counterexamples

There is a natural question concerning the possibility of using
the FDM in other problems. We start from the anharmonic
oscillator 13

Ĥ � 1

2
p 2 � g

4
x 4 : �9:1�

Consecutive computation of commutators using the rela-
tions

� p; xn� � ÿinxnÿ1 ; � pn; x� � ÿinpnÿ1 ;

� p 2; xn� � ÿin� pxnÿ1 � xnÿ1p� ; �9:2�
� p 2; pxn � xnp� � ÿ2in� p 2xnÿ1 � xnÿ1p 2�
ÿ in�nÿ 1��nÿ 2�xnÿ3

yields

� p 2; x 4� � ÿ4i� px 3 � x 3p� ;
� p 2; px 3 � x 3p� � ÿ6i� p 2x 2 � x 2p 2 � 1� ; �9:3�
� p 2; p 2x 2 � x 2p 2� � ÿ4i� p 3x� xp 3� ;
� p 2; p 3x� xp 3� � ÿ4ip 4 ; � p 2; p 4� � 0 ;

at this point, the chain of commutators starting from p 2

terminates. But we also have

� px 3 � x 3p; x 4� � ÿ8ix 6 ; � px 3 � x 3p; x 6� � ÿ12ix 8 ;

and in the general case,

� px 3 � x 3p; x 2k� � ÿ4ikx 2k�2 ; k � 1; 2; 3; . . . : �9:4�

In commutation, the powers of x become arbitrarily large,
and therefore the FDM does not lead, in this case, to a closed
operator algebra with a finite number of generators, and
disentanglement of the evolution operator Ŝ gives rise to an
infinite process. The same situation occurs when x 4 in
Hamiltonian (9.1) is replaced with anharmonism of the
general form x 2N;N5 2.

An exact solution of the SchroÈ dinger equation exists for
the Coulomb potential, besides the anharmonic oscillator. In
this case, the use of the FDM encounters the same difficulties
as above. As an example, for a one-dimensional model of a
`hydrogen atom,' H � p 2 � xÿ1, we have

� p 2; xÿ1� � i� pxÿ2 � xÿ2p� ;
� p 2; pxÿ2 � xÿ2p� � 2i� p 2xÿ3 � 2pxÿ3p� xÿ3p 2� ;

� pxÿ2 � xÿ2p; xÿ1� � 2ixÿ4 ;
�9:5�

� pxÿ2 � xÿ2p; xÿ4� � 8ixÿ7 ;

and so on. The chain of commutators does not terminate, and
progressively more singular (at x! 0) operators arise at each
new step. The situation is further aggravated with the
transition to the three-dimensional hydrogen atom:

�p 2; rÿ1� � i
��pr�rÿ3 � rÿ3�rp�	 ;

��pr�rÿ3 � rÿ3�rp�; rÿ1� � 2irÿ4 ; �9:6�
�p 2; rÿn� � in

��pr�rÿ�n�2� � rÿ�n�2��rp�	; . . . :

The above examples indicate that application of the
FDM in nonrelativistic quantum mechanics may be
restricted. It would be appropriate to assess, parallel to the
search for new exact solutions, whether the FDM can be
used with approximate and qualitative methods of quantum
theory [98, 99].

13 A popularmodel in quantummechanics and field theory examined from

various perspectives by many authors (see, e.g., Refs [93 ± 97]); however,

the FDM appears to have never been applied to this model. Here, we omit

the hats �b� over the operators for brevity.
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10. Conclusion

We have considered several quantummechanical problems in
which the FDM permits us to completely disentangle
operators entering a Hamiltonian and obtain the exact
(analytic) solution of the time-dependent SchroÈ dinger equa-
tion. However, the FDM is far from being a universal
method, in contrast, for example, to the Feynman diagram
technique in the perturbation theory. The application of the
FDM is hard to standardize and it requires ingenuity.
Nevertheless, if realized successfully, it permits having a
solution in the case of arbitrary time-dependent changes of
Hamiltonian parameters, such as the force f �t� and the
frequency o�t�, which is interesting in itself. A few remarks
are in order.

(1) The problem of oscillator excitation by an external
force involves only two operators, â and â�, whose commu-
tator is a c-number; therefore, the use of the FDM leads
directly to the desired result [6]. The authors of Refs [10 ± 12]
considered cases in which operators of a Hamiltonian gave
rise to Lie algebra containing three generators �Ĵ�, Ĵ0, and
Ĵÿ�. The evolution operator Ŝ is disentangled in the frame-
work of the FDM by the so-called `incomplete disentangling'
technique [12] as described in [10], the essence of which is
apparent from formulas (4.5) ± (4.8). The Riccati equation
emerging from the use of the FDM fixes the amplitudes Anm

and the quantum transition probabilities wnm � jAnmj2. The
amplitudes Anm are expressed via matrix elements of
irreducible unitary representations of the SU�2� group or its
noncompact analog SU�1; 1�; this simplifies solving the
problem.

(2) As regards field theory, Feynman [6] discussed the
possibility of applying themethod in question to certain QED
problems, such as the proof of equivalence of various QED
formulations (byDirac, Fock,Dyson, and Feynman himself),
and the application of the FDM to the Dirac equation in a
nonquantized external field. However, we are unaware of any
further continuation of these studies. It would be very
interesting to look for new applications of the FDM not
only in quantum mechanics but also in field theory.

(3) It should be mentioned that the FDM is also
considered in the mathematical literature under the guise of
noncommutative analysis (see [100] and the references
therein). The authors of these works use complicated
mathematical constructions and terminology that are not
familiar to physicists (filter of sections, operator symbol,
poly-Banach algebras, etc.). To my knowledge, no new
physical results have been obtained in these studies.

(4) A function of noncommuting variables is a muchmore
complicated mathematical object than an ordinary function
and requires developing appropriate tools. It is worth noting
an alternative approach to this problem developed in
Refs [101 ± 103]. We confine our consideration to the
exponential and set

exp
��â� b̂�t	 � exp �b̂t� K̂�t� exp �ât� ; �10:1�

where t is a parameter (either real or imaginary). The factor K̂
takes the noncommutativity of the operators into account (if
�â; b̂� � 0, then K̂�t� � 1) and is to be determined from the
differential equation

qK̂
qt
� exp �b̂t� â exp �ÿb̂t�K̂ÿ K̂â �10:2�

with the initial condition K̂�0� � 1,

exp �ÿb̂t� â exp �b̂t� � â�
X1
n� 1

�ÿt�n
n!

�
b̂
�
b̂; . . . �b̂;|�������{z�������}
n times

â� . . .
��
:

�10:3�

As a rule, all commutators here differ from zero, and solving
the problem is extremely difficult. But if the operators â and b̂
are such that the majority of commutators vanish, the
equations may have a simple solution. Hence, it is easy to
deduce Glauber formula (8.17) and consider cases such as
�â; b̂� � ÿlâ, where

exp
��â� b̂�t	 � exp �b̂t� exp

�
â
�
1ÿ exp �ÿlt��

l

�
�10:4�

(l is a c-number) or �â; b̂� � lb̂, where

exp
��â� b̂�t	 � exp

�
b̂
�
exp �lt� ÿ 1

�
l

�
exp �ât� : �10:4 0�

The FDM and the method used in Refs [101 ± 103] are
mutually complementary, although the author considers the
FDM to be a more general technique. For example, for
arbitrary operators â and b̂, the FDM gives

exp
��â� b̂�t	 � exp

�� t

0

�â� b̂� dt
�

� exp �b̂t� exp
�� t

0

exp �ÿb̂t� â exp �b̂t� dt
�

� exp

�� t

0

exp �ât� b̂ exp �ÿât� dt
�
exp �ât� ; �10:5�

whence formulas (10.4), (10.4 0), and some others follow
immediately.

The present work originates from a question put to the
author by I Ya Pomeranchuk many years ago: What
quantum mechanics problems, besides those considered in
[6, 10], can be solved with the help of the FDM? The author is
indebted to K G Boreskov, L B Okun, V A Rubakov,
Yu A Simonov, and M A Trusov for reading the manuscript
and for their useful comments. Thanks are also due to
V D Mur for the discussion of the results and for bringing
Refs [101 ± 103] to the author's attention. The author thanks
S G Pozdnyakov for numerical calculations and N S Libova
and M N Markina for assistance in preparing this paper for
publication.

The work was supported in part by the RFBR grant nos
04-02-17157 and 07-0201116.

11. Appendices

A. Fock ±Bargmann representation
We recall the main formulas for this representation [90 ± 92].

(1) Realization of the creation and annihilation operators:

â� � z ; â � d

dz
; �A:1�

where z 2 C is an auxiliary complex variable. The Hilbert
space of oscillator states is realized in analytic functions of z.
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(2) The scalar product of wave functions:

hcjji �
�
c ��z�j�z� dm�z� ; dm�z� � 1

p
exp �ÿr 2� r drdj ;

where

z � r exp �ij� ; 04r <1 ; 04j4 2p ;
�
dm�z� � 1 :

�A:2�

(3) The Hamiltonian of a harmonic oscillator and other
operators:

Ĥ � 2Ĵ0 � 1

2
o�ââ� � â�â� � o

�
z
d

dz
� 1

2

�
;

x̂ � 1������
2o
p

�
z� d

dz

�
; p̂ � i

�����
o
2

r �
zÿ d

dz

�
; �A:3�

p̂x̂� x̂p̂ � 4Ĵ1 � 1

2i

�
d2

dz 2
ÿ z 2

�
:

(4) Normalized wave functions of stationary (n-quantum)
states: 14

hzjni � z n����
n!
p ; hnjn 0i �

�
hnjzihzjn 0i dm�z� � dnn 0 : �A:4�

For comparison, in the coordinate representation [24, 47],
they become

hxjni � �2 nn!�ÿ1=2
�
o
p

�1=4

Hn

ÿ ����
o
p

x
�
exp

�
ÿ 1

2
ox 2

�
; �A:4 0�

where Hn is the Hermit polynomial.
(5) The following equality is satisfied:X1
n� 0

hzjnihnjz 0i �
X1
n� 0

�zz 0 ��n
n!

� exp �zz 0 �� � d�z; z 0� ;

where d�z; z0� plays the role of the d-function in integration
with the measure dm�z�: c�z� � � d�z; z0�c�z0� dm�z0�.

(6) Coherent states:

jai � exp

�
ÿ 1

2
jaj2
�X1

n� 0

a n����
n!
p jni ;

�A:5�
hzjai � exp

�
ÿ 1

2
jaj2 � az

�
;

these functions are not mutually orthogonal,

hajbi � 
0��U�ÿa�U�b���0� / haÿ bj0i ; �A:6���hajbi��2 � exp
ÿÿjaÿ bj2� 6� 0 ;

and form an overcomplete system [47, 105]. Time evolution of
the coherent state:

ja; ti � exp

�
ÿ iot

2

���a exp �ÿiot�� : �A:7�

(7) The problem of eigenvalues of the operators â and â�

is easily solved in the Fock ±Bargmann representation.

Taking (A.1) into account leads to the equations

âca�z� �
dca

dz
� aca�z� ; â�cl�z� � zcl � lcl�z� ;

�A:8�

the first of which has the obvious solution

ca�z� � N exp �az� � N
X1
n� 0

a n����
n!
p hzjni �A:9�

[see (A.4)] with jNj � exp
�ÿ�1=2�jaj2� from the normaliza-

tion condition. Similarly, the eigenvalue of the annihilation
operator â may be any complex number a and its eigenfunc-
tions coincide with coherent states.

On the other hand, the second equation in (A.8) has the
form �zÿ l�cl�z� � 0, which is satisfied only under the
condition cl�z� � 0; such a function is not an eigenfunction.

(8) Following [106], we now show how the problem of
evolution of a constant-frequency oscillator is solved in the
Fock ±Bargmann representation. The SchroÈ dinger equation

i _c �
�
o
�
z
d

dz
� 1

2

�
ÿ f �t�������

2o
p

�
d

dz
� z

��
c �A:10�

has the solution c�z; t� � exp �az� b�j�zÿ c; t�, where a, b,
and c are certain functions of time. Substituting this solution
in (A.10), we obtain the equation

i

�
_j� � _az� _b�jÿ _c

qj
qz

�
� o

�
z
qj
qz
�
�
az� 1

2

�
j
�

ÿ f �t�������
2o
p

�
qj
qz
� �z� a�j

�
: �A:10 0�

Let the function j�z; t� satisfy the free (without an external
force) equation

i _j � o
�
z
q
qz
� 1

2

�
j :

Equating the coefficients at j, zj, and qj=qz, we obtain the
equations

i _a � oaÿ �2o�ÿ1=2 f �t� ;
i _b � ÿ�2o�ÿ1=2 f �t�a ; �A:11�
i _c � ocÿ �2o�ÿ1=2 f �t� ;

whence

a�t� � c ��t� � i������
2o
p

� t

0

f �t 0� exp �ÿio�tÿ t 0�� dt 0
� i exp �ÿiot� b ��t� ; �A:12�

b�t� � b1 � ib2 � i������
2o
p

� t

0

f �t 0�a�t 0� dt 0 ;

with

d

dt

��a�t���2 � �����
2

o

r
f �t�a2�t� ; �A:12 0�

b1�t� � ÿ 1������
2o
p

� t

0

f �t 0�a2�t 0� dt 0 � ÿ 1

2

��a�t���2 �A:12 00�

14 We use Dirac's notations [104] �h � m � 1.
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[see b�t� in (3.10); we assume here that t0 � 0]. Because
a � b � c � 0 at t � t0, j�z; 0� coincides with the wave
function of the initial oscillator state c0�z�. Hence, for
t > t0 � 0,

c�z; t� � exp

�
ÿ 1

2

��a�t���2 � a�t�z� ig
�
c0

ÿ
zÿ a ��t�; t� ;

�A:13�

which solves the problem of evolution of an arbitrary initial
state. We consider two examples.

(a) If the initial oscillator state is a coherent state jai, then

c�z; t� � exp

�
ÿ 1

2
ja� aj2 � �a� a�z� ig 0

�
; �A:14�

where g and g 0 are t-dependent complex phases and a�t� is
defined in (A.12). Therefore, the oscillator is at any time in the
coherent state jai up to an inessential phase factor:

a�t� � a�t0� � a�t� : �A:15�

Specifically, if a�t0� � 0, then c0�z� � hzj0i � 1 and
c�z; t� � exp �az� b1�. The Taylor series expansion of this
function leads directly to (3.18) with the parameter n � jaj2.
Similarly, in the case of transitions from the first level,
c�z; t� � �zÿ a �� exp �az� b�, which gives formula (3.18 0).

(b) In the case of the m-quantum initial state,

c�z; t� � �zÿ a ��m�����
m!
p exp

�
ÿ 1

2

��a�t���2 � az� ig 00
�
: �A:16�

The known formulas [20, 21]

exp �az� �zÿ a ��m �
X1
k� 0

Lmÿk
k

ÿjaj2��ÿa ��mÿkzk ;
Lmÿk
k �x� � m!

k!
�ÿx�kÿmLkÿm

m �x� ; k5m ;

allow expanding the wave function (A.16) in the basis
functions hzjni, which immediately gives (3.14), where
n � ��a�t���2 as t! �1.

(9) The Fock ±Bargmann method is generalized in
Ref. [107] for the hydrogen atom, whose wave functions of
the discrete spectrum take a very simple form. In the
parabolic basis jn1; n2;mi,

hzjn1n2mi � �nÿ 1�!�
n1! n2!

ÿ
n1 � jmj

�
!
ÿ
n2 � jmj

�
!
�1=2 zn1�m1 z n2�m2 ;

�A:17�
where z � �z1; z2�, z1; 2 are two independent complex vari-
ables, n1 and n2 are parabolic quantum numbers,
n � n1 � n2 � jmj � 1 [24], m � ÿm� jmj�=2, and wave func-
tions in the spherical basis jnlmi are homogeneous polyno-
mials in z1 and z2 of degree n�mÿ 1. For ns and np states,

hzjn; 0; 0i � a0�z1 ÿ z2�nÿ1 ; a0 � nÿ1=2 ; �A:18�
hzjn; 1; 1i � b1z1z2�z1 ÿ z2�nÿ2 ;
hzjn; 1; 0i � b0�z1 � z2��z1 ÿ z2�nÿ2 ; �A:19�
hzjn; 1;ÿ1i � bÿ1�z1 ÿ z2�nÿ2 ;

in the general case, for states with the maximum projection
m � l,

hzjn; l; l i � Anl�z1z2�l �z1 ÿ z2�nÿlÿ1 ; �A:20�

next, there is a descent along m to m � ÿl:

hzjn; l;mÿ 1i �
��������������������

l�m

lÿm� 1

r �
q
qz1
� q
qz2

�
hzjn; l;mi ; �A:21�

with coefficients bm and Anl defined in Ref. [107]. By
expanding the polynomial hzjnlmi in powers of z1 and z2 and
taking (A.17) into account, we find [107] the relation between
the wave functions in these two bases [108, 109]:

jnlmi �
X

m1 �m2 �m

Clm
jm1 ; jm2

jn1n2mi ; �A:22�

where 04 l4 nÿ 1, j � �nÿ 1�=2, m1 � �m� n1 ÿ n2�=2,
m2 � �mÿ n1 � n2�=2, and Clm

jm1; jm2
is the Clebsch ±Gordan

coefficient. The very possibility of such a relation is due to the
`hidden' symmetry group of the Coulomb field allowing the
decomposition SO�4� � SO�3� 
 SO�3� and the Clebsch ±
Gordan coefficients being related to the summation of two
orbital momenta j � �nÿ 1�=2 in the SO�3� group.

B. About the quantum oscillator excitation parameter
We start from Hamiltonian (3.1), assuming that
f �t� � F0j�t=t� in (3.10), where j is a dimensionless
function. Then,

n � n0�ot�2
�����1ÿ1 j�s� exp �ÿiots� ds

����2
� n0

�����1ÿ1 _j�s� exp �ÿiots� ds
����2 ; �B:1�

where

n0 � F 2
0

2m�ho3
� 1

2

�
d

x0

�2

� ÿDE
�ho

; �B:2�

d � F0=mo2 is the displacement of the oscillator equilibrium
position, x0 �

������������
�h=mo

p
, and DE � ÿF 2

0 =2mo2 is the shift of
the oscillator energy in the presence of a uniform external
field F0. The last equality in (B.1) holds when f �t� does not
vanish as t! �1 but tends to constant limits f�.

If t4 1=o, the excitation parameter n is exponentially
small (adiabatic), as shown in examples below.

1: j �
�
1� exp

�
ÿ t

t

��ÿ1
; n � n0

�
pot

sinhpot

�2

:

If t! 0, then j � y�t� and n � n0; in other words, the
parameter n0 corresponds to oscillator excitation under an
instantaneous jump of the external force f �t� from 0 to F0.
Further on,

2: j �
�
cosh

t

t

�ÿ2
; n � n0�ot�4

sinh2 �pot=2� ;

3: j � exp

�
ÿ t 2

2t 2

�
; n � 2pn0�ot�2 exp

�ÿ�ot�2	 :
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In the adiabatic case, i.e., for ot4 1, the value of n is
determined by the contribution of a singular point of the
function j closest to the real axis, which accounts for the
exponential smallness of this parameter.

The same situation holds for the oscillator with varying
frequency (5.2). A characteristic example is

o�t� �
�
1

2

�
o2
� � o2

ÿ � �o2
� ÿ o2

ÿ� tanhot
��1=2

; �B:3�

with [24, 110]

r �
�
sinh

�
p�o� ÿ oÿ�=2o

�
sinh

�
p�o� � oÿ�=2o

��2

�B:4�

and o! 0 (adiabatic case); then,

r � exp

�
ÿ 2po<

o

�
�O

�
exp

�
ÿ p�o� � oÿ�

o

��
; �B:5�

where o< � min �o�;oÿ�. But if the oscillator frequency
changes abruptly �o4o��, then

r �
�
o� ÿ oÿ
o� � oÿ

�2�
1ÿ p2

3

o�oÿ
o2

� . . .

�
; �B:6�

which becomes (5.13) in the limit as o!1. The adiabatic
approximation is inapplicable here, and the excitation
parameter r is not small in general.

Generalization of formulas (B.3) and (B.4) corresponding
to the exactly solvable Eckart potential [64] in quantum
mechanics,

o2�t� � o2
�

1� exp �ÿ2ot� �
o2
ÿ

1� exp �2ot�

� o2
0 ÿ o2�

exp �ot� � exp �ÿot��2 ; �B:7�

is presented in Ref. [11]. Exponential asymptotic form (B.5)
remains valid in the adiabatic region.

C. Spin rotation in a magnetic field
and the Riccati equation
We consider an alternating magnetic field

Hx � H1 cosot ; Hy � H1 sinot ; Hz � H0 ; �C:1�

related to the experimental measurement of magnetic
moments of atomic nuclei [111]. In this case, Eqn (4.8)
becomes

i
da

dt
� 1

2
sin y

�
exp �ÿilt� ÿ a 2 exp �ilt��� a cos y ; �C:2�

where

t � o0t ; o0 � ÿg
�������������������
H 2

0 �H 2
1

q
� ÿ gH0

cos y
;

H1

H0
� tan y ; l � o

o0
;

with lt � ot. It is easy to see that it has a special solution of
the form a�t� � N exp �ÿilt� (the constant N is found from
the quadratic equation). This suffices [112] for obtaining the

general solution of the Riccati equation, which allows
satisfying the initial condition a�t0� � 0. As a result, 15��a�t���2 � tan2

#

2
� sin2 d

D� cos2 d
; D �

�
lÿ cos y
sin y

�2

�C:3�

[cf. (4.12)]. According to (4.13), the probability of a flip of
spin s � 1=2 in a magnetic field of form (C.1) is

wÿ1=2; 1=2 � sin2 d
1� D

� sin2 y

1ÿ 2l cos y� l2
sin2 d4

1

1� D
;

�C:4�

where d � �1=2�o0�tÿ t0�
����������������������������������
1ÿ 2l cos y� l2

p
. For a particle

with an arbitrary spin s,

wÿs; s�t� �
�
wÿ1=2; 1=2�t�

�2s
: �C:5�

The particle spin may completely flip over if
d � �n� 1=2�p and D � 0 or o � o0 cos y � gH0 (magnetic
resonance [33, 111]; see [34] for more details).

Majorana [25] considered the magnetic field

Hx � A ; Hy � 0 ; Hz � ÿCt ; �C:6�

where A and C are certain constants. In this case, Eqn (4.8)
has a rather simple form,

_a � ig
�
1

2
A�1ÿ a 2� ÿ Cta

�
; �C:7�

but Majorana solved SchroÈ dinger equation (4.1) for spin
s � 1=2 instead of (C.7). He deduced the following equation
for spin-flip probability through time from t � ÿ1 to t � 1:

wÿ1=2; 1=2 � exp

�
ÿ p
2
k

�
; k � gA2

C
; �C:8�

where g is the gyromagnetic ratio. The numerical example [25]
characterizing the degree of adiabaticity violation is
wÿ1=2; 1=2 � 21% and 4.3% at k � 1 and 2.

To conclude, here are functions entering (4.3) in the
simplest case where the magnetic field changes in strength
but preserves its direction in space (the field is parallel to the
z axis):

a�t� � c�t� � 0 ; b�t� � ig
� t

t0

Hz�t 0� dt 0 : �C:9�

D. Unitarity condition
The derivation of formula (5.11) for transition probabilities in
Ref. [11] is based on the analytic continuation of Wigner
functions from a compact to a noncompact group:

d � j �mn �#� ! f � j �mn �b� ; #! ib : �D:1�

Mathematically, such a method is not rigorous; moreover,
comparison of formulas (1.8) and (1.9) indicates that unitarity

15 See [10] for computation details. In that work, normalization of spin

operators Ŝ� differs from the normalization in the present paper; hence,

the necessity to introduce additional factors �2ÿ1=2 in the expressions for

the functions a�t� and c�t� in Ref. [10]. In the notation of Ref. [10],

d � �mÿ l�t=2.
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can be violated in this case. 16 It is therefore necessary to verify
the unitarity for the representations with weights j � ÿ1=4
and ÿ3=4 that we use.

In the case of an oscillator with varying frequency for
transitions from two lower levels (m � 0 and 1), unitarity
condition (5.22) takes the form�����������

1ÿ r
p X1

k� 0

G�k� 1=2�
k!G�1=2� r k

� �1ÿ r�3=2
X1
k� 0

G�k� 3=2�
k!G�3=2� r k � 1 �D:2�

and is satisfied in accordance with Newton's binomial
formula. It was numerically verified with high accuracy
�� 10ÿ12� for m � 2 and 3 [11] and analytically proved
thereafter for all m and r based directly on (5.11). Unfortu-
nately, it is impracticable to reproduce this proof [113] here
because of its unwieldiness.

In the general case of time-dependent o�t� and f �t�,
expressions for wnm are too complicated. Therefore, we
confine the discussion to transitions from the ground state,
m � 0. Such an approach requires certain data from the
theory of special functions, unlike situations where the
frequency o is independent of t or the force f �t� is absent
(these cases allow elementary verification of the unitarity in
transitions j0;oÿi ! jn;o�i). We use Meler's formula (see
formula 10.13.22 in [20]):

X1
n� 0

r n=2

2 nn!

����Hn

�
z���
2
p
�����2 � 1�����������

1ÿ r
p exp

�
jzj2

���
r
p ÿ r cos 2j

1ÿ r

�
;

�D:3�
wherej � arg z andHn is theHermit polynomial. In our case,
jzj2 � 2n=sinhb � n�1ÿ r�= ���

r
p

and (6.9) is taken into
account. It is therefore easy to see that the probabilities wn0

in (6.8) satisfy the unitarity condition at arbitrary parameters
n, r, and j.

We can proceed further in the case of a constant-
frequency oscillator. Schwinger used the quantum action
principle [22, 114] and showed [115] that

X1
m� 0

wnm�n�um � unLn

�
ÿ n�1ÿ u�2

u

�
exp �nuÿ n� �D:4�

(in Ref. [115], u � exp �ÿbo�, where o is the oscillator
frequency, and bÿ1 � y can be interpreted as the thermostat
temperature). Hence, with formula 22.9.15 in [21], the
generating function is given by

G�u; v� �
X1

m; n� 0

wnmu
mv n

� �1ÿ uv�ÿ1 exp
�
ÿn �1ÿ u��1ÿ v�

1ÿ uv

�
: �D:5�

In this case, G�u; 1� � �1ÿ u�ÿ1 �P1m� 0 u
m; this means that

unitarity relation (3.20) is satisfied for any m. Also, the
function G�u; v� is symmetric with respect to u and v, and
therefore wnm�n� � wmn�n� for an arbitrary form of the force
f �t�. Such a symmetry of the transition probabilities with

respect to initial and final states is oscillator-specific and is
related to the properties of the coefficient of reflection from a
one-dimensional barrier (as noticed by L P Pitaevskii, see [47,
p. 259]). At u � 0, Eqn (D.5) gives Poisson distribution (3.18).
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