
Abstract. An account is given of the Wigner concept of particle
spin and velocity rotations and of the variation of the angle
between them under Lorentz transformations with noncol-
linear velocities. It is shown that Mùller's description of spin
rotation can be reduced to the Wigner rotation, and Mùller's
formula for the angle of spin rotation in the curvilinear motion
of a particle is corrected. The permutation asymmetry of the
relativistic velocity addition law distinguishes the Wigner se-
quence of Lorentzian boosts by its applicability to the descrip-
tion of spin and velocity rotations in curvilinear motion.

1. Introduction

The angle between the direction of a particle spin and its
velocity is not a Lorentz invariant. For example, we consider
a proton resting on the platform of the Bologoe station, with
its spin pointing toward St. Petersburg. For the observer
traveling past Bologoe in a train from St. Petersburg to
Moscow, the angle between the spin and the velocity is then
equal to zero, while for the observer going from Moscow to
St. Petersburg it is equal to p. But zero-mass particles have no
rest frame. For them, the angle between the spin and the
velocity is either zero or p and is a Lorentz invariant, like the
value of spin in the direction of particle motion.

2. Wigner rotation

The nontrivial relation between the spin rotation angle of a
massive particle and its momentum rotation angle under
Lorentz transformations was repeatedly considered by

Wigner [1, 2]. (See the collection in Ref. [3] for Russian
translations of these articles.) Here, we give an excerpt of
Wigner's article [1] that is significant for the subsequent
discussion; we change only the numbering of formulas and
set the speed of light equal to unity. Wigner wrote:

``Consider a particle at rest andpolarized in the zdirection.
Impart to it a velocity in the z direction by subjecting it to a
Lorentz transformation with the hyperbolic angle a. Later,
this angle will be assumed to be very large so as to make this
particle highly relativistic. At any rate, we now have a particle
which is polarized in the direction of its motionÐwhich is in
the z direction. In order to obtain a particle which is polarized
in the direction of its motion, but is moving in another
direction, one would first subject the particle to a rotation to
bring the polarization into the direction of its projected
motion and then accelerate it in the desired direction. In
order to test whether the statement, that the polarization has
the direction of the motion of the particle, is relativistically
invariantwe subject the particlewhichmoves in the direction z
and is properly polarized, to a second acceleration, in the x
direction, by the hyperbolic angle e. This angle is arbitrary but
will be assumed, at the end, to be much smaller than a. The
particle could have achieved the same state ofmotion by being
accelerated by the hyperbolic angle a 0 in the direction which
includes an angle # with the z axis where

cosh a 0 � cosh a cosh e ; sin# � cosh a sinh e
sinh a 0

: �1�
However, the direction of polarization would not be the same
in the second case as in the first case. In order to make it the
same, one has to rotate the system, before accelerating it in the
# direction, by an angle #ÿ d where d is given by

sin d � sinh e
sinh a 0

� sinh e���������������������������������������
cosh2 a cosh2 eÿ 1

p : �2�

This follows, simply, from the identity for Lorentz transfor-
mations

A

�
p
2
; e
�
A�0; a� � A�#; a 0�R �#ÿ d� ; �3�
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where a, e are arbitrary while a 0, # and d are defined by the last
two equations [i.e., Eqns (1) and (2)ÐTranslator's com-
ment]. A �#; a� is the acceleration by a hyperbolic angle a in
that direction in the xz plane which includes an angle # with
the z axis; R�j� is a rotation by j in the xz plane. If d were
zero, the particle which was polarized in the direction of its
motion after the acceleration a, would have remained
polarized in the direction of its new motion (i.e., the #
direction) after the second acceleration, by e. This is not the
case, as d is finite. However, d is very small if e5 a, i.e., if the
second acceleration is by a much smaller hyperbolic angle
than the first, and if a4 1''.

The matrix A �0; a� of the Lorentz transformation (a
boost) that imparts the velocity v � tanh a to a system of
coordinates S 0 along the z axis relative to a system S is given
by

A �0; a� �
 
1 0 0
0 cosh a sinh a
0 sinh a cosh a

!
: �4�

The matrix R�#� of the clockwise rotation of the S 0 system
through an angle # in the x, z plane of the system S is

R�#� �
 

cos# sin# 0
ÿ sin# cos# 0

0 0 1

!
: �5�

Three rows and three columns of these matrices pertain to the
axes x, z, t and x 0, z 0, t 0 of the respective systems S and S 0. It is
therefore natural to use the notation ASS 0 �#; a� and RSS 0 �#�
for thematrix elements, where the subscripts S andS 0 take the
values x, z, t and x 0, z 0, t 0. The direction in the x, z plane
between the x and z axes that makes an angle #with the z axis
is called the `# direction' in what follows. Then, the Lorentz
transformation

ASS 0 �#; a� �
ÿ
R�#�A�0; a�R�ÿ#��

SS 0

�
 cos2 #� sin2 # cosh a sin# cos# �cosh aÿ 1� sin# sinh a
sin# cos# �cosh aÿ 1� sin2 #� cos2 # cosh a cos# sinh a

sin# sinh a cos# sinh a cosh a

!

�6�

imparts the velocity v � tanh a to the system of coordinatesS 0

in the # direction relative to the system S.
The above expressions for the matrices A�#; a� and R�#�

allow verifyingEqn (3) using relations (1) and (2). This is done
most conveniently when equality (3) is represented as

A�#;ÿa 0�A
�
p
2
; e
�
A�0; a� � R�#ÿ d� ; �7�

using that the matrix A�#;ÿa� is the inverse of A�#; a�.
Equality (3) signifies that the product of two pure Lorentz

transformations with nonparallel velocities does not reduce
to a pure Lorentzian transformation, i.e., such transforma-
tions do not form a group. But pure Lorentzian transforma-
tions and spatial rotations do form a group Ð the homo-
geneous Lorentz group.

When the left-hand side of (3) is written in the form
ASS1
�p=2; e� � AS1S2

�0; a�, it can be interpreted as follows.
The boost AS1S2

�0; a� imparts the velocity v � tanh a to the
system S2 along the z1 axis relative to the system S1, and the
boost ASS1

�p=2; e� imparts the velocity v1 � tanh e to the
system S1 along the x axis relative to the system S. If the

origins of the three inertial systems S, S1, and S2 were at a
common point at the instant t � 0, then at the laboratory time
instant t they are at the points of the laboratory system S
indicated by S, S1, and S2 in Fig. 1.

It is evident that at the instant t in laboratory time, the
origin S1 is at the distance v1t from the origin S. At the same
instant, in the laboratory system, the origin S2 is at the
distance �v=g1� t, g1 � 1=�1ÿ v 2

1 �1=2, from the origin S1.
Indeed, the origin S2 is at the distance vt1 from the origin S1

at the instant t1 of the proper time of the system S1, and this
instant is related to the instant t in laboratory time as t1 � t=g1
due to the time dilation for the moving clock in comparison
with the laboratory one. Therefore,

vt1 � v

g1
t : �8�

The velocity of the origin S2 in the laboratory system S is then
given by

v2 � v1 � v

g1
; �9�

and its absolute value is

v2 �
����������������
v 21 �

v 2

g21

s
� tanh a 0 ; �10�

where, instead of the velocities v and v1, we use the hyperbolic
angles a and e,

v � tanh a ; v1 � tanh e ; �11�

and their relation (1) to the hyperbolic angle a 0. Therefore, the
velocity of the Lorentz transformation A�#; a 0� in the right-
hand side of (3) is related to the hyperbolic angle a 0 by the
standard relation (10). Figure 1 also confirms formula (1) for
the angle # between the velocity v2 and the z axis of the
laboratory system S:

sin# � v1
v2
� tanh e

tanh a 0
� sinh e cosh a

sinh a 0
: �12�

The right-hand side of (3) represented as
ASS 0

2
�#; a 0�RS 0

2
S2
�#ÿ d� can be interpreted as follows. The

transformation RS 0
2
S2
�#ÿ d� rotates the system S2 clockwise

through the angle #ÿ d relative to S 02, and the boost
ASS 0

2
�#; a 0� imparts the velocity v2 in the # direction to the

system S 02.
Thus, if a particle is initially at rest in the laboratory

system S and its spin is directed along the z axis, then two
Lorentz boosts involved in the left-hand side of (3) first rotate
its spin clockwise by the angle #ÿ d and then impart the

x, x1

x2

z1, z02

z2

x 02
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S 02
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#

#ÿ d
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Figure 1.
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velocity v2 to the particle in the # direction.Wigner's formulas
(1) and (2) for the spin rotation angle imply the formula

o � #ÿ d � arcsin
sinh a sinh e

1� cosh a cosh e
: �13�

We note an important limit case: when the first boost
A�0; a� imparts a velocity v arbitrarily close to the speed of
light to the particle, i.e., a!1, v! 1, the second boost
A�p=2; e� rotates this velocity by a finite angle #, leaving this
velocity arbitrarily close to 1. In fact, writing formula (10) as

v2 �
��������������������������������
v 21 � v 2�1ÿ v21�

q
�

���������������������������������
v 2 � v 21 �1ÿ v 2�

q
�14�

and letting v tend to 1, we obtain v2 ! 1. In this case, it
follows from formula (12) that sin#! v1. For v � 1, formula
(12) becomes the special case of formula (5.6) in [4] for the
aberration of light.

Formulas (1) and (2) imply simple relations for the angle d:

tan d � tanh e
sinh a

� tan#

g1g
; sin d � sin#

cosh a
� sin#

g
: �15�

The first of these formulas coincides, in another notation,
with formula (1.7) in Ref. [2]. As v! 1 (g!1), the angle
d! 0, i.e., the angle between the spin and the velocity
vanishes for ultrarelativistic particles.

For the velocity v1 5 v, the angles # and d are small and
g1 � 1. In this case, d � #=g and hence the spin rotation angle
o � #ÿ d is related to the velocity rotation angle # by the
simple formula

o � #ÿ d �
�
1ÿ 1

g

�
#; g � �1ÿ v 2�ÿ1=2; #5 1 : �16�

For ultrarelativistic particles, the spin and velocity rotation
angles coincide.

3. Three-parameter formulas
for the spin rotation angle

The spin rotation was considered in the more general case,
where the velocities v and v1 of two successive Lorentz
transformations are not orthogonal, by Stapp [5], the author
[6], and several others. In this case, the velocity v2 of the origin
of the system S2 relative to the laboratory system S is given by
the vector sum

v2 � 1

1� vv1

�
v1

� �vv1�
v 21

�
1ÿ 1

g1

�
� 1

�
� v

g1

�
� v1 � v

�17�

of the velocity v of the system S2 relative to S1 and of the
velocity v1 of the system S1 relative to S. Formula (17)
expresses the relativistic summation law for velocities v1 and
v and coincides with formula (5.1) in Ref. [4] if the velocities
v1, v, and v2 are replaced by the respective velocitiesV, v 0, and
v in Ref. [4].

In (17), we also introduce the notation for the sum of two
velocities with coefficients depending on the absolute values
of these velocities and the angle between them. The succession
of velocities in this notation is made clear when the velocities
are endowed with physical meaning by assigning the indices
of the reference systems to each of them. Then, if vS1S2

denotes

the velocity v of the system S2 relative to S1 and so forth,
expression (17) takes the form

v2SS2
� v1SS1

� vS1S2
:

We note that if velocities v, v1, and v2 satisfy summation law
(17), then they also satisfy the inverse summation law
v � �ÿv1� � v2.

For the spin rotation angle o, Stapp [5] derived the
formula

n sino � �vv1� gg1
1� g� g1 � g2

�1� g��1� g1��1� g2�
;

g2 � gg1�1� vv1� ; �18�

where n is the unit vector along the direction of the vector
product �vv1�. In this formula, o is expressed in terms of three
independent parameters, not two as in Wigner's formulas: in
terms of the absolute values v, v1 of the velocities v, v1 and the
angle between them, because g2 is also expressed in terms of
these three quantities.

When the velocities v and v1 are orthogonal, the velocity v2
takes simple form (9), and we obtain the spin rotation angleo
as

sino � vv1gg1
1� gg1

; �19�

which is Wigner's formula (13).
In an earlier work by the author [6], the spin rotation angle

o was explicitly expressed in terms of the absolute values of
the velocities v and v1 and the angle y between them:

o�u; u1; y� � 2 arctan
uu1 sin y

uu1 cos y� �g� 1��g1 � 1� : �20�

Hereinafter, u � vg, u1 � v1g1, and u2 � v2g2 are the spatial
parts of four-velocities and g, g1, and g2 are their temporal
components. Formula (20) is related to Stapp's formula (18)
because of the identity

sino � 2 tan �o=2�
1� tan2�o=2� :

Because of a certain symmetry expressed by formulas (37)
and (38) in Ref. [6], the angle o can also be expressed in terms
of the absolute values of the velocities v2 and ÿv1 and the
angle y 0 between them:

o�u2; u1; y 0� � 2 arctan
u2u1 sin y

0

u2u1 cos y
0 � �g2 � 1��g1 � 1� ;

�21�

as well as in terms of the absolute values of v and v2 and the
angle # between them:

o�u; u2; #� � 2 arctan
uu2 sin#

uu2 cos#� �g� 1��g2 � 1� : �22�

When v and v2 coincide with the speed of light, o � #.
Otherwise, the spin rotation angle is smaller than the velocity
rotation angle, o < #; this is the central qualitative statement
in Ref. [6].
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For y � p=2, formula (20) becomes

o
�
u; u1;

p
2

�
� arctan

uu1
g� g1

� arcsin
uu1

1� gg1
�23�

and is consistent with Wigner's expression (19).
Because

u1 � �u2 ÿ u�C ; C � g� g2
gg2 � uu2 � 1

� g1 � 1

g� gg1 � uu1
;

�24�

the single rotation axis in each of the three representations
(20) ± (22) can be expressed in terms of the corresponding
vector product, since

�uu1� � �u2u1� � �uu2�C : �25�

In formulas (20) ± (22), the argument of arctan involves the
lengths of coincident vectors (25) in the numerators and the
coincident quantities

uu1 � �g� 1��g1 � 1� � ÿu2u1 � �g2 � 1��g1 � 1�

� C
ÿ
uu2 � �g� 1��g2 � 1�� �26�

in the denominators, where u and u2 are related by the
Lorentz transformation with the velocity v1.

The angle o and the rotation direction n are character-
istics of this Lorentz transformation. The inverse transforma-
tion of the vector u2 to u by a boost with the velocity ÿv1 is
characterized by the same angle o but with the opposite
direction of rotation.

4. Mùller's approach and its relation to Wigner's
approach

In æ 2.8 of his book [7], Mùller considers a chain of inertial
reference systems S, S 0, and S 00 moving relative to one
another, with the system S 00 moving with a velocity u 0

relative to S 0 and the system S 0 moving with a velocity v
relative to S. Then, the velocity w of the system S 00 relative to
S is given by formula (17), with the roles of v1 and v played by
Mùller's velocities v and u 0, i.e.,

w � 1

1� vu 0

�
v

� �vu 0�
v 2

�
1ÿ 1

g

�
� 1

�
� u 0

g

�
� v� u 0: �27�

This formula coincides with Mùller's formula (2.59). Mùller
also gives expression (2.590) for the velocity w 00 of the system
S relative to S 00:

w 00 � ÿ 1

1� u 0v

�
u 0
� �u 0v�

u 0 2

�
1ÿ 1

gu 0

�
� 1

�
� v

gu 0

�
� �ÿu 0� � �ÿv� � ÿ�u 0 � v� : �28�

It differs from expression (27) by velocity permutation and by
a sign. This follows from the fact thatw 00 is the relativistic sum
of the velocity (ÿv) of the system S relative to S 0 and the
velocity (ÿu 0) of the system S 0 relative to S 00. Assigning the
indices of the systems to all velocities in expressions (27) and
(28), we can write

wSS 00 � vSS 0 � u 0S 0S 00 ; w 00S 00S � �ÿu 0�S 00S 0 � �ÿv�S 0S : �29�

The relativistic sum of two noncollinear velocities u 0 and v is
asymmetric with respect to their permutation [4], and there-
fore velocities w and w 00 are not opposite to each other,
although they are equal in magnitude:

w � v� u 0 6� u 0 � v � ÿw 00 ; w 2 � w 00 2 : �30�

Comparing formulas (17) and (28) shows that if the velocity v1
is set equal to u 0, v1 � u 0, then v2 � ÿw 00. This signifies that
ÿw 00 has the physical meaning of the velocity of the system S2

relative to laboratory system S and is represented by the
relativistic sum of the velocity v of the system S2 relative to S1

and the velocity u 0 of the system S1 relative to S:

v2SS2
� �ÿw 00�SS2

� u 0SS1
� vS1S2

: �31�

We next show that the angle o between the vectors w and
v2 � ÿw 00 coincides with the spin rotation angle of a particle
when its velocity changes from the value v to the value
v2 � ÿw 00. In this case, o is given by the left-hand side of the
formula

n sino � �w;ÿw
00�

w 2
� �vv1� gg1

1� g� g1 � g2
�g� 1��g1 � 1��g2 � 1� ;

�32�
where the unit vector n is aligned with all vector products
encountered hereinafter. The right-hand side of (32) follows
from the calculation of the vector product with expressions
(27) and (28) for w andÿw 00 taken into account and coincides
with Stapp's formula (18). For brevity, we have reverted to
the notation

v1 � u 0 ; g1 � gu 0 ; g2 � gw 00 � gw � ggu 0 �1� vu 0� :
�33�

Therefore, the statement about a double meaning of the angle
o is proven.

We introduce a vector X using the relation

n sino � �w;ÿw
00�

w 2
� ÿX : �34�

The minus sign in front of X is placed solely to make it
coincident in sign with the vector of Mùller. Then, the
rotation operator D defined in Mùller's book by formula
(2.60), specifically,Dw 00 � ÿw, can be expressed in terms ofX
as

Dw 00 � ÿw � w 00
���������������
1ÿX2
p

� �Xw 00� : �35�
Beginning with formula (2.61), Mùller restricts himself to the
approximation where the velocity u 0 is small in comparison
with v. Then the spin rotation angle o and the modulus of X

are small in comparison with unity. In this approximation,
Mùller obtains expression (2.64) for X :

ÿX � �gÿ 1� �vdv�
v 2

; �36�
where dv � wÿ v is merely the notation for the difference
wÿ v, according to Mùller's formula (2.63).

My statement is as follows: in (36), i.e., in Mùller's
formula (2.64), we first use the difference wÿ v instead of
dv � wÿ v, then use its expression

wÿ v � 1

g

�
u 0 � v

�vu 0�
v 2

�
1

g
ÿ 1

��
; u 05 v ; �37�
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from the top line of Mùller's formula (2.62), and, finally, use
the middle line

w 00 � ÿ�v� u 0 ÿ v �vu 0�� ; u 05 v ; �38�

of the same formula (2.62) for u 0 in the occurring product
�vu 0�; then we obtain three identical expressions forX :

ÿX � �gÿ 1� �vw�
v 2
�
�
1ÿ 1

g

� �vu 0�
v 2

�
�
1ÿ 1

g

� �v;ÿw 00�
v 2

; u 05 v : �39�

To calculate the vector products in expressions (39), we
can conveniently represent the velocities v, w, u 0, and ÿw 00
appearing therein in one laboratory reference system.

If the origins of Mùller's reference systems S, S 0, and S 00

coincide at the instant t � 0, then at the instant t � 1 s in
laboratory time they are at the points of laboratory system S
marked by S, S 0, and S 00 in Fig. 2.

Also indicated in Fig. 2 are the positions of the origins of
Wigner's reference systems S, S1, and S2 at the same
laboratory time instant t � 1 s. For simplicity, we restrict
ourself to the case where the velocities v and v1 � u 0 are
orthogonal, and therefore

w � v� u 0

g
; v2 � ÿw 00 � v1 � v

g1
; v1 � u 0 : �40�

Depicted in Fig. 2 is the situation where v � 2v1 � 0:94, and
hence g � 3 and g1 � 1:14. But in calculating the vector
products in expression (39), we are interested in the case
where v1 � u 05 v. The angles # and d are then small, and
therefore

�vw�
v 2
� n d ;

�vu 0�
v 2
� n# ;

�v;ÿw 00�
v 2

� n# : �41�
For u 05 v, the small velocity u 0 ? v rotates the velocity v
towards v2 � ÿw 00 through the small angle # � u 0=v, which is
g times greater than the angle of v rotation towards w when
the velocity summation is effected in reverse order. This is
because, in accordance with the v2 � ÿw 00 � u 0 � v law, the
small u 0 velocity is referenced to the laboratory system, while
the small u 0 velocity in the sum w � v� u 0 is referenced to the
system S 0, which rapidly moves with the velocity v relative to
the laboratory system. Owing to the time dilation in the
system S 0 relative to the time in the laboratory system S, the
departure DxS 0S 00 of the origin of S 00 from the origin of S 0 in
the transverse direction to v therefore proceeds in the
laboratory system with the velocity u 0=g, i.e., g times slower

than in the system S 0:

DxS 0S 00 � u 0Dt 0 � u 0
��������������
1ÿ v 2
p

Dt � u 0

g
Dt � 1

g
DxSS1

; �42�

whereDt andDt 0 � Dt=g are the time intervals taken to depart
for the same distanceDxS 0S 00 in systems S and S 0. On the other
hand, the departure DxSS1

of the origin of S1 from the origin
of S, which occurs in the laboratory system with a velocity
u 0 ? v, in the same time Dt is g times greater than the
departure DxS 0S 00 .

Therefore, for u 05 v, the angle d � #=g and formulas
(34), (39), and (41) yield the following relation between the
spin rotation angle and the velocity rotation angle:

o �
�
1ÿ 1

g

�
# ; �43�

which coincides with limit expression (16) obtained from
more general formulas by Wigner, Stapp, and the author.

Thus, using formulas in æ 2.8 of Mùller's book and
Wigner's definition of the spin rotation angle under succes-
sive Lorentz transformations with noncollinear velocities
[which coincides with Mùller's definition up to a sign; see
relation (34)], we obtain the same result in the limit u 05 v.

5. Spin rotation in the curvilinear motion
of a particle

We now turn to the discussion of Mùller's formula (36). The
notation dv � wÿ v is not accidental. Mùller intends to
apply the formula for spin rotation in passing from one
inertial system to another to the description of spin rotation
in the particle motion along a curvilinear trajectory. In this
case, the velocity v�t� is time-dependent and its values at close
instants t � 0 and t � dt are related by the formula

v�dt� � v�0� � _v�0� dt ; �44�

where the velocity and acceleration at t � 0 are hereinafter
denoted simply by v and _v and satisfy the condition j_vdtj5 v.

With the difference wÿ v denoted by dv, Mùller intro-
duces the acceleration _v � dv=dt, where the interval dt is
evidently equal to the laboratory time of velocity variation
from v to w. We restrict ourself to the case where u 05 v and
compare formula (44) for dt � dt with formula (37) for the
differencewÿ v to obtain the condition for the coincidence of
the velocities v�dt� and w:

_v dt � 1

g

�
u 0 � v

�vu 0�
v 2

�
1

g
ÿ 1

��
: �45�

Clearly, the magnitude of u 0 must be taken proportional to
dt.

The formal solution of Eqn (45) is given by

u 0 �
�

_v� v
�v _v�
v 2
�gÿ 1�

�
g dt : �46�

But such a solution for any nonzero acceleration _v satisfying
the condition j _v dtj5 v does not satisfy the condition u 05 v
in the ultrarelativistic limit, i.e., for g4 1, even if v _v � 0. The
condition for the smallness of u 0 imposes a substantially more
stringent requirement on the interval dt: j_v g dtj5 v. This
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interval becomes dependent not only on the acceleration but
also on the velocity. This condition actually defines another
velocity-independent interval Dt � g dt of the laboratory time
in which the velocity changes from v to v2 � ÿw 00 by rotating
through the angle # with the spin rotating through the angle
o, while the condition j_vDtj5 v becomes the condition for the
smallness of these angles. Mùller, however, disregards this
circumstance and uses formula (36) to obtain the formula for
the variation rate of the spin rotation angle with laboratory
time as

ÿxM � ÿX

dt
� �gÿ 1� �v _v�

v 2
; �47�

which he labeled (2.65). (We indicate Mùller's spin rotation
rate with the subscript M to distinguish it from our spin
rotation angle o. The vector xM has the dimensionality
rad sÿ1, while o is measured in radians.)

In our notation, the above expression should be equal to
n �o=dt�. But this quantity is not equal to the angular velocity
of spin rotation, i.e., to the derivative of the spin rotation angle
with respect to the laboratory time, because o is the spin
rotation angle as the velocity changes from v to v2 � ÿw 00, and
dt is the laboratory time during which the velocity changes
from v tow. Because the angle# between the velocities v and v2
is g times greater than the angle d between v andw (see Fig. 2),
for an angular velocity �v _v�=v 2, which is given at the instant
t � 0, the time Dt during which the velocity changes from v to
v2 is g times longer than the time dt during which it changes
from v to w, Dt � g dt. Therefore, the correct expression for
the angular velocity of spin rotation is

n
o
Dt
� ÿxM

g
� ÿX

Dt
�
�
1ÿ 1

g

� �v _v�
v 2

: �48�

The left- and right-hand sides of this equality and the equality
itself can be written as

n _o�0� �
�
1ÿ 1

g

�
_#�0� n ; �49�

where o�t� � _o�0� t and #�t� � _#�0� t are the spin and
velocity rotation angles, which depend linearly on the
laboratory time t as long as they are small in comparison
with unity.

Because the laboratory time t is related to the proper time
t 0 of the system S 0 as t � gt 0 and a particle that is at rest at the
origin of S 00 moves at a nonrelativistic velocity u 05 v in the
system S 0, Mùller's vectorÿxM may be assigned themeaning
of the angular velocity of spin rotation in the proper system:

ÿxM � no 0�0� � �gÿ 1� _#�0� n : �50�

The prime and the dot denote the respective derivatives with
respect to the proper time and the laboratory time. Then, for
an ultrarelativistic velocity v�0� and a fixed angular velocity of
motion _#�0�, the angular velocity of spin rotation in the
proper system of the particle can be arbitrarily high simply
due to the proper time dilation in comparison with the
laboratory time.

Thus, formula (36), which precedes formula (47) in
Mùller's book, can be represented in terms of Wigner angles,

no � ÿX � �gÿ 1� �v _v�
v 2

dt � �gÿ 1� d n ; �51�

using that �v _v�=v 2 � n _#�0� is the angular velocity ofmotion at
the instant t � 0 and dt is the time of velocity rotation from v
to w, i.e., of the rotation through the angle d � _#�0� dt (see
Fig. 2). This formula is equivalent to

o � #ÿ d � �gÿ 1� d �52�

and leads to the previously encountered relations # � gd
and o � �1ÿ 1=g�# between the angles #, d, and o.
Therefore, Mùller's mistake lies in the very last step, when
he divides the correct expression (51) by dt and states that
expression (47) is the angular velocity of spin rotation in the
laboratory system. This is not correct, because the spin
rotates by the angle o in the proper system during the
laboratory time Dt � g dt and during the same interval the
velocity rotates in the laboratory system by the angle #. The
applicability condition j _vDtj5 v for the above formulas is
equivalent to the smallness of the angle #. In particular, for
a given acceleration _v and g tending to infinity, this
condition does not permit fixing the angle d. In this case,
the interval dt tends to zero, and with it the angle

d � _#�0� dt � _#�0� Dt
g
; �53�

because the velocity w approaches v (see Fig. 2).
The essential dependence of the interval dt on the velocity

v in the relativistic domain and the coincidence of its
magnitude with the magnitude of the interval Dt 0 of the
proper time corresponding to the interval Dt � gDt 0 of the
laboratory time during which the particle velocity changes
from the value v to the value v2 � v �Dt�,

dt � Dt 0 � Dt
g
; �54�

lead to some complications in considering spin rotation in
curvilinear motion with the use of the Mùller sequence of
Lorentzian boosts.

The spin rotation in the particle motion along a curvi-
linear trajectory is more convenient and conceptually clear to
describe by using the Wigner sequence of Lorentzian boosts
rather than the Mùller one. The first boost then imparts the
velocity v to the particle along its spin and the second boost
imparts the additional velocity v1 to the particle already in
motion. For v1 5 v, the resultant particle velocity, according
to expression (17), becomes

v2 � ÿw 00 � v� v1 ÿ v�vv1� ; �55�

and the term linear in v1 in this formula can be identified with
the term _vDt in formula (44), i.e.,

_vDt � v1 ÿ v�vv1� : �56�

For this identification, the value of v1 must be considered
proportional to the interval Dt of the laboratory time during
which the velocity changes from v to v2. The formal solution
of Eqn (56) is

v1 �
�
_v� v �v _v� g 2�Dt : �57�

It satisfies the condition v1 5 v for an arbitrary g if j_vDtj5 v
and v _v � 0. Then, either of the two last terms in expression
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(39) leads to the formula

no � ÿX �
�
1ÿ 1

g

� �v _v�
v 2

Dt �
�
1ÿ 1

g

�
_#�0�Dt n ; �58�

which coincides with formulas (16) or (43) because
_#�0�Dt � # is the angle between the velocities v and v2.
Hence, relations (48) and (49) between the angular velocities
immediately follow and no confusion arises.

We here note that in the nonrelativistic limit v5 1, the
solutions (46) and (57) in Mùller's and Wigner's approaches
satisfy the condition u 0 � v1 5 v if j_v dtj, j_vDtj5 v, the
velocity-to-acceleration orthogonality condition is dropped.
In this case, the intervals dt and Dt and the angles d and # are
practically coincident and

o � 1

2
v 2# ; �59�

which is just Thomas's formula [8].

6. More about the relation between Mùller's
and Wigner's approaches

Formally, the Mùller sequence of Lorentzian boosts differs
from the Wigner sequence by permutation of the matrices
A�0; a� and A�p=2; e�. This permutation is equivalent to the
transposition of the left- and right-hand sides of expression
(3) and leads to the matrix

M � A�0; a�A
�
p
2
; e
�
� R�dÿ #�A�#; a 0�

� A�d; a 0�R�dÿ #� ; �60�

because the Lorentz transformation matrix remains
unchanged under transposition [see transformation (6)] and
the rotation matrix changes the sign of the rotation angle [see
matrix (5)]. The last expression for the matrix M in formula
(60) was obtained using the relations

A�#; a 0� � R�#�A�0; a 0�R�ÿ#� ; R�dÿ #�R�#� � R�d� :
�61�

Similarly, the Wigner sequence of boosts can be repre-
sented by two polar decompositions, i.e., the products of
symmetric and orthogonal matrices [9],

W � A

�
p
2
; e
�
A�0; a� � A�#; a 0�R�#ÿ d�

� R�#ÿ d�A�d; a 0� : �62�

Therefore, the Wigner and Mùller matrices are related by
both transposition and the equivalence relation:

W � eM � R�#ÿ d�MR�#ÿ d� : �63�

We refer to Refs [9, Ch. 3, æ 5; Ch. 9, æ 14; Ch. 11, æ 2] for the
polar decompositions and the equivalence of matrices.

Equivalence relation (63) can be interpreted as follows.
We read from right to left. The matrix R�#ÿ d� rotates the
spin in the particle rest frame clockwise through the angle
#ÿ d from the z axis. The matrix R�dÿ #�, which enters the
right-hand representation forM in expression (60), brings the
spin back to the z axis. The boostA�d; a 0� imparts the velocity

w, w � tanh a 0, to the particle in the direction of d, and hence
the angle between the spin and the velocity is equal to d. The
matrix R�#ÿ d� rotates both the velocity and the spin
clockwise through the angle #ÿ d, with the result that the
particle velocity becomes v2 � ÿw 00, v2 � w 00 � tanh a 0. The
velocity v2 is diverted from the z axis by the angle #, while the
spin is diverted from the z axis by the angle #ÿ d. Precisely
this information is contained in representation (3) or (62) for
the Wigner matrixW.

To conclude, we emphasize that Wigner considered the
rotation of the spin and velocity of a particle and the variation
of the angle between the spin and the velocity in passing from
one inertial system to another (Wigner rotation). In Mùller's
book, this consideration is used (adapted) for the description
of spin rotation following velocity rotation in a curvilinear
particle motion in the same inertial system under the
assumption that forces change the velocity direction but do
not impart a torque to the spin. Thomas's formula and the
term Thomas precession relate to precisely this case.

This paper is a result of the analysis of the problems
discussed in G B Malykin's review submitted to Physics ±
Uspekhi, which was recently published [10].
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Added to the English translation
The expression for C in (24) can also be written as

C � g1 � 1

g2 � g2g1 ÿ u2u1
:

Taken together with the last expression in (24), this form
emphasizes the permutation symmetry v$ v2, v1 $ ÿv1.
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