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Abstract. A very simple mathematical model of blood coagula-
tion is considered, consisting of a set of three partial differential
equations that treat blood as an active (excitable) medium.
Many well-known phenomena (running pulses, trigger waves,
and dissipative structures) can be observed in such a medium.
Recent analytic and numerical results obtained by the authors
using this model are presented. The following aspects of the
formation of dynamic and static structures in this medium are
discussed: (1) three scenarios of the formation of spatially
localized standing structures (peaks) observed in the model, (2)
complex dynamical modes induced by unstable trigger waves,
some of the modes leading to unattenuated activity (dynamical
chaos) in the entire space, and (3) a new type of excitation
propagation in active media—stable multihumped peaks due
to trigger wave bifurcation— predicted by the model.

1. Introduction

Media containing energy sources at each point in space
display a wonderful diversity of dynamic behavior and self-
organization. It is becoming increasingly clear that such
systems are not exceptional: more and more examples of
them are emerging as researchers gain a deeper insight into
the nature of complex systems, both chemical and physical.
This is especially true of biological systems, which are
intrinsically far from equilibrium and have energy sources
distributed throughout the entire medium space.
Investigations into events occurring in such media,
frequently referred to as active media, are important in
many natural sciences. The general theory of active media
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remains to be formulated, and practically each in-depth study
reveals new types of their dynamics and self-organization.
There is no reason to think that these types are unique; on the
contrary, the available experience indicates that, once
described, a new dynamic regime or bifurcation is thereafter
found in other systems, even those that have been investigated
for a long time.

We have recently demonstrated [1 —7] that blood can be
regarded as an active (excitable) medium for the purpose of
coagulation studies. Primary excitation is induced by an
injury to the wall of a blood vessel, and the ‘coagulation
wave’ spreading deeper into the vessel is analogous to
autowaves inherent in active media. Blood coagulation is a
combination of a few dozen inter-related biochemical reac-
tions leading to the rapid formation of a hard polymer in the
blood flow near the injured wall. It is a highly complicated
process from the standpoint of nonlinear dynamics and self-
organization. A unique property of blood as an active
medium is that a self-sustained wave of thrombin, the
enzyme responsible for thrombus formation, travels only a
finite distance. This fact is paramount for the coagulation
process because the clot must remain at the lesioned site.

The dynamical characteristics of blood plasma as an
active medium have been investigated using mathematical
models differing in terms of detailedness and based on current
concepts of molecular mechanisms underlying blood clotting.
It has been shown that the simplest model containing only
three differential equations [6] fairly well describes many
dynamic properties of the real blood coagulation process.
These results were reviewed in much detail in our paper
published in Physics— Uspekhi in 2002 [8]. Further studies of
a spatially one-dimensional variant of this model have
revealed a number of unusual regimes of excitation propaga-
tion and self-organization, to be considered in this paper.
These are various regimes of the development of stationary
standing structures from running waves, pulses that split
during propagation and create spatio—temporal chaos, and
complex wave pictures generated by unstable trigger waves
that transform one spatially homogeneous state into another.
These regimes may be of interest to many researchers of
biological, physical, and chemical processes. In our work
reported in this paper, we examined these phenomena on
large time and space scales within a relatively wide region of
the parameter space. First and foremost, we sought to gain
insight into the nature of the regimes being investigated rather
than understand how close they are to the real blood clotting
process.

Some of these phenomena were observed by researchers
using quite different physical or physico-chemical models
(references to their publications are given in the text below).
Others seem to have been first observed in our studies. In the
cases where the mathematical nature of the phenomena of
interest can be clarified, we present the results of analysis with
emphasis on their relation to the bifurcation theory.

The paper is organized as follows. Sections 2 and 3
describe the model and methods of numerical experiments.
In Section 4, various scenarios of the formation of localized
standing structures are discussed. Section 5 deals with
dynamic regimes differing in terms of complexity. Section 6
is focused on the origin of complex-shaped running pulses
propagating in a regular manner, that is, with constant
velocity and without change in shape.

In all cases, we were interested in the processes proceeding
under standard excitation of the medium, i.e., at a local

(within a small region) increase in the thrombin concentra-
tion. Such excitation simulates a real situation associated with
an injury to the vascular wall.

General conclusions to which we attach special impor-
tance are formulated in the first part of Section 7. Its second
part relates the results obtained in the framework of the
simplified model to the current blood coagulation concepts.

2. Mathematical model of blood coagulation

The simplest blood coagulation model is a three-component
set of differential equations of the reaction—diffusion type.
Its derivation and the analysis of the simplest regimes are
described at length in our earlier works [6, 8].

In this paper, we primarily consider phenomena observed
in spatially one-dimensional systems. The one-dimensional
version of the blood clotting model being considered has the
form
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where u; is the concentration of the activator (thrombin), u; is
the concentration of the accelerator of activator formation
(activated factor Xla), and us is the concentration of the
inhibitor (activated protein C). More precisely, the variables
uy, are dimensionless concentrations of these substances. Both
the inhibitor and the accelerator appear at a given point only
in the presence of the activator. All three substances have
almost identical diffusion coefficients, and hence almost all
the results were obtained in the case where their values were
taken equal. The equations involve six constants K; that
characterize the ‘chemical’ part of the system. These con-
stants are complex combinations of quantities used to
normalize concentrations and constants of chemical reac-
tions underlying blood coagulation.

It follows from Eqns (1) that the constants K, and K3 are
dimensionless, while the values of the four remaining
constants K; and diffusion coefficients D, depend on the
choice of the units of measure. To facilitate comparison with
our resultsin [1—7,9—11], we here use the same time unit as in
Ref. [6], #p = 0.435 min. The unit of length /, was chosen such
that at a given 7y, numerical values of all identical diffusion
coefficients are equal to unity [9—11]. At the initial value of
D = 0.0006 mm?> min~!, this gives [y = 0.0161 mm. These
units of length and time are used in Sections 4—6, where the
results of numerical experiments with model (1) are presented.
The values of ‘chemical’ constants K; reasonably correspond-
ing to the experimental data are given separately in each of
Sections 4—6.
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A hard blood clot is formed as a result of the thrombin-
catalized production of specialized protein fibrin; therefore,
the time integral of u; describes spatial dynamics of clot
growth.

Model (1) at all positive values of the parameters K; and
D; always has a trivial solution u(x, #) = 0. This solution is
stable in the sense that if all ux(x, ¢) are small at ¢t = 0, then
they exponentially tend to zero in the course of time.

Model (1) exhibits threshold properties, i.e., the appear-
ance of nontrivial transient and stationary regimes when the
initial excitation of the variable u; is relatively high (has an
overthreshold value) and the segment at which this excitation
is given is not too small.

In the one-dimensional case, the model reproduces
regimes characteristic of active media, viz. autowaves, trigger
waves, and peaks. By autowaves, we mean spatially localized
pulses that propagate with a constant velocity and without
change of shape. We occasionally call them pulses. Trigger
waves are the waves propagating at a constant velocity and
without change of shape that switch over the medium from
one spatially homogeneous stable state to another. Trigger
waves that eventually transform the medium from the initial
(trivial) spatially homogeneous stable state into a different
(nontrivial) spatially homogeneous stable state are called
switch-on waves in what follows. Accordingly, waves that
bring the medium back to the initial state are switch-off waves.
By peaks, we mean spatially localized standing structures. In
the model being considered, these structures are usually
shaped like peaks, each corresponding to a local increase in
concentrations within a rather narrow region (hence, their
name). Sometimes, such structures consist of a series of
regularly distributed peaks.

Model (2) has three standing solutions in many regions of
the parameter space: the trivial solution (where all u; are
equal to zero) and two with nonzero (positive) values of the
variables. The fixed singular point (0,0, 0) is always a stable
node. The types and positions of the remaining singular
points vary as the parameters are changed. The solutions of
model (1) describing spatially homogeneous states of a
medium correspond to these singular points. In what
follows, a medium having a single spatially homogeneous
stable (trivial) state is said to be monostable and that with two
spatially homogeneous stable states (trivial and nontrivial) is
said to be bistable. Spatially homogeneous states of system (1)
do not differ from the corresponding singular points of
system (2) in terms of stability type if all the diffusion
coefficients are identical.

In all sections in this paper except Section 6, the three
diffusion coefficients are assumed to be equal; hence, stability
of spatially homogeneous stationary states can be evaluated
from the stability of singular points of ‘local’ system (2).

3. Methods

In the numerical analysis of model (1) in [6, 9—11], we replaced
differential equations with finite-difference ones and the
infinite line with a sufficiently long segment. The boundary
conditions at the ends of the segment ensured the absence of a
flow of each substance (the condition u, = 0). The standard
initial conditions were defined as follows: u; (x,0) = i; within
a small segment and u; (x,0) = 0 outside it; u>(x,0) = 0 and
u3(x,0) = 0 at all x. At the chosen normalization of concen-
trations (see Section 2), the quantity u; does not exceed 1, and
we usually assumed u; to be equal to 0.2.

Calculation of time-independent solutions of system (1),
which were identified by the onset of a stationary regime, was
performed until deviations of the values of the first compo-
nent u; (0 < u; < 1) in the current time interval from the
corresponding values in the preceding time interval became
smaller than 107>,

The relevant stationary regimes (standing peaks and
waves propagating with constant velocity without changing
shape) can be found by solving ordinary differential equa-
tions. Stationary-wave solutions (autowaves and trigger
waves) were found by solving the nonlinear boundary value
problem

D] + cv) + Kjvjva (1 — vy) ii—llzzl —v =0,

Dyv) + cvy + vy — Ky =0, 3)

D3v3" + cvé + K51)12 — Kgv3 =0,

01(0) = 03(0) = v1(0) = (L) = v}(L) = v}(L) =0,
where

ur(x, 1) = v(x —ct) . (3a)

Peaks were found by solving the same nonlinear boundary
value problem at ¢ = 0. For peaks, the unknowns are the
three functions vy (x) that determine the profile; for waves, the
unknowns are the three functions v, (x) determining the wave
profile and the wave velocity ¢. By solving ordinary differ-
ential equations, waves and peaks can be found more
accurately than by observing the time evolution of the
solution of the original equations (1). This also allows doing
what cannot be done by direct solution of system (1)—
finding unstable wave profiles and velocities or profiles of
unstable standing peaks. The segment length L must be large
enough if wave behavior on the infinite line is to be accurately
described.

The nonlinear boundary value problems for ordinary
differential equations (3) were solved by iterations using
Newton’s method, with one linear boundary value problem
solved at each iteration. To be precise, the situation was as
follows. The problem of finding a wave of a given type on the
infinite line has translational invariance; hence, the corre-
sponding (homogeneous) linearized problem has a nonzero
solution. The linearized boundary value problem on a
segment of a large length L is then close to degeneration,
and the direct application of Newton’s method is impossible
in this case. To eliminate the (approximate) translational
invariance, we introduced an additional condition in the
middle of the segment [0, L]. Specifically, the calculation of
autowave profiles implied the condition v{(L/2) = 0, fixing
the position of the first-variable maximum. The necessity of
an extra condition directly ensues from the consideration of
finite-difference equations. It follows that the problem
involves an additional ‘unknown’ parameter (wave velocity);
therefore, an additional condition must be imposed to make
the number of equations equal to the number of unknown
quantities. Linear boundary value problems with an addi-
tional ‘boundary’ condition in the middle of the segment have
good properties and can be solved by standard methods [12 -
14]. We used a special approach to accelerate computation.
The solution obtained previously at close parameter values
served as the first approximation. For the initial parameter
values, the solution eventually established in system (1) after a
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rather long time was taken as the first approximation.
Naturally, the initial parameter values were chosen in the
region including stable autowaves or standing peaks. Solu-
tions found at other parameter values were checked for
stability as follows. A solution obtained by Newton’s
method was weakly perturbed and used as the initial
condition for system of equations (1). Unstable solutions did
not ‘survive’ during calculations, unlike stable ones that
‘survived.’

4. Complex scenarios of the formation
of spatially localized standing structures

4.1 Introductory notes: standing

and moving structures in active media

Of special interest in the context of the blood coagulation
process are dynamic regimes in which excitation does not
propagate far from the initial activation area. The simplest
regime of this type is represented by rapidly decaying
excitation. In this case, the excitation area is practically
immobile. This trivial regime is observable in a variety of
media. Much more interesting are two other excitation
regimes in which a pulse begins to propagate from the
activation site at the initial instant. Its velocity and amplitude
do not significantly change until the pulse stops at a certain
distance from its origin. Thereafter, the pulse either decays
(regime 1) or continues to exist in the form of a standing
localized peak (regime 2). As mentioned in Section 2, the clot
produces fibrin in a concentration proportional to the time
integral of the variable u;. It is therefore understandable that
these two regimes correspond to the normal (spatially
bounded) development of the clot in response to vascular
damage. We note that both regimes are excited by a local
increase in the thrombin level over a small part of the
segment. Such type of activation adequately simulates blood
clotting conditions in the body. For this reason, just this type
is meant by the term ‘standard activation’ (or ‘standard initial
conditions’) used below when differential equations are
considered. Regime 1 (a pulse traveling rather far from the
excitation area before it decays) is known to be described by
many sets of equations having autowave solutions. In
contrast, regime 2 is an unusual scenario of peak formation
at a certain distance from the activation site described
recently in Refs [6, 9].

Stable standing peaks are among the most interesting
phenomena in active reaction —diffusion media. Such a peak
is a structure in which stationary concentrations of medium
components are quite different from the corresponding
concentrations in the remaining space. Despite free diffu-
sion, such a ‘spot’ does not spread with time, remaining
resistant to perturbations and able to restore its size and
shape. Koga and Kuramoto [15] first demonstrated the
formation of such a structure at the activation spot or as the
result of a collision between oppositely directed trigger waves
in a reaction — diffusion model (piecewise-linear version of the
system of two equations with a cubic nonlinearity of the
FitzHugh—Nagumo (FHN) type [16]). Similar structures
were later studied in many works reviewed and analyzed in
Ref. [17]. These studies showed that stable standing peaks
may arise in the simplest bicomponent models if the diffusion
coefficient of the inhibitor is much higher than that of the
activator. Later, standing peaks in a model with the
piecewise-linear approximation of cubic nonlinearity [18]

were described for a wider range of ratios of the activator
and inhibitor diffusion coefficients, including the unit value
(at equal coefficients). However, Ref. [16] lacks analysis of
peak stability. In this work, as in those mentioned above (see
the references in [17]), stable peaks occurred at the excitation
site. But we found that in a blood clotting model, peaks may
arise far from the excitation region because they originate
from a wave closely resembling an autowave [6]. We
compared the model being considered here and a modified
FHN model and concluded that the latter may contain many
of the regimes described in Sections 4 — 6.

Bifurcations that convert various standing structures into
moving ones have been studied by different authors. Schuetz
et al. [19] considered a bifurcation resulting in the transition
from a standing strip to a moving one in a two-dimensional
model. Zaikin first described traveling localized structures in
a two-dimensional active medium model (Zaikin’s exciton)
[20, 21]. Schenk et al. [22, 23] studied moving and stationary
structures in a similar model.

More than ten years after the publication of Refs [20, 21],
similar excitons were obtained by Poptsova in another model
system of differential equations [24]. This author reproduced
the numerical experiments by Zaikin that had demonstrated
the dual (particle —wave) properties of a macroexciton: in a
head-on collision, two wave — particles either annihilate or are
re-emitted in the direction perpendicular to their original
direction; in the interaction at displaced opposite courses,
they are re-emitted at a certain angle; and they merge if their
trajectories cross at an angle smaller than a certain critical
angle. Poptsova showed that the existence of spatially
localized autowave solutions is not an exceptional feature of
the Zaikin model [20, 21].

Bifurcations of the transition from a standing peak to an
autowave in the one-dimensional case and a stably standing
spot to a moving spatially localized one in the two-dimen-
sional case were described by a more complicated three-
component system of equations [25]. Besides stable and
unstable peaks, localized structures in the form of oscillating
peaks were discovered in certain models. Regimes of such
types usually arise and disappear as a result of the cycle birth
bifurcation (Andronov—Hopf bifurcation) [26]. For exam-
ple, it was shown that peaks in models of the FHN type lose
stability under the Andronov-Hopf bifurcation [15]. To
elucidate the mechanism of peak formation far from the
activation site, we examined the parameter region of the
existence of stable peaks in model (1) and bifurcations at the
boundaries of this region.

4.2 Regions with different regimes

in the plane of parameters (Ks, K¢)

The results of numerical experiments analyzed in great detail
in this section and in Sections 4.3 —4.6 were first presented in
Refs [6, 9]. In spatially one-dimensional system (1), a standing
peak can exist in a relatively large region of the parameter
space. We consider a cross section of the parameter space
within the region of the solution existence in the form of
stationary peaks in more detail. We take the plane (Ks, K¢) as
such a cross section (Fig. 1) at constant values of the
remaining parameters shown in Table 1. The rationale for

Table 1.

K] K> K3 K4 Ks KG D

6.85 13.5 2.36 0.078 | 12.0-24.0 | 0.02—-0.08 1.0
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Figure 1. Parametric portrait of system (1) in the plane of parameters
(Ks, Kg) at the parameter values given in Table 1. Region / where peaks
exist is a diagonally elongated ‘ellipse.” The lower boundary of region /
(dotted line) is given approximately. Region / is partly penetrated by the
regions of autowave pulses (2), trigger (or bistability) waves (3), and
complex-shaped running pulses (4). Region 5 adjoining region / on the left
has only a trivial stationary solution. Subregions A and B of region /
correspond to different peak formation scenarios under standard initial
conditions: A — peak formed at a certain distance from the activation site,
B — peak formed at the activation site (see the text). The left boundary of
bistability region 3 is defined as the line of stability loss by the upper state
as a result of the Andronov—Hopf bifurcation (dashed line). Model (2) is
bistable everywhere right of the dashed line and monostable left of this
line.

the choice of the ranges of model constants can be found in
Ref. [6].

Region / in Fig. 1 is the set of K5 and K¢ values at which
stable peaks exist. Its boundary is shown by the continuous
solid line, except a small boundary portion in the lower part
(dotted line) that we did not examine. Region 2 corresponds
to stable autowaves. In this region, autowaves occur at the
standard initial conditions whenever the excitation exceeds a
threshold level. Region 3 is the bistability region in which
system 2 has two stable singular points, one being (0,0, 0)
and the other having positive coordinates. In other words,
system (1) has two stable solutions independent of x and ¢
when all diffusion coefficients are identical.

The stable state corresponding to the ‘top’ singular point
loses stability at the left boundary of region 3 (dashed line) as
a result of the Andronov—Hopf bifurcation. Left of this
boundary, system (2) has a single stable (trivial) singular
point across the entire examined range of parameters.
Region 4 contains pulses of complex shape, and region 5 is
characterized by the sole stable stationary solution of system
(1) at which all u(x) are identically equal to zero. Decaying
pulses at the boundary between regions 5 and 2 are observed
under standard initial conditions.

Model (1) allows different peak formation scenarios
(Fig. 2). A peak may arise either at the activation site
(Fig. 2a) or far from it (Fig. 2b). It may also result from a
complex combination of trigger wave movements away from
and into one another (Fig. 2c). We consider these scenarios in
more detail. Region / contains two subregions, A and B, in
which stable peaks develop under the standard initial
conditions, although the dynamics of their formation are
strikingly different. A peak in subregion A forms after
traveling a certain distance from the activation site (Fig. 2b);
in region B, it arises at the activation site (Fig. 2a). It can be
seen from Fig. 1 that subregions A and B have no common

1000
0.6

up

0.3

[l

X

0

Figure 2. Different peak formation scenarios in the blood coagulation
model in response to local overthreshold activation: (a) simple peak
formation dynamics — peak formed at the activation site; (b) the first
complex scenario of peak formation — excitation first spreads from the
activation site as a running pulse but thereafter stops and undergoes
conversion to a standing peak; (c) the second complex scenario of peak
formation — the excitation area first expands but then narrows and
transforms to a standing peak (see the text for details).

boundary. Stable peaks do not develop from the standard
initial conditions outside these subregions; they need special
initial conditions to form. The entire region where peaks are
formed was mapped onto the parameter plane as follows. A
peak was found in area A (or B) under standard natural
conditions and the functions u(x) describing this peak were
used as the initial conditions to calculate the solution at the
adjacent point of the parameter plane. Moving like this over
the parameter plane, we found the entire region of stable
peaks. It then became clear that areas A and B are two parts of
a large connected region / (where peaks exist).

There is a small area where regions / (peaks) and 3
(bistability) intersect; in the remaining part of region /, the
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Figure 3. Spatial distribution of variable concentrations in an established
peak for scenario 1 of peak formation from the standard initial conditions
(K5 = 17.255, K¢ = 0.050, see Table 1 for the remaining parameters). The
value of each variable u;, u,, and wu3 is normalized to the maximum
concentration: 0.53, 4.29, and 44.90, respectively. The inhibitor concen-
tration w3 has the largest spatial distribution.

system is monostable. The intersection area of regions / and 3
has at least three stable solutions, viz. a lower homogeneous
(trivial) solution, an upper homogeneous solution, and an
inhomogeneous solution in the form of a standing peak.
Region I also partly intersects regions 2 (stable autowaves)
and 4 (pulses of complex shape). Interestingly, system (1) has
solutions in the form of unstable peaks observed throughout
the entire examined part of the parameter space (see Fig. 1)
including the bistability region and region / where stable
peaks exist.

4.3 Two scenarios of peak formation

Figure 2b presents a scenario of stable peak formation
occurring in subregion A (scenario 1). Under standard
activation near the boundary of the segment, a pulse travels
away from the origin, then slows down and transforms into a
standing peak. At the beginning, the process is reminiscent of
autowave propagation but thereafter this quasiwave stops
and undergoes conversion to a standing structure. If the
standard activation occurs close to the middle of the
segment, pulses propagate in different directions and give
rise to two peaks.

Figure 3 shows the spatial distribution of all three
variables describing a typical peak in region /. It can be seen
that the inhibitor w3 is characterized by the broadest
distribution, which accounts for the stability of the resultant
structure. The formation rate of all substances is especially
high in the center of the peak, from which they diffuse
continuously towards the periphery, where inhibitory reac-
tions predominate. The peak is symmetric in shape, unlike the
initial quasiautowave, whose leading edge is much steeper
than the trailing one.

Figure 2c illustrates a peak formation scenario in
subregion B of the parameter plane (K, Ks) (scenario 2)
under standard activation conditions in the center of the
segment. In this case, the peak formation occurs exactly at the
activation site but its dynamics are rather complicated. For
example, it can be preceded by the expansion of the excitation
area, followed by its narrowing. As can be seen from Fig. 2c,
the activation site is the origin of two dynamic switch-on
waves that stop after a time and undergo transformation into

two switch-off waves, which start moving in opposite
directions. Thereafter, the switch-off waves slow down and
interact to form a stable peak. We note that these waves are
nonstationary because their shape and velocity constantly
change during motion. Hence their name, dynamic trigger
waves. At large values of the parameter Ks (in the upper part
of area B), the dynamics are of a simpler character, i.e., a peak
forms at the activation site without a previous expansion of
the excitation area.

It can be seen from the diagram in Fig. 1 that area A
adjoins region 2 (autowaves) and area B borders the
bistability region. The initial stages of peak formation in
area A have the form of running pulses (Fig. 2b) very similar
to autowaves existing ‘in the neighborhood.” The peak arising
in the lower part of area B is first reminiscent of a trigger wave
but thereafter transforms into a switch-off wave (Fig. 2c).
This part adjoins region 3, in which trigger waves exist. The
peak formation scenarios in areas A and B therefore seem to
be affected by stationary regimes in the adjacent regions of the
parameter space. We consider the situation near the bound-
aries between region 2 and area A and between region 3 and
area B in more detail.

4.4 Formation of a stable peak from a decelerating wave
Standard medium activation in area A results in scenario 1 of
stable peak formation (Fig. 2b), when a wave-like pulse
begins to propagate from the activation site but stops and
transforms into a stable peak. The closer the parameter point
to the boundary between A and region 2, the greater the
distance traveled by the pulse with almost constant velocity
and amplitude. Figure 4 shows this distance as a function of
Ks at a fixed K¢ (Ks = 0.05).

We consider the disappearance of stable autowaves as
they cross the boundary between regions 2 and A in more
detail. Figure 5 shows the dependence of the wave propaga-
tion speed on K5 at the fixed value K¢ = 0.05, including the
branch of unstable autowaves. As K5 increases, the autowave
speed decreases. At the boundary under consideration,
K5 = K = 17.247. At the critical value K!", the branches
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Figure 4. Dependence of the distance traveled by a pulse from the
activation site in area A on the parameter Ks (K¢ = 0.05). The pulse was
induced by increasing u; to an over-threshold value (0.2) at a small section
near the left boundary. The distance traveled by the pulse was that from
the boundary to the maximum of the developed peak. Ks, is the
bifurcation value of the parameter below which the region of autowaves
lies. The initial excitation in this region gives rise to an autowave.
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Figure 5. Bifurcation diagram for autowaves and peaks at K = 0.05. The
limit point KS(olr) = 17.247 corresponds to the point of merging between
stable and unstable autowaves and the point Ks(czr) = 15.4 to the intersec-

tion of autowaves and peak branches (see text for details).

of stable and unstable autowaves merge with one another and
area A contains no autowaves. In other words, the peak
formation scenario 1 occurs near the line where stable and
unstable autowave branches merge.

Of special interest is the behavior of the unstable
autowave branch far from area A. At KS%? =154 (see
Fig. 5), the speed of an unstable autowave decreases to zero
and the autowave branch intersects the peak branch
(horizontal line 3 in Fig. 5). The line is shown solid where
the peaks are stable and dashed where their stability awaits an
in-depth analysis. We note that Ks values for stable auto-
waves coexisting with stable peaks correspond to a partial
overlap between regions / and 2. In this overlapping area, a
stable autowave arises under the standard initial conditions,
whereas stable peaks need special initial conditions to form.

4.5 Waves decaying after traveling a finite distance

The left boundary of region 2 is completely formed by
merged branches of stable and unstable autowaves. The
following process develops from the standard initial condi-
tions in region 5 close to its boundary with region 2. First, a
pulse propagates for a certain time at a roughly constant
speed and barely changes its shape. Thereafter, its motion
slows down. In contrast to the case described in Section 4.4,
no stationary standing structure develops, the pulse decays,
and the medium relaxes toward a trivial spatially homo-
geneous state. The bifurcation diagram depicting autowaves
and peaks at a fixed K4 for this portion of the boundary of
region 2 resembles the bifurcation diagram shown in Fig. 5.
The farther the parametric point lies from the boundary of
region 2, the smaller the distance at which the pulse decays;
in contrast, the distance traveled by the pulse infinitely
increases closer to the autowave region as in the case of
peak formation in area A.

Thus, the general property of the external surroundings
of region 2 close to the lines corresponding to bifurcation of
merging between stable and unstable autowaves is the
‘dynamic memory’ of lost autowaves: an autowave-like
structure is the first to form in response to the standard
excitation. Because the region contains no stable autowaves,
this structure travels a certain distance and starts to trans-
form into a stable object characteristic of the given region. In

the presence of stable peaks, the wave is converted into a
standing peak. If the trivial homogeneous state is the sole
one in the region, the wave decays. The closer the system to
the boundary of the autowave region, the better the
‘memory,” that is, the longer the wave lifetime and the
distance traveled.

4.6 Formation of stable peaks from dynamic trigger waves
The complex regime of stable peak formation mentioned in
Section 4.3 is observed in the lower part of area B, where the
trivial spatially homogeneous state and stable peaks coexist
with stable switch-on waves (see Section 2, where definitions
are given). Stable switch-off waves appear at the exit from
area B through its right boundary; the proximity of their
existence region to area B is apparent at the early stages of
peak formation. We consider model behavior during the
transition from area B to region 3 and limit ourselves to the
variation of a single parameter, as before.

In this analysis, we fixed K5 =20 and characterized
trigger waves by their speed, assigning the respective signs
plus and minus to the speeds of switch-on and switch-off
waves. The resulting bifurcation diagram is presented in
Fig. 6. The dependence of the speed on Kj is S-shaped and
consists of three branches. The branches of stable and
unstable switch-on waves are depicted by the solid and
dashed lines, respectively. At K5 =20, there is a small
interval of values in which three branches of solutions in the
form of trigger waves coexist: these are two stable branches
shown by the solid line and linked by the unstable branch
(dashed line). The horizontal straight line ¢ = 0 corresponds
to the solutions in the form of peaks. The continuous portion
of this line corresponds to stable peaks. Arrows indicate the
limits within which the standard initial conditions lead to the
formation of a stable peak at the activation site.

Interesting dynamics are observed for K¢ values close to

Kéclg (Ke < Kéclr) ). This parameter range incorporates only two
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Figure 6. Bifurcation diagram for trigger waves and peaks obtained by
varying the parameter K, at the fixed value Ks = 20. The bottom circle
corresponds to the value Kgy = 0.0626, at which the upper singular point
of system (2) loses stability due to the Andronov—Hopf bifurcation;
K > Kgp is associated with bistability. Switch-on and switch-off waves
coexist in a certain range Kq > Kéi,) For Ks < Kéi,,?, bistability coexists
with stable peaks. The region where peaks exist is shown by a horizontal
line at the zero speed level. Arrows indicate the area in which peaks arise
under the standard initial conditions.
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Figure 8. Bifurcation diagram for trigger waves obtained by varying the
parameter K¢ (K5 = 22).

types of stable solutions, switch-off waves and peaks.
Standard activation in the center of the segment might be
expected to make the system form one of the solutions
immediately. Instead, dynamic switch-on waves appear first;
they start propagating long enough, then stop and transform
into switch-off waves (Fig. 2c). As the switch-off waves come
closer to one another, they interact and give rise to a stable
peak. It was first shown in Ref. [26] that interacting switch-off
waves do not necessarily annihilate. The distance traveled bl))/
dynamic switch-off waves increases as K¢ approaches Kécr
(Fig. 7). It can be seen from Fig. 6 that the branch of stable
switch-on waves disappears as it merges with the branch of
unstable switch-on waves at Kg = K(Eclr) The speeds of
merging waves differ from zero. The situation near the line
where they merge at the boundary between regions B and 3
resembles that near the line where autowaves merge as
described in Section 4.4. The processes occurring in either
case close to the boundary have initial stages resembling the
regimes characteristic of the adjacent regions. Here, close to

the boundary of area B, the process starts as a pair of
propagating switch-on waves.

In area B, the S-shaped portion of the bifurcation diagram
decreases with increasing the parameter Ks until the curve
becomes monotonic (Fig. 8). Simultaneously, the increase in
Ks is accompanied by a decrease in the primary excitation
area. The initial phase (propagation of switch-on waves)
becomes inconspicuous and peak formation is confined to
the activation site. The right boundary of the stable-peak
region turns into the line corresponding to sign reversal of the
trigger wave speed (on this line, switch-on waves undergo
conversion to switch-off waves).

5. Complex dynamic regimes
in the blood clotting model

The results presented in this section were first obtained in [10].

5.1 Unstable trigger waves and nonstationary regimes

As shown above, model (1) is bistable in a certain range of
parameters when all diffusion coefficients are equal; in other
words, it encompasses two coexisting stable spatially homo-
geneous states, lower (trivial) and upper. At these parameters,
the model contains trigger waves that transform the medium
from one homogeneous state to another. There is a region in
the parameter space in which the upper state still exists after it
loses stability. Interesting solutions may be expected in this
region. Dynamic regimes found in model (1) are considered in
Sections 5.2, 5.3, and 6.

Naturally, stable trigger waves cannot exist when the
upper spatially homogeneous state loses stability. Never-
theless, it is possible to find solutions of stationary system (3)
in the form of trigger waves (if they are still present).
Remarkably, the front parts of these unstable waves persist
when the processes are considered in time and can be seen in
solutions of system (1). The shape of the front part and its
propagation speed almost exactly coincide with the shape
and speed of an unstable switch-on wave. A nonstationary
picture develops behind the leading wave traveling at a
constant speed. Collectively, these events are responsible
for the complex dynamic behavior of an excitable medium.
Such complicated solutions of system (1) can be roughly
categorized into two classes, ‘composite waves’ and ‘splitting
waves.” The former consist of two components, with their
head parts remaining unaltered and rear ones oscillating in a
complicated manner. The front edge of a splitting wave
periodically emits secondary waves traveling in the opposite
direction.

In this section, in order to better depict regions corre-
sponding to different regimes in a single-parameter portrait,
we consider another two-dimensional cross section of the
space of ‘chemical’ parameters K;. Specifically, the quantities
K, and Ky are considered variable parameters, with the
remaining four parameters fixed (Table 2). (Compare para-
meters in Tables 1 and 2.)

Table 2
K K K Ky Ks Ky D
6.85 4-10 2.36 0.1 14.0 0.071-0.077 1.0

Figure 9 shows regions in which different stable regimes
exist in the plane of parameters (K, Kg). There are stable
autowaves for parameter values from region I (shown by
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Figure 9. Regions where different regimes exist in the plane of parameters
(K>, Kg). I — autowave region (horizontal hatching), II — oscillating
autowaves, I[II — spatially localized standing structures — peaks (vertical
hatching), IV — oscillating peaks (narrow dark region adjoining the
standing peak region III from below), V — bistability region, VI — region
of complex dynamic regimes (shaded). Values of the coefficients K; are
given in the text.

horizontal hatching). Region II contains autowaves with an
oscillating amplitude, region III (vertical hatching) standing
spatially localized structures (peaks), and region IV oscillat-
ing peaks. Region V is a bistability region having solutions in
the form of stable trigger waves. Region VIis characterized by
complex dynamic regimes; its subregions VIa and VIb
correspond to composite and splitting waves, respectively.
The lower boundary of subregion VIa is shown approxi-
mately by the dashed line. On the whole, the picture in region
VI can be described as follows. Wide composite waves with
nonperiodically oscillating tails are localized in the vicinity of
the bistability area. The width of composite waves decreases
with the distance from this area, and the lower part of
subregion VIa contains narrow composite waves with a
periodically oscillating tail portion. Subregion VIb located
at a still greater distance from the bistability area corresponds
to splitting waves. Interestingly, all the above regimes are
observed within a relatively narrow range of values of the
parameter K¢ defining the inhibitor lifetime.

It was found that unstable switch-on waves sometimes
coexist with stable peaks or autowaves. As a rule, activation
excites only peaks and autowaves, but in certain cases a
composite wave is formed and oscillations of its trailing part
result in stable solutions, peaks, and autowaves. Such regimes
are not rough, are highly sensitive to the initial conditions,
and exist in a small parameter range. A more detailed
description of ‘composite waves’ is presented in Section 5.2.

5.2 Composite waves

Given parameters from subregion VIa and the standard
initial conditions, excitation first spreads as a switch-on
wave. The leading edge propagates at a constant speed and
brings the system to the vicinity of the upper (unstable)
spatially homogeneous state. The instability of this state is
manifested in that the rear part of the wave picture begins to
change in a complicated manner. Two types of composite
waves are distinguished based on the behavior of their tail
portions.

The first type is shown in Fig. 10. A local increase in the
activator concentration near the left end of the segment
triggers the propagation of the excitation from the boundary
of the region. A leading wave can be identified in Fig. 10a. The
region of constant values of variables (plateau) in close
contact with the wave front expands for some time during
motion but thereafter stabilizes. The rear part of the leading
wave undergoes nonperiodic oscillations that generate pulses
propagating in the opposite direction. An unstable trigger
wave has the nonmonotonic profile of the first variable. The
nonmonotonicity is of a trivial origin, that is, the heterocyclic
trajectory of automodel equations (3) tends to their ‘upper’
singular point. This point has complex eigenvalues. When a
pair of eigenvalues is close to the imaginary axis, the
trajectory ‘rotates’ about the singular point. Thus, oscilla-
tions of all quantities about their limit values are inevitable.
As the parameter approaches a critical value, the pair of
eigenvalues comes closer to the imaginary axis and the profile
of the trigger wave (unstable in evolutionary equations!)
acquires a wave-like shape.

Pulses generated by the leading wave ‘try’ to develop into
waves resembling the parent one. If only a single pulse is
preserved, it develops into a wave identical to the leading one.
Such secondary waves being generated rather frequently, the
entire region behind the running primary wave turns into a
chaotic activity area (Fig. 10b). When the leading wave
reaches the right boundary of the segment, it interacts with
the boundary and is annihilated. After that, chaotic dynamics
prevails over the entire model area (Fig. 10b, = 10,000,
20,000). The segment is totally filled with pulses that move
unceasingly, are annihilated, give rise to new composite
waves, etc. Such activity leads to the oscillations of variables
at each point of space (Fig. 10c) characterized by a wide and
continuous frequency spectrum (Fig. 10d); this confirms
chaotic oscillation patterns. The chaotic character of the
regime thus obtained is also manifested as its sensitivity to
minor perturbations of the initial data.

With the progress in a downward movement into
parameter region Vla (see Fig. 9), composite wave oscilla-
tions become more regular. The lower part of region Vla
contains waves of the second type. An example of such waves
is presented in Fig. 1la. A wave originating from the
activation site at the boundary propagates at a constant
speed. Its leading edge remains unaltered and the trailing
one undergoes periodic oscillations. Unlike the oscillations
described above, these oscillations decay without generating
new pulses. The speed of the wave and the shape of its front
part almost exactly coincide with the corresponding char-
acteristics of the unstable switch-on wave existing at the same
parameters. (Fig. 11b).

5.3 Splitting waves

Figure 12a illustrates the regime observed in region VIb. A
wave propagating for a time with a constant speed from the
activation site undergoes division; its trailing part emits a
pulse that is transformed into a wave identical to the parent
one but traveling in the opposite direction. As the initial wave
continues to move, it gives rise to another pulse. The
secondary waves also split.

A splitting wave is characterized by a two-phase change in
the profile. In the first phase, the profile alters insignificantly,
whereas in the division phase, the tail of the wave produces a
new wave that travels in the opposite direction. The newly
generated waves propagate in either direction, which leads to
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Figure 10. Type-1 composite waves. (a) Formation of a type-1 composite wave with an aperiodically oscillating rear part in response to a local increase in
the activator concentration near the left boundary for the parameters K, = 8.15and K¢ = 0.075. The profile of an unstable trigger wave (upper boundary
of the shaded area) superimposed on the composite wave profile exactly coincides with it in the leading-edge and stationary part. (b) The shape of the
composite wave depicted in Fig. (a) at different instants (indicated opposite each curve). (c) Oscillations of the variable u; in the center of the segment.

(d) Spectrum of the oscillations shown in Fig. (c).

frequent collisions. The result of a given collision depends on
the wave phase at the instant of interaction. Two interacting
waves are annihilated if both are fully developed and preserve
their profiles during motion (see snapshots at ¢t = 860 and
t =920 in Fig. 12b). When one of the colliding waves is
incompletely developed, they merge and give rise to a single
splitting wave (see snapshots at 1 = 1930 and 7 = 2000 in
Fig. 12b). If both waves are immature, they merge and give
rise to two new waves propagating in opposite directions
(snapshots at t = 575 and t = 660 in Fig. 12b). At large times,
the entire segment is filled with continuously interacting
pulses (Fig. 12b, ¢t = 8000). This activity results in chaotic
oscillations at each point in space. These oscillations,
similarly to those under the regime described in Section 5.2,
are characterized by a wide and continuous frequency
spectrum (Fig. 12¢). The profile of an unstable trigger wave
superimposed on the profile of the splitting wave exactly
coincides with it in the leading front region (Fig. 12d).
Additional information is given in the caption to Fig. 12.

6. Multihump pulses

One of the most unusual regimes in blood clotting model (1) is
given by multihump pulses (Fig. 13b). It has never been
observed in any known model of active media; we described
this regime in Ref. [11]. Multihump pulses occur when the
inhibitor diffusion coefficient decreases. We recall that the
solutions of system (1) considered in Sections 4 and 5 were
obtained at identical diffusion coefficients Dy.

A characteristic feature of these pulses is that the
amplitude and the frequency of decaying spatial oscillations

in their profiles are roughly equal irrespective of the value of
the diffusion coefficient. The oscillations occur near the upper
unstable spatially homogeneous state. The smaller the
diffusion coefficient, the greater the decay of spatial oscilla-
tions in the profiles.

There is nothing new about complex-shaped pulses in the
theory of autowaves. They were observed in the simplest
(FitzHugh — Nagumo) model of an excitable medium as early
as 1981 [27, 28] (the first equation is nonlinear, the second is
linear and only the activator diffuses). Pulses of complex
shape were also investigated in a series of studies with FHN-
type models describing oxidation of CO on platinum [29, 30]
(both equations are nonlinear and only the activator diffuses).

The pulses considered below remain stable even if they
have many humps (see Sections 6.1 and 6.2). They are due to
the disappearance of a trigger wave (unstable at the chosen
parameter values). We believe this fact to be of general
interest.

Sections 6.1 and 6.2 focus on the analysis of situations
with equal diffusion coefficients of the activator and the
catalizer (D; = D, = 1) as the diffusion coefficient of the
inhibitor D; decreases from 1 to 0 at the step 0.001. In these
sections, all six ‘chemical’ constants K; — K, are fixed: the
values of K1, K3, K4, and K5 are the same as in Table 2, and the
values K> = 7.0 and K¢ = 0.08 are chosen.

6.1 Appearance of multihump pulses

upon a decrease in the inhibitor diffusion coefficient
Multihump pulses exist in the model in the range of K| — K
parameters where the model is monostable but has two more
unstable spatially homogeneous states. Figure 14 illustrates
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Figure 11. Type-2 composite waves. (a) Formation of a type-2 composite
wave with a periodically oscillating rear part in response to a local increase
in the activator concentration at the left boundary of the segment at the
parameters K> = 7.6 and K¢ = 0.075. (b) The profile of an unstable trigger
wave (upper boundary of the shaded area) superimposed on the profile of
the composite wave shown in Fig. (a) exactly coincides with the leading-
edge area.

the evolution of the solution of system (1) as the diffusion
coefficient of the inhibitor D3 decreases (only data for the first
variable u#; are shown). At D3 =1, the composite wave
described in Section 5.1 propagates from the activation site.
In the range of the diffusion coefficients D3 from 1 to 0.702,
the excitation propagates with a constant speed and an
unaltered front. Both the front edge of the leading wave and
the speed fairly well coincide with the characteristics of the
unstable trigger front calculated at these parameters (Figs 10a
and 14a). The tail of the leading wave oscillates and produces
pulses that fill up the segment behind the wave. At a certain
value of the diffusion coefficient of the inhibitor
(D3 =0.702), the shape of the front part of the excitation
zone becomes more complicated. The leading edge is
immediately followed by an area with a series of alternating
minima and maxima. A certain transition process ends in the
formation of an autowave readily distinguishable against the
background chaotic activity (Fig. 14b). This autowave is a
wide excitation zone of a complex ‘multihump’ shape. All
elements of this wave remain unaltered in the reference frame
comoving with the wave. The number of humps decreases
with decreasing the parameter D3 (Fig. 14b—d) until the
multihump wave turns into an ordinary one (see Fig. 14f
where two autowaves follow each other).

Interestingly, we observed different dynamics of the
formation of multihump pulses under the chosen standard
initial conditions (see Section 3). Certain parameters were
associated with the formation of single multihump pulses,
such as a four-hump pulse (Fig. 14c) and a two-hump pulse

(Fig. 14e). At other parameters, a multihump pulse was an
element of a group resembling the group of similar three-
hump pulses shown in Fig. 14d. However, when an element of
such a group stands for the initial data, it propagates as a
single multihump pulse.

6.2 Hypothesis of the multihump pulse origin

from bifurcation of trigger waves

The appearance of multihump pulses in the blood coagula-
tion model may be attributed to bifurcation of the decay of
unstable trigger waves upon a decrease in the inhibitor
diffusion coefficient. In system of ordinary differential
equations (3), such a wave corresponds to a ‘heteroclinic’
trajectory extending from one singular point to another, while
pulses correspond to ‘homoclinic’ trajectories originating in
one singular point and returning to it. The birth and
disappearance of such trajectories upon a change in one or
several parameters are nonlocal bifurcations in terms of
review [31]. Such bifurcations have been extensively studied
by mathematicians in the last few decades (see monographs
[32, 33]; Ref. [33, Ch. 13] presents data interesting in the
context of the present paper). In the theory of bifurcations,
the speed of the wave, which we regarded as one of the
unknowns, plays the role of a system parameter formally
equal to all the others. On the plane of parameters (Ds, ¢), the
line corresponds to the existence of a trigger wave and its end
to the disappearance of the wave.

Figure 13a presents profiles of unstable trigger waves for
the first variable u; at the diffusion coefficients D; = 0.8,
D3 =0.71, and D3 = 0.704. The profiles found from system
(3) are positioned so as to facilitate the comparison. As the
critical value D3, = 0.703 is approached (below which
multihump pulses appear in the computation), an increase
is observed in the number of spatial oscillations behind the
leading edge in the vicinity of the upper state; simulta-
neously, their amplitude increases and the decrement of
decay decreases. Newton’s method for solving Eqns (3)
loses convergence near the critical value D3, (D3 = 0.703).
There is no solution of system (3) in the form of a trigger
wave when the diffusion coefficient of the inhibitor is below
the critical value; instead, solutions of the multihump pulse
type appear.

These multihump solutions of Eqns (3) correspond to
stationarily running pulses with several humps (Fig. 14c—e)
in the initial system (1); these pulses are stable, unlike trigger
waves that disappear. Certainly, this important fact does not
ensue from the consideration of ordinary differential equa-
tions (nor from the bifurcation theory for these equations).

Humps of these pulses correspond to oscillations of model
variables about their values in the upper spatially homo-
geneous state. A further decrease in the inhibitor diffusion
coefficient leads to bifurcations of a different type, i.c.,
transitions from one multihump pulse to another via changes
in the hump number (Fig. 13b).

It follows from Figs 13b and 14 that a decrease in the
inhibitor diffusion coefficient Dj results in a reduced hump
number in multihump pulses. In other words, the coefficient
Ds is a parameter governing the transition between pulses
having different numbers of humps. However, the hump
number can be just as well controlled by other parameters if
multihump pulses already exist at a given value of the
inhibitor diffusion coefficient, under the condition that a
change in a given parameter brings the system close to its
bistability region in the parameter space.
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Figure 12. Splitting waves (K, = 6.0 and K¢ = 0.077). (a) Formation of splitting waves in response to near-boundary activation. (b) Spatial snapshots of
the regime taken at the indicated instants. (c) Oscillation spectrum of the first variable recorded in the center of the segment after it is totally filled with
splitting impulses. (d) Profile of an unstable trigger wave (upper boundary of the shaded area) superimposed on the profile of the splitting wave shown in

Fig. (a) at r = 745.

As an example, we examined the evolution of system (1)
upon a change in the parameter K,. The inhibitor diffusion
coefficient was fixed as D3 = 0.25 and the parameters K; and
K3 — K¢ remained unaltered. At K, = 8.2, the system was in
the bistability region and the standard initial conditions led to
the appearance of a switch-on wave. A decrease in the
parameter K, resulted in the loss of stability of the upper
spatially homogeneous state of the model, but this state
continued to exist as an unstable one. At K, below 8.1,
multihump pulses emerged. Any further decrease in K5, like
that of the inhibitor diffusion coefficient, caused a sequential
reduction of the number of humps until the solution turned
into an ordinary autowave at K, = 6.0.

7. Conclusion

7.1 Results of the study
and the general theory of active media
7.1.1 Peak formation. The study of the simplest blood
coagulation model (1) as a model of excitable media revealed
a few unusual complex dynamic regimes, besides the well-
known ones. Also, we found time-independent solutions of
this system in the form of localized peaks and showed that
these stable regimes can be established in a variety of ways
and at different parameter values.

As mentioned in Section 4.1, stationary spatially localized
structures or peaks were described earlier in several models of

one-dimensional excitable media. However, none of these
works considered the dynamics of formation of such
structures. We believe that the majority of the researchers
have observed the ‘natural’ course of events when the peak
remains associated with the activation site whenever activa-
tion induces its formation. We confirmed this finding by
verifying some of these models.

The blood coagulation model allows a new peak forma-
tion scenario. Activation first induces a quasiautowave that
travels a rather large distance from the activation site, stops
thereafter, and turns into a standing peak. Our model also
encompasses the conventional scenario, i.e., formation of a
standing peak that remains at the activation site. The two
scenarios are observed at the parameters from the connected
area of the existence of stable peaks in the parameter space
(region 7 in Fig. 1). It suggests the same type of stationary
solutions of system (1) in either case. However, the area of
existence of such solutions proves inhomogeneous in that the
stationary regime in its selected parts is reached in a different
way.

7.1.2 Overlapping regions. The blood coagulation model in (1)
also contains solutions in the form of traveling waves of
constant shape (autowaves) characteristic of excitable media.
The region where autowaves exist in the parameter space is
region 2 in Fig. 1. An interesting feature of model (1) is the
intersection of region / (stable peaks) and region 2 (stable
autowaves). The overlapping area is dominated by autowaves
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Figure 13. Comparison of profiles of unstable switch-on waves and stable
multihump pulses upon a change in the inhibitor diffusion coefficient Ds.
(a) Profiles of unstable trigger waves at the shown D3 values. (b) Profiles of
stable multihump pulses.

induced by standard initial activation. The coexistence of
stable peaks and autowaves has not been described before. It
was inferred from the analysis of simple models that these
regimes were mutually exclusive. Such a conclusion might
have been prompted by the fact that the solutions in the form
of peaks in simple models of active media were usually found
at a ratio of the activator and inhibitor diffusion coefficients
below unity, whereas autowave solutions normally require it
to be higher than that. In our model, the peaks and the
autowaves occur at identical diffusion coefficients. Therefore,
the respective solutions may have adjacent spatial parameter
areas and may even coexist at identical parameter values.

Having discovered coexisting stable peaks and autowaves
in model (1), we also identified them in other models. We
studied the system of two equations proposed by Pertsov [34,
35] by inserting a nonzero diffusion coefficient in the equation
for the inhibitor. This set of equations is actually a modified
FHN model containing a piecewise-linear function in the
equation for the activator and a discontinuous right-hand
side in the second equation. In such a system, stable traveling
pulses and stationary peak-like solutions may also coexist at
equal diffusion coefficients. By varying the model para-
meters, we obtained all the aforementioned dynamic regimes
except that of multihump pulses. Some of them were
observable only at unequal diffusion coefficients.

In a later study, we found peak formation regimes similar
to those described in the preceding paragraphs also in the
model proposed in [18].

7.1.3 Bifurcation memory. We analyzed a new scenario of
peak formation from a traveling autowave that stops at a
distance from the activation site (see Sections 4.2 and 4.3) and
came to the conclusion that this phenomenon is related to the
so-called ‘bifurcation memory.” This term was proposed in
Ref. [36] to describe the fact that solutions of a system of
differential equations (when the boundary of the region in
which they exist is crossed in the parameter space) retain
similarity with the already nonexistent type of solutions as
long as the variable parameter values insignificantly differ
from the limit value.

In mathematical models describing processes in time, this
fact is known as a corollary of the theorem on continuous
dependence of solutions of differential equations (on a finite
time interval) on their parameters; from this standpoint, it is
not fundamentally new.

In our model, autowave solutions disappear after a
change in parameters as a result of merging between the
families of stable and unstable autowaves; neither the speed
nor the amplitude of the waves tends to zero in this case.
Therefore, the response of the system to standard activation
in the immediate proximity to the boundary (in the external
vicinity of the autowave region) is still similar to the response
inside this region, and the excitation first propagates as a
traveling pulse. Thereafter, the solution relaxes toward one of
the stable solutions existing in region / (a stable peak).

A similar situation occurs near those parts of the
boundary of the autowave region that adjoin other regions
in the parameter space, e.g., near the boundary between
regions 2 and 5 (see Fig. 1). In this case, too, the standard
excitation first causes a propagating quasiautowave that
afterwards relaxes to a trivial (spatially homogeneous) stable
state. A similar picture is observed at the boundaries of the
region of stable switch-on waves (in the lower part of area B in
Fig. 1). The initial stage of stable peak formation at the
boundary common to a switch-on wave and stable peak
regions resembles the propagation of a switch-on wave. The
excitation area first expands and thereafter narrows to a peak
at the activation site. In all cases, we observed effects of
‘bifurcation memory’ in our model near those parts of the
boundaries between parameter regions where bifurcation of
merging occurred.

7.1.4 ‘Survival’ of unstable solution sites. In Section 5, the
following important fact was emphasized in the discussion of
complex dynamic regimes feasible in model (1). Switch-on
waves are unstable at the parameters corresponding to
complex dynamic regimes (area VI in Fig. 9) and cannot
therefore appear in time-dependent problem (1). Indeed,
these waves are not observed as a whole, but their leading
edges ‘survive’ and exist infinitely long. The profiles of the
head part of composite (or splitting) waves are not strictly
stationary, but their time-dependent oscillations near the
leading edge are very weak and practically unapparent.

This is by no means a unique feature of the problem under
consideration. The stationary (in a broad sense) regimes in
distributed systems should not necessarily escape observation
after they have lost stability; the resulting instability may
manifest itself differently in different space areas and is
sometimes insignificant.

For example, such is the case in the Gray—Scott model
[37], given by two differential equations with the simplest
chemical terms. At equal diffusion coefficients, the parameter
plane of this system exhibits an area in which the set of
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Figure 14. Snapshots taken at different instants for the dynamic regimes developing at the values of the inhibitor diffusion coefficient D3 shown in the

figure in response to activation near the left boundary.

equations has three spatially homogeneous solutions, one
stable and two unstable. Part of this area exhibits ‘chaotic’
regimes [38] similar to those described in Section 5. In
addition, we here also observed a high degree of coincidence
between the head profiles of a propagating excitation wave
and an unstable switch-on wave. As many other models of
active media, our model is bistable at certain parameter
values and monostable at others.

Unstable switch-on waves are responsible for the forma-
tion of multihump pulses. Of special interest is a series of
bifurcations arising from a change in the parameter, e.g., the
diffusion coefficient, and manifested as an altered number of

humps that decreases with decreasing the diffusion coeffi-
cient. It seems that a given parameter value should corre-
spond to a definite number of humps. However, this is not the
case, and solutions with different hump numbers coexist at
some parameter values. A detailed study of this bifurcation is
underway and may lead to unexpected results.

7.1.5 A wealth of solutions near the state-change boundary. Of
special interest is the fact that all complex dynamic regimes
observed in cross sections of the parameter space (see, e.g.,
Figs 1 and 9) exist along the boundary between mono- and
bistability regions. Regions of autowaves, complex pulses,
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and other dynamic regimes adjoin this boundary from the
monostability side. Accordingly, there are different types of
solutions near this boundary in the known models of active
media with two equations (such as the Gray — Scott model and
models of the FHN type [37, 38]). The area in the vicinity of
the boundary between mono- and bistability regions appears
to be rich in all kinds of spatially heterogeneous stationary
and dynamic regimes. It seems that transition from a single
homogeneous lower state to its coexistence with the equipo-
tent upper state filling the entire space looks like a smooth
process. In the course of development, the upper state may be
partly expressed in the form of spatially localized, standing or
intricately moving solutions. We think that this observation
may constitute a heuristic principle in the search for
interesting regimes in complex models of the reaction—
diffusion type.

7.2 Relation of the results

to the current blood coagulation concepts

Blood coagulation starts from the synthesis of large amounts
of thrombin near the injured wall of a vessel. Thrombin, in
turn, triggers formation of factors required for both its spatial
distribution and the termination of its production. The first
variable in the model being considered describes thrombin
concentration.

Thus, the initial conditions that we called standard (see
Section 2) simulate the real situation. The spatial dynamics
of blood coagulation in experiment are very similar to the
model dynamics near the left boundary of the autowave
region; specifically, the excitation first propagates as an
autowave and thereafter transforms into a peak and
decays. In a more complicated blood clotting model [39],
the time integral of thrombin concentration describes the
clot size and density in the first approximation. In experi-
ment, a clot develops at a constant rate over a long period,
after which the growth stops [3]. This process corresponds to
the propagation of a thrombin pulse with an approximately
constant speed and its eventual disappearance. A stable
thrombin peak suggests that the density at the clot periph-
ery should infinitely increase after the termination of the
growth. Certainly, no infinite increase is observed either in
experiment or in a complete model. The infinite increase is
the assumption, made in constructing the simplified model,
that concentrations of the precursors of fibrin, thrombin,
and other clotting factors do not change during the
coagulation process. In a more complete model, the peaks
are quasistationary, i.e., exist much longer than the transi-
tion process. Such a clot growth regime is also observed in
experiment. The clot stops developing, but its edges become
increasingly denser (unpublished data obtained by Ataulla-
khanov and co-workers at the Center for Hematology).

Regimes under which a thrombin impulse first propa-
gates, then stops and transforms into a standing peak or
decays are observed in model (1) only in a narrow range of
parameter values near the boundary of the autowave region.
In model (1), these regimes represent manifestation of the
‘bifurcation memory’ about the true autowave regime. It is
hardly possible that the clot growth strongly depends on the
parameters of the blood coagulation system and the
condition of the body at large. It is even less likely that the
clotting system always functions under conditions corre-
sponding to those at the boundary of the place of origin of
the regime in which the thrombus can grow infinitely leading
to a fatal outcome. Evidently, model (1) does not account for

certain essential links and factors ensuring the relative
independence of the coagulation process from parameter
values. First, consideration of only three biochemical
parameters of this process is clearly insufficient. It must be
borne in mind that clotting occurs in the blood flow and that
vascular walls are not neutral but actively involved in the
coagulation process [40]. The very first attempts to take these
two factors into account indicate [41] that they actually have
a marked effect on process dynamics.

The real dimensions of blood vessels are small compared
to the characteristic size of the above waves and structures.
Therefore, talk of an established real blood coagulation
regime sounds like a strained interpretation. Certainly, this
complicates consideration of blood clotting dynamics; it is
then even more remarkable that a rather simple model
describes the main features of the coagulation process fairly
well. Moreover, it allows revealing and investigating a
number of quite new dynamic regimes and thus substantially
extending our knowledge of reaction —diffusion systems.
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