
Abstract. Electromagnetic wave tunneling through photonic
barriers and effects of frustrated total internal reflection
(FTIR) are considered for waves of different spectral regions.
The discovered effects of nonlocal dispersion of gradient di-
electric barriers, wherein the spatial permittivity profile e�z�
determines the cutoff frequency that depends on the shape and
geometric parameters of this profile are shown to play the
decisive role in wave tunneling through nonuniform barriers.
Special emphasis is placed on the effects of total wave transmis-
sion at frequencies lower than the cutoff frequency in the FTIR
mode (reflection-free tunneling) characteristic of gradient med-
ia. The generality of these effects for a broad wave spectrum is
illustrated using exact analytic solutions of the Maxwell equa-
tions describing wave tunneling through nonuniform transpar-
ent dielectrics. Also discussed are controversial issues
surrounding the FTIR theory and the prospects for using gra-
dient photonic barriers for the development of thin-film filters
and polarizers, efficient reflectors, and reflection-free coatings.

1. Introduction. Hartman's paradox

Tunneling is a fundamental phenomenon in the dynamics of
waves of various physical natures. The interest in it was
aroused after Gamow's famous work (1928) dedicated to
nuclear alpha decay [1], where the probability that an alpha
particle with energyE escapes a potential barrier with a height
U0 for E < U0 was determined by precisely the tunneling.
Three years after this first application of quantum mechanics
to nuclear physics, Condon's calculation [2] of the velocity or
transit time of a particle in the domain E < U0 attempted in

the framework of the new theory revealed a basic problem:
How to define these quantities in the `classically forbidden'
zone, where the particle momentum should be assigned
imaginary values. A year later, MacColl [3] arrived at the
conclusion that ``there is no appreciable delay in the
transmission of the (waveÐE.N.R) packet through the
barrier.'' The question remained open, but in the subsequent
three decades, the probabilities of particle tunneling through
different types of potential barriers were derived inmany `hot'
problems of spectroscopy, atomic collision theory, and solid-
state physics; in the light of these successes, the thirty-year old
problem receded into the background.

The interest in this problem was rekindled after Hart-
man's work, dated 1962, in which the time of tunneling
through a barrier for a particle with energy E was determined
from the phase of the complex barrier transmission function
T � jT j exp �if� with the help of the general formula [4]

tp � �h
qf
qE

: �1:1�
Using the well-known expression for the transmission
function of a mass m tunneling through a potential barrier
of height U0 and width d (Fig. 1),

jT j / exp �ÿ@d � ; f � arctan

� �2ÿU0=E � tanh �@d �
2
��������������������
U0=Eÿ 1

p �
;

@ �
�������������������������
2m�U0 ÿ E�p

�h
; �1:2�

and considering a wide barrier (@d4 1), Hartman has shown
that (1.1) leads to the simple formula [5]

tp � �h�����������������������
E �U0 ÿ E�p : �1:3�

This result indicated unexpected properties of the tunneling
`phase time' tp in (1.1):

(i) the time tp depends on the energy of a tunneling particle
but is independent of its mass;
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(ii) the time tp is minimal at E � 0:5U0; in this case,
tp � �h=E and tp � �h=E; and

(iii) the time tp is independent of the tunneling path; for a
sufficiently long path, the particle speed V could reach
supraluminal values V > c.

The last conclusion is referred to as `Hartman's paradox'
in the literature. This paradox, which was derived from
standard formulas (1.2) given in many textbooks and which
invokes no additional hypotheses, raised lively debate, which
is ongoing [6 ± 12]. However, direct measurement of the time
of electron tunneling through quantum barriers has proved to
be an intricate task, and the idea was conceived of verifying
Hartman's conclusions in the classical effects of electromag-
netic wave tunneling through macroscopic photonic barriers.
This idea relied on the formal similarity between the
stationary SchroÈ dinger equation and the Helmholtz equa-
tion; the tunneling of particles through a forbidden zone was
compared to the passage of an electromagnetic (EM) wave
through a dispersive medium, for instance, a plasma layer
whose plasma frequency Opl is higher than the wave
frequency o.

We introduce the imaginary refractive index n of this
medium as

n � iNÿ ; Nÿ �
�������������
u2 ÿ 1
p

; u � Opl

o
> 1 ; �1:4�

and consider the model problem of the normal incidence on a
plasma layer of thickness d to find the modulus and phase of
the complex transmission functionT from the field continuity
conditions at the boundaries as

jT j � 2Nÿ�������������������������������������������������������������������������������ÿ
1ÿN 2ÿ

�
sinh2 � pd � � 4N 2ÿ cosh

2 � pd �
q ;

tanf � �1ÿN 2
ÿ� tanh � pd �
2Nÿ

; p � oNÿ
c

: �1:5�

The wave phase in (1.5), defined by the discontinuity of the
incident and tunneling wave fields at the boundary z � 0,
does not increase proportionally with the path length d and
tends to a constant value at the output from a `thick' layer
( pd4 1); a similar `saturation' of the wave function phase
also follows from expression (1.2). By defining the phase time
t as the time of group delay [4], we obtain a formula similar to
(1.1) and the limit expression for the `thick' layer:

tp � qf
qo

; tp

����
pd4 1

� 2

oNÿ
: �1:6�

The second formula in (1.6) is the analog of Hartman's
paradox for an electromagnetic wave. In contrast to the

total internal reflection of the wave from an opaque half-
space, the partial reflection from an opaque barrier of finite
width has come to be known as frustrated total internal
reflection (FTIR). The time of wave tunneling through a
wide photonic barrier ( pd4 1) turned out to be independent
of the barrier width, once again bringing up the question of
supraluminal speed under FTIR conditions.

In subsequent years, the progress of pulsed radiophysics
and quantum optics fostered new experiments involving
FTIR, which were concurrently pursued in the optical and
microwave ranges. The tunneling of the fundamental mode of
a metal radio waveguide through a section with a lower cutoff
frequency [13 ± 17], the transmission of light through a
multilayer filter [18], and an optical fiber with built-in Bragg
gratings [19] were interpreted in the framework of the concept
of complex time t [20], with Re t � tp given by formula (1.1),
and the tunneling timewas defined in Buttiker's works [21, 22]
in terms of the transmission function T � jT j exp �if� as

tBu �
���������������
t2p � t2T

q
; tT � q ln jT j

qo
: �1:7�

Using (1.7) to calculate the time tp for plasma layer (1.5), we
obtain tBu � t0=Nÿ, t0 � d=c for a large layer width ( pd4 1).
With this definition, the time tBu is proportional to the path
length d but may turn out to be either longer or shorter than
the `light time' t0, depending on the frequency.

Measurements of the time delay for the fundamental TE01

waveguide mode near the cutoff frequency [23] showed that
each of the quantities (1.1) and (1.7) approaches the
measurement data only in some frequency intervals. To
interpret the measurements in Ref. [22], the authors of [24]
and [25] proposed another theory, which treated the tunneling
as stochastic particle motion in the forbidden zone related to
multiple reflections from the zone boundaries and described
by the imaginary-time equation of telegraphy [26].

The tunneling time problem became evenmore acute after
experiments with two wave barriers between which the wave
propagates freely (`generalized Hartman's paradox'). For
microwaves with a frequency o, the time tp of propagation
along a waveguide path with a cutoff frequency O < o
containing two `opaque' sections with O1 > o spaced at a
distance D turned out to be independent of D [27]. A similar
effect was noted in Ref. [28] for IR pulses in an optical fiber
with two photonic barriers formed by fiber lengths with the
spatially modulated refractive index

n�z� � n0
�
1� n1 cos�Kz�

�
; n1 5 n0 :

This barrier (the grating drawn inside the light guide) was
responsible for waves with frequencies close to the Bragg
frequency oB � cK=2n0; the tunneling time, which was
estimated from the arrival time of the pulse peak, corre-
sponded to supraluminal speeds.

These shifts in the peak of the pulse in the FTIR regime,
which were also observed in Refs [17, 28, 29], were attributed
to the deformation of the pulse envelope in the interference of
the forward and backward waves; this deformation is
responsible for the suppression of the pulse `tail,' which is
registered as an acceleration of its peak. Unlike the accelera-
tion of the peak in a stationary medium, a similar effect in an
amplifying medium was attributed in Refs [30, 31] to the
nonuniformity of amplification: the energy of the medium
was transferred primarily to the head part of the pulse, while

U0

E

d z0

Cr

Ct

Ci

Figure 1. Tunneling of a particle with energy E across a rectangular

potential barrier of a height U0 > E and width d; the wave functions Ci,

Cr, andCt correspond to the incident, reflected, and transmitted particles.
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the energy gain in the `tail' of the pulse was reduced due to
saturation.

In investigating the occurrence of supraluminal speeds in
wave processes, the authors of the above papers emphasize
that these results do not contradict the relativistic causality:
the speed V of a signal in a stationary medium treated as the
propagation speedof the field discontinuity remains bounded:
V4 c; however, this speed has never been measured because
this would require a detector with infinite sensitivity [32]. A
formulation of the causality principle with the tunneling
effects included was then proposed in Refs [13, 17]: at any
instant, the energy flux at the output of a stationary medium
cannot exceed the flux that would have existed in its absence.
This formulation, like the FTIR paradoxes, evokes mutually
contradictory estimates [33, 36].

But the processes of wave tunneling attract attention not
only because of their uncommonness but also due to the
prospect of using them to solve problems of condensed-
matter physics [37], magnetic hydrodynamics [38], quantum
optics [39], and photonic crystals [40], and, in particular, to
make artificial materials nonexistent in nature [41]. Research
in the new areas related to the propagation of electromagnetic
waves in dielectric media with a smooth in-medium variation
of the refractive index is underway in gradient optics [42, 43].
Special emphasis is here placed on the wave reflection and
transmission by thin nonuniform material layers with layer
thicknesses and nonuniformity scale lengths comparable to
the wavelength [44]. The synthesis of suchlike layered
structures is now a rapidly developing area in nanotechnol-
ogy [45, 46].

The physical foundations of these processes consist in the
special mechanism of wave dispersion in nonuniform dielec-
trics. We emphasize the fundamental difference between this
mechanism and the material dispersion related to the
parameter q2n=qo2, as well as the spatial dispersion of
uniform media: the latter, as is well known from crystal
optics and plasma physics [47], leads to small corrections to
the refractive index of the order of a=l5 1, where a is the
lattice spacing or the particle mean free path in the medium
and l is the wavelength. Away from the resonance frequencies
of the medium, these effects are slowly accumulated along the
wave propagation path over distances comprising many
wavelengths. By contrast, gradient media are characterized
by the inverse ratio between the nonuniformity scale length d
and the wavelength: l4 d. The evolution of waves in such
media has several special features.

1. The wave dispersion in a gradient layer depends not
only on the nonuniformity scale length but also on the
gradient and curvature of the spatial profile of n. The effects
of this nonlocal dispersion, being accumulated over a distance
of the order of a wavelength, may radically change the
reflection and transmission spectra of the layer. For
instance, in a weakly dispersive material layer, they may give
rise to a cutoff frequency O controlled by nonuniformity
parameters [48] and to the FTIR mode for the frequencies
o < O.

2. Wave tunneling through a one-dimensional nonuni-
form medium with a refractive index n�z� is possible not only
in the domain n2 < 0 but also in the domain n2 > 0,
dn2=dz < 0. This effect is indicative of the FTIR mode for
EM waves in a broad spectral range.

3. For a given spectral range, it is possible to choose a
material and a profile n�z� such that the nonlocal dispersion
effects are concentrated in a frequency band away from the

material absorption bands. The wave dynamics in suchmedia
are described by exact analytic solutions of the Maxwell
equations, which are constructed without any assumptions
regarding the smallness or slowness of the variation in the
parameters of the medium or the field.

The present review is concerned with optimization of EM
wave energy transfer through gradient media in the tunneling
mode. The present-day interest in the physical principles and
mathematical foundations of this process is stimulated by
several `hot' problems:

(i) to specify the total transmission conditions for waves of
various physical natures tunneling through nonuniform wave
barriers;

(ii) to find the amplitude, phase structure, and polariza-
tion of waves of the optical and radio ranges in spatially
distributed FTIR systems; and

(iii) to present exactly solvable multiparameter models for
the optimization of energy transfer in thin gradient layers.

The review is organized as follows: Section 2 is dedicated
to the conventional scheme of FTIR observation employing
the Goos ±Hanchen effect in a system of two prisms. An
exactly solvable model of wave tunneling through a photonic
barrier with a concave profile of the refractive index is
described in Section 3; discussed with the help of this model
in Section 4 is themode of reflection-free tunneling. Sections 5
and 6 are concerned with the generalizations of these effects
for a waveguide with a nonuniform diaphragm and for
transmission lines with continuously distributed parameters.
In contrast to Sections 3 ± 6, which are concerned with the
bulk effects of FTIR, considered in Section 7 are surface
waves in gradient media. Several features of wave tunneling
through curvilinear, absorbing, and transient photonic
barriers are mentioned in the conclusion.

2. Uniform photonic barriers

This section is concerned with electromagnetic wave tunnel-
ing under conditions of frustrated total internal reflection.
This problem is considered for a simple configuration: two
isosceles transparent prisms made of a material with a
refractive index n, with the long sides of the prisms facing
each other (Fig. 2); these sides are parallel and spaced at a
distance d. The absorption and frequency dispersion in the
prismmaterial are neglected. The air gap between the prisms
makes up a uniform photonic barrier for waves incident on
the z � 0 gap boundary at an angle y that exceeds the total
internal reflection angle ycr � arcsin �1=n�. The incident
beam is partly reflected and partly tunnels through the
barrier to shift by a distance l and find itself in the right
prism. This scheme, which attracts attention in the analysis
of tunneling effects in radiophysics and optics [49, 50],
permits obtaining:

a) lengthening of the tunnel path at oblique incidence;
b) a broad frequency range of the waves that tunnel

through the barrier without dispersion; and
c) the birefringence of obliquely incident waves in FTIR.
For simplicity of calculations, we can conveniently begin

analyzing the problem with the case of S-polarized waves; in
the geometry under consideration, they are characterized by
the electric field component Ex and the magnetic field
components Hy and Hz. The analysis comprises several
stages:

(i) calculation of the complex transmission function and
the phase time of transit through the barrier;
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(ii) determination of the group velocity of waves and the
group delay time inside the barrier; and

(iii) determination of the transverse shift of rays in the
FTIR.

All these quantities depend on the amplitude and phase
structure of the field inside the barrier, formed in the
interference of the incident and reflected waves in the opacity
domain 04 z4 d. To analyze this structure, we can con-
veniently use the set of formulas for the field components
derived from theMaxwell equations for a plane wave with the
continuity of the fields at the boundaries z � 0 and z � d
taken into account:

Ex � EiM
�
exp �ÿpz� �Q exp � pz��;

Hz � ÿnEx sin y ; p � o
c

f ;

Hy � i fEiM
�
exp �ÿpz� ÿQ exp � pz��; �2:1�

Q � � f� in cos y� exp �ÿ2pd �
fÿ in cos y

;

M � 1� R

1�Q
; f �

�������������������������
n2 sin2 yÿ 1

p
:

Here, Ei is the amplitude of the electric field incident on the
boundary z � 0 and RS is the complex reflection coefficient:

RS � tanh � pd � �n2 ÿ 1�
tanh � pd �A� 2inf cos y

; A � n2 cos2 yÿ f 2 : �2:2�

Using formulas (2.1) and (2.2), it is possible to fulfill stages
(i) ± (iii) of the analysis planned above:

1. On finding the field Ex in the plane z � d, we determine
the amplitude and phase of the complex transmission
function TS � jT j exp �ifS�:

jT j � 2fn cos y

cosh � pd �
���������������������������������������
�2nf cos y�2 � t 2A 2

q ; t � tanh � pd � ;

�2:3�

fS � arctan

�
tA

2nf cos y

�
: �2:4�

Introducing the characteristic length dcr � c=of, we can show
that in tunneling over a long distance (d4 dcr), the energy flux

decreases as jT j2 � exp �ÿ2d=dcr� and the phase `saturates,'
approaching a constant value independent of the distance.
The temporal FTIR characteristics are conveniently
expressed in terms of t0, the time of light propagation over a
distance d. The `phase time' tS calculated in accordance with
formula (1.1) is

tS
t0
� 2nf 2A cos y�1ÿ t 2�
�2nf cos y�2 � t 2A 2

; t0 � d

c
: �2:5�

2. We next consider the group delay time tg related to the
group velocity vg of the tunneling wave. The velocity vg is
defined by the energy flux P and the energy densityW [51]:

vg � P

W
; P � cE�H �

4p
; W � jE j

2 � jHj2
8p

: �2:6�

We substitute field components (2.1) in expression (2.6) and
find the velocity components vgz and vgy:

vgz � 2nf 2 cos y
D

;

vgy �
n sin y

��n2 ÿ 1� cosh �2p�dÿ z��ÿ A
	

D
; �2:7�

D � n2 sin2 y�n2 ÿ 1� cosh �2p�dÿ z��ÿ A :

The quantity A is defined in (2.2). As is evident from
formulas (2.7), the group velocity of a wave tunneling
through a uniform gap is not constant and depends on the z
coordinate. The group delay tgS is found by integrating the
expression dtg � dz=vgz from z � 0 to z � d:

tgS
t0
�
�
n2 sin2 y�n2 ÿ 1� sinh �2pd �

2pd
ÿ A

�
1

2nf 2 cos y
: �2:8�

3. The transverse ray shift in FTIR (the Goos ±Hanchen
shift) is defined by the ray trajectory equation in the (y; z)
plane:

dz

vgz
� dy

vgy
: �2:9�

We integrate Eqn (2.9) to obtain the shift at the plane z � d
for an S-polarized beam passing through the point y � 0,
z � 0:

lS � d sin y
2f 2 cos y

�
ÿ A� �n

2 ÿ 1� sinh �2pd �
2pd

�
: �2:10�

Following the above scheme, it is also possible to
investigate the tunneling of P-polarized waves [52]. In
particular, the amplitude and phase of the transmission
function for the P-wave is given by formulas (2.3) and (2.4)
with A replaced by

B � cos2 yÿ n2f 2 : �2:11�

The same replacement in formula (2.5) leads to an expression
for the phase time tP. Formulas for the group delay tgP and
the transverse shift lP in the field of P-waves follow from
expressions (2.8) and (2.10) when A is replaced by B and
n2 ÿ 1 by n2f 2 � cos2 y.

l
z

nn

y

2

1

3

d

Figure 2. Frustrated total internal wave reflection: incident 1, reflected 2,

and tunneling 3 waves and Goos ±Hanchen shift l in the system of two

prisms separated by a distance d.
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We now highlight several FTIR features for a rectangular
barrier.

1. We first discuss the FTIR for the S-waves. The
dependence t � t�d � of the time t in (2.5) on the distance is
nonmonotonic: for a narrowgap (d5 dcr), the time t increases
proportionally to the gap width d. At d � dmax � 0:775dcr,
t reaches its peak; on further gap broadening, t begins to
decrease and decays as exp �ÿ2d=dcr� for d4 dcr. Therefore,
applying formula (1.1) to the FTIR problem accentuates
Hartman's paradox about the barrier-width-independent
tunneling time: for very wide barriers (d4 dcr), the tunneling
time tends to shorten. When the dependence of tS on d is
represented in the plane of dimensionless variables t=t0 and
d=dcr, it can be seen that the quantity tS takes supraluminal
values tS < t0 in a broad range of parameters n, y, and d
(Fig. 3a, curve 1).

2. Another unexpected corollary of formula (2.5) consists
in the emergence of the domain of negative values of the phase
time for large incidence angles (y > yS;P) [53]; for S(P)-waves,
the angles yS;P are determined from the conditions A � 0
(B � 0):

yS � 1

2
arccos

�
ÿ 1

n2

�
; yP � arcsin

��������������
n 2 � 1

n 4 � 1

s
: �2:12�

For glass (n � 1:5), we obtain yS � 58� and yP � 47� from
formulas (2.12). Figure 3a shows the t < 0 domains for the
S- and P-waves. Regarding t as the tunneling time, several
authors [54, 55] relate the values t < 0 to a negative tunneling
velocity.

The emergence of supraluminal and negative tunneling
velocities in the FTIR theory initiated a debate between the
proponents of mutually antithetic concepts in this theory. In
particular, in Refs [56, 57] dedicated to the tunneling of
narrow localized Gaussian wave packets, the situation with
t < 0 is interpreted as a result of a rapid reduction in the
probability density flux in the interference of the incident
wave and the wave reflected from the front side of the barrier.

3. In the framework of an alternative concept [52, 58], the
tunneling time tg is defined in terms of the group velocity (2.8)
of waves inside the barrier. When this approach is adopted,
the above paradoxes do not emerge: the time tg is positive and
the tunneling is a slow process (tg > t0) (Fig. 3b). The barrier
transmittance for S-waves is higher than for P-waves (Fig. 3c).

4. We also note the birefringence of waves in the FTIR
mode, which is responsible for different transverse beam
shifts (the Goos ±Hanchen effect) for S- and P-waves in
(2.10). This birefringence is characteristic of precisely the
tunneling waves. In the transmission band for a plane-parallel
layer, this effect degenerates: lS � lP; this equality also occurs
in the case of FTIR at the incidence angle y0 defined by the
equation

sinh �2pd �
2pd

� �n 2 ÿ 1� sin2 y0
2ÿ �n 2 � 1� sin2 y0

: �2:13�

As is evident from Fig. 3d, the shifts lS;P are equal to several
wavelengths for d � dcr. It is difficult to measure the above
shifts in the visible range; however, theGoos ±Hanchen effect
was recorded for centimeter radio waves tunneling (in the
geometry of Fig. 1) through a gap between two paraffin
prisms; for the gap width d � 1ÿ10 cm, the shift l was equal
to 2 ± 4 cm [49].

5. Formulas (2.3) and (2.4) for the complex transmission
function T of a layer in the FTIR mode (y > ycr) transform

a

0

1

2

4

3

0.5

0.4

ÿ0.4

ÿ0.8

1.0 2.0 d=dcr

t=t0

1.5

b

0

3

9

2

1

15

0.5 1.0 1.5 2.0 d=dcr

tgS=t0

0

jT j2

d=dcr0.5 1.0 1.5 2.0

0.5

1.0

1

2

c

0 0.5 1.0 1.5 2.0 d=dcr

0.5

1.5

2.5
2

1x

d

Figure 3.Dependence of polarization effects in the wave tunneling through

a system of two prisms (see Fig. 2) on the normalized gap width d=dcr,
dcr � c=fo, n � 1:5: (a) supraluminal (curves 1 and 2) and negative (curves

3 and 4) values of the phase time tS�tP� for S(P)-waves calculated in

accordance with formula (1.1); curves 1 ± 4 are plotted for the respective

incidence angles y � 50�, 30�, 75�, and 60�; (b) normalized subluminal

time tgS=t0 in (2.8); curves 1 (y � 50�) and 2 (y � 60�) are plotted for the

S- and P-waves, respectively; (c) transmission coefficient jT j2 for S- and

P-waves (curves 1 and 2) under the conditions of Fig. 3b; (d) normalized

transverse shift of the tunneling waves l (x � l=l f, l is the wavelength) for
S- and P-waves (curves 1 and 2) under the conditions of Fig. 3b.
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into the well-known expressions for T in the transmission
band (y < ycr) when f is replaced by ÿif1, f1 ���������������������������
1ÿ n 2 sin2 y

p
, and tanh �d=dcr� is replaced by ÿi tan �d=d1�,

d1 � of1=c [51].
In the problem considered above, the FTIRmode emerges

in the conventional scheme involving oblique wave propaga-
tion betweenmedia with n > 1 through a uniform barrier with
n � 1. Similar effects are also manifested in the opposite case:
at normal wave incidence from the air (n � 1) onto a medium
with a varying n > 1 when the refractive index in this medium
decreases in accordance with some law n�z�. Wave tunneling
through this nonuniform barrier is discussed in Section 3.

3. Gradient photonic barriers
(exactly solvable model)

The problems of wave propagation through media with a
continuous spatial variation of the refractive index constitute
a vast realm of mathematical physics. This section is
concerned with one of these problem, the optics of gradient
media. Such media are characterized by a unidirectional
gradient of the refractive index. By adopting this direction
as the z axis, we can represent their permittivity as

e�z� � n 2
0U

2�z� ; U�0� � 1 ; �3:1�

where n0 is the value of the refractive index at the z � 0
boundary of the medium and U is some twice-differentiable
dimensionless function, which defines the spatial profile of
the refractive index; the medium material dispersion n0�o�
and the wave absorption are neglected. We consider the
propagation of an EM wave normally incident from a
vacuum onto the z � 0 boundary in the z-direction; the
wave field components Ex and Hy can then be expressed in
terms of an auxiliary functionC [51]:

Ex � ÿ 1

c

qC
qt

; Hy � qC
qz

: �3:2�
The function C is determined by the wave equation that
follows from the Maxwell equations:

q2C
qz 2
ÿ n 2

0U
2�z�

c 2
q2C
qt 2
� 0 : �3:3�

The EM-wave reflection and transmission by a gradient
dielectric barrier of finite width depends on the nonlocal
dispersion defined by the U�z� profile shape and the barrier
width d. To represent this dependence in explicit form, we
must use a flexible U�z� model that admits an exact solution
of Eqn (3.3) without any assumptions about the smallness or
slowness of the variation of the fields and medium para-
meters. Exactly solvable models known in the electrody-
namics of stratified media describe a monotonic dependence
U 2�z� on one parameter, the characteristic length L [43]:

U 2 �
�
1� z

L

�ÿ2
; U 2 �

�
1� z

L

�
; U 2 �

�
1� z

L

�ÿ1
:

We here use a more flexible U 2 model [59] with two free
parameters L1 and L2, which represents a concave profile of
the refractive index (Fig. 4)

U�z� �
�
1� z

L1
ÿ z 2

L 2
2

�ÿ1
: �3:4�

The characteristic lengths L1 and L2 are related to the profile
minimum umin and the barrier width d as

Umin � �1� y 2�ÿ1; L2 � d

2y
; L1 � d

4y 2
; y � L2

2L1
:

�3:5�

The exact solution of inhomogeneous wave equation (3.3)
for a monochromatic wave inside barrier (3.4) can be written
as the sum of the forward and backward waves:

C �
�
exp �iqZ� �Q exp �ÿiqZ�� exp �ÿiot�����������

U�z�p : �3:6�

The dimensionless quantityQ, to be determined from the field
continuity conditions at the rear boundary of the barrier
z � d, is the backward wave contribution to the field inside
the barrier, and the variable Z is the phase path length:

Q � ÿ �1ÿ ig=2ÿ n0N � exp �2iqZ0�
�1ÿ ig=2� n0N � ;

g � �kL1�
ÿ1
; k � o

c
; �3:7�

Z�z� �
�z
0

U�x� dx � L2

2
��������������
1� y 2

p ln

�
1� zy�=L2

1ÿ zyÿ=L2

�
; �3:8�

Z0 � Z�d � � L2�������������
1� y2

p ln

�
y�
yÿ

�
; y� �

��������������
1� y 2

p
� y :

Formula (3.6) represents the field C in the form of an
amplitude-modulated wave in the phase plane (Z, t ). The
propagation regime of this wave is determined by the
wavenumber q:

q � kn0N ; N 2 � 1ÿ u2 ; u � O
o
; O � 2cy

��������������
1� y 2

p
dn0

:

�3:9�

The frequency dependence of the wavenumber (disper-
sion) is described by a waveguide-type formula, with the
quantityO in (3.9) playing the role of the cutoff frequency.We
emphasize that the emergence of the critical frequency in a
nonuniform barrier is due not to the properties of the barrier
material but to geometric parameters, the barrier shape U�z�

0

0.8

0.9

1.0

0.5 1.0 z=d

2

1

U

Figure 4. Normalized refractive-index profiles of different shapes U�z�
having the same width d � 80 mm and modulation depth nmin � 0:75n0:
1Ð profile (3.4), y2 � 1=3; 2Ð profile (5.1),M � 0:1, g � 0:025.
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and width d. When the nonuniformity effects subside (L1,
L2 !1), this nonlocal dispersion becomes weaker, the
cutoff frequency decreases to zero, and formula (3.9) for the
wavenumber takes the standard form q � kn0.

The nonlocal barrier dispersion separates the high-
frequency domain (u < 1, N 2 > 0), which corresponds to
the propagation mode, from the low-frequency domain
(u > 1, N 2 < 0), which is associated with the tunneling
mode. This mode is considered below in the course of solving
wave equation (3.6); the function Ct for the tunneling field
can be obtained from C in (3.6) by the substitution q! ip,
N! iNÿ with Nÿ �

��������������
u 2 ÿ 1
p

:

Ct �
�
exp �ÿpZ� �Q0 exp � pZ�

�
exp �ÿiot�����������

U�z�p ;

Q0�
�
n0Nÿ � g

2
� i

�
exp �ÿ2pZ0�

�
n0Nÿ ÿ g

2
ÿ i

�ÿ1
: �3:10�

The quantity Q0 follows from Q in (3.7) upon the same
substitution. We substitute expression (3.10) in Eqns (3.2) to
obtain the field components Ex and Hy inside the barrier in
the FTIR mode. The conditions for the continuity of these
components at the barrier boundaries give explicit expres-
sions for the reflection coefficient R and the transmission
function T.

The solution under discussion describes the simple case of
FTIR in a solitary photonic barrier. To optimize these effects,
we consider tunneling through a system ofm similar adjacent
layers described by Eqn (3.4). Using the continuity conditions
for the fields at the interfaces between neighboring layers, it is
possible to find the field in each layer; assigning the number
m � 1 to the layer at the distant side of the system, we obtain a
simple recursive formula for the parameterQm corresponding
to the mth layer (m5 1):

Qm � Q0 exp
�ÿ 2p �mÿ 1� Z0

�
: �3:11�

The quantity Q0 is defined in (3.10).
The reflection coefficient of the FTIR system under

discussion is found from formula (3.11) and the continuity
conditions at z � 0:

R � 1� iG

1ÿ iG
; G � g

2
ÿ n1

1ÿQm

1�Qm
; n1 � n0Nÿ : �3:12�

Substituting formula (3.11) in expression (3.12), we finally
obtain [48]

R � tm�1� g2=4� n 2
1 � ÿ gn1

tm�1ÿ g2=4ÿ n 2
1 � � gn1 � i�2n1 ÿ gtm� ;

tm � tanh �mpZ0� : �3:13�
The modulus of the complex transmission function

T � jT j exp �ift� is related to jRj2 by the conservation law:

jT j2 � 1ÿ jRj2 ; �3:14�

where the phase ft is

ft � arctan

�
tm�1ÿ g2=4ÿ n 2

1 � � gn1
2n1 ÿ gtm

�
: �3:15�

As in the case of rectangular barrier (2.4), the phase shift of a
tunneling wave does not accumulate in the course of

propagation but is formed at the boundary. With an increase
in the number of barriers (m4 1, tm ! 1), the modulus of the
transmission function decreases in accordance with the law
exp �ÿ2mpZ0�; as tm ! 1, it is clear from formula (3.15) that
the phase tends to a constant value fm independent of the
number of barriers (Fig. 5, curve 1). The `phase time' t
calculated from (1.6) also tends to a constant value with
increasing m (Fig. 5, curve 2). In this case, in the system of
nonuniform photonic barriers, there again emerges Hart-
man's paradox: the tunneling velocity v � md=t must
increase with the barrier width md to attain the value
m � 10 at v � c; the subsequent increase in m should lead to
supraluminal values (v > c). Moreover, a `negative tunneling
time' t < 0 may emerge near the cutoff frequency [53].

Therefore, evaluating the tunneling time in accordance
with formula (1.6) leads to the emergence of supraluminal
velocities and negative times in the FTIR theory. But these
problems do not emerge when the tunneling time is associated
with the group velocity vg of waves in the barrier. By defining
vg in terms of the energy fluxP and the energy densityW�z� in
(2.6) and finding P and W�z� for tunneling field (3.10), one
can show that vg�z� � P=W�z� < c inside the barrier. The
values of vg�z� for a nonuniform barrier are conveniently
compared with the velocity of energy transfer in the field
formed inside a uniform dielectric layer with a refractive index
n0 in the interference of the forward and backward waves.
This velocity vg0 calculated in accordance with (2.6) depends
on n0 and is independent of z:

vg0 � 2c

1� n 2
0

: �3:16�

In the tunneling through a layer with the parameters n0 � 1:8,
d � 80 nm, u 2 � 1:375, and y2 � 1=3 [49], the minimal
velocity vg > vg0 and the maximum value of vg is 1:5vg0.
This ratio corresponds to the energy flux in the FTIR mode
accelerated by 20 ± 25% (in comparison with a uniform
transparent layer).

In the foregoing, for simplicity of analysis, we considered
the regime of FTIR in a substrate-free gradient layer. With
the inclusion of the effect of a substrate, nonlocal dispersion
effects remain in force, although the dependence on the
substrate parameters complicates the formulas. In particu-
lar, the boundary conditions at the surface of a uniform
substrate whose thickness is far greater than the tunneling
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Figure 5. The phase fm (1) and the phase time tm (2) of a wave tunneling

through a system of gradient layers (3.4) as functions of the number of

layers m; y2 � 1=3, d � 80 nm, and nmin � 0:75n0.
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pulse length and whose refractive index is n lead, instead of
expression (3.10), to a different expression describing the
contribution of the backward wave:

Q � ÿ�in� n1 � g=2� exp �ÿ2pZ0�
in� n1 ÿ g=2

: �3:17�

In this geometry, the reflection coefficient R is given by

R � �n� g2=4� n 2
1 � tÿ gn1 ÿ i�nÿ 1� �n1 ÿ gt=2�

�nÿ g2=4ÿ n 2
1 � t� gn1 � i�1� n��n1 ÿ gt=2� ;

t � tanh �mpZ0� : �3:18�

For n � 1, formula (3.18) becomes formula (3.13).
As is evident from formula (3.18), the system of several

gradient films (3.4) can be an efficient reflector. For
example, we consider the case where the imaginary terms in
the numerator of (3.18) vanish; this condition can be written
as

x2 � y2t 2

1� y2
; x �

����������������
1ÿ uÿ2
p

:

When this condition is satisfied, the reflection coefficient in
(3.18) can be written as

R � nt 2 ÿ �1ÿ t 2� n 2
1

nt 2 � �1ÿ t 2� n 2
1

: �3:19�

In particular, for a systemof eight films (y2 � 1=3, d � 80 nm,
n0 � 1:8), we obtain R � 0:9993; for a l � 800 nm wave, the
reflector under consideration is only 650 nm thick (without a
substrate).Weemphasize an important property of this gradient
reflector: its thickness is smaller than the wavelength.

Along with the properties inherent in uniform photonic
barriers, the effects of FTIR for barriers with a concave
profile of the refractive index are noted for a feature
associated with profile nonuniformity; this feature is con-
sidered in what follows.

4. Reflectionless wave tunneling
in gradient optics

As noted above, the transmittance of a photonic barrier in
FTIR systems decreases exponentially with the barrier width;
the reflection of waves from the barrier becomes stronger and
the reflection coefficient jRj approaches unity. For a
rectangular uniform barrier, this result follows directly from
formula (2.2). Rapid attenuation of tunneling waves hinders
observations of the FTIR effects.

But the reverse situation may also occur for some
photonic barriers, when the interference of the forward and
backward waves inside the barrier leads to the disappearance
of reflection (R � 0) and, according to formula (3.13), to the
total transmission (jT j � 1) of the tunneling wave energy
flux. This situation occurs for a system ofm gradient barriers
with a concave profile of the refractive index. The condition
for the occurrence of a reflection-free tunneling mode in such
a system can be found by setting the expression forR in (3.13)
equal to zero:

tanh �mpZ0� �
gn1

1� g2=4� n 2
1

: �4:1�

The phase of the wave at the output of the system is

ft � arctan

�
g

1� n 2
1 ÿ g2=4

�
: �4:2�

To obtain the parameters of the optical system ensuring
this regime from expression (4.1), we may specify, for
instance, the values of n0 and the parameter y that defines
the modulation depth nmax � n0 �1� y2�ÿ1.

We introduce a new variable x �
����������������
1ÿ uÿ2
p

and, expand-
ing g in (3.7), rewrite Eqn (4.1) as [60]

tanh �mxl0� � 2xy�������������
1� y2

p �
1

n20
� y2

1� y2
� x2

�
1ÿ 1

n 2
0

��ÿ1
;

l0 � ln

�
y�
yÿ

�
: �4:3�

Solving this equation for x, we calculate the normalized
frequency u � O=o ; for a given wave frequency o, using
expressions (3.9), we then find the layer thickness d that
ensures the 100% transmittance (jT j2 � 1) of the tunneling
mode with the frequency o. In particular, by choosing a
material with n0 � 2:35, we conclude that in a system of two
barriers with themodulation depth nmax � 0:75n0 (y

2 � 0:33),
the condition jT j2 � 1 is satisfied for u � 1:1. For example,
this gives the width d � 65 nm for the wavelength
l � 800 nm and d � 85 nm for l � 1055 nm. The transmis-
sion spectrum of these photonic barriers for tunneling waves
(u > 1) is plotted in Fig. 6.

We emphasize that the effect under consideration is
different from conventional reflection-free coatings in opti-
cal systems. It is known that a uniform transparent layer (with
the thickness d and the refractive index n) does not reflect a
wavelength l if nd=l � pm=2, where m � 1; 2; 3; . . .; in this
case, several frequencies for which R � 0 may appear in the
transmission spectrum. By contrast, the gradient layer is
opaque for all frequencies o < O and the condition R � 0
may be satisfied for only one frequency.

The amplitude and phase FTIR effects may occur not
only in adjacent photonic barriers described by formulas
(3.13) ± (3.15) and (4.1), (4.2) but also in a system of barriers
separated by a gap of finite width. For example, we consider
the tunneling through two parallel dielectric layers (3.4) of
thickness d separated by an air gap of width D (Fig. 7). To

1.0 1.1 1.2 u

0.5

1.0

jT j2

Figure 6. Transmission spectrum in the reflection-free wave tunneling

through two layers (n0 � 2:35, d � 65 nm, y2 � 1=3).
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calculate the reflectivityR (3.12) of this system, the parameter
Q1 corresponding to the left layer must be expressed in terms
of the parameters of the air gap and the right layer.
Proceeding from right to left and consecutively using the
field continuity conditions at the planes z � 2d�D,
z � d�D, z � d, and z � 0, we obtain

Q1 � exp �ÿ2pZ0�

� 2n1Q0 � tan �kD��1�Q0�
�
1� S�n1 ÿ g=2��

2n1 � tan �kD��1�Q0�
�
1ÿ S�n1 � g=2�� ; �4:4�

S � n1�1�Q0�
1ÿQ0

ÿ g
2
: �4:5�

The quantities Q0 and n1 are defined in (3.10) and (3.12).
SubstitutingQ1 given by (4.4) in expression (3.12), we find the
reflection coefficient R of the entire system for an arbitrary
distance D between the layers.

Also noteworthy is an important property of the quantity
Q1, which characterizes the backward wave in the left layer
(see Fig. 7): when the distance D is an integer multiple of the
half-wave,

D � sl
2
; s � 1; 2; 3; . . . ; tan �kD� � 0 ; �4:6�

formula (4.4) reduces to formula (3.10), which defines Q1 for
adjacent barriers. Therefore, in the case (4.6), the gap D has
no effect on the amplitude or phase structure of the tunneling
wave (the generalized Hartman effect [27, 28]). In particular,
the reflection-free FTIR mode occurs for D is (4.6) as well as
for D � 0, under condition (4.1).

Repeating this reasoning for m parallel layers shows that
the phase `saturation' seen in Fig. 7 occurs in the geometry of
Fig. 7 for a large number of layers separated by arbitrarily
wide gaps D in (4.6).

We also note that the optics of thin gradient films was
considered above neglecting the effect of a substrate; but the
results obtained remain valid when the thickness D of a
transparent uniform nonabsorbing substrate satisfies condi-
tion (4.6), where l is the wavelength in the substrate material.

When a narrow-band wave pulse of a finite duration t
passes through photonic barrier (3.4) attached to a uniform
substrate of thickness d1 4 ct made of a material with a
refractive index n1, an FTIR mode with R � 0 occurs, as is
evident from expression (3.18), if the following two condi-
tions are simultaneously satisfied:

n0Nÿ � g
2
tanh �ml0x� ; n1 � n 2

0

1ÿ x2

�
y2

1� y2
ÿ x2

�
: �4:7�

The parameter l0 is defined in (4.3) and x �
����������������
1ÿ uÿ2
p

. For a
given n0, finding the value of x from the first equation in (4.7),
it is possible to choose the value n1 of the refractive index of
the substrate to ensure reflection-free pulse tunneling. In
particular, for n0 � 2:55, y2 � 1=3, and x � 0:2, Eqns (4.7)
are satisfied for a system of two films (m � 2) with n1 � 1:42
and u � 1:02. To make this system for a pulse of radiation
with the wavelength l � 800 nm requires films with a
thickness d � 120 nm.

In the case of reflection-free tunneling (jT j�1), the
expression for the time tBu in (1.7) reduces to simpler formula
(1.6); however, the above-mentioned contradictions between
the two definitions (t and tg) of the tunneling time in FTIR are
retained in this case. For FTIR regimes in gradient photonic
barriers, these contradictions are easily revealed for other
wave types considered below. These problems for simple
rectangular barriers (multilayer coatings [19] and subcritical
waveguide sections [23]) are still under discussion; leaving this
debatable issue open, we consider the reflection-free FTIR
regimes that occur in gradient barriers inside a waveguide for
waves of the radio-frequency region.

5. Microwave mode tunneling in waveguides

Microwave technology provides a convenient instrumental
basis for experiments in FTIR because centimeters and
nanosecondsÐ the spatio-temporal scales of the effects
observedÐare easier to measure than the corresponding
short-scale quantities in optical tunneling. In particular, the
first measurements of the transverse shift of rays in the total
internal reflection (theGoos ±Hanchen shift) weremade for a
beam of centimeter radio waves [49]. Measurements of the
directivity of a horn antenna in the near-field region at the
frequency 9.5 GHz [15] revealed anomalies of the group
velocity vg associated with the energy transfer in the
emanating wave fields. These fields, localized in the air at
distances 0.1 ± 1 m from the antenna mouth center, may be
treated as a peculiar kind of tunneling mode. The group
velocity vg of these modes, which was measured from the
signal delay, exhibits a dependence on the angle between the
horn axis and the radiation direction; in the directions close to
the horn generatrix, the value of vg amounted, according to
the estimates in Ref. [15], to supraluminal values 1.2 ± 1.4 c.

In another attempt to determine vg of tunneling micro-
waves [6], a waveguide path with a stepwise narrowing of the
waveguide cross section was used (Fig. 8, section 2); the wave
of the fundamental TE01 mode with a frequency o propa-
gated along the path between sections 1 and 3 (critical
frequency O) experiencing the FTIR effect in section 2
(critical frequency Ocr), with Ocr > o > O. By measuring the
time delay of the TE01 mode at the frequencies 9.45 GHz in
the narrow section of the length 20 cm (critical frequency
9.494 GHz), the authors of Ref. [61] noted that their
measurement data approached the tBu values in model (1.7).
The difficulties emerging in the pursuance of these experi-
ments are associated with the exponential attenuation of the
transmitted wave and the scattering of a part of its energy to
higher-order modes at the ends of section 2.

Replacing the narrow waveguide section 2 (see Fig. 8)
with a diaphragm made of a diamagnetic material with
magnetic permeability m < 1 can furnish an alternative to
this scheme [62]. The critical waveguide frequency in the
diaphragm region is somewhat higher, which gives rise to the
FTIR regime without changing the waveguide cross section,

d dD

z

Figure 7. Setup for the observation of the generalized Hartman's effect in

gradient layers of thickness d spaced at a distance D.
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i.e., without losses due to the generation of higher-order
modes. But the transmitted wave is then still attenuated in
the course of tunneling. At the same time, both of the above
loss mechanisms are eliminated when use is made of the effect
of reflection-free tunneling considered in Section 4 for normal
incidence. This requires replacing the waveguide narrowing
by a diaphragm with a concave profile e�z� in (3.1), with the
function U 2�z� given by (see Fig. 4, profile 2)

U 2�z� � 1ÿ 1

g
�W 2�z�

g
; W�z� �

�
cos

z

L
�M sin

z

L

�ÿ1
:

�5:1�

The cross section of the waveguide path does not change in
this geometry (Fig. 9), and the FTIR effect occurs due to
nonlocal dispersion in the layer given by (5.1). In this model,
the quantitiesM > 0, g > 1, andL are free parameters related
to the thickness d of the layer described by (5.1) through the
minimal value of the refractive index nmin and the profile slope
angle d near the boundary z � 0:

L � d

arcsin
ÿ
2M=�1�M 2�� ;

nmin� n0

������������������������������
1ÿ M 2

g�1�M 2�

s
; tan d � ÿ 2M

gL
: �5:2�

Therefore, unlike the model in (3.4), the concave-profile
model in (5.1) involves an additional free parameter d.

We again consider the fundamental TE01 mode, whose
components Ex and Hy are expressed in terms of some
auxiliary function C in accordance with Eqns (3.2) and
Hz � ÿqC=qy [51]; in this case, the equation divH � 0 is
automatically satisfied and the functionC is described by the
wave equation

q2C
qz2
� q2C

qy2
� �on0�

2U 2

c2
C � 0 : �5:3�

For an empty waveguide (n0 � 1, U � 1) of a rectangular
cross section with sides a and b (a > b), the function C is
known:

C �A sin

�
py
b

�
exp

�
i�bzÿ ot�� ;

b �
��������������������������������
o
c

�2

ÿ �k?�2
s

; k? � p
b
: �5:4�

To find the solution of Eqn (5.3) for the filled section of
the waveguide 04 z4 d, we can conveniently introduce a
new variable u as

u � ln
1�m� tan �z=2L�
m� ÿ tan �z=2L� ;

m� �
����������������
1�M 2

p
�M ; W�z� � cosh u����������������

1�M 2
p : �5:5�

Using this variable, the solution of Eqn (5.3) can be written as

C � B

����������������������������������
cos

z

L
�M sin

z

L

r
sin

py
b

F �u� exp �ÿiot� : �5:6�

In expressions (5.4) and (5.6), A and B are normalization
factors. The function F �u� in Eqn (5.6) is defined by the
equation

d2F

du2
� F

�
q2 ÿ T

cosh2u

�
� 0 ; �5:7�

q2 �
�
on0L
c

�2
1

g�1�M 2� ÿ
1

4
;

T � L2

��
on0
c

�2�
1ÿ 1

g

�
ÿ k 2

?

�
ÿ 1

4
: �5:8�

Equation (5.7) is quite often encountered in quantum
mechanics [63] and its solutions are expressed in terms of
hypergeometric functions in general. For simplicity, we here
consider the special case T � 0; when q2 < 0 in this case, Eqn
(5.7) describes a tunneling wave. This situation occurs, for
instance, for the TE01 mode with the frequency 10 GHz
(o � 2p� 1010 radÿ1) in a waveguide of a rectangular cross
section with the sides a � 1 cm and b � 2 cm for the
diaphragm parameters n0 � 1:85, g � 2:25, M � 1:7,
nmin � 1:51, and d � 0:22 cm; q2 � ÿ0:177. Introducing the
parameter p2 � ÿq2 > 0, we conveniently represent the
solution of Eqn (5.7) as the sum of forward and backward
waves similar to solution (3.10):

F � exp �ÿpu� �Q exp �pu� ; p �
���������
ÿq2

p
; �5:9�

Q�exp �ÿ2pu0� 2p
����������������
1�M 2
p �M� 2ibL

2p
����������������
1�M 2
p ÿMÿ 2ibL

; u0 � ln m� :

�5:10�

Using the field continuity conditions at the opaque layer
boundaries z � 0 (u � ÿu0) and z � d (u � u0), we then find
the reflectivity of a system of m adjacent layers in a form
similar to formula (3.13):

R �

� tm
��bL�2 � p2�1�M 2� �M 2=4

�ÿMp
����������������
1�M 2
p

tm
��bL�2 ÿ p2�1�M 2� ÿM 2=4

��Mp
���������������
1�M2
p � ibL

ÿ
2p

����������������
1�M 2
p ÿMtm

� ;
tm � tanh �2pmu0� : �5:11�
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Figure 8. Microwave analog of FTIR in optics: narrowing of the

waveguide profile (section 2) for the tunneling of the fundamental mode

between sections 1 and 3.
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Figure 9. Schematic of the principal mode tunneling through a waveguide

with a constant profile blocked by gradient dielectric diaphragms with the

profile U 2 in (5.1).
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The condition R � 0, which corresponds to the 100%
transmission of the tunneling TE01 mode, is satisfied for the
diaphragm consisting of two layers with the parameters
specified above (2M � 1:7, g � 2:25, n0 � 1:85, nmin � 1:51,
and d � 0:22 cm). If the layer parameters are changed
(n0 � 1:9, nmin � 1:55, and d � 0:2 cm) with the values of M
and g unchanged, the condition R � 0 is satisfied for a
diaphragm consisting of three layers. In these cases, the
modulus of the transmission function is equal to 1 and the
phase, defined by the formula

ft� arctan
tm
��bL�2ÿ p2�1�M 2�ÿM 2=4

��Mp
����������������
1�M 2
p

bL
ÿ
2p

����������������
1�M 2
p ÿMtm

�
�5:12�

that follows from formula (5.11), takes values close to p=2.
In comparing the FTIR effects in waveguides that arise

from path narrowing (see Fig. 8) and from a gradient
diaphragm (see Fig. 9), we also note several features of the
wave barriers considered here.

(1) Recording of the tunneling TE01 mode in the geometry
of Fig. 9 is not hindered by either the exponential attenuation
of the wave or the generation of higher-order modes in
scattering from the ends of the narrowing.

(2) The gradient diaphragm may be regarded as a device
for shifting the phase of the wave without loss of its energy.

(3) Saturation of the wave phase with lengthening the
tunneling path z (the insignificant change in the phase with
increasing z from z � 2d to z � 3d shown above) expresses
the Hartman effect for the gradient barrier. However, unlike
conventional FTIR configurations, where the phase satura-
tion is accompanied by a decrease in the transmittance jT j,
the scheme considered shows that this decreasing effect is not
universal for all FTIR schemes.

4. As noted inRef. [23], themeasurement data for the time
of signal propagation through the narrowed waveguide are
close to the tBu values given by (1.7), which depend on
q lnT=qo; however, for a gradient diaphragm with T � 1,
this derivative vanishes, which allows verifying this FTIR
theory independently.

In connection with this possibility, we note Ref. [64], where
measurements were made of the transmission spectrum in the
region of gigahertz radio waves tunneling in a waveguide
through a diaphragm made of a metamaterial: this spectrum
corresponds to the case of total transmission (jT j2 � 1) of the
tunneling mode, which is due to the `plasmon' transfer of wave
energy in the diaphragmmaterial (the effect previously noted in
Ref. [41]).

5. The phase ft of a wave tunneling in a waveguide across
a diaphragm of thickness D may be larger than the wave
phase increment F � bD over the same distance D in an
empty waveguide. In particular, in the aforementioned case
R � 0 for the TE01 mode, ft � p=2, while D � 2d and
F � 0:61 rad. By exciting this mode in a system of two
similar waveguides, one of which contains a gradient
diaphragm for FTIR, it is easy to see that the phase
difference between the waves at the system output is equal to
Df; in the case under discussion, Df � 0:96 rad. Such a
microwave system is similar to a two-photon interferometer
in optics [18]. By finding the phase ft from the measured Df
and comparing the formation time of ft (t1 � F=o) with the
phase time t in (1.6) and the time tg defined by the group
velocity of the tunneling waves, it is possible to estimate the
effectiveness of competing FTIR theories.

6. FTIR effects in a transmission line
with continuously distributed parameters

Long transmission lines with continuously distributed
parameters are characterized by the values of linear
capacitance C and inductance L. In particular, for a strip
line with the strip width a and interstrip spacing d, the
quantities C and L are [58]

C � e0ea
d

; L � m0 md
a

; �6:1�
where e0 � 8:85� 10ÿ12 F mÿ1 and m0 � 4p� 10ÿ7 H mÿ1

are the permittivity andmagnetic permeability of the vacuum,
and e and m are the values of these parameters in the medium.
When C and L retain constant values equal to C0 and L0

along the length of the line, the signal speed v0 and the
impedance Z0 of the line are

v0 � 1�����������
L0C0

p ; Z0 �
������
L0

C0

r
: �6:2�

The current I and voltage V distributions in a loss-free line
with distributed parameters satisfy the equations [51]

qV
qz
� L

qI
qt
� 0 ;

qI
qz
� C

qV
qt
� 0 : �6:3�

In the framework of system of equations (6.3), we
consider the case where the capacitance or inductance
distributions are nonuniform, for instance, the distribution
of C in the section 04 z4 d depends on the z coordinate:

C�z� � C1U
2�z� ; U�0� � U�d � � 1 : �6:4�

By introducing an auxiliary function C with the help of the
relations

V � ÿL0
qC
qt

; I � qC
qz

; �6:5�
we obtain an equation that coincides with wave equation (3.3)
after the replacement c=n0 ! v0. In this case, representations
(6.5) for V and I are analogous to representation (3.2) for the
electric and magnetic components of the wave field.

By extending this analogy, it is possible to investigate a
strip line with the capacitance modulation of form (3.4) and
(3.5), produced, for instance, by a smooth variation of e�z�
with unchanged geometrical dimensions a and d. In this case,
a cutoff frequency O occurs in the nonuniform strip line,
related to the velocity v0 as

O � 2v0y
�������������
2� y2

p
d

: �6:6�

In the subcritical case o < O, the voltage and current waves,
which are described by the function Ct in (3.10), tunnel
through the line section 04 z4 d. The wave reflection
coefficient for the modulated capacitance section and the
condition for reflection-free tunneling through this section
are given by formulas (3.13) and (4.3) with the replacement
n 2
0 ! C0=C1. Therefore, the tunneling of current and voltage

waves in a transmission line with continuously distributed
parameters exhibits similarities to FTIR effects in gradient
optics.

Continuous modulation of parameters permits imparting
new properties to a long line:
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(i) waveguide-type frequency dispersion characterized by
a controllable cutoff frequency;

(ii) the possibility of matching line sections that is
unrelated to their geometrical dimensions;

(iii) control of the phase of the transmitted wave without
power loss in the FTIR regime, when the phase shift depends
on the modulation parameters rather than the path length.

Despite the formal similarity to the effects of gradient
thin-film optics, we must draw a significant physical distinc-
tion between these systems: the refractive index of a film
n0 > 1, while the corresponding parameter �C0=C1�1=2 for a
transmission line in formulas (3.13) and (4.3) may be either
greater or smaller than unity. This correspondence furnishes
the possibility of flexible modeling of tunnel effects in
transmission lines with continuously distributed parameters.
Similar possibilities for a line with a transient capacitance
C �t� are demonstrated in Ref. [59].

7. Gradient optics of surface waves

In the foregoing, we considered wave tunneling through
nonuniform media in the direction of the gradient of the
refractive index n (see Section 3) or, in the more general case,
at an angle to this direction (see Section 5). In this case, the
wave field structure is determined by tunneling in the grad n
direction and by the propagation in the direction perpendi-
cular to grad n. In the vicinity of the boundary of a nonuni-
form medium, this field corresponds to a surface wave; the
tunneling causes the field to decrease on either side of the
boundary, and its amplitude and phase structure depends on
the profile of the refractive index in the near-boundary layer
of the medium.

To emphasize the peculiarity of these fields, they are
conveniently compared to surface waves at an abrupt inter-
face of two uniform dielectrics. The polarization and
spectrum of these waves traveling in the y direction along
the interface (the z � 0 plane) are known [65]:

(i) the wave field involves the Ey, Ez, and Hx compo-
nents (the TH polarization); the TE-polarized surface wave
(the Hy, Hz, and Ex components) is impossible in this
system, although such waves have been noted for other
media, in particular for photorefractive materials [66] and
antiferromagnets [67];

(ii) the surface wave at the interface of uniform media is
impossible when the permittivities of these media satisfy the
condition e1 � e2 < 0. This implies that the permittivity of at
least one medium must satisfy the condition e < 0; this
situation is possible, for instance, in the solid-state plasma
of a metal or a dielectric with free carriers [68];

(iii) the frequency spectrum of surface waves at the
interface of the air and the plasma of a solid with the plasma
frequency Opl is bounded from above: o < Opl=

���
2
p

.
However, in contrast to THwaves, another field structure

of a surface wave is possible for a smooth variation of the
profile e�z�. This variation is conveniently considered in the
framework of the exactly solvable model given by (5.1), in
whichW�z� � �1� z=L�ÿ1, z5L. A dependence of this type
describes the `saturation' e�z� � n 2

0U
2�z� deep in the medium

(z4L), where the refractive index takes the bulk value nv:

n �z � 0� � n0 ; n �z4L� � n0

�����������
1ÿ 1

g

s
� nv ; g > 1 :

�7:1�

In model (7.1), the TE-polarized surface wave is possible
at the boundary between a nonuniform dielectric and the air
(W � 1). The Ex, Hy, and Hz components of this wave field
are conveniently expressed in terms of the generating function
C defined by wave equation (5.3). By representing the C
function in the form [69]

C � A
�����
W
p

f �u� exp �i�kyyÿ ot�� ; u � 1� z

L
; �7:2�

we use Eqn (5.3) to obtain the Bessel equation for the function
f �u�:

d2 f

du 2
� 1

u

d f

du
� f

�
p2 ÿ s 2

u 2

�
� 0 ; �7:3�

p2 �
�
o
c

�2

�n 2
v ÿ b2� � ÿp21 ; s 2 � 1

4

�
1ÿ o2

O2
cr

�
;

b � cky

o
; Ocr � c

2L
����������������
n 2
0 ÿ n 2

v

q : �7:4�

The solutions of Eqn (7.3) that decaywith the z coordinate are
the modified Bessel functions Ks� p1Lu�. These solutions,
which occur for p2 < 0 � p21 > 0� and s 2 > 0, describe the
structure of a field localized in the nonuniformmedium at the
z � 0 boundary; in this case, n 2

v < b2.
The generating function in the region z4 0 is given by

C1 � B exp

�
z

l
� i �kyyÿ ot�

�
; �7:5�

where l is the characteristic field localization scale length in
the region z < 0, andA andB are the normalization factors of
solutions (7.2) and (7.5). The field continuity conditions at the
boundary z � 0 permit relating the constants A and B to the
characteristic lengths l and L:

B � AKs� p1L� ; �7:6�

L

l
� 1

2
� p1L

dKs

du
Kÿ1s : �7:7�

We expand the function Ks� p1L� in a series in the domain of
small values of the argument �� p1L�2 5 1� and keep the first
term of the expansion to rewrite Eqn (7.7) in the form

L

l
� 1

2
ÿ s� . . . : �7:8�

Because the derivative of the decreasing function Ks is
negative and L=l > 0, we obtain a restriction for the index of
the Bessel function Ks: 0 < s < 1=2.

To find the dispersion equation of the surface wave under
discussion, we note that the dimension l of its localization in
the air is related to the frequency o by the equation
b2 � 1� �c=lo�2 following from expression (7.5). In this
case, b � cky=o > 1, and hence the wavenumber of the
surface wave is greater than the value of ky for a wave of the
same frequency o in empty space z < 0. The above surface
wave may be excited by increasing the projection ky of the
wave incident from the z < 0 domain. For this, we can use a
scheme resembling FTIR in the configuration of Fig. 1 if the
wave, on passing the prism with a refractive index npr and a
gap, impinges on the surface of gradient medium (7.1) instead
of the second prism [70, 71]. The dimensionless parameter b in
expression (7.4) is then given by b � npr sin y, and therefore
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the condition b > nv, which is required for field attenuation
inside the medium, may be satisfied. In Eqn (7.8), we express
the attenuation length l in terms of the parameter b to obtain
the dispersion equation for the TE surface wave:

b2 ÿ 1

n 2
0 ÿ n 2

v

�
�

n

1�
�������������
1ÿ n 2
p

�2

; n � o
Ocr

: �7:9�

Here, n4 1 is the normalized frequency of surface waves, and
the critical frequency Ocr is defined in (7.4). The wave
spectrum given by (7.9) contains two branches, which merge
at the point n � 1; to each frequency n, there formally
correspond two values of b � npr sin y, but only one of these
values is compatible with the condition b > nv in (7.4) for
realistic parameters of the problem. The same situation
persists when the next term of the expansion of Ks is
substituted in Eqn (7.8):

Ks� p1L� � ÿs� � p1L�
2

2�1ÿ s� . . . : �7:10�

In approximation (7.10), corrections to the b values found
from Eqn (7.9) do not exceed several percent.

We note that the critical density Ocr in (7.4) varies over
a wide spectral range comprising the IR, near-IR, and even
visible parts of the spectrum, depending on the near-surface
layer parameters n1, nv, and L. In particular, for a gradient
dielectric with n0 � 1:57, nv � 1:55, and L � 70 nm, the
frequency Ocr is equal to 8:08� 1015 rad sÿ1. Surface TE
waves with the frequency o � 2:69� 1015 rad sÿ1

(l � 700 nm), which are close to the red edge of the visible
spectrum, and TE waves with o � 3:22� 1015 rad sÿ1

(l � 585 nm), which represent the center of the visible
region, may propagate along the boundary of this medium in
accordance with Eqn (7.9). The incidence angles for npr � 1:9
are respectively equal to 71:3� and 57:3� for the above waves
with l � 700 nm and l � 585 nm.

The above TE waves at the boundary of a gradient
medium differ in the mechanism of field penetration into the
medium from the TH waves at an abrupt interface: the TH
waves tunnel, as noted above, in the medium where e < 0,
while the TE waves tunnel in the medium where e > 0, but
qe=qz < 0. A transition layer of finite thickness is required for
the existence of the TE waves; with broadening of this layer
(L!1), the critical frequency decreases to zero, the
nonuniformity vanishes (U � 1, n0 � nv), and Eqn (7.9)
transforms into the trivial condition n sin y � 1 for the total
internal reflection of incident waves.

We also note some features of TE surface waves arising
from their tunneling across a thin (L < l) near-boundary
layer with decreasing permittivity:

(1) The critical frequency Ocr in (7.4) is not related to the
density of free carriers in the medium, and these waves can
therefore propagate along the boundaries of solids void of
free carriers; this property substantially broadens the range of
materials that allow the use of TE surface waves.

(2) The high values of Ocr, which are defined by the
nonlocal dispersion of a gradient layer, permit extending the
frequency spectrum of TE surface waves towards both the
short- and long-wavelength parts of the spectrum.

(3) The losses due to TE surface wave attenuation may
be optimized by choosing the gradient material whose
absorption bands are located away from the wave frequen-
cies in use.

8. Conclusion.
Two-dimensional problems of the FTIR theory

To conclude, we briefly discuss new and insufficiently
elaborated problems of wave tunneling: curvilinear photonic
barriers, the role of absorption, optomechanical effects,
transient problems, and, above all, polarization tunneling
effects.

1. Thedifference in theFTIRmodes for S- andP-polarized
waves arises when they are obliquely incident on the surface of
a gradient barrier. To generalize the corresponding results
obtained inSections 3 and 4 for normal incidence to the case of
an arbitrary angle requires a more complicated analysis
involving hypergeometric functions. We present some of the
results of this analysis without derivation [72].

We consider wave incidence at an arbitrary angle y onto a
gradient layer of thickness d, whose refractive index n�z�
increases from the value n0 at the layer center (z � 0) to the
value nmax > n0 at the boundaries z � �d=2:

n � n0U�z� ; U�z� �
�
cos

z

L

�ÿ1
;

nmax

n0
�
�
cos

d

2L

�ÿ1
:

�8:1�

In this model, S-wave propagation through a layer with
refractive index (8.1) is characterized by a nonlocal disper-
sion and the cutoff frequency O, which is caused by layer
nonuniformity:

O � c arccosM

n0d
; M � n0

nmax
: �8:2�

For a layer with the parameters d � 80 nm and n0 � 1:4, the
cutoff frequency O � 1:25� 1015 rad sÿ1 lies in the near-IR
range (l � 1500 nm). S waves with frequencies o < O
propagate across this layer in the FTIR regime. However,
P waves of the same frequency incident at the same angle pass
through this layer in the ordinary regime, not experiencing the
tunnel effect. Therefore, nonuniformity (8.1), which defines
nonlocal wave dispersion, is additionally responsible for the
barrier birefringence of a sort that underlies the fundamental
difference in transmission of the S and P waves.

Polarized-wave transmission spectra at oblique wave
incidence as functions of the dimensionless parameter g are
shown in Fig. 10:

g � 1ÿ
����������������
1ÿ uÿ2
p

2
; u � O

o
> 1 : �8:3�

The properties of these spectra are noteworthy:
(i) a narrow transmission peak (jT j2 � 1, reflection-free

tunneling) for S waves;
(ii) steep downward excursions of jTSj2 near the cutoff

frequency u�1 and of jTPj2 in the region u5 3;
(iii) a high contrast ratio between jTSj2 and jTPj2; the ratio

w � jTSj2=jTPj2, which characterizes this contrast, ranges
down to w < 0:05 or up to w > 90 in narrow spectral intervals.

As is evident from Fig. 10, the gradient layer under
discussion can be of interest in the development of narrow-
band frequency filters and polarizers [73] operating at rather
large incidence angles b2 � 1� �c=lo�2. The influence of the
substrate (the jTSnj2 � 1 curve) smears the peak of jTSj2,
although the peak jTSj2 � 1 itself, like the properties (ii) and
(iii), also manifests itself in the presence of a substrate;
insignificant substrate-induced distortions of the P-wave
transmission spectrum are not shown in Fig. 10. When the
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layer parameters n0 andM in (8.2) and the angle y are known,
formulas (8.3) allow finding the layer thickness d that ensures
the S- and P-wave transmission mode characterized by the
given value of g�u� for a given wavelength l:

d

l
�

���������������������������
1ÿ 4�1ÿ g�2

q
arccosM

2pn0
: �8:4�

In particular, under the conditions corresponding to Fig. 10,
for jTSj2 � 1 �g � 0:985�, for instance, we obtain the ratio
d=l � 0:09 corresponding to a thin-layer filter for S waves.

2. Quite often considered in connection with losses in bent
light guides is the tunneling through cylindrical barriers [74];
in particular, parasitic modes of the `whispering gallery' type
may emerge for a small bending radius. For a light guide with
a core of thickness d, an external radius of its rounding r0, and
refractive indices of the core and the cladding n1 and 2, the
condition for the emergence of such a mode is given by
d=r0 > �n1 ÿ n2�=n2 [75].

For spherical photonic barriers, reflection and transmis-
sion spectra were discussed in connection with the ray
orbiting effect emerging in the scattering of waves from
concentric dielectric spheres [76]. The analysis of similar
effects for continuous radial distributions of the refractive
index n�r� is fraught with considerable mathematical difficul-
ties even for simple power-law n�r� dependences [77].

3. The monotonic saturation of the phase of a tunneling
wave was discussed above for a conservative medium. It was
noted in Ref. [48] that the absorption in the gradient layer
material lowers the rate of saturation, and the phase variation
becomes periodic for a sufficiently strong absorption. The
reflection and transmission of waves tunneling through an
absorbing gradient layer with a complex permittivity
e � Re e� i Im e, Re e > 0, may be investigated with the help
of formula (3.13) with the replacements

tm ! S ; n1 ! n0�aÿ ib� ; aÿ ib �
����������������������
u2 ÿ 1ÿ iz

p
;

z � Im e
Re e

; S � t1 � it2
1ÿ it1t2

; t1 � tanh
paZ0
c

; �8:5�

t2 � tan
pbZ0
c

; p � on0
c

; n0 �
���������
Re e
p

:

At the same time, a conservative gradient layer deposited
on an absorbing substrate can make up an FTIR configura-
tion, giving rise to quenching of the reflected wave (reflection-
free coating of the absorber [69]).

4. Optomechanical effects of nanoparticle capture and
entrainment in the fields of tunneling waves were noted in
Refs [78 ± 80]; controllable displacement of the closely spaced
sections of optical fibers under the action of outgoing modes,
which is of interest for microphotonics problems, was
considered in Ref. [81].

5. In the foregoing, we noted an analogy between the
stationary FTIR effects in quantum mechanics and optics
described by solutions of the stationary SchroÈ dinger and
Helmholtz equations. This analogy is easily seen in the
simple case where the permittivity profile in Helmholtz
equation (3.3) is of the form U 2�z� � Cÿ V�z�, where C is a
constant; in this case, Eqn (3.3) for a monochromatic wave
coincides with the SchroÈ dinger equation, where C is the
particle energy and V�z� is the external potential. However,
for the U 2�z� profiles in (3.4) or (5.1), Helmholtz equation
(3.3) is brought to the form of the SchroÈ dinger equation only
by special transformations of variables Z�Z�z� in (3.8) and
(5.5). It is precisely these transformations that allow revealing
the important role of nonlinear dispersion in the optics of
gradient media.

In tunneling across barriers with a time-dependent height,
this analogy breaks down: in quantum mechanics, such
effects are described by transient solutions of the SchroÈ din-
ger equation dependent on the first time derivative qC=qt,
and in optics, by solutions of the wave equation containing
the second derivative q2C=qt 2. The special character of
transient FTIR is discussed in Ref. [82] by the example of
the EM wave passage across a barrier whose height oscillates
in time; the tunneling through a moving barrier was
considered in Ref. [83]. An interesting application of the
transient FTIR concept was proposed in Ref. [84], where the
penetration of individual Bose-condensate atoms through the
walls of an optical trap is treated as the tunneling of matter
waves. Comparison of the investigation of stationary and
transient FTIR processes shows that the latter have only
recently come under close scrutiny, however.

To conclude, there is good reason to mention the
prospects of using wave tunneling effects both in applied
problems of gradient nanooptics (thin-film filters and polar-
izers, reflectors, and reflection-free coatings) and in the
solution of basic problems related to optimization of the
energy transfer by waves of different spectral regions.
Another important field is taking shape in the generalization
of optical FTIR effects to nonlocal quantum mechanical
electron tunneling through potential barriers [6, 8, 13]. The
common nature of the FTIR concepts for different wave
fields is also beginning to attract attention in the analysis of
particle dynamics in atomic physics [85, 86].
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