
Abstract. Although the spectacular experimental achieve-
ments of particle physics in the last decade have strengthened
the Standard Model (SM) as an adequate description of
nature, they have also revealed that the SM matter repre-
sents a mere 5% or so of the energy density of the Universe,
which clearly points to some physics beyond the SM despite
the desperate lack of direct experimental evidence. The sector
responsible for the spontaneous breaking of the SM electro-
weak symmetry is likely to be the first to provide experimen-
tal hints at this new physics. The aim of this review is, after
briefly introducing SM physics and the conventional Higgs
mechanism, to give a survey of recent ideas on how the
dynamics of electroweak symmetry breaking can be ex-
plained.

1. Introduction

Particle physics has lived through a decade of great experi-
mental success [1]: the discovery of the top quark, the
observation of solar and atmospheric neutrino oscillations,
the measurement of direct CP violation in the K system, the
measurement of CP violation in the B system, evidence of an
accelerated phase in the expansion of the universe, determina-
tion of the dark energy and dark matter composition of the

universe, etc. These results have strengthened the Standard
Model (SM) of particle physics as a successful description of
nature. Yet, these results have also led to the conclusion that
the SMmatter only represents about 5%of the energy density
of the Universe and therefore physics beyond the SM is called
for, albeit direct evidence of such physics is desperately
missing.

With the exception of gravitational interactions, the SM
describes all the fundamental interactions among elemen-
tary particles. These interactions correspond to gauge
interactions mediated by gauge bosons: the photon, the
W� and Z0 bosons, and the gluons associated respectively
with the electromagnetic, weak, and strong interactions.
These gauge bosons ensure the invariance of the theory
under the U�1�Y � SU�2�L � SU�3�C local symmetry. While
the photon and gluons are massless, the W� and Z0 bosons
have a mass of the order of 10ÿ25 kg, i.e., 100 GeV in particle
physics units. These masses can be understood as a conse-
quence of the fact that U�1�Y � SU�2�L is not an exact
symmetry of nature. Broken symmetries are not particular
to particle physics and are encountered in classical physics:
while the laws of mechanics are invariant under rotations in
the three dimensions of space, we clearly distinguish the
vertical direction on Earth from the two horizontal ones:
SO�3� is broken down to SO�2�. Similarly, the vacuum of the
SM is actually only invariant under the U�1�em subgroup
describing the conservation of the electric charge, while
applying other transformations of U�1�Y � SU�2�L does not
leave this vacuum invariant. For instance, a scalar field could
have a vacuum expectation value that identifies a preferred
direction among the four generators of U�1�Y � SU�2�L. The
interactions of this scalar field with the other elementary
particles, quarks, leptons, and gauge fields would then be
responsible for theirmasses. Such a scalar particle is known as
the Higgs particle.
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The StandardModel can be divided into three sectors: the
gauge sector, the flavor sector, and the electroweak symmetry
breaking sector. While the first two have been well tested in
accelerator experiments (such as LEP, SLD, BABAR,
BELLE), the sector of electroweak symmetry breaking
(EWSB) is currently the subject of intense scrutiny, not only
because particle physicists hope to discover the Higgs boson
at the Large Hadron Collider (LHC), soon to be operational
at CERN, but also because this sector could well provide us
with the first hints in a detector of a new physics beyond the
Standard Model. Indeed, the usual Higgs mechanism jeopar-
dizes our current understanding of the SM at the quantum
level and requires the existence of additional structures (new
particles, new symmetries, new dimensions) to stabilize the
weak scale. Better than a long introduction, the following
tautology reveals that an understanding of the dynamics of
EWSB is still missing:

Why is the EW symmetry broken?
Because the Higgs potential is unstable at the origin.
Why is the Higgs potential unstable at the origin?
Because otherwise the EW symmetry would not be broken.
One should understand here that the Higgs mechanism is

only a description of EWSB and not an explanation of it
because, in particular, there is no dynamics to explain the
instability of the Higgs potential at the origin.

The Higgs sector involves two experimentally unknown
parameters, the Higgs boson mass �MH� and the cutoff scale
�L� of the SM itself, i.e., the scale at which the new physics is
to show up. Yet, these two parameters are subject to
theoretical consistency constraints Ð the well-known uni-
tarity, triviality, stability, and naturality bounds Ð as well as
indirect experimental constraints through the electroweak
precision data.

Integrating out any heavy particle generates new non-
renormalizable interactions between the light SM particles. If
the SM is to make any sense as an effective theory at low
energy, these new interactions have to leave the SM gauge
symmetry unbroken. Yet, they can break some (accidental,
approximate) SM global symmetries and, depending on
which global symmetry is actually broken, these new
interactions can manifest themselves at rather low energy
(Table 1). The EWSB sector seems to be a good place to look
for manifestation of the new physics in the energy range that
will be explored at the LHC.

This raises three important questions that we address in
this review:
� Given the experimental results from LEP, SLD, and

Tevatron, what are the constraints on a new physics in the
EWSB sector?
� Is it possible to add a new physics around the TeV scale

that stabilizes the EW scale?

�What is the potential for discovering a new physics in
the EWSB sector at the LHC?

This review is organized as follows: 1 Section 2 contains a
short introduction to the Higgs mechanism and discusses the
limits on the Higgs mass and the cutoff scale of the Standard
Model; Section 3 explains how the new physics can address
the problems encountered in the Higgs sector and gives the
general low-energy structure of the corrections induced in the
gauge sector by the new physics; Section 4 discusses models
where the Higgs field appears as a component of a gauge field
along an extra dimension; finally, Section 5 reports on
Higgsless models, where the EWSB is no longer achieved
through a Higgs mechanism but results from nontrivial
boundary conditions for the gauge fields at the boundaries
of a fifth dimension. Another class of EWSB models has
become quite popular in recent years, namely the Little Higgs
models. Since some very good reviews are already available
on that subject [2, 6], only a short account of these models is
given in this review in Section 3.2.

2. Electroweak symmetry breaking
and Higgs physics

2.1 SM Higgs physics
2.1.1 Higgs mechanism. Experiments (Fig. 1) show that above
approximately 100 GeV, electromagnetism and weak inter-
action are `unified,' while at lower energy, the photon is quite
different from the Z0 and the W� bosons; in particular, they
have quite different masses:

Mg < 6� 10ÿ17 eV ;

MW� � 80:425� 0:038 GeV ; �1�
MZ0 � 91:1876� 0:0021 GeV :

Table 1. Examples of nonrenormalizable interactions between SM
particles obtained after integrating out some heavy degrees of freedom
and limits on the corresponding scales that suppress them. These
interactions can be classified according to the global symmetries they
break. Rather low scales can affect the EWSB sector. (From Ref. [2].)
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1 Some useful reviews/lecture notes on electroweak physics can be found in

Ref. [3]. The reader interested in an introduction to technicolormodels can

have a look at [4]. Sections 4 and 5 involve physics in extra dimensions. The

material of these two sections is self-contained; more advanced introduc-

tions to extra dimensions can be found in Refs [5].
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Figure 1.Unification of electromagnetic and weak interactions as seen by

the ZEUS collaboration [7].
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The simplest way to explain the possible origin of these
masses is to rely on the Higgs mechanism [8]: the initial
Lagrangian is invariant under the full SU�2�L �U�1�Y
group, but the vacuum only preserves a U�1�em subgroup.
This spontaneous breaking can result from a scalar field
taking a nonzero vacuum expectation value (vev). More
precisely, we assume that the theory involves a scalar field H
of hypercharge 1=2 transforming as a doublet under SU�2�L.
Using a SU�2�L �U�1�Y transformation, the vev of H can
always be brought to the form

The nonzero vev of the Higgs boson is a consequence of
the form of the Higgs potential

V�H� � l
�
H yHÿ v

2

2

�2

; �2�

which has the shape of a Mexican hat and exhibits a local
maximum at the origin.

The gauge boson masses are generated through the
covariant derivative of the scalar field 2 �W�

m �
�W 1

m � iW 2
m �=

���
2
p �

DmH � qmHÿ i

2

gW 3
m � g 0Bm

���
2
p

gW�
m���

2
p

gWÿ
m ÿgW 3

m � g 0Bm

 !
H ; �3�

and jDmHj2 contains the quadratic mass terms

1

4
g 2v 2 W�

m W
ÿ m � 1

8
�W 3

m Bm� g 2v 2 ÿgg 0v 2
ÿgg 0v 2 g 0 2v 2

� �
W 3 m

Bm

� �
:

�4�

Thus, the gauge boson spectrum contains
� a pair of electrically charged gauge bosons, the W�'s,

having the mass

M 2
W �

1

4
g 2v 2 ; �5�

� a pair of electrically neutral gauge bosons, the photon g
and the Z boson, which are the linear combinations of W 3

and B that diagonalize mass matrix (4):

Zm � cWW 3
m ÿ sWBm; gm � sWW 3

m � cWBm ; �6�

where the weak mixing angle is the ratio of the SU�2�L and
U�1�Y gauge couplings:

cW � cos yW � g������������������
g 2 � g 0 2

p ; sW � sin yW � g 0������������������
g 2 � g 0 2

p :

�7�

As a consequence of the unbroken U�1�em symmetry, the
photon remains massless and the mass of the Z boson is given
by

M 2
Z �

1

4
�g 2 � g 0 2�v 2 : �8�

2.1.2 Counting the degrees of freedom. In the breaking of
SU2L �U�1�Y down to U�1�em, three gauge directions are
broken, which requires `eating' three Goldstone bosons.
These Goldstone bosons are provided by the Higgs doublet
that involves four real scalar degrees of freedom, out of which
three are the eaten Goldstone bosons, which become the
longitudinal polarizations of the massive gauge bosons.
Therefore, in total, there is one remaining physical real scalar
degree of freedom: the famous `Higgs boson.' It describes the
fluctuations around a nontrivial vacuum.

This decomposition can be made explicit in the para-
meterization

H � exp �ipas a�
0

v� h���
2
p

0@ 1A : �9�

In the unitary gauge, the p a are nonphysical and correspond
to the eaten Goldstone bosons, while h is the physical Higgs
boson. The physical Higgs boson has some nontrivial
interactions with the gauge bosons and with the quarks and
leptons through the Yukawa couplings. It also has nontrivial
self-interactions, which are obtained by expanding the scalar
potential around its minimum:

V � l
�
H yHÿ v

2

2

�2

� lv 2 h 2 � lv h 3 � 1

4
l h 4 : �10�

In particular, the Higgs mass is

M 2
H � 2lv 2 : �11�

2.1.3 Custodial symmetry. From the spectrum of the gauge
bosons given above, we easily obtain the value of the r
parameter

r � M 2
W

M 2
Z cos

2 yW
� �1=4�g 2v 2

�1=4��g 2 � g 0 2�v 2 g 2=�g 2 � g 0 2� � 1 :

�12�

There is an empirical theorem that says that whenever you
find either 0 or 1 at the end of a computation, it means that
either you made a mistake or there is a symmetry that can
explain the result. In the present case, there is clearly no
mistake, and hence there must be a symmetry behind this
particular value of the r parameter. Indeed, an SU�2�
custodial symmetry is present in the Higgs sector of the
theory [9]. The Higgs doublet contains four real degrees of
freedom and the point is that the Higgs potential is actually
invariant under any rotation of these four components, and
hence under a global SO�4� symmetry, which mathematically
is nothing but SU�2�L � SU�2�R, the SU�2�L being the gauge
symmetry of the Standard Model. The origin of the SU�2�R
symmetry can also be made more transparent as follows. A
doublet of SU�2� is a pseudo-real representation, which
means that the complex conjugate of the doublet is equiva-
lent to the doublet itself. In practice, if we consider the doublet

Symmetry of the Lagrangian

SU�2�L �U�1�Y
Higgs doublet

H � H�
H0

� �
Symmetry of the vaccum

U�1�em
Higgs vev

hHi �
0

v���
2
p

0@ 1A

2 Throughout this review, we use the mostly minus signature metric

��;ÿ; . . . ;ÿ�. The Greek indices m; n; . . . , denote our usual 4D spacetime

coordinates, while coordinates along the extra dimensions are denoted by

lowercase Latin indices. Uppercase indices denote both 4D and extra

dimensional coordinates.
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to be a field Hi with a lower SU�2� index, then the complex
conjugate automatically has an upper index. However, using
the SU�2� epsilon tensor Ei j � is 2

i j, this can be lowered again,
and therefore Hi and iEi j�H �� j transform in the same way.
This means that in addition to SU�2�L acting on the usual
SU�2� index, there is another SU�2�R symmetry that mixesH
with is 2H �. We can write a 2� 2 matrix as

H � is 2H � H
ÿ � � H �0 H�

ÿH �� H0

� �
; �13�

on which the SU�2�L � SU�2�R symmetry acts as

H ! ULHU
y
R : �14�

The SU�2�L � SU�2�R invariance of the Higgs potential is
made explicit by noting that

HyH � H yH 1 0
0 1

� �
; �15�

such that the Higgs potential becomes

V � l
4
�TrHyH ÿ v 2�2 : �16�

The Higgs vev

hHi �
0

v���
2
p

0@ 1A ; i:e:; hHi � v���
2
p 1

1

� �
; �17�

obviously breaks SU�2�L � SU�2�R down to the diagonal
subgroup SU�2�D (UL � UR in (14) leaves the vacuum
invariant). Under this unbroken symmetry, the three gauge
bosons �W 1

m ;W
2
m ;W

3
m � transform as a triplet, which in

particular imposes the same mass term for all Wi. The mass
term for the W 3 gauge boson can be obtained from the mass
matrix in the basis of �g;Z�:

�Zm gm� M 2
Z 0

0 0

� �
Z m

gm

� �
� �W 3

m Bm� c 2WM 2
Z ÿcWsWM 2

Z

ÿcWsWM 2
Z s 2WM 2

Z

� �
W 3 m

B m

� �
: �18�

The SU�2�D symmetry finally imposes the relation

M 2
W � c 2WM 2

Z ; �19�

which is just r � 1. Actually, the custodial symmetry is
explicitly broken by the U�1�Y interaction (H and H � have
opposite charges) and by the Yukawa couplings to quarks
and leptons. As a consequence, at the one-loop level, there are
corrections to r � 1. Actually, the screening theorem [10]
states that these corrections only appear through some
logarithms and thus the deviation from r � 1 remains rather
small.

More generally, if SU�2�L �U�1�Y is broken not only
through a doublet but also through a collection of scalar fields
in the 2si � 1 representation of SU�2�L, carrying a hyper-
charge yi and acquiring a vev vi, we can similarly arrive at the
r parameter now being given by

r �
P

i

ÿ
si�si � 1� ÿ y 2

i �v 2iP
i 2y

2
i v

2
i

: �20�

In particular, any nondoublet vev must contribute to a
deviation from r � 1, the only exceptions occurring when
s�s� 1� � 3y 2, e.g., s � 3 and y � 2.

2.2 Limits on the Higgs mass
and the scale of the new physics
2.2.1 Unitarity limit. There is a fundamental motivation to
generate the W and Z masses through a Higgs mechanism
because these masses are actually inconsistent with the
content of known particles, and extra degrees of freedom,
like the Higgs boson, are needed to soften the UV behavior of
massive gauge bosons [11, 12]. One polarization of a massive
spin-1 particle indeed grows with the energy of the particle.

We note that in the Rx gauge, the time-like polarization,
E mEm � 1, kmEm �M, is arbitrarily heavy and decouples. With
the longitudinal polarization being proportional to the
energy, when we look at the scattering of these longitudinal
polarizations, we generically end up 3 with a tree-level
amplitude that grows as E 4 (E being the energy in the
center-of-mass frame),

A � A�4�
�
E

M

�4

�A�2�
�
E

M

�2

� . . . ; �21�

and that becomes bigger than unity at the energy scale of the
order of the gauge bosonmass (Fig. 2). Thus, in the absence of
any additional fundamental degrees of freedom, the theory
enters a strongly coupled regime (with a restoration of
unitarity by higher loop effects and/or by the exchange of
bound states) and we lose perturbative control of the theory
(this is referred to as the perturbative unitarity violation). This
is precisely where the Higgs boson is useful: it gives an
additional contribution to the scattering amplitude that
exactly cancels the previously energy-growing amplitude.
Thus, we are left with the amplitude A � g 2M 2

H=�4M 2
W� that

remains finite at arbitrarily high energy. This finite amplitude
still has to be small enough to maintain the perturbative
unitarity: that is, the Higgs boson must be light enough,
because if it is too heavy, the scattering amplitude is already
too big when the Higgs boson becomes efficient in the
cancellation of the growing amplitude. To give a quantitative
estimate of the unitarity limit on the Higgs mass, we need to
decompose the scattering amplitude into partial waves [13]:

A � 16p
X1
l� 0

�2l� 1�Pl�cos y�al ; �22�

Three polarizations of a massive spin-1 particle

(Em is the polarization vector, km is the gauge boson momentum)

Am � Em exp �ikmx m�
EmE m � ÿ1 and k mEm � 0

k m � �E; 0; 0; k�, with kmk
m � E 2 ÿ k 2 �M 2

two transverse polarizations

E m1 � �0; 1; 0; 0�
E m2 � �0; 0; 1; 0�

one longitudinal polarization

E m? �
�
k

M
; 0; 0;

E

M

�
� k m

M
�O

�
E

M

�

3 Actually, if the self-interactions of the gauge bosons are generated by the

gauge invariant kinetic term FmnF
mn, the quartic and cubic vertices are

related to each other such that the E 4 terms in the scattering amplitude

cancel and we are left with a scattering amplitude that only grows as E 2.

This residual E 2 amplitude can only be canceled by the exchange of a

scalar degree of freedom associated with a Higgs mechanism [12].
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where Pl are the Legendre polynomials �P0�x� � 1,
P1�x� � x, P2�x� � 3x 2=2ÿ 1=2; . . .�. Using the orthonorm-
ality relation satisfied by the Legendre polynomials, we
obtain the partial wave amplitudes

al � 1

32p

� 1

ÿ1
d�cos y�Pl�cos y�A : �23�

The differential cross section is related to the scattering
amplitude A by

ds
dO
� 1

64p2s
jAj2 ; �24�

which finally leads to

s � 16

s

X1
l� 0

�2l� 1�jalj2 : �25�

The optical theorem

s � 1

s
Im
ÿA�y � 0�� �26�

simply amounts to

Im al � jalj2 ; �27�

which can be rewritten as

�Im al ÿ 1=2�2 � �Re al�2 � 1=4 : �28�

In the complex plane, al is thus located on the circle of radius
1=2 centered at �0; 1=2�. Therefore,
jRe alj4 1=2 : �29�

For the SM without a Higgs boson,

a0 � g 2E 2

16pM 2
W

; �30�

which shows that perturbative unitarity cannot bemaintained
without aHiggs boson above� 620GeV (i.e.,

��
s
p � 1:2 TeV).

With a Higgs boson, we obtain

a0 � g 2M 2
H

64pM 2
W

; �31�

which leads to the upper limit for the Higgs mass:

MH 4 1:2 TeV : �32�

Actually, considering the channel

2W�Wÿ � ZZ! 2W�Wÿ � ZZ

yields the more stringent limit [13],

MH 4 780 GeV : �33�

In any case, these limits give an order-of-magnitude
estimate and should not be regarded as strict limits because
nonperturbative effects do not turn on abruptly anyway.
One should rather understand that the numerical values
obtained here are the raison d'être of the LHC: we know
that around 1 TeV, the dynamics of EWSB will be revealed.

2.2.2 Triviality limit. The other standard limits on the Higgs
mass come from the study of radiative corrections to the
Higgs potential. At the quantum level, the coefficients of the
Higgs potential

V�h� � ÿ 1

2
m 2 h 2 � 1

4
l h 4 �34�

change with the energy. At the one-loop level, the renorma-
lization group equation for the Higgs quartic coupling is
given by (Fig. 3)

16p2
dl

d lnQ
� 24l2 ÿ �3g 0 2 � 9g 2 ÿ 12y 2

t � l

� 3

8
g 0 4 � 3

4
g 0 2g 2 � 9

8
g 4 ÿ 6y 4

t � . . . �smaller Yukawa� :
�35�

A � g2
E

MW

� �2

A � ÿg2 E

MW

� �2

A � g2
MH

2MW

� �2

Wÿ Wÿ

g;Z0

W� W�

s channel exchange

Wÿ Wÿ

W� W�

Contact
interaction

Wÿ Wÿ

g;Z0

W� W�

t channel exchange

Wÿ Wÿ

W� W�
H 0

Higgs boson in s channel

Wÿ Wÿ

W� W�

H 0

Higgs boson in t channel

Figure 2. Scattering of the longitudinal components of the W boson in the

StandardModel. The contact interaction and the exchange of other spin-1

particles make a contribution to the scattering amplitude that grows as E 2

(the expected E 4 term is canceled because of the relation between the

quartic and cubic gauge boson self-interactions). The exchange of the

physical Higgs boson also makes an E 2 contribution to the W scattering

amplitude. In the Higgs mechanism, the masses of the gauge bosons are

related to their couplings to the Higgs boson, which as a consequence

ensures that the E 2 contributions exactly cancel. The residual amplitude

remains finite at arbitrarily large energy. TheHiggs boson unitarizes theW

scattering, as long as its mass is small enough. The conventions for the

Feynman diagrams are as follows: a wiggly line denotes a spin-1 field, a

plain line denotes a spin-1=2 field, and a dashed line denotes a spin-0 field.

=

Figure 3. One-loop corrections to the Higgs quartic coupling.
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In the limit of a large Higgs mass, the first term in the
right-hand side dominates and makes the Higgs mass
increasing with Q, finally leading to an instability that can
be seen as follows. The solution of the l-dominated
renormalization group equation (RGE) is (MH and v are the
Higgs mass and the Higgs vev at the weak scale)

l�Q� � M 2
H

2v 2 ÿ �3=2p2�M 2
H ln �Q=v� ; �36�

which exhibits a Landau pole at

Q � v exp 4p2v 2

3M 2
H

: �37�

A new physics should appear before that point to prevent the
instability from developing.We thus obtain an upper limit for
the cutoff scale of the SM [14]:

L4 v exp
4p2v 2

3M 2
H

: �38�

For a fixed value of the SM cutoff, this relation gives an upper
limit on the Higgs mass (see Fig. 5). In particular, we cannot
take L!1, since in this microscopic limit we necessarily
have l � 0 (trivial theory) and therefore no EWSB can occur.

2.2.3 Stability limit. In the previous section, we considered the
largeHiggsmass limit.We now consider the small Higgsmass
limit. In that limit, the quartic coupling RGE is dominated by
the top Yukawa coupling, which makes the Higgs mass
decreasing with Q and another instability develops. To
obtain the energy dependence of l, we further need the RG
evolution of the top Yukawa coupling. At one loop (Fig. 4),
we have

16p2
dyt

d lnQ
� 9

2
y 3
t � . . . �smaller Yukawa� : �39�

We now obtain

y 2�Q� � y 2
0

1ÿ �9=16p2� y 2
0 ln �Q=Q0� ; �40�

l�Q� � l0 ÿ �3=8p2� y 4
0 ln �Q=Q0�

1ÿ �9=16p2� y 2
0 ln �Q=Q0� : �41�

For large energy, the Higgs quartic coupling is driven to
negative values and the Higgs potential is unbounded from
below. Again, new physics is needed before the energy at
which l � 0 (MH and yt are the Higgs mass and the top
Yukawa coupling at the weak scale):

L4 v exp
4p2M 2

H

3y 4
t v

2
: �42�

For a fixed value of the SM cutoff, this relation gives a lower
limit on the Higgs mass (Fig. 5). This is the vacuum stability
limit [15].

The two instabilities of the Higgs quartic coupling that we
just mentioned can be fixed, e.g., if we find a symmetry such
that l is related to the gauge coupling, e.g., l � g 2, then l
would automatically inherit the good UV asymptotically free
behavior of the gauge coupling. Such a relation holds in
supersymmetric theories and also in 6D gauge ±Higgs
unification models, where the Higgs boson is identified as a
component of the gauge field along some extra dimensions
(see Section 4).

2.2.4 Quadratic divergence and the hierarchy problem. So far,
we have looked only at the running Higgs quartic coupling, a
dimensionless parameter. The radiative corrections are
actually more severe for the (tachyonic) mass term of the
Higgs potential because this term turns out to be highly
dependent on UV physics, which leads to the so-called
hierarchy problem [17]. The one-loop corrections to MH are
shown in Fig. 6, and we obtain

dM 2
H �

�
1

4
�9g 2 � 3g 0 2� ÿ 6y 2

t � 6l
�

L2

32p2
: �43�

As an example, for a 10 TeV cutoff, the gauge, top, and Higgs
contributions to the Higgs mass square corrections are,
respectively, of the order of �600 GeV�2, ÿ�1:5 TeV�2, and
�800GeV�2, all quite far fromwhat the Higgs mass should be.
The SM particles give unnaturally large corrections to the

=

Figure 4. One-loop corrections to the top Yukawa coupling.
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Figure 5. Triviality and stability limits on the physical Higgs mass as a

function of the SM cutoff L. (From Ref. [16].)

Figure 6. One-loop corrections to the Higgs mass. The three diagrams are

quadratically divergent and make the Higgs mass highly UV sensitive.
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Higgs mass: they destabilize the Higgs vev and tend to push it
towards the UV cutoff of the SM. Some precise adjustment
(éne-tuning) between the bare mass and the one-loop
correction is needed to maintain the vev of the Higgs around
the weak scale: if we take two large numbers, their sum/
difference is of the same order unless these numbers are
almost equal up to several signiécant digits (see Ref. [18] for
a recent estimate of the amount of éne-tuning within the SM
and various BSM models).

The hierarchy problem is a generic technical problem in
any theory involving some light scalar fields.

In the study of any theory beyond the Standard Model,
one needs to be able to quickly estimate the quadratically
divergent corrections to the scalar potentials. One can
explicitly calculate some Feynman diagrams or, more con-
veniently, rely on the computation of the Coleman ±Wein-
berg potential [19]. At the one-loop level, this effective
potential for a scalar field f is given by

V�f� �
�

d4kE

2�2p�4 STr ln
ÿ
k 2
E �M 2�f�� ; �44�

where the supertrace, i.e., the trace with an extra minus sign
for the fermionic degrees of freedom, is taken over all the
particles that acquire a mass when f is away from the origin.
After integrating over d4kE, we obtain

V � ÿ L4

128p2
STr 1� L2

64p2
STrM 2�f�

� 1

64p2
STrM 4�f� ln M 2�f�

L2
;

where we easily identify the quadratically divergent correc-
tions to the scalar potential.

We explicitly consider the case of the Higgs boson
potential in the SM. We only need to know the H-dependent
masses of the different particles.

We note that these masses are computed for a generic value of
H: in particular, away from the true vacuum H � v, the
Goldstone bosons are not massless and contribute to the
Coleman ±Weinberg potential [20]. Summing over all the
particles, we obtain the sought quadratically divergent
correction

VL2 � 1

2

�
1

4
�9g 2 � 3g 0 2� ÿ 6y 2

t � 6l
�

L2

32p2
H 2 ; �45�

in agreement with the diagram computation.

3. New physics and EWSB

3.1 Stabilization of the Higgs potential by symmetries
We have learnt in the previous sections that the description of
EWSB with a Higgs boson suffers from several instabilities at
the quantum level. Extra structures (particles and/or symme-
tries) are needed to stabilize the Higgs potential. To keep
radiative corrections under control, a theorist can use two
tools:
� The spin trick [21]: in general, a particle of spin s has

2s� 1 degrees of polarization with the only exception being
a particle moving at the speed of light, in which case fewer
polarizations may be physical. Conversely, if a symmetry
leads to the decoupling of some polarization states, then the
particle necessarily propagates at the speed of light and
thus remains massless. For instance, gauge invariance
ensures that the longitudinal polarization of a vector field
is nonphysical and chiral symmetry keeps only one fermion
chirality: both spin-1 and spin-1=2 particles are protected
from dangerous radiative corrections. Unfortunately, this
spin trick cannot be used for a spin-0 particle like the SM
Higgs scalar boson.
� The Goldstone theorem [22]: when a global symmetry is

spontaneously broken, the spectrum contains amassless spin-
0 particle. However, here again, it seems difficult to invoke
this trick to protect the SM Higgs boson from radiative
corrections since a Nambu ±Goldstone boson can only have
some derivative couplings, unlike the Higgs field. Little Higgs
models have been constructed to circumvent these difficulties;
they provide realistic examples of the Higgs boson as a
(pseudo) Nambu±Goldstone boson. A short account of
these models is given below in Section 3.2.

In the late 1960s, the Coleman ±Mandula and Haag ±
Lopuszanski ± Sohnius theorems [23] taught us how to apply
the spin trick to spin-0 particles: the four-dimensional
PoincareÂ symmetry has to be enlarged. The first construction
of this type consists in embedding the 4D PoincareÂ algebra
into a superalgebra. Then the supersymmetry between
fermions and bosons extends the spin trick to scalar
particles. Actually, there exists an even simpler way to
enlarge the PoincareÂ symmetry by invoking extra dimen-
sions: the 5D PoincareÂ algebra obviously contains the 4D
PoincareÂ algebra as a subalgebra. After compactification of
the extra dimensions, from the 4D standpoint, the higher-
dimensional gauge field decomposes into a 4D gauge field
(the components along our 4D world) and 4D scalar fields
(the components along the extra dimensions). The symmetry
between vectors and scalars allows extending the spin trick to
spin-0 particles.

Neither supersymmetry nor higher-dimensional PoincareÂ
symmetry are exact symmetries of nature. Therefore, if they
ever have a role to play, they have to be broken. In order not
to lose any of their benefits, this breaking has to proceed
without reintroducing any strong UV dependence into the
renormalized scalar mass square: we need a soft breaking.
This question has been well studied in supersymmetric
theories, and we discuss the soft breaking of higher-dimen-
sional gauge theories in Section 4. In Section 5, we briefly
report on Higgsless models [24, 25], where the EWSB is no
longer achieved through a Higgs mechanism but results from
nontrivial boundary conditions for the gauge fields at the
boundaries of a fifth dimension.

H-dependent masses

particles number of

polarizations

off-shell mass

W�

Z0

top

Higgs

Goldstone

3� 2

3

4� 3

1

3

M 2
W �

1

4
g 2H 2

M 2
Z �

1

4
�g 2 � g 0 2�H 2

M 2
t �

1

2
y 2
t H

2

M 2
H � l�3H 2 ÿ v 2�

M 2
G � l�H 2 ÿ v 2�
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3.2 Little Higgs models
By analogy with the pions of QCD, the lightness of the Higgs
boson could be explained if it were a Nambu ±Goldstone
boson (NGB) corresponding to the spontaneously broken
global symmetry of the new strongly interacting sector. This is
not a new idea per se, but a new ingredient, the notion of
collective breaking, has been added in recent years to
construct realistic models allowing large nonderivative
couplings that at the same time are still free of quadratic
divergences at one loop. The idea is that some interaction
terms are introduced to break the global symmetries from
which the Nambu ±Goldstone boson originates, but two or
more such interactions should be turned on simultaneously
for the tentative NGB to acquire mass. The one-loop
radiative corrections should then involve two symmetry
breaking interactions to generate a mass term. The absence
of quadratic divergences now follows from the fact that there
are no quadratically divergent diagrams involving two
symmetry breaking couplings: therefore, the corrections to
the NGB Higgs mass are only logarithmic. This way, we can
obtain a light composite Higgs boson compatible with a
strong coupling scale around 10 TeV.

Diagrammatically, the cancellation of the quadratic
divergences is due to a set of new TeV-scale particles: gauge
bosons, vector-like quarks, and extra massive scalars, which
are related to SM particles by the original global symmetry.
Noteworthy and contrary to supersymmetry, the cancellation
of the divergences is achieved by particles of the same spin.
These new particles of around one TeV, with definite
couplings to ordinary particles as dictated by the global
symmetries of the theory, are perfect goals for the LHC.

Very good reviews are already available on Little Higgs
models [2, 6], and the reader is referred to them for further
details. We just mention that the compatibility of Little Higgs
models with experimental data is significantly improvedwhen
the global symmetry of the models involves a custodial
symmetry as well as a T-parity under which, by analogy
with the R-parity in SUSY models, the SM particles are even
and their partners are odd.

3.3 EW precision tests
We have seen that we need new particles to stabilize the weak
scale. They have to be massive to evade direct searches. They
still influence SM physics and can be `detected' through
precision measurements.

3.3.1 An example of EW corrections induced by a heavy
particle. As an example, we take an extra heavy B 0 gauge
boson. The full Lagrangian is

L � ÿ 1

2
W3� p 2 ÿM 2

W�W3 ÿ t0M
2
WW3B

ÿ 1

2
B� p 2 ÿ t 20M

2
W�B� gJ3W3 � g 0JyB

ÿ 1

2
B 0� p 2 ÿM 2�B 0 � g 0JyB 0 ; �46�

where t0 � g 0=g (in what follows, we also use
c0 � g=

������������������
g 2 � g 0 2

p
and s0 � g 0=

������������������
g 2 � g 0 2

p
), Jy and J3 are

the usual fermion currents coupled to Bm and W3 m,
J m
y �

P
i yi

�fi �sm fi, and J m
3 �

P
i T3Li

�fi �sm fi. We now inte-
grate out the heavy particle, which means that we freeze its
dynamics and replace B 0 by the solution of its equation of

motion:

qL
qB 0
� 0 , B 0 � g 0Jy

p 2 ÿM 2
: �47�

Substituting this expression in the original Lagrangian and
expanding forM4 p, we obtain the effective Lagrangian

L � ÿ 1

2
W3� p 2 ÿM 2

W�W3 ÿ t0M
2
WW3B

ÿ 1

2
B� p 2 ÿ t 20M

2
W�B� gJ3W3 � g 0JyBÿ �g

0Jy�2
2M 2

: �48�

Using the equation of motion for B, g 0Jy �
t0M

2
WW3 � � p 2 ÿ t 20M

2
W�B, we can actually write the four-

fermion interaction as amodification of the propagator of the
gauge bosons:

L � ÿ 1

2
W3

�
p 2 ÿM 2

W

�
1ÿ t 20M

2
W

M 2

��
W3

ÿ t0M
2
W

�
1� p 2 ÿ t 20M

2
W

M 2

�
W3B

ÿ 1

2
B

�
p 2

�
1ÿ 2

t 20M
2
W

M 2

�
ÿ t 20M

2
W

�
1ÿ t 20M

2
W

M 2

�
� p 4

M 2

�
B

� gJ3W3 � g 0JyB�O� p 6� � O
�

1

M 4

�
: �49�

The mass matrix based on �W3;B� is therefore given by�
1ÿ t 20M

2
W

M 2

�
M 2

W ÿt0M 2
W

ÿt0M 2
W t 20M

2
W

� �
: �50�

We note that the determinant of this mass matrix vanishes, as
it should to maintain the masslessness of the photon.
Furthermore, we also note that the weak mixing angle is
unaffected:

Z � c0W3 ÿ s0B ; g � s0W3 � c0B : �51�

It is essential here to ensure that the photon actually couples
to the electric charge T3L � Y. The photon remains massless,
but the mass of the Z boson is modified by the existence of the
heavy B 0 field:

M 2
Z �

1

c 20
M 2

W

�
1ÿ t 20M

2
W

M 2

�
; M 2

g � 0 : �52�

At low energy, we thus obtain a deviation from r � 1 because
we now have

r � M 2
W

M 2
Zc

2
0

� 1� t 20M
2
W

M 2
: �53�

The deviation from r � 1 is usually called the T parameter,

r � 1� aemT : �54�

In our example, we obtain

T � t 20M
2
W

aemM 2
: �55�
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The upper limit [1] on the T parameter, T4 0:2, gives a lower
limit for themass of the heavyB 0 field,M5 1:1TeV. That is a
rather generic result: the limit on the new physics needed to
stabilize the weak scale is at least one order of magnitude
above the weak scale. This has been called the little hierarchy
problem or LEP paradox [26].

In deriving effective Lagrangian (49), we used the
equation of motion for B, a light degree of freedom. We
must see whether this is a legitimate approach. Another way
to arrive at Eqn (49) is actually to first integrate out the
combination ofB andB 0 that does not couple to the fermions,

Bin � B� B 0; Bout � Bÿ B 0: �56�

This time, integrating out Bout does not generate any four-
fermion interactions and the Lagrangian directly becomes
that in Eqn (49) with B replaced with Bin (the two
Lagrangians actually start to differ around 1=M 6).

This second approach, sometimes called the `holographic'
approach, might also seem doubtful since we are integrating
out a state that is not a mass eigenstate. But we can easily
convince ourselves that it is perfectly legitimate by consider-
ing this even simpler case:

L � ÿ 1

2
BPBBB� g 0JyBÿ 1

2
B 0PB 0B 0B

0 � g 0JyB 0 :

We first integrate out the heavy mass eigenstate B 0 and, as
before, obtain an effective Lagrangian with a four-fermion
interaction:

L � ÿ 1

2
BPBBB� g 0JyB� �g

0Jy�2
2PB 0B 0

:

Instead of using the equation of motion for B to eliminate the
four-fermion interaction, we now perform a field redefinition
of B,

B �
���������������������������

PB 0B 0

PB 0B 0 �PBB

r
~B�

 
g 0

PBB
�

�����������������������������������
g 0�PB 0B 0 �PBB�

PB 0B 0P 2
BB

s !
Jy ;

�57�

to obtain the simple effective Lagrangian

L � ÿ 1

2
~B�Pÿ1BB �Pÿ1B 0B 0 �ÿ1 ~B� g 0Jy ~B :

Remarkably enough, this is exactly the result we would
have obtained more simply by directly integrating out the
`holographic' combination Bout � Bÿ B 0.

3.3.2 General structure of the EW corrections. Under mild
assumptions (universality, heaviness of the new physics,
flavor universality, CP invariance), we can obtain the
general form of the corrections induced by the new physics
[27 ± 29] (see [30] for recent reviews). The most general
U�1�em-invariant quadratic Lagrangian for the SM gauge
bosons

L � ÿ 1

2
W m

3 P33� p 2�W3 m ÿW m
3 P3B� p 2�Bm

ÿ 1

2
B m PBB� p 2�Bm ÿW m

�P�ÿ� p 2�Wÿm �58�

involves four vacuum polarizations, which we expand in
powers of momentum

PV� p 2� � PV�0� � p 2P 0V�0� �
1

2
� p 2� 2P 00V�0� � O� p 6� :

�59�

Therefore, 12 coefficients should describe the most general
low-energy effective Lagrangian. But three of them can
actually be removed by normalizing the gauge bosons
(which corresponds to the identification of the three SM
parameters g, g 0, and v),

P 0�ÿ�0� � P 0BB�0� � 1 ; �60�
P�ÿ�0� � ÿM 2

W � ÿ�80:425 GeV�2:

The remaining 9 parameters are not yet fully independent
because we need to impose themasslessness of the photon and
its coupling to Q � T3L � Y. These two consistency con-
straints are explicitly given by

g 0 2P33 � g 2P00 � 2gg 0P30 � 0

and

gP00 � g 0P30 � 0 :

We are thus left with a total of 7 arbitrary coefficients [29].
They are given in Table 2 along with the dimension-six
operators that generate them. For instance, in the example
of a heavyB 0 field discussed in the previous section, we obtain

t 20
bS � bT � t 20Y �

t 20M
2
W

M 2
; bU � V � X �W � 0 : �61�

In universal models, i.e., when the new physics couples to
the SM fermions only through the combinations that appear
in SM fermionic currents

J m
y �

X
i

yi �fi �sm fi ; J m
a �

X
d

�fd �sms a fd ; �62�

all the corrections induced by heavy particles are encoded in
the oblique parameters; for nonuniversal models, more
effects might appear as vertex corrections (see Ref. [31] for
the details). In universal models, four oblique parameters
are dominant over the other ones, which can also be
understood from the fact that Û, V, and X are not
generated by dimension-six operators, and we generically
expect them to be further suppressed compared with the
other four coefficients: Û � �M2

W=L
2�T̂, V̂ � �M 4

W=L
4�T̂,

and X � �M2
W=L

2�Ŝ. In nonuniversal models, this is no
longer true [31], and Û, V, and X can be of the same order as
Ŝ, T̂,W, and Y.

Electroweak precise measurements can be analyzed using
the parameterization just described and the results of the fits
(assuming the existence of a light/heavy Higgs boson) are [29]
(see also [33] for another recent analysis of EW precision
measurements).

Fit 103 bS 103 bT 103Y 103W

115 GeV Higgs
800 GeV Higgs

0:0� 1:3
ÿ0:9� 1:3

0:1� 0:9
2:0� 1:0

0:1� 1:2
0:0� 1:2

ÿ0:4� 0:8
ÿ0:2� 0:8
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3.3.3 An example of EW corrections induced by a higher-
dimensional operator. As a concrete example of the analysis
above, we find the effects of the higher-dimensional
operator [28]

LT � a

L2
jH yDmHj2 ; �63�

where a is a dimensionless coefficient. After EWSB,
hHi � �0; v= ���

2
p �, the operator LT simply occurs as an

additional mass term for the Z0 gauge boson:

LT � av 4

8L2
�g 0Bm ÿ gW 3

m �2 : �64�

Because the W mass and the weak mixing angle remain
unchanged, we easily obtain the correction to the r para-
meter induced by LT,

r � M 2
W

M 2
Zc

2
W

� 1ÿ av 2

L2
; �65�

which corresponds to a nonvanishing T parameter

T � rÿ 1

aem
� ÿ av 2

aemL2
: �66�

This is also what we could derive using the formalism in
Table 2, because

P�ÿ � ÿ 1

4
g 2v 2 and P33 � ÿ 1

4
g 2v 2 � ag 2v 4

4L2
: �67�

It was noted in Ref. [32] that field redefinitions amount to
the following two relations among various dimension-six
operators:

ÿ 2gscv 2

a
OS ÿ g 0v 2

a
OT � g 0

X
f

iyf�h yDmh� �f �sm f� h:c:

� 2iBmnD
mh yD nh ; �68�

ÿ 4g 0scv 2

a
OS � g

X
d

i�h ys aD mh� �fd �sms a fd � h:c:

� 4iWa
mnD

mh ys aD nh ; �69�

where

OS � a
4scv 2

�h ys ah�Wa
mnB

mn ;
�70�

OT � ÿ 2a
v 2
jh yDmhj2 :

The peculiarity of these two relations is that the terms
appearing in the right-hand side only affect the triple gauge
self-interactions of the bosons, which are poorly measured
compared with the other electroweak quantities. This way, it
is possible to disguise oblique corrections into yet uncon-
strained operators.

4. Gauge ±Higgs unification models

The components of the gauge fields along some extra
dimensions are seen from the 4D standpoint as some 4D
scalar fields (we call them gauge scalars). It is only above the
compactification scale, when the extra dimensions open up,
that the higher-dimensional gauge structure reveals itself. We
now describe models of gauge ±Higgs unification, where the
Higgs boson is identified as some gauge scalar. 4 This
approach is actually quite old [35, 36], but it is only recently
within the context of orbifolds [37] that it has been
implemented in realistic models [38 ± 45]. A series of ques-
tions immediately arise:
�Which gauge group contains the Higgs boson?
� How many extra dimensions do we need? How are they

compactified?
�What are the radiative corrections?
� How can matter be incorporated? How are the Yukawa

couplings generated?

Table 2. Seven coefficients parameterize the most general low-energy Lagrangian beyond the SM.

Coefécients Dimension-6 operators SU�2�c SU�2�L

bS � g

g 0
P 03B�0�

bT � 1

M 2
W

ÿ
P33�0� ÿP�ÿ�0�

�
bU � P 0�ÿ�0� ÿP 033�0�

V �M 2
W

2

ÿ
P 0033�0� ÿP 00�ÿ�0�

�
X �M 2

W

2
P 003B�0�

Y �M 2
W

2
P 00BB�0�

W �M 2
W

2
P 0033�0�

�H yt aH�Wa
mnBmn

gg 0

jH yDmHj 2

Dim. 8

Dim. 10

Dim. 8

�qrBmn� 2
2g 0 2

�DrW
a
mn� 2

2g 2

�

ÿ

ÿ

ÿ

�

�

�

ÿ

ÿ

ÿ

ÿ

ÿ

�

�

Note. SU�2�L �U�1�Y-invariant higher-dimensional operators can give rise to these corrections.We note that these corrections have definite symmetry

properties under the gauge SU�2�L and the SU�2�c custodial symmetry. Themore usual S,T, andU coefficients are obtained as S � 4s 2WŜ=aem � 119 Ŝ,

T � T̂=aem � 129 T̂, and U � ÿ4s 2WÛ=aem � ÿ119 Û. From [29] ([29] uses a noncanonical normalization of the gauge bosons, hence the different

factors of g and g 0 appearing in the definition of Ŝ; T̂; . . . ;W).

4 See [34] for a recent pedagogical introductions to this approach.
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It is interesting to note that the deconstruction versions of
these gauge ±Higgs unificationmodels led to the idea of Little
Higgsmodels [46]. The symmetry protecting theHiggsmass is
a discrete shift symmetry and the construction is much less
constrained by the absence of the 5D Lorentz invariance.

4.1 Orbifold breaking. 5D SU�3� model
Both 4D vectors and 4D scalars originating from higher-
dimensional gauge fields belong to the adjoint representa-
tion of the gauge group, while the SM Higgs boson is in
the fundamental representation of the weak symmetry. To
identify the Higgs boson as a component of a gauge field
in extra dimensions, we thus need to enlarge the
SU�2�L �U�1�Y gauge symmetry to a bigger group G.
This bigger group can be broken in different ways: (i) by
introducing a higher-dimensional Higgs field; (ii) by a
Green ± Schwarz mechanism; (iii) by compactification on
a nontrivial background manifold; or (iv) by compactifica-
tion on an orbifold. This last method is not only well
motivated in the string context but also offers the
advantage of easily accommodating the presence of 4D
chiral matter. 5

The simplest example of an orbifold is S 2=Z2, i.e., a circle
�ÿpR4 y4 pR� with a parity identification �y � ÿy�
(Fig. 7). The identification of the points y and ÿy means
that the values of any field evaluated at these points have to be
physically equivalent, i.e., equal up to a global symmetry
transformation: f�x;ÿy� � Uf�x; y�. For consistency,U has
to be a Z2 symmetry, U 2 � 1. We note that there are two
special points on the circle, 0 and pR, which are identifiedwith
themselves: they are fixed points of the orbifold. The
invariance of the kinetic term dictates the transformation of
the various components of the gauge field:

Am�x;ÿy� � UAm�x; y�Uÿ1 ; �71�
A5�x;ÿy� � ÿUA5�x; y�Uÿ1 :

In a Kaluza ±Klein (KK) decomposition, the 4D mass is
related to the derivative of the field along the extra dimension,
and hence a massless mode should be independent of y. From
orbifold boundary conditions (71), we have the 4D massless

vectors corresponding to the generators of the gauge group
that commute with the orbifold matrix U, while the 4D
massless gauge scalars correspond to the generators that
anticommute with U. We consider the example of an SU�3�
gauge group broken by the orbifold projection U �
diag �ÿ1;ÿ1; 1� down to SU�2� �U�1�: from the eight
gauge components of A5, only an SU�2� scalar doublet
remains massless.

It is tempting to identify the massless SU�2� doublet
contained in A5 as the Higgs doublet: H0 � �A6

5 ÿ iA7
5�=2

and H� � �A4
5 ÿ iA5

5�=2. For that, we need to know its U�1�
charge. Under any transformation of SU�3�,A5 transforms as
dTA5 � g T;A5� �. In particular, under U�1� in SU�2� �U�1�,
with T � T8 � diag �1; 1;ÿ2�=�2 ���

3
p �, we obtain

dT
H�
H0

H �� H �0

0@ 1A � g
3

2
���
3
p

H�
H0

ÿH �� ÿH �0

0@ 1A :

�72�

Therefore, the U�1� charge of the doublet is equal to ���
3
p

=2.
We need to change the normalization of U�1� for the charge
of the doublet to be 1=2; this is achieved by setting
U�1�Y � T8=

���
3
p

. The gauge coupling of U�1�Y is thus
g 0 � ���

3
p

g. Because we embedded SU�2�L �U�1�Y in a
simple group, we have a prediction for the weak mixing
angle,

sin2 yW � g 0 2

g 2 � g 0 2
� 3g 2

g 2 � 3g 2
� 3

4
: �73�

This value is quite far from the experimental one
�sin2 yW � 0:23�, which certainly invalidates this simple
SU�3� gauge ±Higgs unification model. Furthermore, with
this embedding of SU�2�L �U�1�Y in SU�3�, there is no way
to obtain quarks and leptons from irreducible SU�3�
representations.

At this point, we can envision at least two ways to
proceed: (i) add another U�1� factor to SU�3�; (ii) examine
other embeddings of SU�2�L �U�1�Y into simple groups.
Although the former rules out one nice aspect of the gauge ±
Higgs unification models, the prediction of the weak mixing
angle, recent developments seem to indicate that it is the right
direction to follow, while, as we see in what follows, a
radiative instability spoils the most promising models of the
second class. Finally, a third way to go is to modify the
geometry of the extra-dimensional space.5 See Section 5.5.1 for an explanation on how chiral matter is obtained in

orbifold models.

pR

y

Z2

0

U 2 � 1

ÿy

ÿpR

Figure 7. The simplest example of an orbifold: the points ÿy and y on the

circle are identified. The fields at the identified points have to be equal up

to a global Z2 symmetry of the theory; for instance, the gauge field

components satisfy Am�x;ÿy� � UAm�x; y�Uÿ1 and A5�x;ÿy� �
ÿUA5�x; y�Uÿ1, whereU, a global symmetry of the theory, is the orbifold

projection. The zero modes of Am correspond to the gauge directions that

commute with the orbifold projection, �Am; U � � 0, while the zero modes

of A5 anticommute with U, fA5; Ug � 0.
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Before proceeding with the construction of gauge ±Higgs
unification models, we note that the orbifold projection can
be reinterpreted as simple boundary conditions on an
interval.

It is also possible to accommodate a Scherk ± Schwarz
twist, i.e., f�y� 2pR� � Tf�y�. The twist manifests itself by
different boundary conditions at the ends of the interval.

We also mention that orbifold breaking has been applied
to break Grand Unified (GU) symmetries (see [47] for a
review). In that case, the compactification is close to the GUT
scale, while in gauge ±Higgs models, it is of the order of the
weak scale.

4.2 6D G2 model
We restrict our analysis to an Abelian orbifold using inner
automorphism (the orbifold matrix U is an element of the
group itself). It is well known that the rank of the gauge group
is then preserved. Because SU�2� �U�1� is of rank two, we
need to look for a simple group of rank two. There are only
four possibilities: SO�4�, SO�5�, SU�3�, and the exceptional
groupG2 (for an explicit matrix realization ofG2 that exhibits
its SU�3� subgroup, see [40]). The first three cases either do
not provide an SU�2� scalar doublet or lead to a prediction of
the weak mixing angle too far from the experimental value.

The most interesting possibility relies on G2 [35, 40],
which can be broken down to SU�2� �U�1� by compactifica-

tion on a two-dimensional orbifold, T 2=Z4 (Fig. 8), T
2 being

a square torus and Z4 a rotation by 90� (there is no way to
break G2 to SU�2� �U�1� just using a Z2 projection: a
projection of order at least four is required, which can only
be implemented in the presence of at least two extra
dimensions). There are again two fixed points on the torus
left invariant by the rotation. The action of the orbifold on the
fundamental representation of G2 is defined by the matrix
U � diag �i; i;ÿ1;ÿi;ÿi;ÿ1; 1�. The low-energy gauge group
is found to be SU�2� �U�1� and the gauge couplings are such
that the weak mixing angle satisfies sin2 yW � 1=4. The
massless spectrum also contains two SU�2� scalar doublets,
h and H, carrying the respective hypercharges 1=2 and 3=2; h
is thus a perfect candidate to be identified with the SM Higgs
doublet.

Another benefit of having two extra dimensions is that the
non-Abelian interaction piece contained in the gauge kinetic
term automatically generates a quartic coupling. In our
model after compactification, the potential for the canoni-
cally normalized scalars is given by

V � 1

6
g 2
ÿjhj4 � 3jHj4 � 3�H ys ah��h ys aH� ÿ 6jhj 2jHj 2� ;

�74�

where s a, a � 1; 2; 3, are the Pauli matrices and g is the
gauge coupling of the low-energy SU�2� gauge group in 4D.
As in supersymmetry, we find that the Higgs quartic
coupling is related to the square of the gauge coupling,
although the details of the potential are different (in
particular, there is a single doublet of hypercharge 1=2 in
the present model).

4.3 Radiative corrections
There are two types of operators involving the 4D gauge
scalar fields that can be generated radiatively [48]:

(i) some bulk operators,
(ii) someoperators localized at fixed pointsof the orbifold.
The higher-dimensional gauge invariance acts on gauge

bosons and gauge scalars as

dAA
M � qMEA � g f ABCAB

MEC ; �75�

where f ABC are the structure constants. For consistency, the
gauge transformation parameter EC satisfies the same

G! H orbifold breaking

H subgroup

AH
m �ÿy� � AH

m �y� q5AH
m

��
y� 0; pR� 0

equivalent to

AH
5 �ÿy� � ÿAH

5 �y� AH
5

��
y� 0; pR � 0

G/H coset

AG=H
m �ÿy� � ÿAG=H

m �y� AG=H
m

��
y� 0; pR � 0

equivalent to

A
G=H
5 �ÿy� � A

G=H
5 �y� q5A
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y� 0; pR � 0
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Figure 8. T 2=Z4 orbifold: besides the torus identification T, y � y� 2pR
and z � z� 2pR, the orbifold projection O identifies the points

�y; z� � �ÿz; y� up to a global Z4 symmetry U: Am�ÿz; y� � UAm�y; z�U y,
Ay�ÿz; y� � ÿUAz�y; z�U y, and Az�ÿz; y� � UAy�y; z�U y. With U �
diag �i; i;ÿ1;ÿi;ÿi;ÿ1; 1�, G2 is broken down to SU�2� �U�1�.
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boundary conditions as Am:

G! H : q5EH
��
fixed point

� 0 ; EG=H
��
fixed point

� 0 :

�76�
Therefore, it is in fact gauge invariance that protects the first
kind of operators: indeed, above the compactification scale,
the gauge-scalar fields actually occur as some components of
the higher-dimensional gauge field and the Slavnov ±Taylor
identities, e.g., forbid the appearance of any mass term.
Below the compactification scale, however, we have to deal
with ordinary scalars, which acquire some radiative but
finite (because of a cutoff at the compactification scale)
mass. All the bulk operators are thus generated by IR effects
and are finite. Another way to see this is to note that the only
gauge-invariant operator that can give rise to a Higgs
potential must be nonlocal in the extra dimensions and
expressed in terms of the Wilson line P exp �i � dx i Ai�.
Being a nonlocal operator, the Higgs potential is finite to
all orders in the perturbation theory, is UV insensitive, and is
calculable once the degrees of freedom around the weak
scale are known.

As regards the brane-localized operators, the situation is
more complicated. At the fixed point, the bulk gauge group
is partially broken: there is only the SU�2� �U�1� subgroup
left unbroken. The unbroken gauge group acts linearly on
the gauge-scalar doublet and certainly does not forbid any
quadratically divergent localized mass term to be gener-
ated: 6

dHAH
m � qmEH � g f HHHAH

m E
H ; dHAG=H

m � 0 ; �77�
dHAH

5 � 0 ; dHA
G=H
5 � g f G=HG=HHA

G=H
5 EH : �78�

Even though H is the only unbroken gauge symmetry at
the fixed points, there is still some residual symmetry left over
from the full G gauge symmetry in the bulk: indeed, the
broken generators of the higher-dimensional gauge invar-
iance act on the gauge scalars as a shift symmetry propor-
tional to the derivative of the gauge parameters [48]:

dG=HA
H
m � 0 ; dG=HA

G=H
m � 0 ; �79�

dG=HA
H
5 � 0 ; dG=HA

G=H
5 � q5EG=H : �80�

This Peccei ±Quinn-like symmetry suffices to prevent the
appearance of local mass counterterms. To construct an
invariant, we need to use an object that transforms homo-
geneously under the gauge symmetry, like the gauge field
strength tensor FMN. In 5D orbifolds, there is no possible
local counterterm involving the gauge field strength, because
it is an antisymmetric object, while we have only one index at
our disposal. In 6D orbifolds, however, the brane-localized
operators [40, 49]

Tr �UkF56� ; k � 1; 2; 3; �81�

are perfectly allowed and are invariant under the local gauge
transformations:

Tr �UF56� ! Tr
ÿ
Ug�0�F56 g

ÿ1�0��
� Tr

ÿ
UF56 g

ÿ1�0�g�0�� � Tr �UF56� ;

where in the first equality we used the fact that U and g
commute at the fixed points (to be specific, we considered
that the fixed point is at the origin). These operators are
potentially quite dangerous since they correspond to a
tadpole for some massive KK gauge scalars along the
unbroken U�1� directions and, through the non-Abelian
part of F56, to a mass for the massless gauge-scalars. And
by power-counting, these operators are quadratically
divergent.

In the case of a T 2=Z2 orbifold, the parity invariance
�y; z� ! �ÿy; z� can be defined consistently with the orbifold
projection

Z2

f�x;ÿy;ÿz� � Uf�x; y; z�
P. & P

f�x; y;ÿz� � Uf�x;ÿy; z� Uf�x;ÿy; z�

and forbids the appearance of operators (81). On a T 2=Z4

orbifold, the parity symmetry is no longer consistent with the
orbifold projection:

Z4

f�x;ÿz; y� � Uf�x; y; z�
P. & P

f�x; z; y� � Uÿ1f�x;ÿy; z� Uf�x;ÿy; z�

and no discrete symmetry protects operators (81). A direct
computation (Fig. 9) of the tadpole piece contained in (81)
reveals that at the one-loop level, the contributions of the
ghost fields and of the gauge fields add up to indeed generate
the operator Tr �UF56� at the fixed points. 7 Thus, a quadratic
divergence is reintroduced. It destabilizes the Higgs potential
at one loop. A possible way to (partially) cure this instability
is to engineer a setup such that the sum of quadratically
divergent tadpoles at different fixed points vanishes (global
cancellation) [42].

In conclusion, although gauge symmetry breaking on 5D
orbifolds, as well as on some 6D orbifolds, is soft in the sense
that the radiative corrections to the Higgs potential are finite,
in the case of the potentially most interesting orbifold,T 2=Z4,
the gauge symmetry breaking is not soft.

6 Because �H;H � 2 H and �H;G=H � 2 G=H, the only nonvanishing

structure constants are f HHH and f G=HG=HH and their cyclic permuta-

tions.

Guage contribution Ghost contribution

Figure 9. One-loop diagrams contributing to the tadpole contained in the

operator Tr �UF56� localized at the fixed point. These diagrams are

quadratically divergent and reintroduce a radiative instability in the

Higgs potential.

7 In the original computation [40] of the tadpole, we found that the two

contributions cancel each other. But because no symmetry protects this

tadpole operator, by virtue of the theoremmentioned in Section 2.1.3, our

vanishing result was a sign of a mistake in our computation. More careful

computations [42, 50] indeed yielded a nonvanishing quadratically

divergent tadpole.
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4.4 Introducing matter and Yukawa interactions
The introduction of quarks and leptons and the generation
of their masses are not straightforward [40, 42]. If the
matter were in the bulk, the Higgs vev would generate
fermion masses that are controlled by the higher-dimen-
sional gauge coupling and we could have group theory
factors associated with different representations at our
disposal in order to generate different masses, which
certainly cannot account for the diversity of the matter
spectrum. The other possibility is to resort to fermions
localized at the orbifold fixed points. As regards the
Yukawa interactions, one could try to directly linearly
couple the SM fermions to the Higgs field at the fixed
points. But introducing Yukawa couplings this way expli-
citly breaks the residual Peccei ±Quinn shift symmetry G=H.
One would like to seek operators that do not break this shift
symmetry: this can be achieved by using operators that
involve Wilson lines between the fixed points (the two fixed
points may also coincide) W � P exp �i � Ai dx

i�. Actually, it
is natural to expect the appearance of these operators once
some massive bulk fermions that could mix with fields at the
fixed points are integrated out in a Froggatt ±Nielsen-like
way. The masses of the light fermions can be obtained either
by small mixing with the bulk fermions or by a large bulk
mass, which exponentially suppresses the effective Yukawa,
and it is possible to easily reproduce the hierarchy of the
matter spectrum [42]. An interesting flavor structure in the
first two generations has been revealed in the study of a
particular SU�3� model in 5D [43].

4.5 Experimental signatures
Collider signals have not been studied in detail yet (possibly
due to the lack of a fully realistic model). We can nevertheless
make some predictions about a generic gauge ±Higgs unifica-
tion model:
�We should observe KK excitations of the W and Z

bosons around 500 GeV ± 1 TeV;
�We should observe spin-1 KK excitations of the G=H

coset; in particular, there should be some gauge bosons with
the EW quantum numbers of the Higgs doublet;
�We should observe extra scalar fields;
�We should observe some bulk fermions that mix with

SM fermions to generate their masses.

4.6 Recent developments and open issues
In view of the quadratic divergence of the localized tadpole in
the most promising 6D model, recent studies of gauge±Higgs
unification models have focused mainly on 5D. The main
issue of 5Dmodels is to accommodate the heaviness of the top
quark and the Higgs boson.

Regarding the top mass, with the Yukawa constants
generated via gauge coupling, it is hard to engineer a setup
with a top quark heavier than the W boson. A possible way
out is to embed the top quark in a large representation such
that the effective Yukawa constant is enhanced by a group
factor. For instance, in the SU�3� model in [44], the
prediction Mt � 2MW was obtained at the tree level. The
main drawback of this possibility is that the large repre-
sentation lowers the scale where the extra-dimensional
theory becomes strongly coupled. Moreover, some rather
large deviations in the coupling of the left bottom quark to
Z, Zbl�bl, are introduced at the tree level. Another possibility
pursued in [45] is to explicitly give up the Lorentz invariance
along the extra dimension. In this case, each fermion

effectively feels an extra dimension of different length,
alleviating the relation between the top quark and W-
boson masses. The strong coupling scale is also lowered in
that case and the Lorentz breaking reintroduces a UV
sensitivity of the Higgs potential at higher loops (as in
Little Higgs models). And again, corrections to Zblbl and
four-fermion operators generated by the KK gauge bosons
impose a limit on the scale of the fifth dimension of the
order of a few TeV.

Regarding the Higgs mass, it generically turns out to
be too small, below the value currently excluded by LEP,
because the quartic interaction is now generated at the
one-loop level (contrarily to the G2 6D model, where it
was present at the tree level). Since the entire potential
(mass and quartic) is loop-generated, the potential also
generically prefers large values of the Higgs vev relative to
the compactiécation scale, such that the scale of the new
physics stays dangerously low. It was shown in [44] that
the Higgs mass can be increased by the presence of several
(twisted) bulk fermions. In the Lorentz-violating model
in Ref. [45], the Higgs mass is set by the scale of the top
quark.

Another avenue that has been explored in [51, 52] is to
embed the idea of gauge ±Higgs unification in a warped
extra dimension. The nice thing is that the warping
enhances both the Higgs boson and the top-quark mass.
But the nontrivial background also induces corrections to
EW precision observables. Via the AdS/CFT correspon-
dence (see Section 5.4.1 for a short introduction to it), these
models are now reinterpreted as weak couplings, dual to the
old composite Higgs models of Georgi ±Kaplan [53]. One
highly valuable benefit of warped extra dimensions is the
ability to move the scale of the new physics to very high
energy, with the possibility of accommodating unification in
particular.

One final comment concerns the dynamics of the EW
phase transition in these gauge ±Higgs unification models.
As in Little Higgs theories, the structure of the radiatively
generated Higgs potential is richer than just the f 4

Mexican-hat potential with the presence of a series of
nonrenormalizable interactions. It was shown that a
moderately first-order EW phase transition can then be
obtained even for reasonably large values of the Higgs mass
[54] (see also [55]). This revives the possibility of EW
baryogenesis to generate the asymmetry between matter
and antimatter.

5. 5D Higgsless models

The idea behind Higgsless theories [24, 25] is that a
momentum along an extra dimension is equivalent to a
mass in 4D, and we can therefore generate a mass by giving
a momentum to a particle in an extra dimension. As in
quantum mechanics, a nonzero momentum along a compact
direction can result from nontrivial boundary conditions
(BCs). Therefore, the work consists in identifying the
appropriate boundary conditions and the geometry of the
extra dimension to reproduce the spectrum and the
couplings of the SM. Short presentations of Higgsless
models can be found in [56 ± 58]. A more comprehensive
review, with a significant overlap with the present lectures,
is [59].

In the previous section, we discussed 5D models where
part of the gauge group is broken by orbifold compactifica-
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tion, i.e., by some particular boundary conditions. 8 This
raises the hope to achieve a breaking of the EW symmetry
directly by BCs. Before facing the details of an explicit
construction, we note the principal obstacles occurring in
the construction of a realistic model [47].

Rank reduction. In usual (abelian) orbifold compactifica-
tions, the rank of the gauge group cannot be reduced unless
the orbifold projection corresponds to an outer automorph-
ism of the gauge symmetry. For a given algebra, the number
of automorphisms is limited and, in particular, it is not
possible to break SU�2� �U�1� down to U�1�. Therefore,
more general BCs than those obtained from simple orbifold
projection have to be considered.

Nonrational mass ratio. In usual KK compactifications,
the spectrum is dictated by the geometry of the extra
dimensions and the mass gap between two KK states is
given by an integer times the inverse size of the extra
dimension. It therefore seems nontrivial to obtain a mass
ratio of the W and Z bosons that is related to the gauge
couplings.

Unitarity restoration.We have shown in Section 2.2.1 that
the Higgs boson is essential in restoring perturbative unitarity
in the longitudinal massive gauge boson scattering. Thus, the
question that we want to raise is whether such a breaking of
the gauge symmetries via BCs in 5D theories yields a
consistent theory; in other words, whether a momentum
along a fifth dimension is UV-safer than a regular 4D gauge
boson mass. To verify that such a breaking is indeed soft, we
need to investigate the issue of the unitarity of scattering
amplitudes in such 5D gauge theories compactified on an
interval, with nontrivial BCs. We derive the general expres-
sion for the amplitude for elastic scattering of longitudinal
gauge bosons and write the necessary conditions for the
cancellation of the terms that grow with energy. We find
that all the consistent BCs are unitary in the sense that all
terms proportional to E 4 and E 2 vanish. In fact, any theory
with only Dirichlet or Neumann BCs is unitary. Surprisingly,
this also includes theories where the boundary conditions can
be regarded as coming froma very large expectation value of a
brane-localized Higgs field. In the limit as the expectation
value diverges, there are no scalar degrees of freedom at low
energy, hence the name of Higgsless theories.

There are several aspects of Higgsless theories that are not
covered in this section, for instance, the construction of 4D
models from deconstruction, the construction of 6D models,
or some applications to GUT breaking. The reader is referred
to the existing literature [60, 61]. Higgsless models only
address the issue of EWSB. Ultimately, they should be
embedded into a GUT, and the LÿR structure seems to
indicate that an SO�10� or a Pati ± Salam embedding is the
right direction to take [62].

5.1 Gauge symmetry breaking by boundary conditions
5.1.1 Boundary conditions for a scalar field. We start with the
bulk action for the scalar field

Sbulk �
�
d4x

� pR

0

dy

�
1

2
qMf qMfÿ V�f�

�
; �82�

where we assume that the interval runs between 0 and pR. For
simplicity, we first assume that there is no term added at the
boundary of the interval. We apply the variational principle
to this theory:

dS �
�
d4x

� pR

0

dy

�
qMf qMdfÿ qV

qf
df
�
: �83�

Separating the ordinary 4D coordinates from the fifth
coordinate (and integrating by parts in the ordinary 4D
coordinates, where we apply the usual requirements that the
fields vanish for large distances), we obtain

dS �
�
d4x

� pR

0

dy

�
ÿqmq mfdfÿ qV

qf
dfÿ qyf qydf

�
: �84�

Since we have not yet decided what boundary conditions we
want to impose, we have to keep the boundary terms when
integrating by parts in the fifth coordinate y:

dS �
�
d4x

� pR

0

dy

�
ÿqMqMfÿ qV

qf

�
dfÿ

�
d4x qyf df

� �pR
0
:

�85�

To ensure that the variational principle is satisfied, we need
dS � 0, but because this consists of a bulk and a boundary
piece, it is required:
� that the bulk equation ofmotion have the standard form

qMf qMf � ÿqV=qf;
� that the boundary variation also vanish. This implies

that we need to choose the BC such that

qyf df
��
bd
� 0 : �86�

We say that a boundary condition is natural if it is
obtained by letting the boundary variation of the field df

��
bd

be arbitrary. In this case, the natural BC is qyf � 0: a flat or
Neumann BC. But at this stage, this is not the only possibility:
we could also satisfy (86) by imposing df

��
bd
� 0, which would

follow from the Dirichlet BC f
��
bd
� 0. Thus, we have two

possible BCs for a scalar field on an interval with no boundary
terms:
� Neumann BC qyfjbd � 0,
� Dirichlet BC fjbd � 0.
However, we want to allow only natural boundary

conditions in the theory, because they are the ones that do
not lead to explicit (hard) symmetry breaking once more
complicated fields like gauge fields are allowed. Thus, in
order to still allow the Dirichlet BC, we need to reinterpret
it as the natural BC for a theory with additional terms in
the Lagrangian added at the boundary. The simplest
possibility is to add a mass term to modify the Lagran-
gian as

S � Sbulk ÿ
�
d4x

1

2
M 2

1f
2
��
y� 0
ÿ
�
d4x

1

2
M 2

2f
2
��
y� pR :

�87�

8 It might be useful to stress the difference between gauge±Higgs

unification models and Higgsless models: in gauge ±Higgs models, a

bigger gauge group G is broken to SU�2� �U�1� by an orbifold/

boundary condition, while the actual EW breaking is achieved via a

Higgs mechanism, the Higgs boson being identified as some massless

component of the bigger gauge group along the extra dimensions; the

orbifold projection has indeed been carefully chosen such that a massless

mode of A5 remained massless. In Higgsless models, on the contrary,

boundary conditions are chosen such that no component of A5 remained

in the physical spectrum (the massless ones are thrown away by the

boundary conditions, while the massive ones are eaten up to give the

longitudinal polarizations of massive gauge bosons).
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This makes an additional contribution to the boundary
variation of the action, which is now given by

dSbd � ÿ
�
d4x df�qyf�M 2

2f�
��
y�pR

�
�
d4x df�qyfÿM 2

1f�
��
y� 0

: �88�

Thus, the natural BCs are given by

qyf�M 2
2f � 0 at y � pR ; �89�

qyfÿM 2
1f � 0 at y � 0 :

Clearly, asMi !1, we recover theDirichlet BCs in the limit.
This is the way we always understand the Dirichlet BCs: we
interpret them as the case with infinitely large boundary-
induced mass terms for the fields.

We now consider what happens when we add a kinetic
term at the boundary for f. For simplicity, we set the mass
parameters on the branes to zero and take the action in the
form

S � Sbulk �
�
d4x

1

2M
qmf q mf

��
y� 0

: �90�

We note that the boundary term had to be added with a
definite sign, that is, we assume that the arbitrary mass
parameter M is positive. This is in accordance with our
expectations that kinetic terms have to have positive signs in
order to avoid ghostlike states. For simplicity, we have only
added a kinetic term on one of the branes, but of course we
could easily repeat the following analysis for the second
brane. The boundary variation at y � 0 is modified to

dSy� 0�
�
d4x df

�
qyfÿ 1

M
&4f

�����
y� 0

: �91�

Thus the natural BC is given by

qyf � 1

M
&4f : �92�

Using the bulk equation of motion (in the presence of no bulk
potential) &5f �&4fÿ f 00 � 0, we can also write this BC
as Mf 0 � f 00. The final form of the BC is obtained by using
the KK decomposition of the field f, where the 4D modes fn

are usually assumed to have the x dependence fn exp �ipnx�,
where p 2

n � m 2
n is the nth KK mass eigenvalue. Using this

form, we have the BC

qyf � 1

M
&4f � ÿ p 2

n

M
f � ÿm 2

n

M
f : �93�

In either form, this BC is quite peculiar: it depends on the
actual mass eigenvalue in the final form, or involves second
derivatives in the first form. This could be dangerous, because
we know from the theory of differential equations that usually
BCs that only involve first derivatives automatically lead to a
Hermitian differential operator on an interval. The standard
argument is that the second-derivative operator d2=dy2 is
Hermitian if the scalar product

h f; gi �
� pR

0

dy f ��y�g�y� �94�

satisfies the relation�
f;

d2

dy 2
g

�
�
�

d2

dy 2
f; g

�
; �95�

which is indeed satisfied if the functions f and g have
boundary conditions of the form

f 0
��
0;pR� a f

��
0; pR : �96�

The usual properties of the real-valuedness of eigen-
values and completeness of eigenfunctions follow from the
hermiticity of the scalar product. For boundary conditions
of type (93), the scalar product has to be supplemented with a
boundary term to remain Hermitian:

h f; gi �
� pR

0

dy f �y�g�y� � 1

M
fg
��
0
: �97�

In particular, the completeness property of the eigenfunctions
is now expressed asX

n

gn�x�gn�y� � d�xÿ y� ÿ 1

M
d�x�

X
n

gn�0�gn�y� : �98�

5.1.2 Boundary conditions for a gauge field. The same exercise
can be repeated [47] for a spin-1 particle. 9 We just have to be
somewhat more careful and fix a gauge to deal with gauge
degrees of freedom in an appropriate way. A gauge field AM

in 5D contains a 4D gauge field Am and a 4D scalar A5. The
4D vector contains a whole KK tower of massive gauge
bosons; however, as we see below, the KK tower of the A5 is
`eaten' by the massive gauge fields and (except for a possible
zero mode) is nonphysical. That this is what happens can be
guessed from the fact that the Lagrangian contains a mixing
term between the gauge fields and the scalar, reminiscent of
the usual 4D Higgs mechanism. The Lagrangian is given by
the standard expression

S �
�
d5x

�
ÿ 1

4
F a
MNF

MNa

�
�
�
d5x

�
ÿ 1

4
F a
mnF

mn a ÿ 1

2
F a
m5F

m5 a
�
; �99�

where the field strength has the usual form F a
MN �

qMAa
N ÿ qNAa

M � g5 f
abcAb

MAc
N and g5 is the 5D gauge

coupling, which has mass dimension ÿ1=2. The theory is
nonrenormalizable, and therefore has to be considered a low-
energy effective theory valid below a cutoff scale, which we
calculate in what follows.

To determine the gauge-fixing term, we consider the
mixing term between the 4D scalar and the 4D gauge fields:�

d5x

�
ÿ 1

2
F a
m5F

m5a
�
�
�
d5x q5Aa

m q
mA5a � . . . : �100�

Integrated by parts, the mixing term becomes

�qmAmaAa
5�pR0 ÿ

� pR

0

dy qmAa
m q5A

a
5 : �101�

9 The reader interested in boundary conditions for a spin-2 field can have a

look at [63]. In Section 5.5.1, we explain how to obtain boundary

conditions for spin 1=2.
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The bulk mixing can be canceled by adding a gauge-fixing
term of the form

S bulk
GF �

�
d5x

�
ÿ 1

2x
�qmAma ÿ xq5Aa

5�2
�
: �102�

This term is chosen such that theA5-independent piece agrees
with the usual Lorentz gauge-fixing term, and such that the
cross term exactly cancels the mixing term from (101). Thus,
in the Rx gauge, which is what we have defined, the
propagator for the 4D gauge fields is the usual one.

Varying the full action, we then obtain the bulk equations
of motion and the possible BCs. After integrating by parts, we
find that at the quadratic level, dSbulk � dS bulk

GF is given by�
d5x

��
qm�q mAn a ÿ q nAm a� ÿ q25A

n a � 1

x
q nqsAs a

�
dAa

n

ÿ �qsq sAa
5 ÿ xq25A

a
5�dAa

5

�
: �103�

The bulk equations ofmotion just state that the coefficients of
dAa

n and dA
a
5 in the above equation vanish.We can see that the

Aa
5 field has the term xq25A

a
5 in its equation of motion. This

implies that if the wave function is not flat (e.g., the KKmode
is not massless), then the field is not physical (since in the
unitary gauge x!1, this field has an infinite effective 4D
mass and decouples). This shows that, as mentioned above,
the scalar KK tower of Aa

5 is completely unphysical, owing to
the 5D Higgs mechanism, except perhaps for the zero mode
for Aa

5. Whether there is a zero mode depends on the BC for
the A5 field. In Higgsless models, there is no A5 zero mode.

To eliminate the boundary mixing term in (101), we also
need to add a boundary gauge-fixing term with an a priori
unrelated boundary gauge-fixing coefficient xbd,

S bd
GF � ÿ

1

2xbd

�
d4x �qmAma � xbdA

a
5�2
��
0;pR ; �104�

where the minus sign is for y � 0 and the plus is for y � pR.
The boundary variations are then given by�

�q5Ama � 1

xbd
q mqnAn a

�
dAa

m

��
0;pR

ÿ ��xq5Aa
5 � xbdA

a
5�dAa

5

��
0; pR :

The natural boundary conditions in an arbitrary gauge x, xbd
are given by

q5Ama � 1

xbd
qnq

mAna � 0 ; xq5Aa
5 � xbdA

a
5 � 0 : �105�

This simplifies considerably if we go to the unitary gauge at
the boundary given by xbd !1. In this case, we are left with
the simple set of boundary conditions

q5Ama � 0 ; Aa
5 � 0 : �106�

These are the boundary conditions that are usually imposed
for gauge fields in the absence of any boundary terms. We
note that we again could have chosen some nonnatural
boundary conditions, where instead of requiring the bound-
ary variation to be arbitrary we would require the boundary
variation itself (and thus some of the fields on the boundary)
to vanish. It turns out that these boundary conditions would

lead to a hard (explicit) breaking of gauge invariance, and we
do not therefore consider them in what follows. We see below
how these simple BCs are modified if scalar fields are added
on the branes.

5.1.3 Higgs mechanism localized on a boundary: scalar
decoupling limit. We now consider the case where scalar
fields that develop vacuum expectation values are added at
the boundary [24, 47, 64, 65]. Instead of repeating a full and
general analysis (which can be found in [65]), we present a
concrete example. We consider the SU�2� gauge group with
Newmann BCs for the Am components at both ends of the
interval (Fig. 10). We then assume that at y � pR, SU�2� is
fully broken by the vev of a Higgs doublet. As in the scalar
case, the boundary mass generated by the Higgs vev induces a
mixed BC of the form

q5Aa
m�pR� � ÿ

1

4
g 2
5Dv

2Aa
m�pR� : �107�

The canonically normalized �� pR0 f 2k �y� � 1� KK modes
are given by

Aa
m�x; y� �

X1
k� 1

fk�y�A�k�m �x� �108�

with

fk�y� �
���
2
p���������������������������������������������������������������������������

pR
ÿ
1� 16M 2

k=�g45Dv 4��� 4=�g 2
5Dv

2�
q cos �Mky�

sin �MkpR� :

�109�

The BC at the origin, y � 0, is trivially satisfied, and the
condition at y � pR determines the mass spectrum through
the equation

Mk tan �MkpR� � 1

4
g 2
5Dv

2 : �110�

In the large vev limit, we obtain the wave functions at the
y � pR boundary decreasing as 1=v 2

fk�pR� � 2

�������
2

pR

r
2k� 1

g 2
5DRv

2
; �111�

0 pR

SU(2)

hHi � 1���
2
p 0

v

� �

q5Aa
m�0� � 0 q5Aa

m�pR� � ÿ 1
4
g25Dv

2Aa
m�pR�

Figure 10. Example of a Higgs mechanism localized on a boundary. For a

finite Higgs vev, we obtain a mixed BC which, in the infinite-vev limit,

simply becomes a Dirichlet BC: all the gauge bosons that couple to the

Higgs boson have a wave function that vanishes at the point where the

Higgs boson is localized. In that limit, there is no scalar degree of freedom

in the low-energy effective action and the gauge symmetry is entirely

broken by the BCs; the mass of the lightest KK state is simply inversely

proportional to the size of the extra dimension.
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while

Mk � 2k� 1

2R

�
1ÿ 4

g 2
5DpRv

2

�
: �112�

This limit exactly corresponds to a Dirichlet BC: in the large-
vev limit, the wave functions of the gauge bosons that couple
to the Higgs vanish. It can also be verified that A5 actually
obeys a Neumann BC in that limit. In our example, however,
because of the other Dirichlet BC at y � 0, there is still no
physical massless mode for A5, while the would-be massive
ones are `eaten' to give the longitudinal polarizations of the
massiveAm field.What allows us to decouple theHiggs degree
of freedom from the low-energy action is that, contrary to 4D,
the masses of the gauge bosons are not proportional to the
Higgs vev.

5.2 Unitarity restoration by KK modes.
Sum rules of Higgsless theories
Our aim is to build a Higgsless model of electroweak
symmetry breaking using BC breaking in extra dimensions.
But there is a problem in theories with massive gauge bosons
without a Higgs scalar: the scattering amplitude of long-
itudinal gauge bosons increases with the energy and violates
unitarity at a low scale [11 ± 13] (see Section 2.2.1). We must
first understand what happens to this unitarity limit 10 in a
theory with extra dimensions [24, 67 ± 69]. For simplicity, we
focus on the elastic scattering of the longitudinal modes of the
nth KK mode (Fig. 11). The E-dependence can be estimated
from E � E, pm � E and a propagator � Eÿ2. This way, we
find that the amplitude can increase as E 4; for E4MW, we
can then expand the amplitude in decreasing powers of E as

A � A�4� E 4

M 4
n

�A�2� E 2

M 2
n

�A�0� � O
�
M 2

n

E 2

�
: �113�

In the SM (and any theory where the gauge kinetic terms form
the gauge-invariant combination F 2

mn), the A�4� term auto-
matically vanishes, whileA�2� is only canceled after taking the
Higgs exchange diagrams into account.

In the case of a theory with an extra dimension with BC
breaking of the gauge symmetry, there are no Higgs exchange
diagrams; however, we must sum up the exchanges of all KK
modes, as in Fig. 12. As a result, we find the following
expression for the terms in the amplitudes that grow with
the energy:

A�4� � i

�
g 2
nnnn ÿ

X
k

g 2
nnk

�
a �4��y� ; �114�

with

a �4��y� � f abef cde�3� 6 cos yÿ cos2 y�

� 2�3ÿ cos2 y� f ace f bde : �115�

For the termA�4� to vanish, it suffices to ensure the following
sum rule between the couplings of the various KKmodes [24]:

E 4 sum rule : g 2
nnnn �

X
k

g 2
nnk : �116�

Assuming A�4� � 0, we obtain

A�2� � i

M 2
n

�
4gnnnnM

2
n ÿ 3

X
k

g 2
nnkM

2
k

�
a �2��y� �117�

with

a �2��y� � f ace f bde ÿ sin2
y
2

f abe f cde ; �118�

where g 2
nnnn is the quartic self-coupling of the nth massive

gauge field and gnnk is the cubic coupling between the KK
modes. In theories with extra dimensions, these are of course
related to the extra-dimensional wave functions fn�y� of the
various modes as

gmnk � g5

�
dy fm�y� fn�y� fk�y� ; �119�

g 2
mnkl � g 2

5

�
dy fm�y� fn�y� fk�y� fl�y� : �120�

The most important point about the amplitudes in (114) ±
(117) is that they only depend on an overall kinematic factor
multiplied by an overall expression of the couplings (the
dynamics factors from the kinematics). Assuming that
relation (116) holds, we can find a sum rule that ensures the
vanishing of the A�2� term [24]:

E 2 sum rule : gnnnnM
2
n �

3

4

X
k

g 2
nnkM

2
k : �121�

Amazingly, higher-dimensional gauge invariance ensures
that both these sum rules are satisfied as long as the breaking
of the gauge symmetry is spontaneous. For example, it is easy
to show the first sum rule via the completeness of the wave-
functions fn�y�:� pR

0

dy f 4n �y� �
X
k

� pR

0

dy

� pR

0

dz f 2n �y� f 2n �z� fk�y� fk�z� ;
�122�

10 There are also some unitarity issues associated with the masses of the

fermions (see [66]).

Em � jpj
Mn

;
E

Mn

p

p

� �
pinm � E; 0; 0;�

������������������
E2 ÿM2

n

q� �
qoutm � E;�

������������������
E2 ÿM2

n

q
sin y; 0;�

������������������
E2 ÿM2

n

q
cos y

� �
yp

p

q

q

Figure 11. Elastic scattering of longitudinal modes of KK gauge bosons,

n� n! n� n, with the gauge index structure a� b! c� d. The E-

dependence can be estimated from E � E, pm � E and a propagator� Eÿ2.

n

g2nnnn gnnk gnnk
gnnk gnnk

gnnk gnnk

n
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k
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n

n

n

Contact
interaction

s-channel
exchange

t-channel
exchange

u-channel
exchange

Figure 12. The four diagrams contributing at the tree level to the elastic

scattering amplitude of the nth KK mode.
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and using the completeness relationX
k

fk�y� fk�z� � d�yÿ z� �123�

we can see that the two sides indeed agree. It can be shown
similarly [24] that the second sum rule is also satisfied if the
boundary conditions are natural and all terms in the
Lagrangian (including boundary terms) are gauge invariant.
We insist on the particular case of a Higgs mechanism
localized at the boundary: for a finite Higgs vev, the
cancellation of the E 2 term requires the exchange of the
brane Higgs scalar degree of freedom; however, in the
infinite-vev limit, the contribution of the Higgs exchange to
the scattering amplitude actually cancels and we are left with
simple Dirichlet BCs, for which the scattering amplitude is
unitarized by the sole exchange of spin-1 KK excitations.

At this point, it should be noted that the two sum rules
cannot be satisfied with a finite number of KKmodes. This is
in full agreement with the old theorem by Cornwall et al. [12],
who established that the only way to restore perturbative
unitarity in the scattering of massive spin-1 particles is
through the exchange of a scalar Higgs boson. Our 5D
theory is nonrenormalizable anyway, and hence it is valid up
to a finite cutoff. Our result actually shows that through the
exchange of the KK gauge bosons, the perturbative unitarity
breakdown is postponed from the energy scale of the order of
the mass of the lightest KK state to the true 5D cutoff of the
order of the mass of the heaviest KK state (Fig. 13).

We see from the above analysis that in any gauge-
invariant extra-dimensional theory, the terms in the ampli-
tude that grow with the energy cancel. However, this does not
automatically mean that the theory itself is unitary. The
reason is that there are two additional worries: even if A�4�
and A�2� vanish, A�0� could be too large and spoil the
unitarity. This is what happens in the SM if the Higgs mass
is too large. In the extra-dimensional case, this would mean
that the extra KK modes would make the scattering
amplitude flatten out to a constant value. But if the KK
modes themselves are too heavy, then this flattening out
occurs too late, when the amplitude already violates the
unitarity. The other issue is that in a theory with extra
dimensions, there are infinitely many KK modes and hence,
as the scattering energy grows, we should worry not only
about the elastic channel but also about the ever growing
number of possible inelastic final states. A full analysis taking
both effects into account was performed in [68], where it was

shown that after taking the opening up of the inelastic
channels into account, the scattering amplitude increases
linearly with energy and always violates unitarity at some
energy scale. This is a consequence of the intrinsic non-
renormalizability of the higher-dimensional gauge theory.

It was found in [68] that the unitarity violation scale due to
the linear increase in the scattering amplitude is equal (up to a
small numerical factor of the order 2 ± 4) to the cutoff scale of
the 5D theory obtained from the naive dimensional analysis
(NDA). This cutoff scale can be estimated as follows. The
one-loop amplitude in 5D is proportional to the 5D loop
factor

g 2
5

24p3
: �124�

The dimensionless quantity obtained from this loop factor is

g 2
5E

24p3
; �125�

where E is the scattering energy. The cutoff scale can be
obtained by calculating the energy scale at which this loop
factor becomes about 1 (that is, the scale at which the loop
and tree-level contributions become comparable). From this,
we obtain

LNDA � 24p3

g 2
5

: �126�

We can express this scale by using the matching of the higher-
dimensional and the lower-dimensional gauge couplings. In
the simplest theories, this is usually given by

g 2
5 � pRg 2

4 ; �127�

where pR is the length of the interval and g4 is the effective 4D
gauge coupling. Hence, the final expression for the cutoff
scale can be given as

LNDA � 24p2

g 2
4R

: �128�

We see in what follows that in the Higgsless models, 1=R is
replaced byM 2

W=MKK, whereMW is the physicalWmass and
MKK is the mass of the first KK mode beyond W. Thus, the
cutoff scale is indeed lower if the mass of the KK mode used
for unitarization is higher. However, this LNDA could be

New Physics
(Higgs/strongly coupled theory)

Not directly set by the weak scale
Flat space

L5D � 24p3=g25 � 12p2MW=g
2
4

4pMW�n�=g4MW�n�

MW00

MW0

MW

..

. ..
.

4pMW=g4

Already a factor 10 higher than the naive cutoff

Naive
cutoff

5D
cutoff

Weakly coupled states
observable at low energy

Figure 13.The scattering amplitude of the longitudinal components of the lightest massiveKK gauge bosonwould naively become nonperturbative at the

energy scale 4pMW=g4. However, before reaching that scale, the exchange of the KK excitations starts canceling the scattering amplitude. The story

repeats itself until the heaviest KKmode below the 5D cutoff is reached, for which no heavier excitations can intervene to smooth its scattering amplitude.

Thus, the perturbative unitarity breakdown has been delayed and pushed to a scale that is not directly related to the mass of the lightest massive gauge

bosons. A detailed analysis [68] of inelastic channels confirms the loss of perturbative unitarity at an energy scale related to the 5D cutoff.

January, 2007 New approaches to electroweak symmetry breaking 19



significantly higher than the cutoff scale in the SM without a
Higgs boson, which is around 1.2 TeV. We return to a more
detailed discussion of LNDA in Higgsless models at the end of
this section.

5.3 Toy models
Having seen that KK gauge bosons can be used to delay the
unitarity violation scale basically up to the cutoff scale of the
higher-dimensional gauge theory, we start seeking a model
that actually has these properties and resembles the SM. It
should have a massless photon, a massive charged gauge
boson to be identified with the W boson, and a somewhat
heavier neutral gauge boson to be identified with the Z boson.
Most importantly, we need to have the correct SMmass ratio
(at the tree level)

M 2
W

M 2
Z

� cos2 yW � g 2

g 2 � g 0 2
; �129�

where g is the SU�2�L gauge coupling and g 0 is the U�1�Y
gauge coupling of the SM. We use BCs to achieve this. As
stressed in the introduction, this seems to be very difficult at
first sight, since we need to somehow obtain a theory where
the masses of the KK modes are related to the gauge
couplings. Usually, the KK masses are simply integer or
half-integer multiples of 1=R.

5.3.1 En route to a Higgsless model. Considering a very naive
toy model with the SU�2� gauge group in the bulk (Fig. 14) as
an example, we can have the following BCs for the various
gauge directions:

qyA3
m � 0 at y � 0; pR ; �130�

qyA1; 2
m � 0 at y � 0 ; A1; 2

m � 0 at y � pR : �131�
Solving the bulk equations of motion and enforcing the BCs,
we obtain the KK decomposition

A1
m�x; y� �

X1
k� 0

1�������
pR
p sin

�2k� 1�y
2R

�
W��k�

m �x� �Wÿ�k�
m �x�

�
;

�132�

A2
m�x; y� �

X1
k� 0

1�������
pR
p sin

�2k� 1�y
2R

�
W��k�

m �x� ÿWÿ�k�
m �x�

�
;

�133�

A3
m�x; y� �

X1
k� 0

���������������
2

2 dk0pR

r
cos

ky

R
g �k�m �x� : �134�

This spectrum somewhat resembles that of the SM in the
sense that there is a massless gauge boson that can be
identified with the photon g, a pair of charged massive
gauge bosons that can be identified with the W� bosons,
and a massive neutral gauge boson that can be identified with
the Z boson. However, we can see that the mass ratio of W
and Z is

MZ

MW
� 2 ; �135�

and another problem is that the first KK modes of W and Z
are such that

MZ 0

MZ
� 2 ;

MW 0

MW
� 3 : �136�

Hence, besides the totally incorrectW=Zmass ratio, there are
additionalKK states atmasses of the order of 250GeV,which
is phenomenologically unacceptable. We see below that both
these problems can be resolved by going to a warped
Higgsless model with custodial SU�2�.

5.3.2 Flat Higgsless model. It is clear from the above
discussion that in order to find a Higgsless model with the
correctW=Zmass ratio, we need to find an extra-dimensional
model incorporating the custodial SU�2� symmetry [70]. Once
such a construction is found, the gauge boson mass ratio is
automatically the right one. Therefore, we need to somehow
involve SU�2�R in the construction. The simplest possibility is
to put the entire SU�2�L � SU�2�R �U�1�BÿL gauge group in
the bulk of an extra dimension [24]. To mimic the symmetry-
breaking pattern in the SM most closely, we assume that the
symmetry breaking on one of the branes is given by
SU�2�L � SU�2�R ! SU�2�D, with U�1�BÿL unbroken. On
the other boundary, we need to reduce the bulk gauge
symmetry to that of the SM, and thus have the symmetry
breaking pattern SU�2�R �U�1�BÿL ! U�1�Y, which is
illustrated in Fig. 15.

We let ARa
M , ALa

M , and BM denote the respective gauge
bosons of SU�2�R, SU�2�L, and U�1�BÿL; g5L and g5R are
the gauge couplings of the two SU�2�, and ~g5 is the gauge
coupling of U�1�BÿL. To obtain the desired BCs as
discussed above, we need to follow the procedure outlined
in Section 5.1. We assume that there is a boundary Higgs
boson on the left brane in the representation �1; 2�1=2 under
SU�2�L�SU�2�R�U�1�BÿL, which breaks SU�2�R�U�1�BÿL
into U�1�Y. We could also use the more conventional triplet
representation under SU�2�R, which allows obtaining neu-
trinomasses later on. On the right brane, we assume that there

SU(2)

A1;2
m � 0

q5A3
m � 0

q5A1;2;3
m � 0

0 pR

4A
a
m ÿ q25A

a
m � 0

Figure 14. Example of the breaking of SU�2� to U�1� achieved by

boundary conditions. The spectrum consists of a massless gauge boson

and all its KK excitations, a pair of electrically charged massive gauge

bosons, and all of their KK excitations. With a lot of imagination one

could see something starting to resemble the SMwith a massless photon, a

pair of massive W�, and the first KK excitation of the photon that can be

seen as a Z. This model is still quite far from reality (incorrect W=Z mass

ratio, resonances that are too light), but it illustrates the basic idea that the

masses of the W and Z bosons are generated by the boundary conditions

and not through the usual Higgs mechanism.

SU�2�L � SU�2�R �U�1�BÿL

SU�2�R�U�1�BÿL SU�2�L � SU�2�R
U�1�Y SU�2�D

0 pRq5ALa
m � 0

AR�
m � 0

~g5Bm ÿ g5RA
R3
m � 0

q5�g5Bm � ~g5A
R3
m � � 0

ALa
m ÿ ARa

m � 0

q5�ALa
m � ARa

m � � 0

q5Bm � 0

U�1�em

Figure 15. The symmetry breaking structure of the flat space Higgsless toy

model [24].
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is a bi-doublet Higgs field in the representation �2; 2�0, which
breaks the electroweak symmetry as in the SM:
SU�2�L � SU�2�R ! SU�2�D. We then take all the Higgs
vev's to infinity in order to decouple the boundary scalars
from the theory, and impose the natural boundary conditions
as described above. We thus obtain

at y � 0:

qz�g5RBm � ~g5A
R3
m � � 0 ; qzALa

m � 0 ; AR1; 2
m � 0 ; �137�

~g5Bm ÿ g5RA
R3
m � 0 ;

at y � pR:

qz�g5RALa
m � g5LA

Ra
m � � 0 ; qzBm � 0 ; �138�

g5LA
La
m ÿ g5RA

Ra
m � 0 :

As usual, the BCs for the A5 and B5 components are the
opposite of the 4D gauge field BCs, i.e., all Dirichlet
conditions are replaced by Neumann ones and vice versa.

The next step in determining the mass spectrum is to find
the right KK decomposition of this model. First, none of the
A5 and B5 components have a flat BC on both ends. This
means that there is no zero mode in these fields and, as we
have seen, all the massive scalars are unphysical since they
are just gauge artifacts (supplying the longitudinal compo-
nents of the massive KK towers). The main point to observe
about the KK decomposition of the gauge fields is that the
BCs mix up the states in the various components. This
implies that a single 4D mode lives in several different 5D
fields. Because there is no mixing in the bulk and we are
currently discussing a flat 5D background, the wave
functions are of the form fk�y� / a cosMky� b sinMky. If
we make the simplifying assumption that g5L � g5R � g5,
then the KK decomposition is somewhat simpler than the
most general one, and is given by

Bm�x; y� � g5 a0gm�x� � ~g5
X1
k� 1

bk cos
ÿ
MZ

k �yÿ pR��Z �k�m �x� ;

�139�

AL 3
m �x; y� � ~g5 a0gm�x� ÿ g5

X1
k� 1

bk
cos �MZ

k y�
2 cos �MZ

k pR�
Z �k�m �x� ;

�140�
AR 3

m �x; y� � ~g5a0gm�x�

ÿ g5
X1
k� 1

bk
cos
ÿ
MZ

k �yÿ 2pR��
2 cos �MZ

k pR�
Z �k�m �x� ; �141�

AL�
m �x; y� �

X1
k� 1

ck cos �MW
k y�W �k��

m �x� ; �142�

AR�
m �x; y� �

X1
k� 1

ck sin �MW
k y�W �k��

m �x� �143�

(we let AL;R�
m denote the linear combinations

�AL;R1 � iAL;R2�= ���
2
p �.

The BCs further impose a mass spectrum that is made up
of a massless photon, the gauge boson associated with the
unbroken U�1�Q symmetry, and some towers of massive
charged and neutral gauge bosons, W �k� and Z �k�, respec-
tively. The W� masses are solutions of the quantization

equation

cos �2MWpR� � 0 ; �144�
whence

MW
k �

2kÿ 1

4R
; k � 1; 2; . . . : �145�

The quantization equation giving the masses of the neutral
gauge bosons is somewhat more complicated due to the
mixing of the various U�1� factors of the bulk gauge group:

tan2 �MZpR� � 1� ~g 2
5

g 2
5

: �146�

The KK Z-boson masses are thus given by

MZ
k �

�
M0 � kÿ 1

R

�
k�1; 2; ...

;
�147�

MZ 0
k �

�
ÿM0 � k

R

�
k�1; 2; ...

;

where

M0 � 1

pR
arctan

�������������������
1� 2~g 2

5

g 2
5

:

s

We note that 1=�4R� <M0 < 1=�2R� and hence the Z 0's are
heavier than the Z's �MZ 0

k >MZ
k �. We also see that the

lightest Z is heavier than the lightest W �MZ
1 >MW

1 �, in
agreement with the SM spectrum. But the mass ratio W=Z is
given by

M 2
W

M 2
Z

� p2

16
arctanÿ2

����������������
1� g 0 24D

g 2
4D

s
� 0:85 ; �148�

and hence the r parameter is

r � M 2
W

M 2
Z cos

2 yW
� 1:10 : �149�

To arrive at these expressions, we have assumed that the SM
quarks and leptons are localized on the SU�2�L �U�1�Y
boundary, leading to the following relations between the 4D
and 5D gauge couplings:

g4 � g5�������
pR
p ; g 04 �

���
2
p

~g5�������
pR
p : �150�

The W=Z mass ratio is close to its SM value, but the ten
percent deviation is still huge compared to the experimental
precision. The reason for this deviation is that while the bulk
and the right SU�2�D �U�1�BÿL brane are symmetric under
the custodial SU�2� group, the left SU�2�L �U�1�Y brane is
not, and theKKwave functions have a significant component
around the left brane, which gives rise to the large deviation
from r � 1. Therefore, we must find a way of ensuring that
the KK modes of the gauge fields do not `feel' the left brane
very much, but are repelled from there, and only the lightest
(almost zero) modes g, Z, and W� have a large overlap with
the left brane.

In summary, the flat Higgsless model suffers from two
serious drawbacks: (i) KK excitations of the W and Z bosons
are too light, (ii) the deviation of the r parameter from its
custodial value is too great. We now see that embedding the
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model in a warped space actually cures these two problems
simultaneously.

5.4 Warped Higgsless model with custodial symmetry
5.4.1 Some aspects of the AdS/CFT correspondence.To ensure
an unbroken custodial symmetry, we need to devise a set-up
such that the KK modes are localized away from the point
where the custodial symmetry is broken. We can consider
adding large kinetic terms localized on the SU�2�L �U�1�Y
boundary, which indeed repeal the wave functions of massive
KK gauge bosons [71]. Actually, there is an even simpler way
to localize the wave functions: towarp the space. Indeed, in an
anti-de Sitter space, the KK wave functions are Bessel
functions of order one that are generically exponentially
peaked at one end of the interval. From the standpoint of
the AdS/CFT correspondence [72, 73], this localization
property allows inferring the global and local symmetries
left out by particular BCs.

As illustrated in Fig. 16, we consider a gauge symmetry G
in the bulk of AdS5. The BCs on the UV brane break G to a
subgroupH that is further broken toH0 by the BCs on the IR
brane. The corresponding 4D CFT has the H gauge
invariance and the G=H global symmetry. The interpretation
of the IR BCs is that H is actually spontaneously broken
down to H0. If matter is added in the 5D theory, it can be
interpreted as composite states of the CFT if it is localized
close to the IR brane or as elementary fields coupled to the
CFT if it is localized on the UV brane. For instance, a 5D
Higgs localized on the IR brane can be seen as the dual
version of composite Higgs models [51, 70]. When the Higgs
vacuum expectation value is sent to infinity, the 4D theory is
more a technicolor-like model. In that sense, the 5D warped
Higgsless model can be seen as a weakly coupled dual version
of the theory of `technicolor' [25].

5.4.2 Towards a realistic Higgsless model. From the corre-
spondence discussed above, we can now find the sought
theory relatively easily [25]. We want a theory that has the
SU�2�L � SU�2�R �U�1�BÿL global symmetry, with the
SU�2�L �U�1�Y subgroup weakly gauged and broken by
BCs on the IR brane. To have the full global symmetry, we
need to take SU�2�L � SU�2�R �U�1�BÿL in the bulk of
AdS5. To ensure the absence of unwanted gauge fields at
low energies, we need to break SU�2�R �U�1�BÿL to U�1�Y

on the UV brane, which we do through BCs as in the flat case.
Finally, the boundary conditions on the TeV brane reduce
SU�2�L � SU�2�R to SU�2�D. This setup is illustrated in
Fig. 17. We note that it is practically identical to the flat-
space toy model considered above, except that the theory is in
the AdS space.

The only difference between the flat and the warped
Higgsless models is the shape of the wave functions. Indeed,
the solution of the bulk equations of motion in the AdS space
involves some Bessel functions of order 1:

c �A�k �z� � z
ÿ
a
�A�
k J1�qkz� � b

�A�
k Y1�qkz�

�
; �151�

where A labels the corresponding gauge boson.
Due to the mixing of the various gauge groups, the KK

decomposition is slightly complicated, but can be obtained by
simply enforcing the BCs with wave functions of form (151):

Bm�x; z� � g5 a0gm�x� �
X1
k� 1

c �B�k �z�Z �k�m �x� ; �152�

AL 3
m �x; z� � ~g5 a0gm�x� �

X1
k� 1

c �L3�k �z�Z �k�m �x� ; �153�

AR 3
m �x; z� � ~g5 a0gm�x� �

X1
k� 1

c �R3�k �z�Z �k�m �x� ; �154�

AL�
m �x; z� �

X1
k� 1

c �L��k �z�W �k��
m �x� ; �155�

AR�
m �x; z� �

X1
k� 1

c �R��k �z�W �k��
m �x� : �156�

Here, g�x� is the 4D photon, which has a flat wave function
due to the unbroken U�1�Q symmetry, and W �k��

m �x� and
Z �k�m �x� are the KK towers of the massive W and Z gauge
bosons, the lowest of which are supposed to correspond to the
observed W� and Z0 bosons. Enforcing the BCs with these
wave functions leads to the quantization equations, from
which the spectrum is obtained. For the W's, we have

�R0 ÿ ~R0��R1 ÿ ~R1� � � ~R1 ÿ R0�� ~R0 ÿ R1� � 0 ; �157�

where the ratios R0; 1 and ~R0; 1 are given by

Ri � Yi�MR�
Ji�MR� ;

~Ri � Yi�MR 0�
Ji�MR 0� : �158�

UV

IR

H

G

H0

H

Figure 16. Correspondence between a 5D gauge theory in an AdS space

and a 4D CFT. The UV brane is interpreted as a UV cutoff of the CFT,

while the IR brane mimics the spontaneous breaking of the conformal

symmetry by the CFT. The subgroup H unbroken on the UV brane

corresponds to the gauge symmetry of the CFT, while the cosetG=H is the

global symmetry of the CFT. The strong dynamics of the CFT sponta-

neously breaksH toH0 at the IR scale. 5D fields localized close to the IR

boundary correspond to composites states of the CFT, while UVmatter is

given by elementary fields coupled to the CFT.

SU�2�L � SU�2�R �U�1�BÿL

SU�2�R�U�1�BÿL SU�2�L � SU�2�R
U�1�Y SU�2�D

z=Rq5ALa
m � 0

AR�
m � 0

~g5Bm ÿ g5RA
R3
m � 0

q5�g5RBm � ~g5A
R3
m � � 0

g5LA
La
m ÿ g5RA

Ra
m � 0

q5�g5RALa
m � g5LA

Ra
m � � 0

q5Bm � 0

U�1�em

z � R 0

Figure 17. The symmetry-breaking structure of the warped Higgsless

model [25]. We consider a 5D gauge theory in the fixed gravitational

AdS background. The UV brane is located at z � R and the IR brane is

located at z � R 0. R is the AdS curvature scale. In conformal coordinates,

the AdS metric is given by ds 2 � �R=z�2�Zmn dx m dx n ÿ dz 2�.
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In the leading order in 1=R and for ln �R 0=R�4 1, the lightest
solution of this equation for the mass of the W� bosons is

M 2
W �

1

R 0 2 ln �R 0=R� : �159�

We note that this result is independent of the 5D gauge
coupling and depends only on the scales R and R 0. Taking
R � 10ÿ19 GeVÿ1 yields R 0 � 2� 10ÿ3 GeVÿ1. The equation
determining the masses of the KK tower for the Z boson (the
states that are mostly AL3 or AR3) is given by

2~g 2
5 �R0 ÿ ~R1�� ~R0 ÿ R1�
� g 2

5

��R0 ÿ ~R0��R1 ÿ ~R1� � � ~R1 ÿ R0�� ~R0 ÿ R1�
�
:

�160�
The lowest mass of the Z tower is approximately given by

M 2
Z �

g 2
5 � 2~g 2

5

g 2
5 � ~g 2

5

1

R 0 2 ln �R 0=R� : �161�

Finally, there is a third tower of states, corresponding to
the excited modes of the photon (the particles that are mostly
B-type), whose masses are given by

R0 � ~R0 : �162�

This does not have a light mode [the zeromode corresponding
to themassless photon has been explicitly separated in (152) ±
(154)].

If the SM fermions are localized on the Planck brane, then
the leading-order expressions for the effective 4D couplings
are

1

g 2
� R ln �R 0=R�

g 2
5

;
�163�

1

g 0 2
� R ln

R 0

R

�
1

g 2
5

� 1

~g 2
5

�
;

and hence the 4DWeinberg angle is given by

sin yW � ~g5�������������������
g 2
5 � 2~g 2

5

q � g 0������������������
g 2 � g 0 2

p �164�

(see Sections 5.5 and 5.6 for more details). We can see that in
the leading order, the SM expression for the W=Z mass ratio
is reproduced in this theory as expected. In fact, the full
structure of the SM coupling is reproduced in the leading
order in 1= ln �R 0=R�, which implies that at the leading-log
level, there is no S-parameter either. An S-parameter in this
language would havemanifested itself in an overall shift in the
coupling of the Z boson compared to its SM value calculated
from the W and g couplings, which are absent at this order of
approximation. The corrections to the SM relations occur in
the next order of the log expansion. Since ln �R 0=R� � O�10�,
this correction could still be too large to match the precision
electroweak data. We discuss the issue of electroweak
precision observables in Section 5.6

The KK masses of the W bosons (and also the Z boson
because of the custodial SU�2� symmetry) are approximately
given by

MW �n� � p�n� 1=2�
2R 0

; n � 1; 2; . . . : �165�

It follows that the ratio between the physical W mass and the
first KK mode is given by

MW

MW 0
� 4

3p
1��������������������

ln �R 0=R�p : �166�

We can see that warping achieves two desirable proper-
ties: it enforces the custodial SU�2� and thus automatically
generates the correct W=Z mass ratio, and it also pushes up
the masses of the KK resonances of W and Z. This implies
that we can obtain a theory where the W 0 and Z 0 bosons are
not so light that theywould already be excluded by the LEP or
the Tevatron experiments. In the flat model, the mass
spectrum involved only one scale and the mass gap between
the W and Z bosons and their next KK excitations was too
small. In the warped models, the presence of two scales (the
size of the extra dimension and the curvature scale of the
space) allows increasing the mass gap. The ln �R 0=R�
suppression of the W mass compared to the W 0 mass can
actually be easily understood from the naive dimensional
analysis and the AdS/CFT correspondence described in
Section 5.4.1. Indeed, the W mass originates from the IR
spontaneous breaking of gauge symmetry weakly coupled to
the CFT, and hence

M 2
W �

g 2
4

R 2
IR

: �167�

Furthermore, the 4D gauge coupling is obtained from the 5D
one (fromNDA, g 2

5 � RUV) and the normalization condition
of the (flat) wave function of the massless gauge boson:

1

g 2
4

�
� RIR

RUV
dzRUV=z

g 2
5

: �168�

Hence,

M 2
W �

1

R 2
IR ln �RIR=RUV� : �169�

Finally, we can return to the issue of perturbative
unitarity in these models. In the flat-space case, we have
seen that the unitarity violation scale is basically given by the
NDA cutoff scale (126). But in a warped extra dimension, all
scales are dependent on the position along the extra
dimension, and hence the lowest cutoff scale is at the IR
brane, given by

LNDA � 24p3

g 2
5

R

R 0
: �170�

Using our expressions for the 4D couplings and theWandW 0

masses above, we can see that [68, 74]

LNDA � 12p4M 2
W

g 2MW 0
: �171�

From the above formula, it is clear that the heavier the
resonance, the lower the scale where the perturbative
unitarity is violated. This also gives a rough estimate, valid
up to a numerical coefficient, of the actual scale of non-
perturbative physics. An explicit calculation of the scattering
amplitude, including inelastic channels, shows that this is
indeed the case and the numerical factor is found to be
roughly 1=2 [68].
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Since the ratio of the W boson to the first KK mode mass
squared is of the order of

M 2
W

M 2
W 0
� O

�
1

ln �R 0=R�
�
; �172�

increasing the value of R (corresponding to lowering the 5D
UV scale) significantly increases the NDA cutoff. With R
chosen to be the inverse Planck scale, the first KK resonance
occurs around 1.2 TeV, but for larger values of R, this scale
can be safely reduced to below 1 TeV (see Fig. 21).

5.5 Fermion masses
In the SM, quarks and leptons acquire a mass, after EWSB,
through their Yukawa couplings to the Higgs boson. In the
absence of a Higgs boson, we cannot write any Yukawa
coupling and one should expect the fermions to remain
massless. However, as for the gauge fields, appropriate
boundary conditions force the fermions to acquire a momen-
tum along the extra dimension; this is how the fermions
become massive from the 4D standpoint. We now review this
construction [25, 71, 75, 76] (see also [77] for earlier works on
fermions in an RS warped background). A general discussion
on spin-1=2 boundary conditions can be found in [75].

The SM fermions cannot be completely localized on the
UV boundary: because the unbroken gauge group on that
boundary coincides with the SM SU�2�L �U�1�Y symmetry,
the theory on that brane should be chiral and there is no way
for the chiral zero-mode fermions to acquire a mass. The SM
fermions cannot stay on the IR brane either, because the
unbroken SU�2�D gauge symmetry imposes an isospin-
invariant spectrum and the up-type and down-type quarks
become degenerate, as the electron and the electron neutrino
are. The only possibility is thus to embed the SM fermions into
5D fields living in the bulk and feeling the gauge symmetry
breakings on both boundaries. Since the irreducible spin-1=2
representations of the 5D Lorentz group correspond to a
4-component Dirac spinor, extra fermionic degrees of free-
domare needed to complete the SMchiral spinors to 5DDirac
spinors, and we therefore return to a vector-like spectrum.
However, as is well known, orbifold-like projections can
eliminate half of the spectrum at the lowest KK level to
actually provide a 4D effective chiral theory.

5.5.1 Chiral fermions from the orbifold projection/boundary
conditions. A 5D Dirac spinor decomposes under the 4D
Lorentz subgroup into two two-component spinors (techni-
cally speaking, the simplest 5D irreducible spin-1=2 represen-
tation breaks up as �0; 1=2� � �1=2; 0� under the 4D Lorentz
subgroup),

C �
wa
�c _a

 !
; �173�

in the 5D chiral representation of the Dirac matrices:

Gm � 0 sm

�sm 0

� �
m� 0; 1; 2; 3

; G 5 � i
1 0
0 ÿ1

� �
; �174�

where s i � ÿ�s i are the usual Pauli spin matrices, 11 while
s 0 � �s 0 � ÿ1.

Under the Z2 orbifold projection y � ÿy discussed in
Section 4.1, in order to leave the 5D Dirac equation
invariant, C has to satisfy

C�ÿy� � ÿiG 5C�y� ; �175�

i.e.,

w�ÿy� � w�y� ; c�ÿy� � ÿc�y� : �176�

Therefore, only w has a KK zero mode:

w�x; y� �
X1
n� 0

cos
ny

R
w �n��x� ;

�177�
c�x; y� �

X1
n� 1

sin
ny

R
c �n��x� :

We now briefly explain how we can recover this result
using boundary conditions. With a mass in the bulk, the 5D
Lagrangian forC is given by

S �
�
d5x

�
i

2
� �CGM qMCÿ qM �CGMC� ÿm �CC

�
; �178�

which in 4D components is written as12

S �
�
d5x

�
ÿi�w�sm qmwÿ icsm qm �c

� �c q5
 !

wÿ �w q5
 !

�c� �m�cw� �w �c�
�
; �179�

where q5
 !
� �1=2�ÿ q5!ÿ q5

 �
. The variation of this 5D

Lagrangian leads to the bulk equations of motion

ÿi�smqmwÿ q5 �c�m �c � 0 ; ÿismqm �c� q5w�mw � 0 :

�180�

In addition, requiring that the variation of the Lagrangian at
the boundary also vanish gives

ÿdcw� cdw� d�w �cÿ �wd �c � 0 : �181�

Naively, one might think that because there are two
independent spinors w and c, two independent boundary
conditions for each spinor would be required. But because the
bulk equations ofmotion are only first order, there is only one
integration constant. Therefore, for the Dirac pair �w; �c�,
there is only one boundary condition f �w;c� � 0 at each
boundary, where f is some function of the spinors and their
conjugates. The form of f together with the bulk equations of
motion in (180) then determines all the arbitrary coefficients
in the complete solution of the spinor equation of motion on
the interval. For instance, we can require that the spinor c
vanish on both boundaries. Then the bulk equations of
motion yield

�q5 �m�w��
0; pR� 0 : �182�

11 Explicitly,

s 1 � 0 1
1 0

� �
; s 2 � 0 ÿi

i 0

� �
; s 3 � 1 0

0 ÿ1
� �

:

12 Usually, the terms with left-acting derivatives are integrated by parts,

such that all derivatives act to the right. But because we areworking here in

a compact space with boundaries, the integration by parts produces

boundary terms that cannot be neglected. We note that both (178) and

(179) are Hermitian.
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Solving the equations of motion with these boundary
conditions results in a zero mode for w, but not for c. That
is, the low-energy theory is chiral.

As with gauge and scalar fields, there is a tower of
massive Dirac fields in the 4D effective theory. The
spectrum is obtained by solving the bulk equations, which
dictates the general form of the wave functions, and by
enforcing the boundary conditions. We perform this KK
decomposition explicitly. The 5D spinors w and c can be
written as a sum of products of 4D KK Dirac fermions with
5D wave functions:

w �
X
n

gn�y� wn�x� ; �c �
X
n

fn�y� �cn�x� : �183�

The KK fermions satisfy the 4D Dirac equation

ÿi�smqmw �n� �mn
�c �n� � 0 ; ÿismqm �c �n� �mnw �n� � 0 :

�184�

Substituting this decomposition in the 5D bulk equations of
motion gives the equations

g 0n �mgn ÿmn fn � 0 ; f 0n ÿm fn �mn gn � 0 : �185�

The standard approach to solving this system of equations is
to combine the two first-order coupled equations into two
second-order uncoupled wave equations:

g 00n � �m 2
n ÿm 2�gn � 0 ; f 00n � �m 2

n ÿm 2� fn � 0 : �186�

The solution is simply a sum of sines and cosines, with the
coefficients determined by reimposing the first-order equa-
tions and imposing the boundary conditions. For instance, if
we require that c � 0 at both y � 0 and y � pR, we obtain

mn �
������������������
m 2 � n 2

R 2

r
; n � 1; 2; . . . ; �187�

fn�y� � an sin
ny

R
; �188�

gn�y� � an
mn

�
n

R
cos

ny

R
ÿm sin

ny

R

�
; �189�

and the remaining coefficient an is fixed by the normalization
condition13� pR

0

dy f 2
n �y� � 1 : �190�

Besides the massive spectrum, the boundary conditions also
allow a zero mode for w:

g0�y� �
�

2m

1ÿ exp �ÿ2mpR�
�1=2

exp �ÿmy� : �191�

We note that the 5D mass does not contribute to the mass of
the lightest fermion (which remains massless because of
chirality), but dictates the shape of its wave function.

In conclusion, an orbifold projection or, equivalently,
appropriate boundary conditions allow obtaining a 4D
chiral spectrum from a 5D theory. This way, we can
embed the SM quarks and leptons into 5D Dirac spinors
following Table 3.

5.5.2 Fermions in the AdS background. In principle, when one
is dealing with fermions in a nontrivial background, one
needs toworkwith the `square-root' of themetric, also known
as vielbeins, and to introduce the spin connection to
covariantize derivatives. Fortunately, in an AdS back-
ground, 14 the spin connection drops out from the spin-1=2

Table 3. Embedding of the SM fermions into 5D Dirac spinors.

Particle Bulk
L� R� �Bÿ L�

UV brane
L� Y

IR brane
D� �Bÿ L�

Qem

wu
wd

� �
L

�&; 1; 1=6� �&; 1=6� �&; 1=6�
cu

cd

� �
L

� �&; 1;ÿ1=6� � �&;ÿ1=6� � �&;ÿ1=6�
wu
wd

� �
R

�1;&; 1=6� �1; 2=3�
�1;ÿ1=3� �&; 1=6�

cu

cd

� �
R

�1; �&;ÿ1=6� �1;ÿ2=3�
�1; 1=3� � �&;ÿ1=6�

Qem � Y� T3L Y � �Bÿ L� � T3R

Note. We have indicated the quantum numbers of the different components under the bulk SU�2�L � SU�2�R �U�1�BÿL symmetry, the subgroup
SU�2�L �U�1�Y that remains unbroken on the UV boundary, the subgroup SU�2�D �U�1�BÿL unbroken on the IR brane, and, finally, the electric
charge. The shaded spinors are the fields with the right quantum numbers to be identified as massless SM fermions, while the other spinors correspond
to partners needed to complete 5DDirac spinors. The latter become massive by the orbifold projection/boundary conditions. Through the Dirac mass
added at the IR boundary, there is a mixing between the would-be zero modes and some partners, and the fermion that is to be eventually identified as
the SM uL is amixture of wuL and a small amount of wuR . Since this last field has incorrect SMquantum numbers, we would end upwith deviations in the
couplings of the fermions to the gauge bosons. These deviations are particularly sizable for the third generation due to the heaviness of the top quark.

2/3

1/3

1/3

2/3

ÿ1/3

ÿ1/3

ÿ2/3

ÿ2/3

13 The normalization of a 4D Dirac fermion actually imposes two
equations:� pR

0

dy f 2
n �y� � 1 and

� pR

0

dy g 2
n �y� � 1 :

However, thanks to the quantization equation, the second equation is
redundant. This can be easily checked in the simple example presented
here. In more complicated cases, the redundancy of the two normalization
conditions is a good consistency check that the right KK decomposition
has been obtained.
14 We recall that in conformal coordinates, the AdS metric is given by

ds 2 �
�
R

z

�2ÿ
Zmn dx

m dx n ÿ dz 2
�

(R is the AdS curvature scale).
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action, which simply becomes

S �
�
d5x

R 4

z 4

�
ÿi�w�smqmwÿ icsmqm �c

� ÿc q5
 !

wÿ �w q5
 !

�c� � c

z
�cw� �w �c�

�
;

where the coefficient c � mR is the bulkDiracmass in units of

the AdS curvature
�
and, as before, q5

 !
� ÿ q5!ÿ q5

 �
=2
�
. The

bulk equations of motion are

ÿ i�smqmwÿ q5 �c� c� 2

z
�c � 0 ;

ÿ ismqm �c� q5w� cÿ 2

z
w � 0 :

The KK decomposition is performed as in the flat case
(183) with the wave functions now satisfying the coupled first-
order differential equations

f 0n �mngn ÿ c� 2

z
fn � 0 ; g 0n ÿmn fn � cÿ 2

z
gn � 0 ;

�192�

which can be combined into uncoupled second-order differ-
ential equations

f 00n ÿ
4

z
f 0n �

�
m 2

n ÿ
c 2 ÿ cÿ 6

z 2

�
fn � 0 ; �193�

g 00n ÿ
4

z
g 0n �

�
m 2

n ÿ
c 2 � cÿ 6

z 2

�
gn � 0 : �194�

The solutions are now linear combinations of Bessel func-
tions, as opposed to sin and cos functions:

gn�z� � z 5=2
ÿ
AnJc�1=2�mnz� � BnYc�1=2�mnz�

�
; �195�

fn�z� � z5=2
ÿ
CnJcÿ1=2�mnz� �DnYcÿ1=2�mnz�

�
: �196�

First-order bulk equations of motion (192) further impose the
conditions

An � Cn ; Bn � Dn : �197�

The remaining undetermined coefficients are fixed by the
boundary conditions and the wave function normalization.

Finally, when boundary conditions permit, there can also
be a zero mode. For instance, if c

��
R;R 0� 0, the zero mode is

given by

g0�y� � A0

�
z

R

�2ÿc
; f � 0 : �198�

The coefficient A0 is determined by the normalization
condition� R 0

R

dz

�
R

z

�5
z

R
A2

0

�
z

R

�4ÿ2c
� A2

0

� R 0

R

�
z

R

�ÿ2c
dz � 1 : �199�

To understand from these equations where the fermions
are localized, we study the behavior of this integral as we vary
the limits of integration. If we send R 0 to infinity, we see that

the integral remains convergent if c > 1=2, and the fermion is
then localized on the UV brane. If we send R to zero, the
integral is convergent if c < 1=2, and the fermion is localized
on the IR brane. The value of the Dirac mass determines
whether the fermion is localized towards theUVor IR branes.
We note that the opposite choice of boundary conditions,
which yields a zero mode (wjR;R 0 � 0), results in a zero mode
solution for c with localization at the UV brane when
c < ÿ1=2 and at the IR brane when c > ÿ1=2. The interest-
ing feature in the warped case is that the localization
transition occurs not when the bulk mass passes through
zero but at the points where jcj � 1=2. This is due to the
curvature effects of the extra dimension. The CFT interpreta-
tion of the c parameter is an anomalous dimension that
controls the amount of compositeness of the fermion [73].

5.5.3 Higgsless fermion masses. We have already explained
how to embed the SM fermions into 5D Dirac spinors. To
obtain the sought zero modes, the following boundary
conditions have to be imposed:

wuL
�cuL
wdL
�cdL

0BB@
1CCA
� �
ÿ ÿ
� �
ÿ ÿ

wuR
�cuR
wdR
�cdR

0BB@
1CCA
ÿ ÿ
� �
ÿ ÿ
� �

; �200�

with the � and ÿ referring to Neumann and Dirichlet
boundary conditions and the first/second sign denoting the
BC on the UV/IR brane, respectively. These boundary
conditions give massless chiral modes that match the SM
fermion content. But uL, dL, uR, and dR are all massless at this
stage, and we need to lift the zero modes to achieve the SM
mass spectrum (Fig. 18). Although simply giving certain
boundary conditions for the fermions allows lifting these
zero modes, in the following discussion we talk about
boundary operators and the boundary conditions that these
operators induce. There are some subtleties in dealing with
boundary operators for fermions. These arise from the fact
that the fields themselves are not always continuous in the
presence of a boundary operator because the equations of
motion for fermions are first order. The most straightforward
approach is to enforce the boundary conditions that give the
zero modes as shown in Eqn (200) on the real boundary at
z � R;R 0 while the boundary operators are added on a
fictitious brane at a distance E away from it. The new
boundary condition is then obtained by taking E to be small.
This physical picture is quite helpful in understanding what
the different boundary conditions can do. The details can be
found in [75].

The IR brane being vector-like, we can now form an
SU�2�D mass term that mixes the L and R SM helicities.

SU�2�L � SU�2�R �U�1�BÿL
UV

IR

z=R
z=R 0

SU�2�L �U�1�Y

ÿikcdR
smqmcdR

R 0MD�wuLcuR
� wdLcdR

� h:c:�

Isospin
splitting

Vector-like
mass

SU�2�D �U�1�BÿL

Figure 18. Brane-localized operators needed to increase the masses of the

SM fermions.
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However, this Dirac mass term has to be the same for the up
and down quarks (the mass term is isospin invariant).
Fortunately, the SU�2�R invariance is broken on the UV
brane and we can introduce operators there that distinguish
between uR and dR. Technically, the effect of the brane-
localized operators is to modify the BCs. Explicitly, the IR
Dirac mass affect the BCs as follows:

wL�
discontinuities

cL ÿ cL

��
IR
� 0 cL

��
IR
� ÿMDR

0cR

��
IR

MD in

wR ÿ wR
��
IR
� 0 �) wR

��
IR
�MDR

0wL
��
IR

wL&cR

cR�

:

In the same way, the UV brane operator modifies the BCs as
follows:

discontinuities
wuRÿ

wuR
��
UV
� 0 k in wuR

��
UV
� kmcuR

��
UV

cuR
� �)

cuR

:

It is now easy to enforce these modified boundary conditions
using the general form of wave functions (195) and (196) that
satisfy the bulk equations of motion. For fermions localized
towards the UV brane (cL > 1=2 and cR < ÿ1=2), we obtain
the approximate expression

m �
����������������
2cL ÿ 1
p������������������������������������

k 2 ÿ 1=�2cR � 1�p MD

�
RUV

RIR

�cLÿcRÿ1
: �201�

The spectrum of the light generations of quarks can be
easily reproduced along these lines. But the top-quark mass
poses a difficulty. Indeed, increasingMD does not arbitrarily
increase the fermion mass because it becomes saturated: the
situation is similar to what happens to a large Higgs vev
localized on the boundary: the gauge boson masses remain
finite even when the vev is sent to infinity. The maximum
value of the fermionmass can be inferred by noting that in the
infinite-MD limit, there is a chirality flip in the BCs, which
become

wL � wL ÿ
cL ÿ cL

��
IR
� ÿMDR

0 cR

��
IR

MD !1 cR

��
IR
� 0 cL �

wR ÿ wR
��
IR
�MDR

0 wL
��
IR

�) wL
��
IR
� 0 wR �

cR � cR ÿ

and the corresponding mass is

m 2 � 2

R 0 2 ln �R 0=R� � 2M 2
W ; �202�

where in the last equality we used the expression for the W
mass in terms of R and R 0 and assumed g5R � g5L.

If we want to go above this saturated mass, we need to
localize the fermions towards the IR brane. But even in this
case, a sizable Dirac mass term on the TeV brane is needed to
obtain a heavy enough top quark. The consequence of this
mass term is the boundary condition for the bottom quarks:

wbR �MDR
0 wbL : �203�

This implies that if MDR
0 � 1, then the left-handed bottom

quark also has a sizable component in an SU�2�R multiplet,
which, however, has a coupling to Z that is different from the
SM value. Thus, there is a large deviation in the ZbL�bL
coupling. We note that the same deviation does not appear
in the ZbR�bR coupling, since the extra kinetic term introduced
on the Planck brane to split the top and bottom quarks
implies that the right-handed b quark mostly consists of the
induced fermion on the Planck brane, which has the correct
coupling to the Z boson.

The only way of circumventing this problem is to increase
the value of 1=R 0, and thus decrease the necessary mixing on
the TeV brane needed to obtain a heavy top quark. One way
of increasing the value of 1=R 0 is by increasing the ratio
g5R=g5L (at the price of also making the gauge KK modes
heavier and hence the theory more strongly coupled).
Another possibility for increasing the value of 1=R 0 is to
separate the physics responsible for the electroweak symme-
try breaking from that responsible for the generation of the
top-quark mass. In technicolor models, this is usually
achieved by introducing a new strong interaction called
topcolor. In the extra-dimensional setup, this would corre-
spond to adding two separate AdS5 bulks, which meet at the
Planck brane [65]. One bulk would then bemostly responsible
for electroweak symmetry breaking and the other for
generating the top-quark mass. The details of such models
have been worked out in [65]. The main consequences of such
models would be the necessary appearance of an isotriplet
pseudo-Goldstone boson called the top-pion; depending on
the detailed implementation of the model, there could also be
a scalar particle (called the top-Higgs). This top-Higgs would,
however, not play a major role in the unitarization of the
gauge boson scattering amplitudes, but rather serve as the
source for the top-quark mass only.

It was suggested recently that using a different embedding
of the bottom and top left quarks into the �2; 2�2=3 representa-
tion of SU�2�L � SU�2�R �U�1�X can help to keep the
ZbL�bL coupling under control [82].

5.6 Electroweak precision tests
To compare Higgsless models to precision electroweak
measurements, we need to compute the Peskin ±Takeuchi
parameters S, T, and U [71, 74, 78 ± 81]. We use such
parameters to fit the Z-pole observables at LEP1.
In Ref. [29], Barbieri et al. proposed an enlarged set of
parameters to also take differential cross section measure-
ments at LEP2 into account. However, the only new
information contained in the new parameters is the limit on
four-fermion operators generated by the exchange of KK
bosons, which we take into account to bound the lighter
resonances at LEP2 and Tevatron. Effectively, our S, T, and
U are linear combinations of the parameters in [29].

In Ref. [80], we computed the oblique corrections in the
standard way, in terms of mass eigenstates, in the limit where
the light fermions are localized on the Planck brane. The only
relevant technical point in the calculation is the matching of
the 4D gauge couplings. Indeed, if we write the couplings of
the fermions, only two quantities are independent of the
overall Z and W normalizations and are completely fixed by
the boundary condition. These are the electric charge and the
ratio between the hypercharge andT3, that is, the couplings to
the Z boson. Matching such quantities with the SM predic-
tions, it is possible to disguise all the corrections as oblique
parameters.

January, 2007 New approaches to electroweak symmetry breaking 27



In the basic model with g5L � g5R � g5 and vanishing
localized kinetic terms, the leading contribution to S in the
1= ln �R 0=R� � 0:3 expansion is

S � 6p
g 2 ln �R 0=R� � 1:15 ; �204�

while T � U � 0. This value of S is clearly too large to be
compared with the experimental result. 15

But the theory has more parameters: for instance, kinetic
operators can be localized on the boundaries for the locally
unbroken gauge symmetries:

L � ÿ
�
r

4
WL

mn
2 � r 0

4
BY
mn

2
�
d�zÿ R�

ÿ R 0

R

�
t 0

4
Bmn

2 � t
4
WD

mn
2
�
d�zÿ R 0� :

We first study the effect of asymmetric bulk gauge couplings
and Planck brane kinetic terms. The leading contribution to S
is

S � 6p
g 2 ln �R 0=R�

2

1� g 2
5R=g

2
5L

1

1� r=
ÿ
R ln �R 0=R�� ; �205�

where, again, T � U � 0. Now, in the case of a large g5R=g5L
ratio [or a large SU�2�L kinetic term], S is suppressed.
However, the W mass squared is also parametrically multi-
plied by the same factor. This means that the smaller the S
parameter, the larger the scale of KK resonances, 1=R 0.
Hence, in order to have small corrections, we possibly enter
a strong coupling regime, where the above calculation
becomes meaningless.

Another set of parameters is the TeV kinetic terms. Their
contribution is more complicated, and we therefore show
some results at the leading order for t; t 05R ln �R 0=R�. The
SU�2�D kinetic term appears in the linear order, and
effectively multiplies Eqn (205) by the factor 1� t=R. On
the other hand, the U�1�BÿL kinetic term contributes in the
quadratic order. If only t 0 is turned on, then

S � 6p
g 2 ln �R 0=R� ÿ

8p
g 2

 
1ÿ

�
g 0

g

�2
!

t 0 2ÿ
R ln �R 0=R��2 ; �206�

T � ÿ 2p
g 2

 
1ÿ

�
g 0

g

�4
!

t 0 2ÿ
R ln �R 0=R��2 ; �207�

and U � 0. Hence, S vanishes at t 0 � 0:15R ln �R 0=R�.
However, another effect is to make one Z 0 lighter, namely
the one that couples with the hypercharge.

We also numerically scanned the parameter space to seek
a region where the model is not ruled out. For different values
of g5R=g5L,

16 we scanned the tÿ t 0 space (Fig. 19). With jS j
and jT j both required to be smaller than 0:3, there is an
allowed region only for the large ratio g5R=g5L > 2:5, where

the theory is most likely strongly coupled. These results are in
agreement with similar studies in [79] and [29].

As originally proposed, the model does not seem to be
upheld by the experiments, if we want strong coupling to
occur above 3 TeV. However, this is not the end of the story
since there is a solution [74, 84] to the S problem with
additional beneficial side-effects. It has been known for a
long time in Randall ± Sundrum models with a Higgs boson
that the effective S parameter is large and negative [85] if the
fermions are localized on the TeV brane, as originally
proposed. When the fermions are localized on the Planck
brane, the contribution to S is positive and, hence, for some
intermediate localization, the S parameter vanishes, as was
first pointed out for RS models by Agashe et al. [70]. The
reason for this is fairly simple. Because the W and Z wave
functions are approximately flat and the gauge KK mode
wave functions are orthogonal to them, the overlap of a gauge
KK mode with two fermions approximately vanishes when
the fermion wave functions are also approximately flat. The
coupling of the gauge KK modes to the fermions induces a
shift in the S parameter, and therefore, for approximately flat
fermion wave functions, the S parameter must be small. We
note that reducing the coupling to gauge KK modes not only
reduces the S parameter but also weakens the experimental
constraints on the existence of light KK modes. This case of
delocalized bulk fermions is not covered by the no-go
theorem in [29], since it was assumed there that the fermions
are localized on the Planck brane.

To quantify these statements, it suffices to consider a toy
model where all three families of fermions are massless and
have a universal delocalized profile in the bulk. Before giving
some numerical results, it is useful to understand the analytic
behavior of S in interesting limits. For fermions almost
localized on the Planck brane, it is possible to expand the
result for the S parameter in powers of �R=R 0�2cLÿ1 5 1. The
leading terms, also expanded in powers of 1= ln, are

S � 6p
g 2 ln �R 0=R�

�
1ÿ 4

3

2cL ÿ 1

3ÿ 2cL

�
R

R 0

�2cLÿ1
ln

R 0

R

�
; �208�

and U � T � 0. The above formula is actually valid for
1=2 < cL < 3=2. For cL > 3=2, the corrections are of the
order of �R 0=R�2 and are numerically negligible. As we can
see, as soon as the fermion wave function starts leaking into
the bulk, S decreases.

Another interesting limit is when the profile is almost flat,
cL � 1=2. In this case, the leading contributions to S are

S � 2p
g 2 ln �R 0=R�

�
1� �2cL ÿ 1� ln R 0

R
�Oÿ�2cL ÿ 1�2�� :

�209�

In the flat limit cL � 1=2, S is already suppressed by a factor
of 3 with respect to the Planck-brane localization case.
Moreover, the leading terms cancel at

cL � 1

2
ÿ 1

2 ln �R 0=R� � 0:487 : �210�

For cL < 1=2, S becomes large and negative and, in the
limit of TeV-brane localized fermions �cL 5 1=2�,

S � ÿ 16p
g 2

1ÿ 2cL
5ÿ 2cL

; �211�

15 Actually, this number should not be comparedwith the usual SM fit, but

we should disentangle the contribution of the Higgs boson. Namely, it

suffices tomake the fit assuming a large Higgs mass, equal to the cut-off of

the theory [29]. We also neglect loop corrections from the gauge KK

modes.
16 Using the Planck kinetic terms instead would only result in slightly

different Z 0 couplings, and hence different exclusion plots.
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while in the limit as cL ! ÿ1,

T! 2p
g 2 ln �R 0=R� �1� tan2 yW� � 0:5 ; �212�

U! ÿ 8p
g 2 ln �R 0=R�

tan2 yW
2� tan2 yW

1

cL
� 0 : �213�

In Fig. 20, we show the numerical results for the oblique
parameters as functions of cL.We can see that after vanishing
at cL � 1=2, S becomes negative and large, while T and U
remain smaller. With R chosen to be the inverse Planck scale,
the first KK resonance occurs around 1.2 TeV, but this scale
can be safely reduced to below 1 TeV for larger values of R.
Such resonances are weakly coupled to almost flat fermions
and can easily avoid the strong limits from direct searches at
LEP or Tevatron. If we imagine that the AdS space is a dual
description of an approximate conformal field theory (CFT),
then 1=R is the scale where the CFT is no longer approxi-
mately conformal and perhaps becomes asymptotically free.

Thus, it is quite reasonable to think that the scale 1=R would
be much smaller than the Planck scale.

In Fig. 21, we plot the value of the NDA scale in (126) and
the mass of the first resonance in the �cL ÿ R� plane.
Increasing R also affects the oblique corrections. However,
while it is always possible to reduce S by delocalizing the
fermions, T increases and puts a limit on how far R can be
increased. We also see from Fig. 21 that in the region where
jS j < 0:25, the coupling of the first resonance with the light
fermions is generically suppressed to less than 10% of the SM
value. This means that the LEP limit of 2 TeV for SM-like Z 0

resonances is also decreased by a factor of 10 at least (the
correction to the differential cross section is roughly propor-
tional to g 2=M 2

Z 0 ). In the end, values of R as large as
10ÿ7 GeVÿ1 are allowed, where the resonance masses are
around 600 GeV. Therefore, following the analysis in [68],
even if we take a factor of roughly 1=4 in the NDA scale into
account, we see that the appearance of the strong coupling
regime can be delayed up to 10 TeV.
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Figure 19. Combined plots of the experimental constraints on Higgsless models for different values of the g5R=g5L ratio, in the parameter space tÿ t 0

[normalized by R ln �R 0=R�]. The solid contours for S (red) and T (blue) are at 0.25; the dashed contours are at 0.5. The black solid (dashed) line

corresponds to a deviation in the differential cross section of 3% (2%) at LEP2. The shaded region is excluded by a deviation larger that 3% at LEP and/

or direct search at Run1 of the Tevatron.
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While the oblique corrections can be kept under control,
at the price of some conspiracy in the localization of the SM
quarks and leptons along the extra dimension, it is fair to say
that, to date, the major challenge facing Higgsless models is
actually the incorporation of the third family of quarks. A
large top-quark mass can be obtained but at the price of
distorting the coupling of the bottom quarks to the Z boson.
One way to go could be to introduce a multi-throat setup [65],
which allows different scales. It seems also that using a
different embedding of the bottom and top left quarks into a
�2; 2�2=3 of SU�2�L � SU�2�R �U�1�X can help to keep the
ZbL�bL coupling under control [82].

5.7 Collider signatures
The nonobservation of a physical scalar Higgs would be the
first indication of a Higgsless scenario. Yet, the absence of
proof is not the proof of absence, and some other models exist
in which the Higgs boson is unobservable at the LHC, and we
need to find other distinctive features of Higgsless models.
This section closely follows the original works [83, 86] and
reviews [57, 58].

The main predictions of Higgsless scenarios are
� the absence of a Higgs boson;
� the presence of spin-1 KK resonances with the W, Z

quantum numbers;
� some slight deviations in the universality of the light

fermion couplings to the SM gauge bosons; and

� some deviations in gauge boson self-interactions com-
pared to the SM.

5D Higgsless models are nonrenormalizable and become
strongly coupled at some cutoff scaleL. But Higgsless models
have been devised to push L high enough and to avoid any
trouble with the EW precision test, which also means that the
strong coupling sector will not be observable at the LHC.
Still, beyond the SM spectrum, additional weakly coupled
states are required to increase L, and they should be
observable.

Many realizations of Higgsless models have been pro-
posed, differing in the way the SM fermions are introduced or
even in the number of extra dimensions. All thesemodels have
different particular signatures. However, the fundamental
mechanism by which L is increased is a feature common to
all these models: new massive spin-1 particles, with the same
quantumnumbers as the SMgauge bosons, appear at the TeV
scale and their couplings to W, Z, and g obey unitarity sum
rules like (116) ± (121), enforcing the cancellation of the
energy-growing contributions to the scattering amplitudes
of the longitudinal W and Z bosons. Vector boson fusion
processes thus provide a model-independent test of the
Higgsless scenario.

Generically, the sum rules are saturated by the inclusion of
the first/a few resonance(s). Moreover, as required by the
smallness of the oblique corrections, the couplings of the KK
gauge bosons to the light SM fermions are also small.
Therefore, model-independently, we can predict the exis-
tence of narrow and light resonances in the scattering of W
and Z bosons and at least one of these resonances has to
appear below approximately 1 TeV, because otherwise it
would be inefficient to restore unitarity. For instance, the
authors of [86] focused on the W�

L ZL !W�
L ZL elastic

scattering (charged resonances like W 0 are present and the
final state is easily disentangled from the background).

In Fig. 22, we show the WZ elastic cross section and the
number of events per 100 GeV bin in the 2j� 3l� n channel
at the LHC with the integrated luminosity 300 fbÿ1 and
appropriate cuts. It is found that with 10 fbÿ1 of data,
corresponding to one year of running at low luminosity, the
LHC will probe a Higgsless W 0 up to 550 GeV, while
covering the whole preferred range up to 1 TeV will require
60 fbÿ1.

While a HiggslessW 0 could hardly escape detection at the
LHC, we will have to wait for a linear collider (the ILC) to
precisely measure its couplings and thus to experimentally
check the saturation of the unitarity sum rules.

Another way to seek the W 0 and Z 0 KK resonances is
through Drell ±Yan processes [83]. However, these analyses
are more model-dependent since they rely on the couplings of
the way the SM fermions are embedded in the model.
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We also mention that KK gluons could easily show up as
resonances in the dijet spectrum [83] (see Fig. 23). Again, the
analysis depends on the localization of the fermions in the
bulk.

Finally, another interesting prediction of Higgsless
models is the presence of anomalous 4- and 3-boson
couplings. Indeed, in the SM, the sum rules canceling the
terms that increase with the fourth power of the energy are
already satisfied by gauge invariance. To accommodate the
contribution of the new states, the couplings between SM
gauge bosons have to be corrected. Assuming that the sum
rules are satisfied by the first resonance only, it is easy to
evaluate such deviations:

d � dgWWZ

gWWZ
� ÿ 1

3

M 2
Z

M 2
Z 0
: �214�

Here, d is an overall shift in the coupling, and the deviation
has been evaluated from theW elastic scattering sum rules. In
Fig. 24, we plot the deviations in the WWWW and WWZ
gauge couplings in the Higgsless model: the red lines encircle
the preferred region by EWPTs. A deviation of the order of
1% to 3% is expected in the trilinear gauge couplings. This

deviation is close to the present experimental limit from the
LEP and might be probed at the LHC. The ILC will surely be
able to measure such deviations. Here, we stress again that
such deviations are a solid prediction of the Higgsless
mechanism and are independent of the details of the specific
Higgsless model.

6. Recent developments and conclusion

The legacy of LEP/SLC is an impressive triumph of human
endeavor, 17 with the validation of the quantum nature of the
Standard Model (SM) to its highest accuracy. Still, and
despite all expectations, it leaves us with the most pressing
question: How do elementary particles acquire mass? How is
electroweak symmetry broken? The SM Higgs mechanism is
only a description of EWSB and not an explanation of it since,
in particular, there are no dynamics to explain the instability
of the Higgs potential at the origin. The hierarchy problem
tells us that it is less and less natural that no new particles
emerge as we explore higher and higher energies. At the same
time, however, electroweak precision measurements severely
constrain the existence of such new particles. These con-
straints are nowadays so severe that the minimal super-
symmetric standard model, which has for a long time been
considered the paradigm of BSM physics, does not appear
more natural than 1 in 100, in the absence of any anthropic
selection. On the eve of setting up the LHC, this pang of
conscience could have been quite discouraging. However, on
the contrary, it has stimulated the creativity of BSM
physicists and in the last few years numerous new ideas have
emerged on both the phenomenological and the theoretical
sides. Ingenious setups, sometimes with the rescue of some
symmetries, succeed in hiding interesting new physics that
would manifest itself at low energy by modifications of only
quantities that have not been very well measured (gauge
boson self-couplings, couplings of the top and bottom
quarks to the W and Z bosons, etc.).

To conclude, we mention that the present overview of
recent EWSBmodels inevitably suffers from a bias and that it
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Figure 23.Dijet invariant mass spectrum at the LHC showing a prominent

resonance due to the first gluon KK state. The black histogram corre-

sponds to the SM background. (From [79].)
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17 R Rattazzi, talk at the International Europhysics Conference on High

Energy Physics, July 21 ± 27, 2005, Lisbon, Portugal.
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certainly cannot claim to be exhaustive.We have chosen a few
models, mostly those onwhichwe haveworked. To repair any
injustice, if it is ever possible, we must at least mention some
other approaches that have appeared recently and that would
definitively deserve other reviews on their own:
� fat Higgs models [87];
� gauge extensions of the minimal supersymmetric stan-

dard model [88];
� bosonic seesaw [89];
� supersymmetric Little Higgs models [90];
� twin Higgs models [91];
� 6D RG induced EWSB [92].
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