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Abstract. Lectures introducing students to electromagnetic
induction phenomena often feature the popular experiment in
which a small magnet falling down a long conducting pipe is
markedly decelerated by the retarding force due to Foucault
eddy currents arising in the pipe. In this paper, a formula for the
retarding force, valid both for low velocities (when the force is
proportional to the velocity v of magnet motion) and high
velocities (when it first decreases as v™! and then as v~1/2), is
derived. The last two regimes are analogous to the collisionless
(and hence unbounded) acceleration of plasma electrons and
have not been previously described in the literature. The calcu-
lation of the retarding force in the presence of a longitudinal cut
in the pipe wall is carried out, and experiments to measure this
force are discussed.

1. Introduction

The fall of a magnet down a vertical conducting pipe is a
popular and showy experiment used to introduce physics
students to electromagnetic induction phenomena. An alter-
nating magnetic flux created by a moving magnet induces
eddy currents in the conducting walls of the pipe. These
currents give rise to a secondary magnetic field that, in turn,
brings about a retarding force. Magnetic braking markedly
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slows down the fall of a magnet in a metal pipe compared with
the velocity of its free fall in a nonconducting pipe. By way of
example, a small magnet falls down a 1-m long glass pipe, as
described in Section 3 below, in 0.6 s versus 10 s in a copper
pipe.

The effect of magnetic braking has been investigated both
theoretically and experimentally in many works utilizing
conductors of different geometry, such as a flat sheet,
magnetic suspension, rotating disk, and pipe [1—9]. MacLat-
chy, Backman, and Bogan [5] expounded the simplest theory
of the breaking force acting on a magnet in an infinitely long
pipe in proportion to the velocity v of magnet motion. The
same authors calculated the terminal magnet velocity v, and
experimentally recorded the electromotive force using a coil
wound around a copper pipe. Hahn and co-workers [7]
studied resonant oscillations of a magnet suspended by a
small spring in pipes of different diameter and conductivity.
The theory developed by these authors is analogous to the
theory described in Refs [3, 5] but takes into consideration the
finite pipe length.

The aforementioned experiment with a magnet falling
down a conducting pipe in the gravitational field has long
been used at Novosibirsk State University as a training aid for
undergraduates attending relevant lectures [10]. A few years
ago, we reviewed publications on magnetic braking with the
goal of extending the range of laboratory works offered to the
students. It turned out that the theory of this phenomenon is
confined to the point magnetic dipole approximation for
simulating a magnet of finite dimensions. Moreover, it
considers only weak skin effects when the depth ¢ (skin
depth) of magnetic field penetration into a metal is signifi-
cantly larger than the pipe wall thickness / and pipe magnetic
permeability is unity (¢ = 1). The above assumptions are not
always valid, giving an incentive to construct a more general
theory of magnetic braking.

Analysis of experiments with a falling magnet, described
in the literature, showed that some features of this phenom-
enon remain unexplored. Suffice it to say that, to our
knowledge, experimenters have measured only the terminal
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magnet velocity, disregarding deceleration dynamics. Nor
have they studied magnet movement in a pipe with cracks
and slits. This paper was designed to make up for the lack of
relevant theoretical and experimental data.

2. Theory

The general theory expounded in Section 2.3 does not use any
preliminary propositions concerning the relationship between
the parameters ¢ and 4. Nevertheless, we shall first consider
particular cases of weak and strong skin effects, when §/h > 1
and o/h < 1, respectively, and only afterwards shall we
proceed to the construction of the general theory. We believe
that such an approach is more instructive since it allows for
deeper insight into the mechanism of magnetic braking.

For the reader’s convenience, Section 2.1 describes the
standard deceleration theory applicable at a low velocity of
magnet motion. Conversely, Section 2.2 considers the high
velocity case and demonstrates that the retarding force
decreases with increasing speed in proportion to v~/2. In
Section 2.3, the general formula that is valid for the entire
velocity range (regardless of relativistic effects) is derived.
This formula suggests the existence of an intermediate regime
in which the retarding force is proportional to v~!. The
concluding theoretical Section 2.4 presents the solution to
the magnet motion problem for a nonmagnetic pipe with a
long longitudinal cut in the low-velocity approximation.

2.1 Weak skin-effect approximation

The magnetic field of a moving magnet induces eddy currents
in the conducting walls of a pipe. If the magnet moves parallel
to the pipe axis and its poles are aligned along this axis, the
eddy currents flow in the azimuthal direction (Fig. 1a). The
induced currents generate a nonuniform ‘secondary’ mag-
netic field that acts on the falling magnet with the force

F=(mV)B, (1)

where m is the dipole magnetic moment. This force opposes
the magnet velocity and therefore slows down the motion. In
what follows, we shall consider, for certainty, a magnet falling
in the gravitational field, although the nature of the force that
causes the magnet to move is not an important issue for
calculating magnetic braking force. Because the retarding
force grows with increasing velocity, the speed of a magnet
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Figure 1. Schematic representation of a magnet falling down a whole (a)
and a cut (b) conducting pipe.

falling in the gravitational field eventually becomes constant
and gravity and retarding forces counterbalance each other.

As was emphasized in the Introduction, it is usually
assumed in the theoretical description of magnetic braking,
either explicitly or implicitly, that the pipe slightly perturbs
the magnetic field of the moving magnet. Consequently, this
field can be calculated as if the magnet were falling in a free
space. This assumption holds, first, for a nonmagnetic pipe,
and, second, at a relatively low velocity v of motion when the
effective skin depth § = ¢/v2now, estimated for the char-
acteristic frequency w ~ v/a and the given conductivity ¢ of
the wall material, exceeds the pipe radius a. A more accurate
criterion will be formulated in Section 2.3.

Our derivation of the retarding force formula in this
section resembles that in Ref. [3], but we have modified it so
as to create a link with Section 2.2, where the case of strong
skin effect is considered.

Let us replace the magnet of a finite size by a point dipole
(as in the conventional theory) and suppose that the dipole
magnetic moment m is coaxial with the z-axis of the circular
pipe having inner and outer radii @ and b, respectively. Let the
dipole move along the pipe z-axis corresponding to r = 0 in
the cylindrical coordinate system (r,,z) and its position on
the z-axis at an arbitrary instant of time ¢ be given by function
Z (7).

The axial symmetry of the problem allows for the choice
of such a gauge in which the scalar potential ¢ is everywhere
equal to zero, while the vector potential A has only an
azimuthal component: A = A4,(r,z,t)e,. Then, only the
following components of the electromagnetic field have a
nonzero value:

04, 1 ord,

1 04,
Br = 9 BZ = - 9 sz = - . 2
Oz r o or ¢ Ot )

In the case of weak skin effect, the magnetic field of the
magnet is almost unperturbed by the pipe wall, provided it is
made from a nonmagnetic material, i.e., 4 = 1. Then, one
finds

mr
[,.2 + (Z_Zm(l))2:|3/2 ’

Ay(r,z,t) = (3)

Taking into account that 84, /0t = —v0A,/0z, where v = 2,
is the instantaneous velocity of dipole motion, it is possible to
straightforwardly calculate the induced electric field E,. This
field generates an eddy current of density j, = o E, in the pipe
wall. The current, in turn, establishes a ‘secondary’ magnetic
field that has only a z-component on the z-axis:

1 L/2 b
B.(z,t) = —J dz’ J dr’
cJoip a [r2+ (z—

21.”,/2]'“(},/72/) (4)
27

where +L/2 are the z-coordinates of the pipe ends. The field
gradient at the dipole location point is calculated by
differentiating the integrand in formula (4) with respect to z
and then equating z to z,,(¢). Multiplication of the result by m
yields the retarding force

3 (zm — z’)2

F=— .(5)

18nom?v (L2
2

b
dz’ J dr’ 53
—L)2 a [,,/2 + (zm — 2") ]
The force F is practically independent of the dipole coordi-
nate z,,(7) if the dipole is far enough from the pipe ends. In the
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limit |z,, & L/2| > a, Eqn (5) gives
15n2em®v [ 1 1
J L S I
642 (a3 b3> (6)

For a thin-wall pipe, 2 = b — a <€ a and expression (6) reduces
to the well-known result [3]
45n% emuh

F= 64  atcr @
Evidently, the ‘minus’ sign here indicates that the force is
opposite to the magnet velocity and thus justifies its definition
as a ‘retarding force’.

The braking force can also be computed from the energy
balance. Indeed, the power P dissipated in the conducting
pipe wall equals (with the opposite sign) the work 4 = vF
done by the retarding force per unit time, namely

L)2
p:j

b
dz’J dp2npcEX(p,z').
-L2

a

The calculation of the electric field E, with the help of Eqns (2)
and (3) and the division of the resulting P in the limit L — oo
by —wv lead to the same formula (6).

The ‘energy balance’ method of computation will be used
in Section 2.2 where the magnetic braking force is found in the
limit of very fast magnet motion.

2.2 Strong skin-effect approximation

Let the velocity of the magnet motion be so high that the skin
depth J = ¢/\2nouw, estimated from the characteristic
frequency w ~ v/a, is small compared with the pipe wall
thickness /: 0 < h. Such a high velocity can be attained if the
magnet is accelerated using an air rifle or a spring instead of
gravity force. For 6 < &, the magnetic flux is ‘squeezed’ inside
the pipe and eddy currents substantially weaken the magnetic
field outside the pipe even if the magnetic permeability u is
close to unity and the magnetic (static) screening has no
appreciable effect.

Because the motion of a macroscopic magnet in any case
remains pre-relativistic, v <€ ¢, the magnetic field is still
possible to calculate in the framework of the quasistatic
approximation analogous to that used in Section 2.1. This
means that the vector-potential 4,(r, z, ¢) depends on time 7
only via the combination z — vt, i.e., 4,(r, z, 1) = A,(r,z — vt),
provided the dipole is far enough from the pipe ends. Then,
one obtains E, = (v/c)04,/0z.

Let us assume for the beginning that conductivity of the
pipe material is infinitely high, ¢ = co; consequently, the
depth of the magnet field penetration into the pipe walls is
negligibly small, i.e., 6 = 0. Then, E = B = 0 both inside and
outside the pipe walls. On these assumptions, the correspond-
ing solution of the Maxwell equations for the pipe cavity must
satisfy the boundary conditions E, = B, = 0 at the inner pipe
radius, i.e., at r = a. For r < a, the vector-potential inside the
pipe obeys the equation

0129 GR

5 5 Art g4 =0, (8)
which follows from the equation rotB =0 for the static
magnetic field. Equation (8) has linearly independent
specific solutions in the form [,(|kr|) exp(ikz) and
Ky (| kr|)exp(ikz), where I,, and K, are the Bessel functions
of order m of imaginary arguments of the first and second

kinds, respectively [11]. Therefore, the vector-potential at
r < a may be written in the form of the Fourier integral

A, = 2m JOC dk k cos(kz — kvt) [Ki (kr) + oy Iy (kr)] . (9)
T Jo

The first term in the square brackets under the integral sign is
singular at the magnetic dipole location point. Because one
has

r 2 (™
Ere EJO dk k cos(kz) Ky (kr)

this term describes the magnetic dipole potential in a free
space. The second term in the square brackets in Eqn (9) is
regular, and coefficients o can be found from the boundary
conditions 4, = 0atr =a:

_ K1 (ka)
11 (kd) ’

o =

Now, the magnetic braking force can be found by simply
computing the total power P dissipated in the pipe wall and
equating this power to the work —v F done by the retarding
force F per unit time. The total dissipated power is equal to
the energy flux
00

S.dz

—0Q

P:2nJ (10)

across the inner pipe-wall surface, where S, = (¢/4n) E, B. is
the radial component of the Poynting vector at r = a. We
have chosen infinite integration limits in formula (10), thus
neglecting end effects. However, the direct calculation
indicates that in the approximation employed P = 0, because
E, = 0 at r = a, meaning the absence of energy flow towards
the pipe wall. In other words, the magnetic braking force is
negligibly small in the limit ¢ — oo, as common sense
dictates. On the other hand, the disappearance of the
retarding force is in conflict with the result from Section 2.1
which, for this reason, proves valid only at slow motions or
poor conductivity of the pipe material.

The calculation of the electromagnetic field of a moving
magnet at a high but finite pipe conductivity is a difficult task
(see Section 2.3). For all the seeming idleness of the
calculations presented in a previous paragraph for the case
of ¢ = 0o, they make it possible to find the magnetic braking
force in the limit of a large but finite conductivity, if the
Leontovich boundary condition [12] at the inner wall surface
is used to express the electric field E, through B.. According
to Leontovich, the amplitude of the Fourier image of an
electric field:

00
Eocm = J
—00

is equal to the Fourier image of a magnetic field, namely

00
Bzw = J
—00

multiplied by the surface impedance:

E, exp(io?) dt

B, exp(iwt)dt,

Hol

Ey = [1 - Slgn(w)] 8no zo -



940 B A Knyazev, I A Kotel’'nikov, A A Tyutin, V S Cherkassky

Physics— Uspekhi 49 (9)

Because the longitudinal magnetic field

2m (* dkk
B.=——| —— kz — kz,
E - L aly (ka) cos(kz — kzy,)
at the pipe surface at » = @ does not disappear even in the

limit ¢ — oo, it can be used to calculate the Fourier amplitude

2m|w /v

B . ioz
ey = ———————————— X -
- avli(Jwa/v|) P v )’

and thereafter to find the electric field at the wall surface with
a finite conductivity by means of Eqn (11). Parseval’s theorem
makes it easy to express the ohmic loss power in the pipe wall
through B.,:

(12)

Piacvrc‘d e ’2

— ~_ _B"(u
2n Jo @ 8no '

Integration and division of P by —wv gives the magnetic
braking force in the strong skin-effect limit:

Fo mzc\/ﬁ r" de &2 _ 3.45m2c\/ﬁ (13)
V2m3vaa® Jo 13() Varvea®

The force F decreasing with the growth in v in proportion to
v~1/2, the magnet motion proves unstable because an
occasional rise in velocity leads to unlimited acceleration.
Such a phenomenon is known from plasma physics where
suprathermal electrons are unrestrictedly accelerated by the
external electric field as the consequence of a decrease in the
friction force proportional to the cube of their velocity. In
Section 2.3, the existence of an additional, intermediate
regime will be demonstrated, in which F oc v™! in the interval
of 1 «9/h < a/ud.

2.3 Exact solution

The slightly modified method used in Section 2.2 makes it
possible to calculate magnetic braking force in the entire
range of possible magnet velocities. To this effect, Eqn (9)
should be advantageously rewritten in the form

00

Aulryz =) =" J dk exp [ik(z — v)]| k|

x [Ki(|kr]) + o I ([ kr])]

on the assumption that the coefficient o can acquire complex
values inside the pipe, i.e., for r < a. A similar expression
should be written for other space regions, too, because in the
general case it may not be reckoned a priori that the field is
close to the magnetic dipole field, as in the case of weak skin
effect, or vanishes, as in the case of strong skin effect.

In the region r > b outside the pipe, the Fourier integral
must contain only terms decreasing as r — oo:
00

Aulryz =) =" [_ dk exp [ik(z — v)] e | k| Ki (| kr ).
(15)

The vector-potential inside the conducting pipe walls, for
a < r < b, satisfies the equation

019 o
oo e

_4mop 04,

Aa = 3
2 ot

(16)

as follows from equations rotH =4nj/c, rotE =
—(1/c)(0/01)B, j = oE, and B = uH. The relevant solution
of Eqn (16) may be written down in the form

Ay(r,2) = m ro dk exp [ik(z —vt)] | k|

—0Q

X [y (ser) + vie Ky (r)] (17)

where x = \/k? — 4nikvop/c2.

Coefficients oy, B, 1y, and vy must be found from the
boundary conditions at the inner and outer wall surfaces.
These conditions include the continuity of the vector
potential A, and its derivative 04,/0r at r =a and r = b.
The magnetic braking force can be calculated knowing only
the coefficients oy, because

m> [
FZ?L dk ik [oye — o] . (18)
Simple but cumbersome calculations yield
_ K (a) K (b) — K _(a) K (D)
Ok = ) (19)
I-(a) K_(b) — L+ (@) K+ ()
where

K. (r) = oo (o) Ki (| K [r) + pl K | 1y () Ko (1 K |r)
K_(r) = xKo(xr) Ky (| k |r) — ul k| Ky (r) Ko (| K |r) ,
L (r) = xKo(wr) L (|1 k |r) + pl k| Ky () o (| Kk |r)
1(r) = sho(Ger) I (| K |r) — | k| 1y (oer) Lo (| Ke Ir) -

The results of Sections 2.1, 2.2 [expressions (6) and (13)] can
be derived from the general solution (18) in the corresponding
limiting cases even though the passage to the limit proves to
be a nontrivial problem.

In order to obtain new results unrepresented earlier, the
friction force (18) should be written down in the parametric
form

"

F:_?}—(ﬂa&n)a (20)
where function F depends on three dimensionless para-
meters: p, ¢ = (b — a)/a, and n = 4nova/c?.

In the case of 1 < 1, corresponding to the small velocity
limit considered in Section 2.2 under the additional condition
1 =1, the general formula (18) can be reduced to a visually
graspable expression at an arbitrary value of u if the pipe wall
is sufficiently thick, i.e., for e > 1:

00 2.4 K K _KZ
f:ﬁJ g XK Kolx) = KFCI] (21)
T Jo (14 (u— 1) xI(x) Ki(x)]
Function (21) is given in Fig. 2.
At u =1, integration in formula (21) yields
15%
55¢ 1~ 0.1847 (22)

in agreement with formula (6). At large u, function (21) tends
to almost twice this value:

F ~0.3597. (23)
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Figure 2. Function F plotted versus u for n < 1.

For ¢ < 1, it is possible to use the results of Section 2.1,
because formula (7) is valid at any p and does not depend on
it. In dimensionless variables, Eqn (7) assumes the form

r en =~ 0.552¢n. (24)

7= 256
Evidently, the friction force is not very sensitive to the
magnetic properties of the pipe when the motion is slow.
However, this assertion is true only if the magnet moves
exactly along the axis of a cylindrical pipe. Any deviation
from the axis would cause attraction and, possibly, attach-
ment of the magnet to the ferromagnetic wall of the pipe.

The opposite case of vast motion, considered in
Section 2.2, takes place for en > 1/(ue). Then, one arrives
at

V2 [ e I
7WﬁJo o ~3.45\/%, (25)

in conformity with Eqn (13).

There is an intermediate interval
between the limiting cases (24) and (25),
friction force is proportional to v~

I <en <1/(ue)
on which the

F=—
men

O (26)

The interval exists if ¢ < 1/u and corresponds to the case
where the thickness of the pipe wall, 7 = b — a, is smaller than
that of the skin depth, J, but exceeds a certain value, namely,
52u/a < h < 6. In this parameter interval, the conducting
cylinder effectively screens the electromagnetic field even if
o> h[l13,14].

Figure 3 illustrates the possibility of realizing regimes (25)
and (26) for various materials. For a copper pipe with a
relative wall thickness /1/a = 0.25, the dependence F o v~'/?
is realized when wva~ 10* cm?s~!, and Foxwv when
va ~2x10° em®s~!; at a=0.665 cm, the corresponding
magnet velocities should be 200 and 40 m s~', respectively.
For a thick pipe of copper with a wall thickness 27 = 2.5 mm
and a mean radius R= (a+b)/2 =4 mm, the required
magnet velocities are 40 and 6 m s~!, respectively. Such
values are attainable in a simple student experiment.

The entire range e¢n < 1/(ue) is described by the formula

f:@r“ d¢EPKE(E)
n Jo 1—|—82172€2[12(£)K12(é).

(27)

10°

105

va, cm? s~!

10%

103

102 1 1

0.05 0.10 0.50 h/a

Figure 3. Regions with different functional dependences F (v). The regions
between the straight lines of each set (solid for a titanium pipe, and dashed
for a copper one) correspond to the dependences F oc v~'; Foc v in the
region below the bottom line, and F oc v~'/? in the region above the top
line.

Formula (27) can be derived from the ‘first principles’ if the
change of A, over the pipe wall thickness (i.e., a change in
the electric field and current density) is neglected. In such a
case, the pipe wall may be represented in the form of an
infinitely thin current layer and the solutions (14) and (15)
inside and outside the pipe, respectively, matched the help
of the boundary conditions E,(a+ 0) — E,(a —0) =0 and
B.(a+0)—B.(a—0) = —4nl/c, where I = chE,(a) is the
total current per unit length of a pipe wall. Function (27) is
independent of u (Fig. 4). Therefore, the magnetic braking
force in a thin-walled pipe, ¢ < 1, does not depend on the
magnetic properties of its material, while the dependence on
other parameters ¢ and 5 is expressed only through their
product if en < 1. This force reaches a maximum value,
F =0.704, at en = 2.69.

In what follows, the comparison of the above results
with experimental data will be confined to the case
described by formula (27) on the assumption that & < 1
and en < 1/(ue). In dimensional units, these inequalities are
converted to the forms # < a and / < 9, respectively, where

o~ ¢/ 2mouv/a.

Figure 4. The magnetic braking force for a thin conducting wall. The
dashed line corresponds to the approximate solution (27) that holds when
en < 1/(ue) in the limit ¢ — 0. Solid lines show the exact solution at u = 1
for two values of &: ¢ = 0.1 (upper curve), and ¢ = 0.01 (closely coinciding
with the dashed line).
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2.4 Pipe with a longitudinal cut

A longitudinal cut interrupts the azimuthal current circulat-
ing through the a pipe wall. However, there exist at least two
effects maintaining the current.

The first one is the displacement current —(1/¢)0E/0t,
which is able, in principle, to ‘intercept’ the conduction
current at slit edges, but this effect is insignificant at small
velocities.

The second effect is more important. Because eddy
currents induced by an electromotive force flow in opposite
directions in front of and behind a moving magnet (see
Fig. 1), they may close at the slit edges. In the quasistatic
approximation, the electric charge cannot accumulate in the
wall bulk spreading over the wall surface so as to ensure
that the conduction currents are closed. In the wall bulk,
one has

04,
Oz

€y — V({bv (28)

v
c

where A, = mr/[r2 + (z — vt)?]*/? is the vector-potential of
the point magnetic dipole m in a free space, and ¢ is the scalar
(electric) potential induced by surface charges; approxima-
tion (28) corresponds to the case of weak skin effect.

Potential ¢ satisfies the Laplace equation A¢ = 0 inside
the wall. The Laplace equation for a thin wall (& < a) can be
simplified taking into consideration the absence of the radial
electric field inside the wall: 8¢/0r = 0. Then, only the
derivatives with respect to o and z are retained in the Laplace
equation which takes the following form if variable r is
substituted by the pipe radius a:

1 &®¢ %

2otz O

(29)

The absence of the radial electric field ensues from the
boundary conditions for the current density

j=0E (30)
that must disappear at the boundary of the conducting
material if the displacement current is negligible. The
solution of Eqn (29) is sought in the form

o(a,z) = J: dk sin(kz — kvt)

x [y exp(kaer) 4 vy exp(—kaw)] , (31)

and the coefficients u;, v are found from the boundary
conditions for the azimuthal component of the current
density, j, = 0, at both slit edges.

By denoting the angular width of the slit with Ao (see
Fig. 1) and assuming that its edges correspond to azimuths
o = £(n — Au/2), one arrives at

mv kK (ka)
=y = —— . 32
Foe = v ne cosh[(n — Ax/2)ka] (32)
The power dissipated in the wall is equal to
n—Aa/2 00 i2 i2
P:hj dan dzfatIz (33)
—n+Ao/2 —00 o

Q(n — Aa/2)

0.5 1.0 1.5 2.0
Aa/n

Figure 5. Function Q(n — Aa/2) (solid curve) and its linear approximation
(dashed straight line).

where the current density components j,, j. are calculated
with the help of equations (28) and (30) —(32):

o= 2’:;”’ J:O dk I Ky (ka) sin [k(z — vr)]
y cosh[kao] — cosh[(n — Ao/2) ka]
cosh[(n — Aa/2) ka ’ (34)
o= 2’::“ EO dk i K, (ka) cos [k(z — vi)]
sinh[kao]

8 cosh|[(m — Aw/2) ka]

Integration over z and o in Eqn (33) and division of the result
by —wv yields the magnetic braking force

457 Ao
F =% Q(“‘7> (A

where the function

(35)

Q) = i | de K@ 8 - ranh(p)]

gives the ratio of the retarding forces in slit and unslit pipes
(Fig. 5). For Ao < 3m/2, this dependence can be approxi-
mated to within a few percent by the linear function

(36)

A
Q(n —7°‘> ~0.77 — 0.16Ax.

3. Experiment

We have studied the fall of a magnet in a vertical pipe in the
gravitational field. The experimental conditions corre-
sponded to the low-speed motion regime, n < 1. The experi-
mental setup consisted of a few vertical pipes of length
L =90 cm, made from copper, aluminium alloy, brass,
titanium, and glass. The pipes at hand were not certified and
the exact values of their conductivities were unknown. The
pipe dimensions are presented in the table. The cylindrical
magnet of a neodymium/iron/boron alloy 1 cm in diameter
and 1 cmin length was magnetized along the axis. The magnet
started to fall from the upper pipe end with a zero velocity.
Seven coils were wound around the outer surface of each pipe
with a period of 10 cm. Each coil contained 20 turns and was
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Table. Pipe characteristics (outer and inner diameters 2a and 2b, aperture angle Aw, specific conductivity ¢) and the main experimental results.

Copper Aluminium Brass Titanium Glass
Aa, rad — — 0.32 n/4 — — —
2a, mm 11.6 12.4 12.4 12.4 11.7 11.9 11.8
2b, mm 15.0 16.0 16.0 16.0 139 14.3 15.0
¢, 107 x s7! 5.27 1.74 1.35 0.192 —
B,s7! 143.0 38.0 31.3 23.0 27.2 3.8 0.137
V1 (Vs )> cm 87! 6.85 25.8 31.3 42.6 36.1 116.0 140.1
my, g2 em’/2 57! 474 +2 — — — — 465+ 5 —
my, g'/? ecm¥/? 57! 433 429 — — 425 436 429

Note: The values of ¢ for copper and titanium are borrowed from the literature, and those for aluminium alloy and brass calculated from Eqn (39).
Friction coefficient f, initial magnet velocity v; at the level of the first measuring coil, and magnetic moment m, are found by the least square method,
with the time dependence of the distance covered by the magnet being fitted using Eqn (38). The values of v; equivalent to the terminal velocity v, are
printed in bold. The magnetic moment m is obtained by fitting experimental oscillograms to the theoretical ones (40).

as long as 8 mm. The coils were connected together in series
and connected to a Tektronix TDS-220 oscillograph.

3.1 Fall of a magnet in a whole pipe

The time dependences of coil voltage for titanium and
aluminium pipes are depicted in Fig 6. It is clear that the
signals are proportional to the eddy current flowing over the
outer pipe surface. The peaks on the oscillograms are in all
probability due to the action of the electromotive force in the
coil closest to the instantaneous position of the falling
magnet. When the magnet moves through the center of the
coil, one has U(¢) = 0; therefore, the time necessary to cover
the distance between the neighboring coils can be determined
from the oscillogram. The result of such processing is given in

Fig. 7, where ¢t = 0 corresponds to the beginning of the flight
past the upper measuring coil. The t—z dependence was
constructed over the average values obtained in 12 and more
experiments for each pipe. The measurement errors were
significantly smaller than the point sizes shown in the plots.
In the copper pipe having the highest conductivity, the
magnet dropped 70 cm in approximately 10 s. Such a slow
drop produced a strong impression, when the experiment was
demonstrated to an audience. The electric conductivity of the
titanium pipe was 20 times lower, and, accordingly, the time
of the magnet’s drop was only 0.35 s.

The skin depth ¢ estimated from the characteristic
frequency @ ~ v/a for all the pipes falls within 4 and 6 cm.
This fact justifies the use of the weak skin-effect approxima-

80 a
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Figure 6. Voltage induced in a series of measuring coils in pipes of (a) glass, (b) titanium, (c) aluminium alloy, and (d) aluminium alloy with a longitudinal
cut at Ao = /2. A series of seven coils was wound around each pipe with a period of 10 cm. Oscillograms for copper, brass, and aluminium (Ao = 0.32)
pipes are analogous to oscillograms (c) and (d).
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Figure 7. Time of flight as a function of coordinates of the measuring coils.
Full circles mark the instants of the magnet’s flight through the center of
the corresponding coil. Solid lines are theoretical trajectories (14) used to
choose the friction coefficient  and the initial velocity v;. Curve FF for
glass is fairly consistent with a free fall. The remaining curves correspond
to motion with a constant velocity except curve FC for the titanium pipe,
which characterizes the transient regime of magnet acceleration. (Here, p is
a certain constant.)

tion in the calculations that follow. The magnetic braking
force is proportional to the velocity and may be written down
in the form F = — Mz, where f is the coefficient of magnetic
friction, M = 5.5 g is the magnet mass, and z,(z) is the
instantaneous magnet coordinate. The solution to the
equation of motion of a magnet:

Ea(0) + Pin(t) = g (37)
in the gravitational field, taking into account the above
retarding force at the initial conditions z,(0) =0,
Zn(0) = vy, gives

() =SB P (] (38)
i B
where v; is the magnet velocity at the center of the first coil.
We have used Eqn (38) for fitting the experimental data
presented in Fig. 7. They all corresponded to the straight line
!t = z/vs, With the exception of the titanium and glass pipes,
because the magnet in a well-conducting pipe reached the
terminal velocity vy, = g/f before flying up to the first
measuring coil; for such pipes, one obtains v; = v,,. The
magnet freely fell in the glass pipe as indicated by the fitting
curve FF (see Fig. 7). The curve FC for the titanium pipe
corresponded to the intermediate case where each term in
Eqn (37) was equally important.
Knowing the coefficient of friction f# and pipe conductiv-
ity, it is easy to calculate the magnetic dipole moment with the

help of formula (7):

s — [64B3M R*c?
e 45n2gh

where R = (a+b)/2. We have chosen from the data on
conductivity available in the literature the following
results: ¢ = (5.27 £0.03) x 10'7 s=' for copper, and ¢ =
(1.92 £ 0.04) x 106 s~! for titanium. The calculated values
of the magnetic moment m, are presented in the table. The
values of m, obtained in experiments with copper and
titanium pipes reasonably agree with each other. However,
statistical variance of the computed value is significantly
smaller than the uncertainty in the conductivity values used.
Substituting the thus found mean value of the magnetic
moment (m,) = 469.5 4+ 5.5 g'/>cm/?s~! into formula (39),
we have calculated conductivity for other pipes without slits.
The values obtained, ¢ = 1.35x10!7 s~! for brass, and ¢ =
1.74 x 10'7 s~! for aluminium alloy, lie within the scatter
range of the table data cited in different reference books.
The last line in the table contains values of the magnetic
moment my computed in a different way. In this method,
experimental oscillograms were approximated by the formula

(39)

p(zm(1) — z)
i=1 =1 [(zm(1) — Zii)2 + p2

e ()

where p = b + d/2 is the radius of the measuring coil turn, dis
the wire diameter, z;; is the coordinate of the j turn in the
measuring coil number i, and z,,(¢) is the magnet coordinate
at the instant of time 7 calculated by formula (38). Summation
in expression (40) is over all seven coils and 20 turns in each of
them. For the given dependence z,(¢), voltage (40) in the
system of coils has the sole fitting parameter m, making the
fitting procedure easier because knowledge of material
conductivity is not required. Adjustment by the least square
method gives very similar values of m for all pipes outlined in
the table, from a copper pipe to a glass one. However, the
mean value of (my) is 10% smaller than (m,). The former
(my) appears more reliable than the latter (m,) because the
second method relies on a minimum of additional assump-
tions and yields a result independent of magnetic braking
efficiency. This result is the same for both good conductors,
such as copper, and good insulators (e.g., glass).

3.2 Fall of a magnet in a pipe with a longitudinal cut

A longitudinal crack or split in the pipe drastically alters the
distribution of eddy currents in the wall. It is shown in
Section 2.4 that eddy currents in a well of a slit pipe are
closed along the slit edges (Fig. 1b), whereas they form
separate lines above and below the magnet in a whole pipe
(Fig. 1a). The cut enhances effective pipe resistance, leading
to a decrease in the magnetic braking force. When Eqns (35)
and (36) are used, the coefficient of friction f§ for pipes made
of aluminium alloy with a narrow (Aa = 0.32) or wide
(Ao = m/4) slit must be f,, =27.6 57! and B, = 20.4 57!,
respectively. The experimental values presented in the table
are 10—15% higher.

A simple explanation of the discrepancy between theory
and experiment can be ‘heard’ in a literal sense. When a
magnet is thrown into a pipe with a slit, a characteristic
gritting sound that is absent in an uncut pipe is heard. This
means that the magnet rubs against the inner wall if the pipe is
cut in its surface but does not touch the wall of the whole pipe.
Because the slit breaks the azimuthal symmetry of the pipe,
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eddy currents flowing along the opposite sides of the slit
establish a magnetic field B, directed toward it at the
instantaneous magnet location point. This field creates a
torque moment K =m x B, that turns the magnet in the
plane passing through its center and the middle of the slit. In
our experiments, the magnet’s diameter was only 2 mm
smaller than the inner diameter of the pipe. Due to this, the
torque pressed the opposite sides of the magnet to the inner
wall surface and thus increased the retarding force compared
with the one predicted in Eqn (35) by virtue of mechanical
friction of the magnet against the pipe wall.

In order to demonstrate this effect, we cut four 12-cm-long
slitsin an aluminium pipe 110 cmin length that alternated with
12-cm intact sections. The slits had various angular widths
Aa/m:0.2,0.1,0.05, and 0.025. Twenty seven measuring coils
were evenly distributed along the pipe length with a period of
4 cm. Figure 8 presents a characteristic oscillogram and time
dependence of the magnet velocity. The magnet’s motion in
such a pipe is rather slow and no special instruments are
needed to hear the gritting produced by the magnet passing a
slit and its disappearance when the magnet flew by the intact
sections. The magnet velocity at the end of all uncut sections
reaches a maximum (constant) value but does not drop
monotonically with decreasing slit width in the sections with
slits, as expected from the analysis of formula (35) in which
mechanical friction against the wall is disregarded.

The total retarding force in the cut sections is the sum of
magnetic braking and mechanical friction against the wall.
The nonmonotonic dependence of the measured retarding
force is attributable to the nonmonotonic dependence of the
moment of forces K on the slit width. Using the solution of
Eqns (34) for the current in the pipe wall, we find that

K:%%K(n %Aa)sn, (41)
where
K(x) = fsl; Jm lf 5 Ki(v) VKo () + Ki ()]
x [ysiny — cos ytanh(xy)] .
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Figure 8. The fall of a magnet in a pipe with a series of longitudinal cuts:
(a) oscillograms of the signal from the series of 27 measuring coils, and
(b) time dependence of the magnet’s velocity computed from the
oscillograms. The form of the oscillograms is retained to within a reverse
in the time axis direction as the pipe rotates 180° about the horizontal axis.
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Figure 9. Function K(Ax).

The ratio of the force N of magnet pressure on the wall to
the retarding force (24) acting on the magnet in the uncut pipe
is proportional to K. The mechanical friction force F = kN is
proportional to N, and the coefficient of friction k is usually
smaller than unity, k < 1. Figure 9 shows that the torque
moment reaches its peak at Ao = 0.53nw = 96°. The total
retarding force can peak at a smaller angular width of the
slit, depending on k. This feature qualitatively accounts for
the varied magnet velocity observed in experiments with the
multiple-slit pipe. Another effect likely to enhance the friction
force is an increase in the magnet rotation angle with slit
widening.

4. Conclusion

A thorough study of the magnetic braking effect in a
conducting pipe turned out to be much more instructive
than is commonly believed. We have observed two addi-
tional regimes besides the slow motion regime characterized
by the linear velocity dependence of the retarding force, in
which the force decreases with increasing velocity of motion
of a magnet. Such a phenomenon is well known from
plasma physics where it leads to a limitless acceleration of
electrons in the plasma by the electric field exceeding a
critical value.

Our experiments have demonstrated that the deceleration
of a magnet may be used to detect cracks in pipe walls.
Unexpectedly, the same experiments revealed the non-
monotonic dependence of the retarding force on the slit
width that was explained as a result of magnet rotation in
the magnetic field of the currents flowing toward the opposite
slit edges.

Thus, a simple experiment on magnetic braking may be
offered to undergraduate students as a new research topic
in a seemingly well-developed field of physics. In particular,
the laboratory practicum ‘Electricity and Magnetism’ at
the Department of General Physics, Novosibirsk State
University, already includes the course ‘Foucault Cur-
rents and Magnetic Friction’. More sophisticated experi-
ments may be proposed as the theme of a student’s term
paper, e.g., verification of our prediction of a regime in
which the retarding force decreases with increasing magnet
velocity.
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