
Abstract. Various conceptions on the structure of water are
reviewed and different intermolecular interaction models under-
lying its description are discussed. To describe the structure of
water, the method of integral equations for correlation func-
tions borrowed from the theory of liquids is applied. Some
numerical simulation results obtained with the Monte Carlo
and molecular dynamics methods are also discussed in the
context of water structural peculiarities.

1. Introduction

The understanding that liquids are far from being structure-
less substances came quite recently (i.e., in the 1930s) when it
became clear that the continuous liquid-state model making
no distinction between a gas and a liquid is inadequate for the
description of many phenomena, including critical ones.
X-ray diffraction studies of liquids, initiated at approximately
the same time, revealed the presence in them of some order
residing in the fact that the immediate vicinity of each
molecule resembles the crystal-like packing, even if more
loose and mobile than in crystals. Hence, the notion of
short-range structural order in liquids. Such an interpreta-
tion holds equally well for gases (especially dense ones) that
are also characterized by a certain short-range order. It
should be recalled that crystals possess both short-range and
long-range orders, meaning that crystallization is associated
with the formation of long-range order. Moreover, amor-
phous states existing under the same thermodynamic condi-

tions (density, temperature, etc.) as crystalline states exhibit
only short-range order (as exemplified by an instantaneously
frozen liquid) and are not crystals.

The structural approach to describing liquids provided a
basis for the well-known dynamic (and at the same time
structural) model of the liquid state developed by the eminent
scientist Ya Frenkel for the analysis of kinetic properties of
liquids and crystallization kinetics [1]. According to Frenkel,
the motion of each molecule includes a vibrational constitu-
ent in a quasicrystal-like cell and translational jumps of this
cell (a group of atoms in the immediate vicinity of the
molecule) as a whole with the corresponding mean free path.
In other words, the liquid is regarded as having properties of
both crystals and gases. The composition of the properties
depends on the thermodynamic state, i.e., temperature,
pressure, and other macroparameters. Frenkel's theory
appears to be the first consistent theory of liquids that still
remains valid, as will be shown below in the discussion of later
structural models of water. Indeed, it will be demonstrated
that all the existing structural models, without a single
exception, are to a certain extent compositional models,
their composition elements being different types of elemen-
tary structures, or different types of the degrees of freedom
inherent in various aggregate states, and so forth.

Fisher [2] and Eisenberg and Kauzmann [3] distinguish
three types of structure in liquids, depending on their
characteristic times:

(1) the instantaneous or I-structure of the close vicinity,
essential for rapid processes with a characteristic time of
� 10ÿ15 s. Such a structure usually occurs in computer
simulation experiments: for example, the time step in
numerical integration of equations of motion in the molecu-
lar dynamics method is Dt4 10ÿ15 s;

(2) the vibrationally averaged or V-structure with a
characteristic time of � 10ÿ12ÿ10ÿ13 s. It is the concept of
V-structure that underlies the construction of various
phenomenological models of the water structure, and

(3) the diffusion-averaged or D-structure described by
molecular distribution functions that provide the main
theoretical tool in the modern theory of liquids [4 ± 6].
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The conception of F-structure or inherent hidden struc-
ture, framed by Stillinger and Weber [7], appears especially
useful and clear. The structure corresponds to the potential
energy minimum for the nearest instantaneous I-structure.

The ideas of structural order in liquids are a component
of the modern statistical theory of liquids based on the
infinite system of linked integro-differential equations
for the N-particle Bogoliubov ±Born ±Green ±Kirkwood ±
Yvone (BBGKY) distribution functions [2]. These functions
describe the probability of finding any group composed of
N particles in one spatial configuration or another. It should
be noted that such a definition of the structure also holds for
gases and is consistent with the modern view of the crystal
structure. Moreover, this definition is equally adequate for
the description of metastable and even amorphous states [5].
In the latter case, however, the problem of applicability of the
BBGKY system to the search for distribution functions
remains to be clarified. The fundamental character of the
description of a structure by a set of correlation functions is
attributable to the fact that they serve to unambiguously
express all thermodynamic and other macroparameters of a
given system and thus establish the fundamental structure ±
properties relationship.

The system of BBGKY equations corresponds to the
Gibbs distribution in the thermodynamic limit N!1,
V!1, r � N=V � const. However, the direct and rigorous
application of the BBGKY equations is impossible because of
the need for breaking off the infinite system of equations
leading to a variety of sometimes unclear approximations. As
shown inRefs [4, 6, 8], this systemmay be strictly transformed
under conditions of pair additivity of interaction forces to a
coupled, closed system of simply integral equations for one-
and two-particle distribution functions: in the additive
approximation, these functions alone are sufficient to define
all macroparameters.

This system of two equations provides the principal tool
for investigations into the structure and properties of liquids.
It is worthwhile to emphasize that there is no need to solve the
equations for the higher distribution functions in the additive
approximation because they can be strictly expressed via the
first two functions [6]. In the absence of an external field, the
system of equations turns into the well-known Ornstein ±
Zernike (OZ) equation for the pair correlation function and
the chemical potential definition [6]. However, certain
problems of the theory and structure of liquids cannot be
unambiguously resolved even in such a simple case. First and
foremost, this concerns the problem of closure of the
Ornstein ± Zernike equation or the problem of deducing the
form of bridge-functionals entering the equations [4 ± 6].
Another important problem is related to the suitability of
equations formally derived in the thermodynamic limit for the
description of metastable and even amorphous states. This
problem arises from the fact that no metastable states exist in
the thermodynamic limit and the amorphous states are
generally nonequilibrium ones even though their relaxation
times may be regarded as infinite.

Water qualifies as a `nontrivial' liquid in which inter-
molecular interactions cannot be described by spherically
symmetric functions but depend on the mutual orientation
between the molecules; this accounts for the complicated
orientational dependence of the distribution functions.
More problems emerge in the description of hydrogen bonds
between water molecules. It is these bonds that are respon-
sible for the unique tetrahedral short-range order which

determines both the unusual properties of water distinguish-
ing it from other liquids and the equally unconventional
properties of numerous aqueous crystal structures.

It is evident from the above that the description of water
under ordinary and, as will be apparent from the following
account, extraordinary conditions spans the entire range of
problems awaiting theoretical solution. Many difficulties
encountered in simple liquid models, such as hard sphere
fluid or Lennard-Jones systems, described by the spherically
symmetric interaction potentials have been overcome to a
degree [2 ± 6]. At the same time, the statistical theory of liquids
proves insufficient for the description of water in many
situations. For this reason, the analysis of water's structure
and its relationship with the unusual properties of this liquid
is often performed by means of numerical simulation using
the molecular dynamics (MD) and Monte Carlo (MC)
methods. In the meantime, new concrete phenomenological
models of the structure of water continue to be developed and
validated in an attempt to explain selected properties of the
liquid.

The present review demonstrates and describes potential
applications of the statistical theory of liquids based on the
OZ equations. In addition, results of numerical experiments
and phenomenological models are concerned with reference
to the analysis and derivation of correlation functions.

2. Anomalous properties
and the phase diagram of water

(1) It is common knowledge that maximum water density r
under ambient pressure is attainable at a temperature of 4 �C
and almost everyone guesses that the density of ice is less than
that of the water on whose surface the ice floats. Heating
usual ice to the melting point increases its density r by 8 ± 9%
[9]. This certainly contradicts the intuitive idea of the nature
of solid state. New circumstances arise from the fact that
cooling water below the melting point of ice, thus forcing the
system into the metastable state up to the temperature
T � 37ÿ38 �C, results in a decrease in metastable water
density as well [9, 10].

(2) Many are aware that the isothermal compressibility of
water exhibits anomalous behavior with respect to that of
other liquids, dropping to a minimum at 46 �C. The compres-
sibility of ordinary liquids always decreases with a fall in
temperature, whereas the compressibility of water cooled
down to below 46 �C increases and continues to grow in the
metastable region.

(3) The behavior of aqueous solutions, for example,
hydrocarbons, also looks surprising. Indeed, the dissolution
of hydrocarbons has negative enthalpy. At the same time, the
expected result should be positive because the interactions of
hydrocarbons between themselves and with water are much
weaker than between water molecules.

(4) The thermal expansion coefficient a for ordinary
liquids is always positive. The value of a for water is
significantly smaller than the expected one and decreases
with decreasing temperature. The fall in a is very rapid at
temperatures below 4 �C, and at a sufficiently low tempera-
ture a4 0.

It has recently been shown [11] that the unusual properties
of water are especially well manifest after it is overcooled to
below 0 �C. Indeed, a decrease in temperature causes such
parameters as compressibility, heat capacity, and thermal
expansion coefficient to tend extrapolatively to infinite values
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at the temperature T � ÿ45 �C. In fact, measurements are
feasible only at temperatures as low asT � ÿ38 �C.Hence the
hypothesis of a second critical point in water at a negative
temperature that implies the existence of a metastable region
of phase transitions (in all probability, of the first order), in
analogy with the gas ± liquid phase transitions in the stable
region of water existence with the parameters Tc � 647 K,
rc � 0:328 g cmÿ3, and Pc � 22 MPa. Indeed, molecular
dynamic experiments [12] have shown the possibility of a
liquid ± liquid phase transition between low-density meta-
stable water (a low-density liquid, LDL) and high-density
metastable water (a high-density liquid, HDL) with the
critical parameters Tc � 220 K, rc � 1 g cmÿ3, and
Pc � 100 MPa. A similar possibility was demonstrated by
means of relevant thermodynamic approximations [13, 14].

One more unusual property is the existence of two forms
of amorphous water (amorphous ice). Low-density amor-
phous ice (LDA) was described rather long ago [15]. Recent
studies [16, 17] have revealed the existence of another form of
amorphous ice, viz., high-density amorphous ice (HDA). A

partly real and partly hypothetical phase diagram of water is
depicted in Fig. 1 [10]. Here,C is the real critical point of gas ±
liquid phase transition, and C 1 is the hypothetical critical
point of metastable liquid ±metastable liquid phase transi-
tion. Figure 1 also shows a putative transition between two
amorphous phases, which is reminiscent of the first-order
phase transition LDA>HDA. It should be recalled that the
existence of several amorphous phases is referred to in the
literature as polyamorphism, in analogy with polymorphism,
by which is meant the presence of a few crystal structures. By
way of example, it is believed that water may exist in
30 crystalline forms, some of which are in all probability
amorphous. Figure 2 presents a three-dimensional image of
the equation of water state [9].

3. Phenomenological structural models of water

All anomalous properties of water can be accounted for by
the peculiar structure of its molecule, and most importantly
the electronic structure of the oxygen atom. Six electrons at
the outer energy level behave as two unpaired electrons
capable of making up a s-bond with a hydrogen atom, and
two unshared electron pairs give rise to two negatively
charged centers. The sp3-hybridization of electron orbits is
responsible for the tetrahedral character of saturated directed
hydrogen bonds. It is the ability of watermolecules to formno
more than four tetrahedrally oriented hydrogen bonds that
produces the unique intrinsic nature of the `openwork',
loosely packed structure of liquid water. Figure 3 depicts the
linear configuration of two interacting water molecules in the
gaseous phase. The equilibrium distance of an OÿH hydro-
gen bond amounts to 1.78 A

�
, and its dissociation energy is

about 5.5 kcal molÿ1, i.e., over one order of magnitude
smaller than the energy of covalent bonds and higher by the
same amount than the dispersive interaction energy [18].

Bernal and Fowler [19] appear to have been the first to
notice the tetrahedral character of the coordination of
molecules in liquid water. These authors may be regarded as
pioneers of systematic studies on the structural properties of
water, who proposed the first structural model of this liquid.
Many new theories and models of water structure have been
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suggested since then but almost all of them in some way or
other take into account the composite sense of Bernal and
Fowler's ideas. Therefore, we shall describe the original
model by these authors at somewhat greater length. Accord-
ing to Bernal and Fowler, three main forms of molecular
arrangement are inherent in liquid water. The trydimite ice-
like structure (water 1) prevails at low temperatures, the
quartz-like structure (water 2) predominates at moderate
temperatures, and the densest one (water 3) acquires
importance at high temperatures. In accordance with the
Bernal and Fowler model, structural equilibrium occurs in
water:

Water 1>Water 2>Water 3 ;

which shifts from one side or the other with a change in
temperature. This model provides a qualitative explanation
for water's maximum density at 4 �C.

All structural models of water can be conventionally
divided into two classes: one constituted by discrete models,
and the other by continuous ones. The former class includes,
among others, the familiar cluster model by NeÂ methy and
Scheraga [20] that is actually a two-structure model of five
states. This model is based on the assumption that water
molecules either aggregate into compact structures (clusters)
with 1 ± 4 hydrogen bonds per molecule or exist as monomers
with no hydrogen bonds linking them. These two structures
aremixed up in equilibrium in accordance with the free energy
minimum. The model is underlain by the assumption of the
cooperative formation and breaking of hydrogen bonds,
which implies that the creation of one such bond (by virtue
of local energy fluctuations) decreases the potential barrier
for the formation of the next one and eventually leads to the
cascade generation of a cluster. The reverse cooperative
process proceeds in a similar way: the breaking of a single
hydrogen bond leads to the destruction of the entire cluster.
Cluster formation and destruction are permanent processes.
The density maximum is due to two factors. On the one hand,
melting leaves intact a certain number of hydrogen bonds in
water that gradually dissociate with a further rise in
temperature; simultaneously, the coordination number, i.e.,
local density, increases. On the other hand, a temperature
growth triggers the usual expansionmechanism inherent in all
liquids. The former mechanism predominates up to 4 �C, and
the latter at higher temperatures. Such an interpretation of
the density maximum is in some way or other accepted in all
current models of water structure.

Also worthy of note is a somewhat exotic clathrate model
by Pauling [21], the basic element of which is a dodecahedron

formed by hydrogen-bonded molecules and filled with free
water. Individual dodecahedrons are in turn linked to one
another into a sort of a spatial mesh. This model closely
resembles the partial filling model proposed by Samoilov [22].
It is based on the idea that water molecules form a distorted,
eroded structure of ice I, the cavities of which are partly filled
with monomers; during molecular motion the lattice under-
goes permanent rearrangement. The density maximum in
water is attributed to the fact that a rise in temperature
starting from 0 �C leads, on the one hand, to stronger
molecular vibrations about equilibrium positions in the
structure and the corresponding growth of the effective
molecular radius; on the other hand, the translational
motion is also enhanced with increasing temperature and
progressively more molecules enter the voids. The former
process results in an increased volume, and the latter one in a
higher density.

Very similar to this model is the so-called continuous
model of bent bonds postulated by Pople [23], in which a
hydrogen bond is described only by electrostatic interactions
between protons of one molecule and the unshared electron
pair of the other. The entire system is actually tied up by a
flexible and extendable net of electrostatic interactions. Such
net models are still successfully used in various physico-
chemical applications [23, 24] for the reason that many
properties of liquids, such as diffusion, compressibility, etc.
can be adequately, qualitatively interpreted as properties of
the model net.

The modern theory of liquids is in principle capable of
solving structural problems in the stable water region, i.e., at
temperatures above 0 �C. However, problems facing the
theory in the region of metastable and especially amorphous
states of water are still difficult to overcome. It is to such a
case that the main instrument for the solution of structural
and related problems in these states is computer simulation.
And it is also for this reason that the structure of water
continues to be described based on newly developed phenom-
enological structural models taking into consideration per-
manently emerging experimental data about the unusual
novel properties of water. Surprisingly, the construction of
these models remains compositional in character, as before,
despite a variety of new structural elements proposed for
them. By way of example, an original structural model in the
form of a composition of low- and high-density amorphous
ice has been developed based on the results of a thorough
analysis of distribution functions found in scattering experi-
ments in aqueous amorphous states [26]; this model takes into
account that a structure in the amorphous state may be
interpreted as the frozen structure of liquid water. This
construction is supposed to uniformly describe the structure
of water both in the stable region for T5 0 �C and in the
overcooled and amorphous states below 0 �C. However,
detailed calculations of correlation functions for amorphous
ice by the Monte Carlo method [27 ± 29] indicated that a
simple composition of correlation functions of amorphous ice
is too simple to be applied to the description of the properties
of usual water.

4. Model description
of intermolecular interactions in water

The degree of adequacy inherent in the description of
intermolecular interaction forces in water determines the
adequacy of all structural and physical corollaries of
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theoretical and computer applications. The discrepancies
arising from their comparison with the results obtained in
real experiments and the interpretations thereof may reflect
the approximate character of both the model description of
interactions and theoretical and computer approaches to
their investigation, emphasizing the paramount importance
of reliable simulation of intermolecular interactions. The
general procedure in such cases consists in approximating
the results of quantum-mechanical computations of potential
energy surfaces by a set of functions compatible with the
apparatus of the analytical method being used, e.g., with the
relevant equations for correlation functions. For example, the
three-point Matsuoka ±Clementi ±Yoshimine (MCY) model
[30] is based on the ab initio calculations of a water dimer and
represented in the form of an additional scheme of pair
interactions:

Uab�r� � Aab

r 12
� Cab

r 6
� ZaZbe

2

r
; �1�

where coefficients A and C describe the attraction and
repulsion in dispersion forces, while Za and Zb are the
charges on the interacting centers.

The disregard of many-particle interactions in such
calculations leads to equilibrium distances r�OO� � 2:98 A

�
,

whereas in the real condensed phase the equilibrium distance
r�OO� � 2:76 A

�
. Other known models having the form of

Eqn (1) are the simple point charge model (three-point SPC
model) [31] and its SPC/E modification [32] taking into
consideration the polarizability of water molecules. One
more three-point model is referred to as the transferable
intermolecular potential with three points (TIP3P) [33]. The
four-center TIP4Pmodel [34] has been derived fromTIP3P by
introducing a new virtual center on the bisectrix of the HOH
angle in the direction of the hydrogen atoms with the
displacement of the oxygen negative charge toward this
center. This model is reported to fairly well reproduce many
experimental characteristics of stable water. Anothermodel is
the five-point ST2 model [35] with tetrahedrally arranged
charges and the neutral center of the tetrahedron involved in
van der Waals intermolecular interactions. Finally, the
central force (CF) model [36] is distinguished from all the
rest in that it makes no distinction between the descriptions of
intra- and intermolecular interactions. Both oxygen and
hydrogen atoms are considered here to be independent
material points interacting with one another in the same way
as with atoms of other surrounding molecules. As a matter of
fact, water is regarded as a simple mixture of oxygen and
hydrogen atoms with such interaction potentials that ensure
the formation of stable water molecules with adequate
structure and properties.

The above-listed variety of model interaction potentials
for water covers almost the entire spectrum of characteristic
features inherent in many other phenomenological models.
The cited literature sources report specific details and
parameters of point models describing intermolecular inter-
actions in water; therefore, they are not discussed here. Nor
do we consider here polarization models constructed so as to
correctly reproduce not only dipole moments but also higher-
order moments. This purpose is actually achieved by either
redefining and specifying parameter values in the aforemen-
tioned point models or introducing new virtual interaction
centers. However, these models are very difficult to apply in
the method of integral equations of the theory of liquids,
discussed in the next section.

5. Method of integral equations
for correlation functions, as applied to water

The OZ equation for the pair correlation functions h�r� in a
spatially homogeneous system in which intermolecular
interactions are described by spherically symmetric interac-
tion potentials has the form [4 ± 6]

g�r12� � h�r12� ÿ C�r12� � r
�
C�r13� h�r23� dr3 : �2�

This seemingly simple integral equation, on the one hand,
conceals a few problems that are very difficult to resolve. On
the other hand, it provides a basis for many methodical
approaches employed in the theory of both simple and
complex liquids. In equation (2), the notation is employed:

h�r� � g�r� ÿ 1 � exp

�
ÿF�r�

kT
� o�r�

�
ÿ 1 : �3�

Here, g�r� is the usual radial correlation function defined in
the following way:

g2�r1; r2� � V 2

��
1

QN
exp

�
ÿUN�r1; r2; . . . ; rN�

kT

�
dr3 . . . drN ;

�4�
whereQN is the configuration integral, andUN is the potential
energy of the system. In a simple case, g2�r1; r2� �
g�jr2 ÿ r1j� � g�r�, o�r� � o�r;T; r� is the thermal potential
depending on the thermodynamic state of the system, and
r � N=V is the density. Moreover, o�r� � g�r� � B�r�. The
problem reduces to determining the relationship C � C�h�r��
in Eqn (2) or (which is virtually the same) to calculating the
bridge-functional B�r� that is known to consist of an infinite
series of irreducible diagrams [37]. This problem has not been
completely solved to date even though good approximations
to B�r� (or closures of the OZ equation) have been suggested.
The radial correlation function g�r� serves to express all
macroscopic parameters in the additive representation of the
total potential energy of the system [4 ± 6, 37]. Moreover,
Eqn (2) is exact by itself and absolutely corresponds to the
virial expansions of the function h�r�. All these data are well
known and presented here for the purpose of further
applications.

5.1 Structure and properties of water
in the central force model
Certain drawbacks of the central force model [36, 38]
proposed by Lemberg and Stellinger are compensated for by
its obvious advantages lying in the realization of equations.
To begin with, water is treated as being a simple mixture of
hydrogen and oxygen atoms in a ratio of 2 : 1, with no need to
specially distinguish the orientational dependence of correla-
tion functions and hydrogen bonds. Figure 4 shows CF
potentials of water (dashed lines) and their small CF1
modification (solid lines) [39]. An insignificant difference
between the potentials, almost unapparent at first sight,
leads to a much greater difference in the resulting pressure;
it exposes the strong parameter dependence of the properties
of the model. Charges on hydrogen atoms are equal for either
model, qH � 0:3283e, where e is the proton charge. The
charge on the oxygen atoms is qO � ÿ2qH. The noninteger
values of the charges are not artifacts but reflect screening
associated with polarization effects produced by the con-
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tributions of triple and higher-order interactions to the
effective pair potential [39]. The OZ equation in the Fourier
variables assumes the algebraic form

~g�k� � r ~C 2�k�
1ÿ r ~C�k� �5�

with the closure C�r� � F
ÿ
g�r��.

For an n-component system, one has

hab�r12� � Cab�r12� �
Xn
s� 1

rs

�
V

Cas�r13� h�r23� dr3 �6�

or, in the Fourier variables, it comes out as

ĥ � Ĉ� Ĉr̂ĥ ; �7�

where ĥ and Ĉ are the matrices of the corresponding
functions, and r̂ is the diagonal concentration matrix. By
analogy with (5), one finds

ĝ � Ĉ�Iÿ r̂Ĉ �ÿ1 ÿ Ĉ : �8�

Here, I is the unit matrix, and ĝ � ĥÿ Ĉ. Equation (8) is an
exact solution to the OZ equation (1). A few changes and
assumptions are in order for the further discussion. Because
the potential functions presented in Fig. 4 contain the
divergent Coulomb terms, Eqn (8) needs to be renormalized
accordingly. One way to its renormalization leading to the
Debye ±HuÈ ckel screening consists in the separation of the
interaction potential into the short-range part (s) and the
long-range component (l):

Uab � U s
ab �U l

ab : �9�

Then, we obtain

C � C s ÿ bU l
ab ; �10�

where b � 1=kT (do not confuse this with the subscript!), and

h � h s � q : �11�

Here, matrix q is the renormalized Coulomb potential

qab�r� � ÿ bqaqb
4pr

exp �ÿwr� ; �12�

where w is the inverse Debye length [39].
The main idea behind another approach to the renorma-

lization of Eqn (8) [40] is to assess the asymptotics of functions
C and h bearing inmind charge screening and the choice of the
corresponding convergent functions. By introducing the
matrix

V̂ � I� r̂q̂ ; �13�
equation (8) may be rewritten in a truncated form as

rg s � VrC s�Iÿ VrC s�Vÿ rC s ; �14�
g s � h s ÿ C s �15�

with the reduced renormalized closure

C s
ab � exp �ÿbU s

ab � gab � qab � Bab� ÿ 1ÿ gab ÿ qab : �16�

As mentioned above, the central and still incompletely
resolved problem in the theory of correlation functions for
liquids consists in the search for the bridge-functional
B � B

ÿ
g�r�� [4 ± 6, 37, 41]. It is supposed that the most

adequate approximation for a system with interactions
including the long-range Coulomb components is the
hypernetted chain (HNC) approximation B � 0. The actual
applicability of one closure or another is determined by the
so-called thermodynamic consistency criterion or the com-
parison with the results of numerical simulation [42]; this
markedly restricts the possibilities of the theory. Effective
approximate closures are known for simple systems with
spherically symmetric interaction potentials, such as Per-
cus ±Yevick, Verlet, and Martynov ± Sarkisov closures [43 ±
45], whereas no theoretically substantiated closures exist in
the case of complex systems with Coulomb components of the
interaction potential. In the above-cited approach [39], the
modiéed bridge-functional B was employed, which has been
found in numerical experiments for a system of hard spheres
based upon a consideration of the universality and permis-
sible transmissibility of these functions. The correlation
functions of the model in question and those obtained in
experiment [46] are presented in Fig. 5. It should be recalled
that Katzoff [47] was the érst to construct correlation
functions for water based on the results of X-ray scattering
experiments in which the principal énding was the érst
maximum at r � 2:9 A

�
, and the second one at r � 4:5 A

�
.

Figure 6 compares experimental [48] and theoretical

ST�k� � DOO�k�SOO�k� �DOH�k�SOH�k�
�DHH�k�SHH�k� �17�

structural functions, whereDab�k� are the weight factors, and
Sab�k� are the particle structural functions:

Sab�k� � 4pr
� V

0

dr r 2h�r� sin kr
kr

: �18�

5.2 Atom ± atom (center ± center) approach
to the description of water structure
The description of complex molecules with the help of the
atom± atom representation has much in common with the
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�
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Figure 4. Potential energy Uab�r� in kT units at T � 25 �C for the CF

(dashed lines) and CF1 (solid lines) models of water.
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method of central forces in terms of form but is totally
different from it in essence. With this approach, the system
of interest is no longer regarded as a two-component mixture
of spherically symmetric oxygen and hydrogen atoms; rather,
it is treated as a one-component system in which intermole-
cular interaction is the sum of interactions between individual
atoms. In this method, unlike the central force approach, the
geometry of water molecules is given from the very beginning,
while atom ± atom interactions and correlation functions
have only the intermolecular sense. The site-site Ornstein ±
Zernike (SSOZ) equations and the reference interaction site

model (RISM) were first considered by Chandler and
Andersen [49]. In this description, the geometry of water
molecules is introduced by the matrix of intramolecular
correlation functions [50]

oab�r� � d�rÿ lab�
4pl 2ab

�19�

or, in the form of the Fourier variables, as

oab�k� � sin klab
klab

; �20�

where lab is the distance between atoms a and b inside the
molecule. Thus, the method distinguishes between intra- and
intermolecular correlations that are combined in the central
force model.

Now, the SSOZ-equations in the Fourier variables look
like [40, 49 ± 51]

h�k� � o�k�C�k�o�k� � o�k�C�k� rh�k� : �21�

For convenience, we have omitted hats over the matrices. It is
important to emphasize that Eqn (21), unlike Eqn (7), is not
strict on its own accord, being at variance with exact virial
expansions. It can be rewritten in a form analogous to
formula (14):

rg � orC�Iÿ orC�ÿ1oÿ rC : �22�

When the interaction potential contains Coulomb compo-
nents, the renormalized equation takes the form of formula
(14) with the sole difference that now

V � o� rq : �23�
Evidently, for structureless particles, one has o! 1.

The exact form of the atom± atom approach is the
Chandler ± Silbey ±Ladanyi (CSL) equations [52] in which
the pair (total) correlation function h�r� is represented as the
sum of four terms:

hab�k� � h o
ab�k� � h l

ab�k� � h r
ab�k� � h b

ab�k� ; �24�

where each term corresponds to different subclasses of
diagrams in the expansion of function h�r�. The matrix of
the direct atom± atom correlation functions Ci �i � o; l; r; b�
is represented in a similar way.

The CSL equations may be written down in the matrix
form [53] resembling SSOZ equations:

Ĥ�k� � Ĉ�k� � �Ĉ�k� � Ŝ�k�� r̂�Ĥ�k� � Ŝ�k�� : �25�

Here, the following notation was used:

r̂ � r r
r 0

� �
; �26�

Ĥ�k� � ĥo�k� ĥ r�k�
ĥ l�k� ĥ b�k�

 !
; �27�

Ĉ�k� � Ĉ o�k� Ĉ r�k�
Ĉ l�k� Ĉ b�k�

 !
; �28�

Ŝ�k� � 0 0
0 rÿ1o�k�

� �
; �29�
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Figure 5. Radial correlation functions for the CF1 model (solid lines) at

temperature T � 25 �C and density r � 1:0 g cmÿ3 and experimental

correlation functions (dashed lines) [46]. Dotted lines show correlation

functions for the SPC/E model. The last two functions are given at density

r � 0:997 g cmÿ3.
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Figure 6. Structural function S x
T�k� for the CF1 model (solid line) at

T � 25 �C and density r � 1:0 g cmÿ3. Experimental structural function

(dashed line) [48] was obtained at r � 0:997 g cmÿ3.
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where the structural matrix o is determined by formula (19),
as before. The closures of the CSL equations are defined in
analogy with formula (16):

h i
ab � h i

ab�Uab;B
i
ab� ; �30�

Ci
ab � Ci

ab�Uab;B
i
ab� ; �31�

which have exact diagrammatic expansions but are not
presented here. It should be noted that the approximate
choice of the bridge-functionals actually reduces to naught
the advantages of the exact system of CSL equations,
making them approximate, too. Figures 7 ± 9 present the
OO, OH, and HH atom± atom correlation functions in the
approximations considered above and obtained in numer-
ical experiments. A significant scatter in the data is well
apparent along with their marked deviation from the results
of numerical experiments. Here, the correlation CSL-
functions do not seem to be more exact than in the SSOZ
approximation.

5.3 Orientational structure in water
The total two-particle correlation function (TCF) for com-
plex molecules depends on radial r and angular O variables:

gi j � g�ri j;Oi j� : �32�

For water, Oi j is a set of the five angles defined in Fig. 3.
Although the OZ equation can be applied directly to any
complex molecular system but in reality such a procedure is
very difficult, if not impossible, to perform, either for water or
for other liquids. The difficulties stem first and foremost from
the dimensions of the integrals being calculated and the
necessity of their repeated numerical integration in itera-
tional procedures. More important, however, is that the real
analysis of a many-dimensional surface represented by a huge
amount of numerical data all the same requires the use of its
projections, the atom± atom approximation being one of the
variants of this approach. In fact, the atom± atom correlation
functions in this approximation are certain integrals of the
total correlation function; this accounts for the partial loss of
information (namely, a part of the orientational structure).

A possible solution consists in using the expansions of the
binary correlation function in terms of the spherical harmo-
nics and deriving the equations for coefficients of these
expansions [54, 55]. The description of the orientational
structure is feasible bearing in mind that TCF is exactly
defined [56] in the low-density limit, i.e., for two isolated
interacting molecules. It is also possible to consider the
approximation consisting in the factorization of orienta-
tional distribution functions, and thereby in diminishing the
dimension, with the choice of factorization methods based on
the behavior in the low-density limit. It is supposed that TCF
may be represented as the product

g
ÿ
r;O�1; 2�� � g�r� g

�
O�1; 2�

r

�
: �33�

Here, the first multiplier is the radial correlation function for
the two distinguished centers on water molecules (in the given
case, oxygen atoms):

g�r� � 1
�O 2

�
g�r;O�1; 2��dO�1; 2� : �34�
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Figure 7.OO radial correlation function gOO�r� for the SPCmodel of water

at T � 25 �C and r � 0:997 g cmÿ3: 1 Ð CSL-HNC (hypernetted chain

approximation, B � 0) (solid line); 2 Ð CSL-HNC�B 0 approximation

(dashed line), B 0 Ð bridge-functional found by computation of the first

irreducible diagram in the expansion of B; 3 Ð SSOZ-HNC approxima-

tion (dotted line), and 4 Ð numerical experiment (Monte Carlo method)

(full circles) [33].
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Figure 8. OH radial correlation function gOH�r� for the SPC model of

water at T � 25 �C and r � 0:997 g cmÿ3. Notations are the same as in

Fig. 7.
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Figure 9. HH radial correlation function gHH�r� for the SPC model of

water at T � 25 �C and r � 0:997 g cmÿ3. Notations are the same as in

Fig. 7.
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For nonlinear molecules, one has �O � 8p2. The second
multiplier g

ÿ
O�1; 2�=r� presents the orientational correlation

function (OCF) and is the conventional probability that two
water molecules reside in a certain angular configuration at a
given distance between the centers. The normalization
condition reduces to

1
�O 2

�
g

�
O�1; 2�

r

�
dO�1; 2� � 1 : �35�

At low densities, the TCFs (similar to all other distribu-
tion functions) largely depend on the interaction potential
[6, 57]:

g
ÿ
r;O�1; 2�� � exp

�ÿbUÿr;O�1; 2��� ; �36�

where U is the intermolecular interaction energy. Then, for
the radial correlation function (RCF), one obtains

g�r� � 1
�O 2

�
exp

�ÿbUÿr;O�1; 2���dO�1; 2� : �37�

For the OCF, we have

g

�
O�1; 2�

r

�
� �O 2 exp

�ÿbUÿr;O�1; 2����
exp

�ÿbUÿr;O�1; 2��� dO�1; 2� ; �38�
where�

dO�1; 2� � 2p
�
sin y1 dy1 sin y2 dy2 dj dw1 dw2 : �39�

The meaning of all these formulas is as follows. It is
assumed, apart from the factorization hypothesis, that the
qualitative behavior of the OCF in the liquid is the same as in
the gaseous phase. In other words, it is largely determined by
the interaction potential, which makes it possible to take into
account the indirect part of the mean-force potential in the
OCF by means of relevant corrections. Figure 10 shows
orientationally averaged intermolecular potentials in the
gaseous phase and in a liquid, calculated with the use of the

4-center TIP4P potential [34] having the form reminiscent of
formula (1):

U � 4e

"�
s
rOO

�12

ÿ
�

s
rOO

�6
#
�
X
ab

qa qb
rab

; �40�

with parameters s � 3:1536 A
�
and the depth of the OO well

equal to e � 0:155 kcal molÿ1. The OO radial correlation
function for this potential is depicted in Fig. 11. The marginal
distribution functions determining the probability of the
values of individual angles and a pair of angles are written
down in the following way:

g

�
Oi

r

�
�
�
g
ÿ
O�1; 2�=r� dO�1; 2�j 0i�

dOj 0i
; �41�

g

�
Oi;

Oj

r

�
�
�
g
ÿ
O�1; 2�=r� dO�1; 2�k 0i; j�

dOk 0i; j
; �42�

where i; j � 1ÿ5. Figures 12 ± 14 present certain marginal
correlation functions illustrating the orientational structure
of water.
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Figure 10.Orientationally averaged interaction energy of water molecules:

1 Ð gaseous phase (solid line), liquid phase (dashed line), T � 25 �C,
P � 1 atm; 2Ðorientationally averaged interaction (solid line) smoothed

over the gaseous phase (initial approximation) as compared with the exact

form (dashed line) obtained in a numerical experiment. Curves 2 are

shifted by 2 kcal molÿ1 upward.
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Figure 11. OO radial correlation function at T � 25 �C, P � 1 atm (solid

line), and P � 10;000 atm (dashed line).
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respectively.
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5.4 Structure of low- and high-density water
Reports on the possibility of using SSOZ and CSL integral
equations for the investigation into the structure and proper-
ties ofmetastable water in the negative temperature region are
still lacking in the literature. Apart from the problems related
to the description of intermolecular interactions in water, the
approximate character of equations themselves, and the
search for their closures, there is an additional unresolved
fundamental problem concerning the possibility of applica-
tion of the equations in the atom± atom approximation to the
description of water properties in the metastable region under
the conditions of stable crystalline state. In the case of simple
systems, the OZ equation is suitable for the description of
both the metastable gas ± liquid transition region [5, 58] and
the metastable states in the crystal parameter region [5]. Such
a possibility was demonstrated in numerous applications of
the OZ equation to simple systems. A limited substantiation
of the applicability of the OZ equation to describing
metastable states was given in the review [5].

The real possibility of studying the structure and proper-
ties of metastable and especially amorphous states in water,
aqueous, and other systems composed of complex molecules
is provided by computer or real experiments and their
combination. For example, it is possible to experimentally
measure by the neutron diffraction method [59] the particle
atom± atom structural factors (18) at a certain temperature

(T � 268 K in the cited work) within a pressure range
corresponding to the interval from low-density (LDL) to
high-density (HDL) water. However, the particle (atom±
atom) structural factors alone are insufficient to unambigu-
ously define the atom± atom correlation functions (in
ordinary situations, the retrieval of correlation functions
from scattering data is unambiguous). Therefore, the atom±
atom correlation functions are determined in computer
simulation experiments from the experiments' ability to
reproduce real particle structural factors. The SPC/E model
of interactions is used initially. An additional condition is the
aforementioned assumption about the structure of water as a
linear combination of the constituent structures of low- and
high-density water [26, 60, 61]:

r�T;P� � a�T;P� rH�T � �
�
1ÿ a�T;P�� rL�T � ; �43�

rgi j�r� � a�T;P� rH�T � gH
i j �r� �

�
1ÿ a�T;P�� rL�T � gL

i j �r� ;
�44�

Si j�k� � a�T;P�SH
i j �k� �

�
1ÿ a�T;P��SL

i j �k� ; �45�

where a�T;P� is the mole fraction of the high-density
structure.

The self-consistency of experimental data, the results of
numerical experiments, and conditions (43) ± (45) allowed the
atom± atom correlation functions in the metastable region to
be reconstructed. They are shown in Fig. 15. Analysis of these
functions and selected structural features in self-consistent
calculations leads to the conclusion that the form of low-
density water (rL � 0:0295 molecules A

� ÿ3) is that of an open
hydrogen-bonded tetrahedral structure. Conversely, the
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Figure 13. Distribution function g�w� in a gas (solid lines) and a liquid

(dashed lines). Notations are the same as in Fig. 12.
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Figure 14. Distribution function g�j� in a gas (solid lines) and a liquid

(dashed lines). Notations are the same as in Fig. 12.
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lines) and high-density (dots) water, obtained in computer experiments

taking into consideration structural factors measured in metastable states.
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OOO angle in high-density water (rH � 0:0402 molecules
A
� ÿ3) is no longer tetrahedral and hydrogen bonds between
the molecules localized in the first and second coordination
spheres are broken. This important structural finding needs
to be specially emphasized.

All structural changes result from a rise in pressure and
largely occur between the first and the second coordination
layers. The results ofmolecular-dynamic calculations near the
water melting point were also considered in the framework of
a two-structure model but in a somewhat different interpreta-
tion [62].Water is amixture ofmolecules thatmay exist in two
states. Time variations in the local correlation functions
constructed in the vicinity of the molecules under study were
observed in the course of dynamic calculations [63] (the
TIP4P model was additionally used for this purpose). It was
revealed that each molecule alternately exists in two different
states (periods): the structured one (when the local hydrogen-
bonded structure is well apparent), and the destructured one
(in which the same structure is poorly manifested). These
findings in a way bring us back to Frenkel's ideas of the
character and mechanism of molecular diffusion in liquids at
the structural level, with due regard for themodern concept of
liquid structure. The degree of structuring is characterized by
the local structure index (LSI) [63] that is the second moment
of the radial correlation function. The LSI criterion plays the
role of an order parameter and describes the degree of local
structural fluctuations. The comparison with the experimen-
tal (neutron-weighted) correlation function [12] gives reason
to assert that `structured' molecules belong to the LDA type
structure, whereas 'destructured' ones are HDA type mole-
cules. Thus, water contains two types of clusters that
permanently transform into each other and back. In other
words, this concept of the structure of water does not
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Figure 16. Radial correlation functions in a structured cluster (a) and the

descructured region (b). Results were obtained from molecular-dynamic

computations.
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Figure 17. Instantaneous molecular-dynamic picture of the distribution of `structured' (open circles) and `destructured' (full circles) molecules:

(a) T � ÿ10 �C; (b) T � 72 �C at usual pressures; (c) T � ÿ21 �C, and (d) T � 72 �C at high pressures.
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practically differ from other composite models with the sole
exception that its structural elements are now elements of
amorphous structures. Figure 16 presents two types of local
correlation functions, and Fig. 17 depicts the instantaneous
dynamic distribution of structured and destructured mole-
cules under various thermodynamic conditions.

6. Conclusion

This review considered concepts of the structure of water and
its description with the use of correlation functions. These
concepts have fundamental theoretical substantiation. Sur-
prisingly, discussions of what is the liquid structure (in our
case, water) are still underway, motivated by the desire to
explain many physico-chemical phenomena in plainly
obvious crystallographic terms. Such a crystallographic
approach is doubtlessly justified in concrete applications.

A large volume of data on water properties and many
related problems have remained beyond the scope of this
paper. But even such specialized discussion of selected
structural issues as this highlights the difficulties facing the
theory of liquids and its limited potential for solving the said
problems.
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