
Abstract. Research on the coherent distribution of order para-
meters determining phase existence regions in the two-compo-
nent Ginzburg ±Landau model is reviewed. A major result of
this research, obtained by formulating this model in terms of
gauged order parameters (the unit vector field n, the density q2,
and the particle momentum c), is that some of the universal
phase and field configuration properties are determined by
topological features related to the Hopf invariant Q and its
generalizations. For sufficiently low densities, a ring-shaped
density distribution may be favored over stripes. For an L < Q
phase (L being the mutual linking index of the n and c field
configurations), a gain in free energy occurs when a transition to
a nonuniform current state occurs. A universal mechanism
accounting for decorrelation with increasing charge density is
discussed. The second part of the review is concerned with
implications of non-Abelian field theory for knotted configura-
tions. The key properties of semiclassical configurations arising
in the Yang ±Mills theory and the Skyrme model are discussed
in detail, and the relation of these configurations to knotted
distributions is scrutinized.

1. Introduction

Critical phenomena in low-dimensional strongly correlated
systems are characterized by a surprisingly universal coop-

erative behavior. In copper oxide-based planar systems, this
universality manifests itself in the qualitatively similar
behavior of compounds representing different classes. A
remarkable feature of media in which strong local interac-
tions between particles compete with delocalized excitations
is the emergence of quasi-one-dimensional distributions of
charge degrees of freedom. Low-dimensional structures in the
distribution of charge and spin degrees of freedom sometimes
exist in a phase state from which they may pass to a high-
temperature superconducting state.

The existence of such a transition allows describing the
aforementioned phases in terms of the model that contains
competing phase states as specific limit cases. Investigations
into general problems of this kind may bring some insights
into their understanding based on the Ginzburg ±Landau
mean-field theory with a properly chosen order parameter.
The key issue in such a universal approach is to identify the
way in which the order parameter simultaneously encodes the
composition and the spatial distribution of charge and spin
degrees of freedom in various phase states. The solution to
this problem leads to the controlled mean-field theory for
strongly interacting systems.

In view of the recent progress in the solution of similar
problems in the non-Abelian theory and in condensed-matter
physics, it appears reasonable to give preference to the two-
component Ginzburg ±Landau model. In the electroweak
interaction theory, the two-component order parameter has
the meaning of the Higgs doublet of the standard model. In
neutral systems, the multicomponent order parameter is
widely used in describing various phases in the spinor
Bose ± Einstein condensates. In electron systems with mini-
mally possible values of electron spin, two components of the
complex order parameter allow describing orientational and
scalar degrees of freedom of electron excitations.
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We show in Sections 2 ± 4 that the universal character of
the results obtained is to a large extent due to the order
parameter dimensionality, which is two in our case. It is only
then that the Hopf invariant can be used to classify three-
dimensional configurations of the unit vector n describing the
distribution of spin degrees of freedom in the longwave limit
and to correctly consider phases differing in the character of
charge delocalization. The Hopf invariant describes the
degree of linking or knotting of the one-dimensional filament
manifold on which the unit vector field n is defined.

The objective of the present review is to discuss recent data
pertaining to the problem under consideration that have been
obtained in condensed-matter physics and in field theory in
the framework of the generalized O(3) sigma-model. After the
exact map of the two-component Ginzburg ±Landau model,
the sigma-model acquires additional Faddeev's terms [1],
accounting for the stability of order parameter configura-
tions. We consider the results of those works in which
characteristics of the linking or knotting degree of quasi-
one-dimensional field configurations were used to describe
the universal behavior of strongly correlated systems.

Investigations into the behavior of a tangle of filaments
pose a separate problem, drawing attention for several
reasons. First, the topological order associated with short-
range links exists in the background of the disorder caused by
the random localization of separate parts of the system of
entangled vortex filaments. Therefore, the properties of a
tangle, unlike those of a point-like particle, are determined by
the behavior of its fragments in ultraviolet and infrared limits.
Because strong local correlations and delocalized modes
coexist in the tangle, an interplay of the asymptotic regimes
ensures the finite size and energy scale of the quasi-one-
dimensional structure.

A section of a three-dimensional tangle by a plane gives
rise to a nonuniform two-dimensional distribution of phase
states with the regular or random distribution of electron
degrees of freedom belonging to the filament core and regions
outside it. Such projection is a natural definition of planar
phenomena. It may be considered both as a mode of
embedding the physics of two-dimensional phenomena into
the ambient three-dimensional space and as a realization of
planar states existing in the bulk, at the crystal surface. The
section results in a self-generating spin-glass state with a well-
defined role of the disorder due to the topological phase
separation mechanism. The answer to the question of a small
parameter in this competition between the phase states
depends on the ratio of state phase volumes and is to a large
extent determined by the degree of filament packing in the
tangle.

Second, a soft medium such as a tangle of linked and
knotted filaments is a topical object studied not only in
condensed-matter physics [2] but also in molecular biology,
e.g., in connection with the problem of DNA supercoiling.
When the coupling constant of the sigma-model becomes a
function determining the density distribution, the appearance
of a configuration in the form of a chiral double helix as a
solution of the equations of motion is the general property of
the model. In this domain, the working parameter character-
ized by an ideal configuration of a given knot type [3] proves
to be proportional to the degree of filament packing in the
tangle.

For convenience, this review is divided into two parts. The
first (Sections 2 ± 4) deals with the properties of field
configurations in the O(3) sigma-model and their contribu-

tion to free energy. The second part (Section 5) expounds
selected results obtained in non-Abelian field theory and
related to the problems of condensed-matter physics. Tech-
nical problems considered in the Appendix clarify some issues
touched upon in the preceding sections of this review. In
terms of contents, approaches, and applications, the review is
based on the data presented earlier in papers on strongly
correlated systems [4 ± 9].

2. Free energy

The free energy for the two-component gauge-invariant
Ginzburg ±Landau model is given by

F �
�
d3x

�X
a

1

2ma

������hqk � i
2e

c
Ak

�
Ca

����2
� B2

8p
� V�C1;C2�

�
: �2:1�

Expression (2.1) has previously been used to study two-gap
superconductivity [10] and problems of high-temperature
superconductivity in different contexts [11 ± 15]. The poten-
tial energy V�C1;C2� consists of the following terms [16]:

V�C1;C2� �
X
a

�
ÿbajCaj2 � da

2
jCaj4

�
� cjC1j2jC2j2

� f �C1C �2 � c:c:� � h�C 2
1C

� 2
2 � c:c:� : �2:2�

Here, ba, da, c, f , and h are constants. This part of the free
energy may contain additional terms. For example, Ref. [17]
discusses implications of the inclusion of the Lifshitz term
C1

ÿ
�hqk � i�2e=c�Ak

�
C �2 � c:c: into (2.2) for the description of

chiral phases.
Expression (2.2) contains seven degrees of freedom,

two of which (the total length r of the vector Ca ����������
2ma
p

rjwaj exp �ifa�, where jw1j2 � jw2j2 � 1, and the sum of
phasesf1 � f2 of the fieldsCa) are related to the scalar sector
of the theory, while the remaining five (two independent
components of the three-dimensional unit vector na �
�sin# cosj; sin# sinj; cos#� and three components of the
current density field a � i

�
w1Hw

�
1 ÿ c:c:� �1! 2��) are the

degrees of freedom related to spin orientation. Here, jw1j �
cos#=2, jw2j � sin#=2, and j � f1 ÿ f2. The internal gauge
fieldA and its self-energy �rotA�2=8p determine the contribu-
tion of charge degrees of freedom. To explicitly distinguish
the scalar and orientational degrees of freedom in expression
(2.1) for the purpose of description, it is necessary to pass to
gauge-invariant variables as proposed in Ref. [10].

2.1 Exact map
Reference [10] demonstrated the existence of an exact map of
model (2.1) to the extended �3� 0�-dimensional variant of the
nonlinear O(3) sigma-model:

F � Fn � Fr � Fc � Fint

�
�
d3x

�
1

4
r 2�qkn�2 � �qk r�2 � 1

16
r 2c2

� �Fik ÿHik�2 � V�r; n1; n3�
�
: �2:3�

The free energy in (2.3) is given by the scalar r 2, the unit
vector field na � �ws aw, and the momentum field
c � J=r 2 � aÿ A, where the total current J contains the
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paramagnetic
ÿ
a � i

�
w1Hw

�
1 ÿ c:c:� �1! 2��� and diamag-

netic �ÿA� parts. Here, �w � �w �1 ; w �2 � and s a are the Pauli
matrices. Expression (2.3) is written with the notation
Fi k � qick ÿ qkci and Hik � n �qin� qkn� � qiak ÿ qkai, as
well as dimensionless units of length L � �x1 � x2�=2 with
the coherence length xa � �h=

������������
2mba
p

(in the case of equal
masses ma � m) and momentum �h=L (as the unit of measure
of the momentum c), the unit of particle density
c 2=�512pe 2L2� per unit mass (using parameterization of
Ca), and the energy unit g=L with g � c�h=e� �2=512p. Expres-
sion (2.3) was obtained in [10] using the gauge-invariant
identity

jqw1j2 � jqw2j2 ÿ
a2

4
� 1

4
�qn�2

and the Mermin ±Ho relation [18]

�rot a�i �
1

2
ei j kHj k :

TheGinzburg ±Landau functional in (2.3) depends on the
gauge-invariant order parameters r 2, c, and n that character-
ize the spatial distribution of electron degrees of freedomwith
or without a current. The functions wa determine the
orientation of the unit vector n describing the properties of
the magnetic order in the longwave limit. Moreover, the
functions wa give the paramagnetic component of the
current. The kinetic energy density �1=16� r2c2 and surface
energy density F 2

i k contribute to the current part Fc of the free
energy. The diamagnetic interaction ÿ2FikHik of the fields a
and c determines the value of energy Fint.

Considered formally, the first term on the right-hand side
of (2.3) has the form of the Heisenberg antiferromagnetic
energy written in the longwave limit. To better understand the
role of each term in the free energy and the physical meaning
of the components of the two-component order parameter, it
is necessary to specify how and which terms of Hamiltonian

H � P

�
ÿt
X
hi ji; s
�c�is cjs � h:c:�

�
P� J

X
hi ji

�
SiSj ÿ 1

4
ninj

�
�2:4�

in the tÿJ-model (which is standard in studies of various
phase states in doped antiferromagnetic dielectrics) deter-
mine the physical meaning of variables and the shape
of model (2.3). In expression (2.4), Si � c�i arabci b=2,
ni; s � c�is cis, and P � Qi�1ÿ ni; "ni; #�. Elimination of the
states doubly occupied at the sites and having oppositely
oriented spins from the Hilbert state space with the help of a
Gutzwiller projectorP converts the kinetic energy in (2.4) to a
term essentially different from the trivial kinetic term
quadratic in fermion operators in the Fermi systems. From
the standpoint of the mean-field theory [9] formulated in
terms of paired correlation functions of operators ca and hi,
the factorization cis � h�i cis of the charge and spin degrees of
freedom of the electron operator cis, involving the SU(2)-
doublets

c" �
f"
f �#

� �
; c# �

f#
ÿf �"

� �
; and h � h1

h2

� �
;

implies that both the correlation function wi j �
P

sh f �is fjsi
describing hopping between sites i and j and the correlation
function Di j � h fi" fj# ÿ fi# fj"i describing pairing are to be
found from two mutually dependent self-consistency equa-
tions [19]. These correlation functions determine the con-

tribution of the two terms under the square root in the
expression

Ek �
�����������������
x 2
k � D2

k

q
for the excitation spectrum. This is the distinction from the
classical Bardin ±Cooper ± Schrieffer (BCS) theory in which
the part coupled to xk is assumed to be known. In (2.3), the
unit vector n � �wrw directed toward a certain arbitrary point
describes the relation between the hopping-related correla-
tions and those determined by pairing the electron degrees of
freedom.

The SU(2)-symmetric matrix variable

Ui j �
ÿw�i j D�i j
Di j wi j

� �
� U

d�sf�
i j exp �iai jr�

of the gauge theory of strong correlations [9] is determined by
the distribution of hopping and pairing amplitudes U

d�sf�
i j in

the d-symmetric superconducting �U d
i j� state and in the U(1)-

symmetric phase with a checkered order of gauge field fluxes
ai j through an elementary cell �U sf

i j �. We assume, for the
purpose of analysis in the present review, that the original
state is the phase state with alternating circulation of theU(1)-
gauge field ai j. A more complicated analysis of the SU(2)
symmetric phase [9] with a gauge field flux equaling p (see
Section 5) is based on the effective Lagrangian
LSU�2� � �1=g 2�TrF 2

mn of the Yang ±Mills theory that
emerges after integration over fermions cis.

It is worth noting that the two-component order para-
meter in the Ginzburg ±Landau functional also arises in the
theory with repulsion between particles [20] if the momentum
space contains mirror nesting and the integral operator in the
self-consistency equation for the anomalous correlation
function has one negative eigenvalue (of the two possible
ones). In this case, the emergence of quasistationary deloca-
lized states in addition to the bound state suggests the
possibility of a phase state in which these modes cannot be
disregarded and which undergoes strong fluctuations in the
kinetic term in the energy. In the approach under considera-
tion (see also Ref. [20]), the essentially nonuniform distribu-
tion of the phase states is due to antiferromagnetically
correlated circulations of orbital currents with a large total
momentum of fermion pairs. Hence, this distinguishes the
Cooper pairs with their zero total momentum from the
Fulde ±Ferrel ± Larkin ±Ovchinnikov state, in which excita-
tions have a small total momentum.

The self-energy H 2
i k of the internal magnetic field

Hi � 1=2 ei ksHks in the longwave limit is proportional to the
squared mean value



0
��S1�S2 � S3�

��0� of the degree of spin
noncollinearity on three sites of a square lattice. Themagnetic
field appears as a result of the electron removal from the
fourth site of certain elementary cells into the dopant
reservoir. The arising chiral distributions of spin degrees of
freedom are of basic importance for the formation of quasi-
one-dimensional spin and charge structures considered in
Sections 3 and 4. In the general case, the contribution of such
structures to the free energy depends on the term �Hik ÿ Fik�2
containing the cross term ÿ2HikFi k responsible for the
coupling between currents a and c.

Modulation of the exchange integral given by the scalar
field r�x; y; z� and describing the spin stiffness r 2 in (2.3)
depends on the degree of doping. Indeed, the spin stiffness r 2

in the mean-field approximation is related to the density r 2
h of
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positively charged vacant sites as r 2 � r 2
h � 1 [21]. In the

U(1) and SU(2) theories of doped Mott dielectrics, this
relation for the operators of charged spinless bosons and
neutral fermions with spin 1=2 is discussed in Ref. [9].

The energy densities H 2
i k and F 2

i k are localized at the
boundaries of regions with a nonzero spin density. If r 2 9 1,
then the hole density r 2

h exists in a space complementary to
the spin density definition space. Bearing this in mind, as well
as the structure of the distribution of spin degrees of freedom
on the lattice (see Fig. 4 in Ref. [5, p. 14]), the authors of
Ref. [22] proposed a low-dimensional analog of the holo-
graphy principle. Its application in planar systems leads to the
conclusion that the distribution of states with the destroyed
antiferromagnetic order has a quasi-one-dimensional bound-
ary character.

Expression (2.3) is convenient for the analysis of different
phase states on the `doping level ± temperature' phase dia-
gram. Based on configurations of the field n, it is possible to
specify [9] the mean-field theories for phases with well-
developed quantum fluctuations. Therefore, in what fol-
lows, we use this equation for the free energy as a base,
because it is most suitable for the description of distributions
of charge and spin degrees of freedom. The spin sector of the
theory is described with the help of the CP1-representation of
the nonlinear O(3) sigma-model in the form similar to
Ginzburg ±Landau functional (2.1). It follows from the
comparison of different forms in which the Ginzburg ±
Landau model is represented [9] that vortex configurations
of the fields Ca in model (2.1) are equivalent to the n field
textures in terms ofmodel (2.3). It is equally worth noting that
the ansatz used for the components of Ca involves factoriza-
tion of the longitudinal r and transverse wa degrees of
freedom. In a superconducting state, an important role is
played by the composition of spin and charge degrees of
freedom.

2.2 Possible phase states
In a soft variant, r 6� const, of the extended n-field model
(2.3), the factors in the first term on the right-hand side of the
equation describe the influence of the distribution of spin
stiffness r 2 on the n field configurations and the distribution
of the square �qkn�2 of the inverse characteristic length of
variation of the spin density field on the r field configura-
tions. The character of the effect of the field c on the
configurations of n and r is apparent from the equations of
motion

�n� Dn� � 2

r
�qkr��n� qkn� � 8

r 2
�qiHi k��qkn�

ÿ 2

r 2
Fik�qin� qkn� � 4

r 2
qi
�
Fi k�n� qkn�

	 � 0 ; �2:5�

Dr�
�
bÿ 1

4
�qkn�2 ÿ 1

16
c2
�
rÿ dr 3 � 0 ; �2:6�

qkFki ÿ qkHki ÿ r 2

32
ci � 0 : �2:7�

For simplicity, Eqns (2.5) ± (2.7) were written under the
assumption that the potential energy isV � ÿbr 2 � �d=2� r 4.

It follows from Eqns (2.5) ± (2.7) that competition
between the order parameters r; n, and c may be a cause of
the coexistence of phase states with different ordering of
charge and spin degrees of freedom. Listed below are the limit
cases of model (2.3) in inhomogeneous �n 6� const� situations:

(1) A state with n 6� const, c � 0, and r � const.
(2) A state in the case of a quasi-one-dimensional

distribution of the density r 2 with c � 0.
(3) An inhomogeneous superconducting state with c 6� 0

and r � const.
(4) The general case: all order parameters are present and

r 6� const.
The case where n � const, c 6� 0, and r 6� const corre-

sponds to the classical one-component Ginzburg ±Landau
model with the external magnetic field potential A.

The above states have been considered in recent publica-
tions. Each item of the foregoing list is discussed in detail in
Section 3.

3. Free-energy bounds

3.1 The Skyrme ±Faddeev model
We consider the first case listed in Section 2.2. In this limit, the
free energy is

F �
�
d3x

�
g1�qkn�2 � g2

ÿ
n �qin� qkn�

�2�
: �3:1�

We assumed that the constant value of r � r0 in the phase
of interest can be found from the minimum of the potential
V and introduced the notation gi for the coupling constant.
The properties of model (3.1) are studied in detail in
Refs [23 ± 39].

It is easy to see, by substituting x! x=R, that the first
term in Eqn (3.1) is proportional to the characteristic sizeR of
the n field configurations, while the second term is inversely
proportional to this scale (this conclusion is to be clarified in
Sections 3.2 and 4.1 ± 4.4). Therefore, the energy in (3.1) has a
minimum equal to 2

���������
g1g2
p

and achievable at R � ������������
g2=g1

p
.

Thus, the finite value of the energy and the spatial scale of
a tangle of filaments are given by its ultraviolet characteristic,
i.e., the coupling constant g2. This explains why the second
term in model (3.1) allows obviating Derrick's ban [30] on the
existence of three-dimensional static configurations of a finite
size. In the absence of this term, the minimum free energy
value corresponds to the field configuration with R! 0. As
noted in Section 2.1, this three-particle term characterizes, in
the longwave limit, the average degree of noncollinearity

0
��S1 �S2 � S3�

��0� in the orientation of three spins located in
the sites of a cell in a square lattice.

It was shown in Refs [27 ± 29] that the lower energy bound
in model (3.1),

F5 32p2 jQj3=4 ; �3:2�

is determined by the Hopf invariant [31, 32]

Q � 1

16p2

�
d3x ei k l aiqkal � 1

8p2

�
d3x a �H� a� : �3:3�

We recall that the gauge potential ai in expression (3.3)
parameterizes the average degree of noncollinearity of the
orientations of the neighboring spins as Hik �
n �qin� qkn� � qiak ÿ qkai. The fact that Fmin � jQja at
a � 3=4 < 1 implies stability of configurations with a larger
Q value with respect to the decay into distributions with
smaller values of the Hopf invariant. A detailed analysis of
the problem for large Q values can be found in Ref. [33].
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The dependence Fmin � jQj3=4 in (3.3) with the use of the
boundary condition n � �0; 0; 1� at spatial infinity was
confirmed in Refs [24 ± 26] by numerical calculations of the
n field configurations. Such a boundary condition means that
the spaceR3 of the n field definition is effectively compactified
into a three-dimensional sphere S3. Thereby, the unit vector
field n maps the sphere S3 into the space of its values
belonging to a two-dimensional sphere S2.

Let the vector n be directed toward a certain arbitrary
point of the two-dimensional sphere. What is then the pre-
image of this point in S3? In other words, what manifold of
points from the vector n�x; y; z� definition domain contri-
butes to the span of n at the two-dimensional sphere? The
space S3 being compact and one dimension larger than the
sphere S2, the pre-images of points on S2 are closed and,
generally speaking, linked lines on S3. The integer Q cannot
define the degree of the map because the basic and target
spaces are of different dimensions. The Hopf invariant Q in
(3.3) describes the complexity of the linking and knotting of
lines in the sphere S3. It belongs to the set of integers Z, equal
to the homotopy group under consideration, p3�S2� � Z.
Specifically, Q � 1 for two singly linked circles, Q � 6 for
one of the simplest knots (trefoil), etc. (Fig. 1).

Problems pertaining to the knot theory and its numerous
applications are extensively discussed in the literature [34, 35]
as well as in web resources [36 ± 42]. The interested reader is
referred to these publications.

We note that the Hopf invariant cannot be written as the
integral of a density local in the field n. The integrand depends
on the potential a and the gauge field strength H. In terms of
differential geometry, the Hopf invariant can be written as

Q �
�
S3

H ^ a :

Moreover, the 2-form H is exact by virtue of the triviality
�H 2�S3� � 0� of the second cohomology group of S3. This
means that it can always be expressed through the potential as
H � da.

To summarize, all n field configurations are categorized
into classes by Hopf invariant values that, in turn, determine
the hierarchy of local free energy minima, in accordance with
relation (3.2). It is worth mentioning that linked and knotted
configurations can be enumerated with the help of the Hopf
invariant only in the case of the coset space SU�2�=U�1� �
CP1 � S2 because the homotopy group p3�CPM� � 0 is
trivial forM > 1 [43].

3.2 Current states
We consider the distributions of fields with a nonzero current
J assuming that r � const. In this case, the free energy has the
form

F � Fn � Fc � Fint

�
�
d3x

���qkn�2 �H 2
i k

�� �1
4
c2 � F 2

i k

�
ÿ 2Fi kHi k

�
:

�3:4�
Theminus sign in the interaction energy Fint of the fields c and
n reflects the diamagnetism �c � aÿ A� of the state being
considered. Because of this interaction, the coupling constant
g2 at the H 2

i k term in model (3.1), normalized to unity in
expression (3.4), effectively decreases due to the competition
between the a and c currents such that the state with
momentum c 6� 0 has a smaller energy than its minimal
value in inequality (3.2).

The exact lower bound of the free energy in a state with
c 6� 0 can be found using the auxiliary inequality

F 5=6
n F 1=2

c 5 �32p2�4=3 jLj ; �3:5�

where the number

L � 1

16p2

�
d3x ei k l ci qkal �3:6�

defines the degree of mutual linking [44 ± 47] of current lines
and lines of the magnetic field H � H� a� �. The proof of
inequality (3.5) is presented in the Appendix. The mutual
linking indexL, similarly toQ, is an integral ofmotion [45, 47]
in the barotropic state.

The Hopf invariant Q and the mutual linking index L are
matrix elements of the symmetric matrix [44]

Kab � 1

16p2

�
d3x ei k l a a

i qka
b
l �

Q L0

L Q 0

� �
; �3:7�

which characterizes link-based configurations of the spin and
charge degrees of freedom. In this matrix �L � L0� at a 1

i � ai
and a 2

i � ci, the integral can also be defined by the asymptotic
linking number [44].

One fact essential for further discussion deserves atten-
tion. The vector of momentum c � J=r 2 normalized by the
density, unlike the unit vector n, belongs to a noncompact
manifold. As a result, the Hopf numbers defined with its help
in (3.7) are not, generally speaking, integers: L;Q 0 62 Z. In a
superconducting current state where the Abelian U(1) gauge
symmetry is broken and the charge is not conserved, the

Figure 1. Examples of the simplest knotted configurations.
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numbers L and Q 0 play the role of continuous interpolation
parameters connecting the compressible and incompressible
�Kab 2 Z� phases. From this standpoint, the superconducting
states with Kab 2 Z and Kab 62 Z belong to the same univers-
ality class [48].

The search for the lower bound of function (3.5) is based
on the Schwartz ±Cauchy ±Bunyakovskii inequality, in addi-
tion to inequality (3.5):

Fint 4 2kFi kk2 � kHikk2 4 2F 1=2
c F 1=2

n : �3:8�

Here, kFikk2 � �
�
d3xF 2

i k�1=2.We note that the equality on the
right-hand side of (3.8) is achieved in the ultraviolet limit,
when the size of linked vortex configurations is sufficiently
small. Substitution of the boundary value of Fint in Eqn (3.4)
yields

F5Fmin � �F 1=2
n ÿ F 1=2

c �2 : �3:9�

The Hopf configuration with Q � 1, at which the
lower limit is achieved in inequality (3.2), has the form
of two linked rings with radii R [49] and �Fn�min �
2p2R 3�8=R 2 � 8=R 4���

R� 1
� 32p2. In our case, with c 6� 0, it

is also assumed that there are configurations for which the
equality in (3.5) holds.

One more important fact also deserving attention is to be
discussed at greater length in Section 4.1. At small r, and
hence at large c field values (all quantities entering (3.5) being
of the same order), one is faced with instability of linked
configurations with respect to relatively small deviations; this
puts restriction on Fc values from above.

Taking this into account, the substitution of relation
F

1=2
c � �32p2�4=3 F ÿ5=6n jLj for the lower bound of Fc and

Fn � 32p2 jQj3=4 in the right-hand side of (3.9) yields, for
states with Q 6� 0,

F5 32p2 jQj3=4
�
1ÿ jLjjQj

�2

: �3:10�

It follows from relation (3.10) that for all numbersL < Q,
the ground state energy is smaller than in model (3.1) for
which inequality (3.2) holds. The case of the energy decrease
can be understood from the comparison of quantities entering
expression (3.4). Even in the presence of a large paramagnetic
contribution of a to the current J, the diamagnetic interaction
in a superconducting state for all classes of states with L < Q
results in decreasing the current self-energy Fc and part of the
energy Fn associated with the field n dynamics. In the state
under consideration, the total momentum c does not vanish.
In this respect, an inhomogeneous state with a current is
analogous to the state proposed in Refs [50, 51]. We note,
however, that this analogy is limited because the Ginzburg ±
Landau functional for the Larkin-Ovchinnikov ±Fulde ±
Ferrel state is different [52, 53] from the initial state in this
review, despite the presence of higher derivatives.

4. Phase state properties

4.1 Stability of knots
We consider the problemof stability [29] of the standardHopf
map S3 ! S2 at Q � 1:

n r� c�s3 c ; �4:1�

where

c � �1ÿ irr��1� irr�ÿ1 : �4:2�

In the toroidal system of coordinates,

x� iy � sinh u

cosh u� cos b
exp �ia� ; z � sin a

cosh u� cos b
;

04 u <1 ; 0 < a < 2p ; 0 < b < 2p ;
�4:3�

tan
n1
n2
� aÿ b ; n3 � 1ÿ 2 tanh u : �4:4�

It follows from the above expressions [54] that the entire space
is stratified into tori u � const, and any vortex line winds one
coil around a torus at Q � 1.

In the case of an arbitraryQ value, the Hopf mapF can be
described as follows. Let an arbitrary point on the sphere S3

correspond to a pair of complex numbers �z 0; z 1� satisfying
the condition z a�za � 1, where �z0 � �z 0 and �z1 � �z 1. The Hopf
map defines the correspondence between this point (more
precisely, between points at a three-dimensional sphere
localized on a closed curve) and a point from the space
CP1 � S2 with homogeneous coordinates z 0; z 1. The energy
of such a map F on the sphere S3 with radius R is constant; it
is F � 16p2�R� Rÿ1�5 32p2 at Q � 1.

Both terms in the last expression are stationary under field
variations. In other words, F is a solution of the equations of
motion at all values of the radius R. Generally speaking, the
bound for the free energy from below indicates that the
solution may be unstable at a sufficiently large scale of R.
Because the instability of knotted n-field configurations at
large enough R is of primary importance for the further
discussion, it needs to be considered at greater length.

The energy F�F� dF� for the Hopf map F� dF is
expressed as

F�F� dF� � F�F� �
�
M

d3xE�dF; qidF� ;

where E�dF; qidF� is a function that is quadratic in its
arguments and the domainM in the present case corresponds
to a sphere. We are interested in the possibility of negative
eigenvalues of the quadratic form dF � �M d3xE�dF; qidF�.

The variables z a are transformed under the action of
operators from the fundamental representation of the group
U(2). The Hopf map F is invariant under the U(2) action in
the sense thatF�z a� andF�Ua

b z
b� are equivalent under SO(3)-

transformations of the target space S2. This means that the
groupU(2) also acts in the target space ofF; in other words, it
acts in the space of perturbations dF, too. Therefore, it is
possible to decompose the space of perturbations into
irreducible representations ofU(2) and consider the perturba-
tion as specified below.

The perturbed field maps z a into a point of CP1 with
homogeneous coordinates za � y a, where

y a � Tab ... d
m n ... r �zb . . . �zd z

m . . . z r ;

and Tab ... d
mn ... r is a constant infinitesimal tensor. In terms of the

unit vector n�z a; �za�, the Hopf map F is expressed as

n1 � n2 � 2z 0 �z1 ;

n3 � z 1 �z1 ÿ z 0 �z0 ;
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and the perturbations being considered are dna�za; �za�,
where

dn1 � idn2 � 2��z1�2oÿ 2�z 0�2 �o ;

dn3 � ÿ2�z0�z1oÿ 2z 0z 1 �o ;

with o � �zy 0 ÿ z 0y 1.
For a few first modes, the energy variations dF are as

follows:
(1) If y a � t a is constant, then dF � 4p2�t a�ta��2=Rÿ R�.

These modes are `positive' at R <
���
2
p

and negative at
R >

���
2
p

. In other words, the Hopf map is actually unstable
for R >

���
2
p

.
(2) If y a is t ab�zb and the matrix t ab is asymmetric, then

dF � 0, i.e., the mode vanishes.
(3) If y a � t amz

m at t aa � 0 and �t am � t am, then dF �
128p2�t ba �t ab �=�3R�. Such perturbations are positive at any R.

Thus, perturbation of the Hopf map contains a negative
mode at R >

���
2
p

.
We consider a one-parameter family of configurations

with Q � 1 containing the Hopf map and one of the
negative modes. Geometrically, this family of fields Fl

with a positive parameter l can be described as follows
[29]. Let the stereographic projection S3 ! R3 be denoted
by P and the dilation operation in R3 with a constant scale
factor l > 0 by Dl. The family of fields Fl is defined as
Fl :� F � Pÿ1 �Dl � P. The energy of these fields is

Fl�Fl� � 64p2lR

�l� 1�2 �
8p2�l2 � 1�

lR
:

At l � 1, the result is known: F1 � 16p2�R� Rÿ1�.
It follows from the calculation of the l value at which the

energy Fl�Fl� has a minimum that at R <
���
2
p

, this minimum
exists in theHopfmapwith l � 1. IfR >

���
2
p

, theminimumof
Fl�Fl� is achieved when l is one of the roots in the equation

l2 � 2�1ÿ
���
2
p

R�l� 1 � 0 :

In this case, the minimum energy is Fl min �
32

���
2
p

p2 ÿ 16p2=R. This solution is not distributed over the
entire spaceS3; rather, it is localized in the vicinity of a certain
distinguished point, i.e., the basic point of the stereographic
projection. In the limit as R!1, there are configurations
with the energy Fmin�R!1� � 32

���
2
p

p2 andQ � 1 in theR3

space. These configurations consist of the inverse Pÿ1-
stereographic projection R3 ! S3 and the subsequent Hopf
map F.

As an example of configurations with Q5 1, we consider
fields that map �z 0; z 1� into a point having the homogeneous
coordinates ��z 0�m=jz 0jmÿ1; �z 1�n=jz 1jnÿ1�. For theHopfmap,
m � 1, n � 1. For m > 1, n > 1, the Hopf invariant and the
energy [29] are

Q � mn ;

F � 8p2R� 4p2�m 2 � n 2�
�
R� 2

R

�
:

Minimization of the energy F with respect to the radius R
yields

Fmin � 8p2
����������������������������������������������������
2�m 2 � n 2��2�m 2 � n 2�

q

with

R �
�

2

1� 2=�m 2 � n 2�
�1=2

:

The last expression indicates that the characteristic size of an
optimum configuration with Q > 1 is somewhat enlarged,
because it lies in the interval 1 < R <

���
2
p

.

4.2 Density as a coupling constant
A state with perturbed antiferromagnetic order at the
boundary of regions where �qkr�2 6� 0 makes up a back-
ground for the transition to an inhomogeneous supercon-
ducting phase with Fik 6� 0. Properties of this transition at a
varying density r 2 are convenient to discuss starting from a
superconducting state with r � const. In this phase, the
characteristic density value r 2

0 plays the role of the governing
parameter of the system.

Let the parameter r vary over a certain interval. All the
terms in expression (2.3) being of the same order, an increase
in r0 leads to a decrease in the momentum c, and hence of the
mutual linking index L. Increasing r0 indicates that the
concentration of vacancies or the so-called holes decreases.
In this case, the gain of the free energy in (3.10) also decreases
at a sufficiently small L and large 32p2jQj3=4.

As r0 decreases, the following effect emerges. The radius
R of the compactification R3 ! S3, proportional to
R � g

ÿ1=2
1 � rÿ10 [see (2.3) and the discussion after (3.1)],

increases until it exceeds a certain critical valueRcr. As shown
in Section 4.1, the Hopf map atR > Rcr �

���
2
p

is unstable [29]
with respect to relatively small perturbations of linked field
configurations. Hence, there is a spontaneous violation of the
U(2) symmetry associated with the Hopf map. This means
that the topological n and c field configurations are not
distributed over the entire S3 space; instead, they are
concentrated near a certain point (the base point of the
stereographic projection R3 ! S3) and collapse into loca-
lized structures [29]. Thus, there is an optimum r0 value and,
therefore, values of the characteristic momentum c and the
jLj=jQj ratio at which the transition to a superconducting
state results in the maximum energy gain. These problems are
discussed in greater detail in Sections 4.3 ± 4.6.

4.3 Rings versus stripes
We consider states outside the superconducting phase (the
second line in the list of limit cases in Section 2.2). In this soft
variant of the model, functional (2.3) takes the form

F �
�
d3x

�
1

4
r 2 qkn� �2��qkr�2 �H 2

i k ÿ br 2 � d

2
r 4

�
: �4:5�

In expression (4.5), the positive constant r0 corresponds to
the phase with a certain characteristic value of b.

It is well known from numerous experiments that in a
phase state with the antiferromagnetic order destroyed by
doping, the quasi-one-dimensional distributions of charge
density r 2

h � 1ÿ r 2 have the form of stripes. The quasi-one-
dimensional r-field configurations in (4.5) are actually
favored because of the minimal free-energy loss due to the
gradient term �qkr�2. Owing to the absence of gradient loss at
the ends of closed configurations, the density distribution in
the form of rings makes the smallest contribution to the
energy compared with other quasi-one-dimensional config-
urations of density distribution.
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We compare the contribution of quasi-one-dimensional
distributions of r 2 in the form of rings and stripes to free
energy (4.5) and compare the results of computations in [22]
with experimental data. The following r field configurations
in the form of rings and stripes are chosen to serve as the trial
functions:

r � r0 exp
�
ÿ�rÿ r0�2

2R 2
0

�
�4:6�

and

r � r0 exp
�
ÿ x 2

2L2
x

� 1 ; jyj4Ly ;

exp

�
ÿ
ÿjyj ÿ Ly

�2
2L2

x

�
; jyj > Ly :

8><>:
�4:7�

Here, r0 �
��������
b=d

p
, r0 is the radius and R0 is the width of the

ring, 2Ly � 2pr0 is the length of the stripe, and Lx � R0 is its
width. Configurations (4.6) and (4.7) being independent of
the third coordinate, the size along it is assumed to be
restricted by the length Lz, while R0 < r0 and Lx < Ly.

The computation of energy (2.5) with (2.6) and (2.7) taken
into account gives the following result [22] for the contribu-
tions of the ring Fr and the stripe Fxy to the free energy:

Fr � pr 2
0Lz

�r0
R0

�
1� R 2

0

x 2

�
; �4:8�

Fxy � pr20Lz
�r0
R0

�
1� R 2

0

x 2
� R0

�r0
�
�
n0 ÿ 3

4
b

�
R 3

0

�r0

�
: �4:9�

Here, �r0 �
���
p
p

r0, xÿ2 � 2
�
n0 ÿ �1ÿ 1=

���
8
p �b�, and n0 is a

certain characteristic value of the `factor' �qkn�2 in (4.5) of the
same order ofmagnitude as c1R

ÿ2
0 , while b � c2R

ÿ2
0 dT, where

ci � 1 and dT � �Tc ÿ T �=Tc.
For the optimumwidthR0 � x (atR0 5 r0), the difference

between the free energies DF � Fxy ÿ Fr in units pr 2
0Lz has

the form

DF � 1� c1 ÿ c2 dT :

It follows from this expression that at �1� c1�=c2 < 1 in the
temperature range�

1ÿ 1� c1
c2

�
<

T

Tc
< 1 ;

near the critical temperature Tc of the transition to a state
with a spin pseudo-gap, the preference should be given to ring
configurations. In this state, the correlation length is
x � R0 � 10 A

�
. In the temperature range

T < Tc

�
1ÿ 1� c1

c2

�
;

far from Tc, the leading configurations are given by stripes. It
is known that Tc can be approximated while maintaining a
constant temperature by increasing the degree of doping. It is
such experiments [55, 56] that have recently provided
evidence of the existence of ring-shaped charge structures in
underdoped phase states.

We consider the dependence of the critical temperature Tc

on the level of doping. For this, we represent the ratio of Fr to

Fxy as

Fr

Fxy
� 1

1� BR0=�r0
; �4:10�

where

B � 1

2

�
1� 1

2

n0 ÿ 3=4 b

n0 ÿ �1ÿ 1=
���
8
p � b

�
� 3

4

n0 ÿ 0:68 b

n0 ÿ 0:65 b
:

It follows that for B < 0, stripe configurations are energeti-
cally more favorable than ring-shaped configurations in the
range 0:65 < n0=b < 0:68, where Fxy < Fr.

Normalization of the density r 2
0 to the numberN of doped

particles with the condition N � 2pr0xLzmr 2
0 yields the

relation between n0 and b that can be written as
x � b=

����������������������
n0 ÿ 0:65b
p

, where x � Nd=� ���2p mpLzr0�. For the
boundaries of the above interval, when n0 � b � dT, we
obtain T� p� � Tc�1ÿ Ap 2� with the constant A �
�c1 ÿ 0:65 c2�=c 22 and the level of doping p � xR0 ����
2
p

NR 2
0 =�2pr0Lz�. The factor R 2

0 =�2pr0Lz� in the last expres-
sion determines the degree of filling the three-dimensional
space with quasi-one-dimensional configurations having the
disturbed antiferromagnetic order.

In conclusion, we see that the `level of doping ± tempera-
ture' phase diagram inside the region corresponding to a
phase state with the destroyed antiferromagnetic order
contains a place for stripe-like charge structures. The relative
contribution of rings and stripes to the free energy depends on
the ratio of the correlation scale R0 � x to the characteristic
length r0 of filament configurations of the nonuniform
exchange interaction field. The value of this parameter,
whose geometrical meaning is discussed in Section 4.4,
determines the gain in the free energy for closed (at B > 0)
quasi-one-dimensional configurations.

4.4 Toroidal states
Closed quasi-one-dimensional configurations in the form of
rings and stripes in model (2.3) with the free energy density

f � qkr� �2�Veff�r� � �Fi k ÿHik�2 ;

where

Veff � ÿbeff r 2 � d

2
r 4

and

beff � bÿ 1

16
c2 ÿ 1

4
�qkn�2 ;

exist in various phase states [57, 58]. In a phase where beff < 0,
rmin � 0. It follows from the expression for the effective
potential energy Veff that nonuniform field distributions
occur only in the case where beff > 0. As the degree of doping
changes closer to the phase state with beff > 0, the relative
number of quasi-one-dimensional configurations with closed
ends increases. In the phase with beff > 0, quasi-one-dimen-
sional configurations may have length l satisfying the
condition lrmin � 2pn [58].

In the ground state with the momentum c � 0, the rmin

value of the Higgs field amplitude is determined by the
contribution �1=4��qkn�2 from the characteristic n-field
configurations. In this case, the distributions in the form of
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rings (as shown in Section 4.5) are the typical r-field
configurations [22]. For larger values of the commensur-
ability parameter lrmin �lrmin > 2p� in the ground state,
there are closed quasi-one-dimensional configurations of the
field r. For the shorter �0 < lrmin < 2p� r field configura-
tions, the ground state may exhibit quasi-one-dimensional
field distributions in the form of stripes.

Thus, magnetically inhomogeneous phase states have the
density-dependent internal hierarchical multiscale structure
of critical importance for the description of the properties of
these phases. Also, it is apparent that states with a finite value
of the c momentum field are characterized by competing
order parameters n and c between which nonlocal correla-
tions arise due to the entanglement of their quasi-one-
dimensional distributions.1

This inference is consistent with one of themain assertions
in [60] that inhomogeneous current states cannot be described
in a standard manner, in terms of the Ginzburg ±Landau
functional with a single vector order parameter. A similar
conclusion is arrived at based on the lattice description of
current states [9] in checker-ordered flow phases by consider-
ing the electron spin and charge degrees of freedom in model
(2.4) in the mean-field approximation. Current phases [61 ±
69] and the so-called d-density wave states [70 ± 75], i.e.,
phases with current density modulations (and zero total
current density), exemplify the realization of toroidal states
[60, 61, 76].

The main feature of model (2.3) is the compactness of the
n field accounting for its one-dimensional distributions in the
form of knots and the discrete character of its spectrum (3.2).
In this respect, the phenomenon in question is similar to the
Berezinskii ±Kosterlitz ± Thouless effect, being its three-
dimensional analog.

The present section focuses on the analysis of the general
situation, with all nonuniform order parameters being
present. We recall that in the case where c 6� 0 and
r 6� const, the characteristic size R of a knot in the energy
minimum Fn is proportional to rÿ1. As the level of doping
r 2
h grows, i.e., as r 2 decreases, the radius R � 1=r increases

until it reaches the critical size Rcr �
���
2
p

. It was shown in
Section 4.1 that starting from this radius, knot-forming
n-field configurations lose stability [29] with respect to
perturbations associated with scale variations. This prop-
erty is of primary importance in the comparison of different
contributions to the free energy in inhomogeneous current
states with a sufficiently small r 2 value.

To describe the distributions of strongly correlated
charge and spin degrees of freedom at a sufficiently low
density r 2, a small parameter a � R0=R must be introduced,
where R0 is the correlation length of the n and c field
distributions. Geometrically, the radius R0 is the thickness
of filaments on which field configurations are defined. The
typical size of R0 is of the order of 10 A

�
, i.e., equivalent to

three or four lattice constants. The characteristic size of R
has the meaning [76] of the effective current correlation
radius. In this case, the Ginzburg parameter is significantly
smaller than unity, which justifies the use of the mean-field
approximation in (2.3).

We suppose that R0 < R < Rcr and compare the decrease
in free energy (2.3) due to the diamagnetic interaction
ÿ2Fi kHi k with its increase resulting from the nonuniform
density distribution with �qkr�2 6� 0. The contribution of the
diamagnetic termÿ2Fi kHi k is of the order of c0=R

3
0 , where c0

is the characteristic value of the field momentum c. The
contribution of the term �qkr�2 is estimated as 1=�RR0�2.
Evidently, a gain in the energy due to ÿ2FikHik must also
exceed the loss related to another positive term in (2.3), i.e.,
the surface term F 2

i k � c 20 =R
2
0 and the current energy density

r 2c2 � F 2
i k�R0=R�2.

It follows from the combination of these inequalities that
the momentum value at a � �R0=R�2 5 1 satisfying the
inequality

a
R0

< c0 <
1

R0
; �4:11�

the free energy, even in a state with the nonuniform
distribution of the density r 2, may be smaller than at c � 0
and r � const due to the effective decrease in the contribution
of the paramagnetic termH 2

i k.
The parameter a � R 2

0 =R
2 is proportional to the ratio of

the volume occupied by a tangle of filaments to the ambient
space. In other words, a has the meaning of the degree of
filament packing in a three-dimensional tangle with a
characteristic size R; it is actually the small parameter being
sought in the situation of interest, where all coupling
constants equal unity. This parameter enters the free energy
ratio in (4.10) and the expression for the dependence of the
temperature T� p� on the degree of doping. For n � const, the
parameter a is proportional to kÿ2, where k � l=x is the
Ginzburg ±Landau parameter and l is the London length.

Conditions for the existence of a state with an energy
smaller than at c � 0 and the momentum from interval (4.11)
can be found by comparing the gain c0=R

3
0 in the free energy

density related to the term ÿ2Fi kHi k and the contribution
from the term �qkr�2. The loss of the total free energy is of the
order of Rz=R

2
0 , where Rz is the vertical knot size. Thus, the

condensation energy ÿ64p2Q 3=4�L=Q� at r � const and
L5Q decreases in the inhomogeneous case. The lowest
gain ÿDF in the free energy for sufficiently flat knots with
R0 < Rz < R < Rcr is estimated to be DF ' �64p2=Q 1=4�a.
Thus, the energy of knotted configurations in inhomogeneous
current states may be smaller than in the state with c � 0.

For a sufficiently low doping level r 2
h � 1ÿ r 2 5 1, the

spin density r 2 is high and the knot size R is so small that
a9 1. A decrease in the degree of filament packing in the knot
with increasing rh is accompanied by a transition to a state in
which field configurations in the form of closed quasi-one-
dimensional distributions are favored over other planar
projections r�x; y� [22]. Whether the boundary charge states
near the edges of dielectric islands form an infinite percolation
cluster depends on the hole density r 2

h . This issue is discussed
at greater length in Section 4.5.

We suppose that the level of doping is insufficient for the
formation of an extended percolation cluster. This state with
spontaneous superdiamagnetism is here called the toroidal
state, as proposed by Ginzburg [76, 77]. A phase state in

1 In a dynamic description in �2� 1�-dimensional systems, nonlocal

electron ± electron interactions are described with the help of statistical

Chern ± Simons gauge fields a i
a that give rise to strong long-range phase

correlations between fermionic quantum states. In this case, the world-line

linking matrix ki j in the Chern ± Simons action

S � ki j
4p

�
M

d3x eabga i
aqb a

j
g

is proportional [59] to the matrix Kab in (3.7) describing the complexity of

knotting and linking of one-dimensional field configurations in the

�3� 0�-dimensional free energy (2.3).
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which the ordering of the diamagnetic surface current
contours is characterized by a polar vector T that changes
sign upon time reversal may be associated with the ordering of
local toroidal moments.

The toroidal moment is defined as [78 ± 80]

a � rot rot T : �4:12�

With this definition and the identity [18]

�rot a�i �
1

2
ei k l n�qkn� ql n� ; �4:13�

the toroidal moment can be expressed through the chiral
density n �qkn� ql n� as

Ti�r� � 1

16p2

�
d3r 0

� �rÿ r 0�k
jrÿ r 0j3

�
d3r 00

n �qkn� qin�
jr 0 ÿ r 00j

�
: �4:14�

The electrostatic and magnetostatic characteristics are
combined in expression (4.14) in the form of a convolution
of two multipliers. One of them has the form of the Bio ±
Savart law, and the other is defined by Coulomb Green's
function. The vector T characterizes the distribution of the
poloidal current component on the torus [79, 80]. The
magnetic field of this current is localized inside the torus.

For the degree of spin distribution noncollinearity
n �qkn� qin� � eki d�r� localized at a point, the toroidal
moment has the form

Ti�r� � eki
16p2

�
d3r 0

�rÿ r 0�k
r 0jrÿ r 0j3 �

eki xk
8pr

: �4:15�

If the chiral density

n �qkn� qin� � eki
2pR

d�z� d�rÿ R�

of spin distributions is localized in the plane z � 0 on a ring of
radius R, the toroidal moment is Ti�r; z � 0� � eki�xi=r�t�r�,
where t�r� is the function having a maximum at r � R, when
r4R t�r� � rÿ2.

The diamagnetic susceptibility w 0 in the toroidal state is
determined [76] by the radius R of electron current correla-
tions such that w 0 � wL=a, where wL � ÿe 2kF=�12p2mc 2� is
the Landau diamagnetic susceptibility of noninteracting
electrons. For porous knots with a5 1, the diamagnetic
susceptibility w 0 is comparable to the ideal one, wid � ÿ1=4p:
w 0 � ÿ�10ÿ3ÿ10ÿ2�, whereas for ordinary diamagnetic mate-
rials jw 0j4 10ÿ4 5 jwidj. The abnormally high diamagnetic
susceptibility is due to the large current correlation radius R.
Also, it is worthwhile to note that the condition [81]
wL � ÿe 2nr 2=�mc 2� > ÿ1=4p, formally equivalent to the
inequality r < rD � c=op, reflects the boundary (surface)
character of the phenomena under consideration. Here, n is
the mean electron density, rD is the Debye radius, and
op � �4pne 2=m�1=2 is the plasma frequency.

The toroidal state is characterized by a zero total magnetic
moment of a cluster, zero total magnetic field flux, and
nonzero vector potential A�r� � ÿ3�nT�nÿ T

�
=r 3. Similarly

to a dipole field, the projection of the vector potential on the
direction of T is proportional to the d-symmetric Legendre
polynomial.

The place of the toroidal state in the classification of
possible crystal states is determined by its symmetry proper-
ties. Of the total 122 magnetic classes, the toroidal state is

inherent only in the systems belonging to 31 subclasses of
magnetic symmetry in which the vector T can exist. Among
these, there are, naturally, 10 classes containing no inversion
of the direction of all the currents and therefore correspond-
ing to the possibility of the pyroelectric effect.

The symmetry of media with a nonzero density of the
toroidal moment allows the existence of the magnetoelectric
effect [82]. In this case, the vector T is dual to the
antisymmetric component of the magnetoelectric tensor.
Media with the magnetoelectric effect may have no toroidal
moment because media with T 6� 0 give rise to a subset of the
totality of 58 classes that may have the magnetoelectric effect.
In the context of the representation theory of spatial magnetic
groups, the toroidal state is structurally variable, comprising
antitoroidal, noncollinear, disordered, and other structures.

Conditions for realization [81] of the toroidal state are
easy to satisfy
� near inhomogeneities;
� in systems with strong electronic correlations;
� in an antiferromagnetic case where the toroidal phase

being formed is the most probable state;
� under facilitating conditions in the presence of charged

and magnetic impurities, such as holes and dynamically
noncollinear spin distributions (in our case);
� in the case of strong spin ± orbit interaction, which also

promotes themanifestation of effects associated with toroidal
ordering.

4.5 Planar phenomena in three-dimensional space
Under conditions where all coupling constants in expression
(2.3) are equal to unity, 2 the main focus of study is the
geometrical and topological properties of knotted one-
dimensional manifolds in the domain of the order para-
meter definition making a leading contribution to the free
energy. One result of such an approach is the appearance of
a geometric parameter a � �R0=R�2 < 1 that characterizes
the degree of filament packing in the knot. The existence of a
minimal field r 2 value playing the role of a current constant
in expression (2.3), i.e., the minimal value of amin �
�R0=Rcr�2, is analogous to the existence of a nontrivial
solution for the superconducting gap in a two-dimensional
model [83] that emerges starting from a finite value of the
coupling constant, unlike the solution in the framework of
the BCS model.

The geometric properties of one-dimensionalmanifolds in
the three-dimensional space are naturally considered [84, 85]
in the context of the geometry of random planar images
obtained at cross sections through a three-dimensional knot.
Figure 2 gives an idea of the distribution [85, 86] of stratified
phase states at one of the sections.

We choose the current parameter r 2 � 1=R 2 such that
amin < a5 1 and project the spaces complementary to the
knots and stretched over them (the so-called Seifert surfaces)
onto the plane xy. In the theory of knots, Seifert surfaces
provide an efficient tool for the search for algebraic knot
characteristics. In the case under consideration, the Seifert
surfaces are used to visualize distributions of the physical
degrees of freedom.

For definiteness, we consider a trefoil knot, i.e., a knot
with Q � 6. Its complementary space is given by a triply
twisted and glued ribbon and a Seifert surface in the form of a

2 It is one of the reasons for the absence of even a numerical solution to the

problem at hand.
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single-punctured torus (Fig. 3). 3 As mentioned above, the
charge degrees of freedom are distributed starting from the
edge of the complementary space for the knots. Let the area of
the part of the region related to the Seifert surface projection
on the plane be small compared with the knot projection area.
For an essentially flat knot [87] with Rz < R < Rcr, the
boundary region is a ring formed by the projection of these
one-dimensional edge configurations onto the plane. For a
knot elongated atR < Rz < Rcr along the z axis, the edge line
is equivalent to a stripe of length R, equal to the scale of the
hole at the torus projected on the plane. As a result, the gain in
free energy in an inhomogeneous toroidal state is achieved if
the charge density is distributed over the plane in the form of
rings.

Investigations into such charge density configurations are
carried out with the use of tunneling microscopy. Formation
of ring-shaped state density distributions was recently
discovered in experiments [56] on complicated labyrinth
structures of quasi-one-dimensional charge density distribu-
tions in planar compounds Ca2ÿxNaxCuO2Cl2 at a moderate
doping level x.

4.6 Optimal doping
At a sufficiently low doping level, the knot size R is so small
that a9 1. A decrease in the degree of filament packing in the
knot, a, with increasing rh results in the transition to a state in
which field configurations in the form of closed quasi-one-
dimensional distributions are favored over other planar
projections r�x; y� [22]. Whether the phase state at
acr < a5 1 and the finite momentum of electron pairs c0
[50, 51] is superconducting or proves to be an intermediate
state with spontaneous diamagnetism [76, 81] probably
depends on the degree of linking of a totality of planar

current clusters (see, e.g., Ref. [88]) formed by projections of
the Seifert surfaces onto the plane.

It is natural to assume [89] that the appearance of the
preliminarily formed pairs in an underdoped state and phase
coherence in a superconducting phase are independent
phenomena. Starting from the picture of previously formed
pairs, we consider certain peculiarities of phase coherence
conditioned by percolation phenomena [90], bearing the
aforementioned charge density structures in mind. As the
hole density r 2

h increases, the size of ring-shaped current
distributions becomes so large that a two-dimensional
coherent current cluster may appear and the transition to a
state with momentum c 6� 0 occurs, with a gain in the free
energy. We find the doping level pbest at which the tempera-
ture of transition to the superconducting state is maximum.

If we did not take distributions of the charge degrees of
freedom at the boundaries of n-field filamentous configura-
tions in the knot into account, we would have to deal with the
two-dimensional percolation problem and the generally
known [88] result pcr � 0:5 for the critical density value in
the bond percolation problem. An essential difference
between the experimentally found value pbest; exp � 0:16 and
the above critical value provides a convenient test for the
verification of the validity of the approach being considered.

We use the recently obtained experimental data [56] for
the purpose of this verification. It was demonstrated in [56]
with the use of scanning tunneling microscopy that a fraction
of filamentous field distributions in the form of ring-shaped
structures in a milieu of quasi-one-dimensional configura-
tions with an increasing charge state density in the under-
doped region grows with the level of doping.

Using trial functions, we arrived at the conclusion that in
the framework of model (2.3), such configurations are
actually favored when the level of doping is increased. The
distribution patterns of the spin degrees of freedom in
underdoped states are evaluated and interpreted based on
neutron scattering data and on the assumption of quasi-one-
dimensional nanoscale distributions in the planes of charge
clusters in the form of thin rings.

Let the edge points lie along the boundaries of ring-
shaped dielectric regions such that the ring width differs
from the diameter (as follows from the experiment in
Ref. [56]) by approximately a 1=2 � R0=R ' 0:1. The geo-
metric confinement allows the contribution of internal
(relative to ring-shaped charge configurations) spin distribu-
tions of the degrees of freedom to be attributed to the
normalization background. Therefore, for the threshold of
the emergence of a connected cluster formed by the ideal
distribution in the form of rings, the value pbest �
0:5ÿ pa 1=2 � 0:186 is significantly smaller than the stan-
dard pcr � 0:5. For a hexahedral current cell, pbest � 0:179.
This example indicates that even relatively small deviations
in the shape of an elementary current cell from the ideal
ring-shaped form may result in the convergence of the pbest
value and the experimentally found pbest; exp � 0:16. Con-
sideration of a square bounded by stripe-like charge
distributions instead of a circular dielectric cluster yields
pbest � 0:5ÿ 4a 1=2 � 0:1.

Investigations into the general properties of phase states
in high-temperature superconductors representing different
classes of chemical compounds, e.g., Y1ÿxCaxBa2Cu3O6 or
La2ÿxSrxCu4, have demonstrated that the dependence of
the critical temperature on the hole concentration is fairly
well approximated [91, 92] by the curve Tc=Tc;max �

Figure 2. Two-dimensional distribution of phase states over the cross

section through a tangle of knotted quasi-one-dimensional three-dimen-

sional configurations of order parameters.

3 A thread entangled into a trefoil extended along the time axis can be

regarded in a dynamic �2� 1�-dimensional case as a result of the action of

b 3
1 on quantum states of the braid group operator b1.
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1ÿ 82:6� pÿ 0:16�2 at p � x=2. The parabolic dependence
Tc� p� has zeroes at pmin � 0:05, pmax � 0:27 and reaches a
maximum at pbest � 0:16. In optimally doped thallium-
based compounds, e.g., in Tl0:5Pb0:5Sr2Ca0:8Y0:2Cu2O7,
pbest � 0:15. Similar values have been obtained in studies
with some other classes of high-temperature superconduc-
tors. It is also noteworthy that an underdoped pseudogap
phase with large charge and spin fluctuations arises in the
background of the superconducting state in the aforesaid
classes of chemical compounds with a well-defined [93] hole
concentration, p � 0:19.

5. Non-Abelian gauge theory

5.1 Monopoles, merons, and knots
in the Yang ±Mills theory
Thus far, we have considered the nonrelativistic �3� 0�-
dimensional model with the solution of equations of motion
in the form of quasi-one-dimensional knotted field config-
urations. The relativistic theory of knots [1, 94] is the Yang ±
Mills gauge theory. A variety of methods for mixing Lorentz
indices and indices of the internal degrees of freedom of the
potentials in the non-Abelian gauge theory provides a
possibility to universally describe [94] point-like monopole
configurations and extended objects in the form of knots. In
the ultraviolet region, the theory is described by the standard
Yang ±Mills action

S � 1

g 2

�
d4x TrF 2

mn ; �5:1�

where

Fmn � qmAn ÿ qnAm � �Am;An� ; �5:2�

and g is the bare coupling constant.
Themost complete ansatz [94 ± 96] for parameterization of

SU(2) potentials Am � Aa
mt

a=2i, where t a are the Pauli
matrices, has the form

Aa
m � Cmn

a � s qmna � �1� K�eabcn c qmnb : �5:3�

Gauge-fixed four-dimensional SU(2) connections Am contain
six degrees of freedom [94], viz. two transverse polarizations
of theU(1) potentialsCm, two independent components of the
unit vector field na, and two scalar functions s and K. The

scalars s and K are convenient to combine into a complex
field f � s� iK entering a multiplet �Cm;f� that transforms
as the multiplet in the Abelian Higgs model. One property of
the �Cm;f� multiplet is that the functional form of Aa

m is
preserved under SU(2) gauge transformations with the
parameter a a � ana.

The computation of the tension

Fmn� n
�
Gmnÿ

�
1ÿ �s 2 � K 2��Hmn

	� �Dms qnnÿDns qmn�

� ÿDmK�qnn� n� ÿDnK�qmn� n�� ; �5:4�

and variation of action (5.1) with respect to the fields Cm, f,
and n lead to the equations of motion

nHmFmn � 0 ; �5:5�
qnnHmFmn � 0 ; �5:6�
�qnn� n�HmFmn � 0 ; �5:7�
�Dns�DnK n�HmFmn � 0 �5:8�

that are proportional to theYang ±Mills equationsHmFmn � 0
derived using potentials (5.3). Here,Dm � qm � iCm andHm are
the U(1)- and SU(2)-covariant derivatives, respectively,
Gmn � qnCm ÿ qmCn, andHmn � n �qmn� qnn�.

That the density of the Lagrangian function L contains a
structure responsible for the appearance of the term Fn in
expression (2.3) can be seen in the case where Cm � s � 0.
Then,

L � 2

g 2

�
dmn�qln�2 ÿ �qmn��qnn�

	
q mK q nK

ÿ 1

g 2

�
n �qmn; qnn�

	2�K 2 ÿ 1�2 : �5:9�

It follows from expression (5.9) that due to factorization
of the kinetic and potential items, the braced multipliers in
front of the right-hand terms corresponding to the kinetic and
potential energies play the role of current coupling constants
for the field K and vice versa. Therefore, it is possible to
obtain the first two terms in (2.3) after averaging over K,
under the condition that n 6� r=r.

The requirement that the vector n � r=r at each point with
coordinates given by the radius vector r be directed toward
this point essentially fixes the n-field dynamics. In this case,
the problem is substantially simplified. Indeed, in such a

a b

Figure 3. Surfaces spread out over a flat trefoil (a) and a trefoil elongated along the z axis (b).
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`hedgehog' variant, Aa
k � e akcn c�K� 1�=r and�

dmn�qln�2 ÿ �qmn��qnn�
	 � dmn

r 2
;

ÿ
n �qmn; qnn�

�2 � 1

r 4
:

The density of the Lagrange function and the equation of
motion for the scalar field K�r; t� take the form

L � 2

g 2r 2
�qmK�2 ÿ 1

g 2r 4
�K 2 ÿ 1�2 ; �5:10�

r 2&K � K�K 2 ÿ 1� ; & � q2

qt 2
ÿ q2

qr 2
: �5:11�

The singular solution of the equations of motion, K � 0,
leads to the Wu ±Yang monopole configuration Aa

k �
e akcn c=r [97]. In this case, smooth n-field distributions used
in the expression for the potential, Aa

i � eabcqin bn c, describe
monopole condensation.

The simplest solution of Eqns (5.11) is the meron
configuration, K � t=

���������������
t 2 ÿ r 2
p

[98]. A meron, being a solu-
tion of the equations of motion, is characterized by the
topological charge 1=2 and a logarithmically divergent
action. Multimeron K-field distributions have been consid-
ered in Refs [98 ± 101] with the use of the cylindrically
symmetric ansatz [102, 103] contained in expression (5.3)
with n � r=r. A common property of the solutions of
Eqn (5.11) is the presence of K-field singularities at closed
surfaces located at a finite distance from the origin r � 0 [101].
Such singularities allow considering the infrared limit in a
situation where the n-field color degrees of freedom are
collinear to the radius vector r.

The opposite limit case corresponds to the consideration
of the n-field orientational dynamics while fixing the K field
scalar degrees of freedom. In this case, the possible phase
states [57, 58, 104, 105] in the Yang ±Mills theory can be
studied by means of functional integration over the Abelian
Higgs multiplet and subsequent gradient expansion of the
Wilson effective action for the order parameter n. This
problem was scrutinized in Refs [106 ± 109], where it was
shown that the total effective action for low-energy degrees of
freedom of n in the Yang ±Mills theory must contain the two
terms known from (2.3) in the combination

L � m 2

2
�qmn�2 ÿ a

4

ÿ
n �qmn qnn�

�2
; �5:12�

where m is the mass scale and a is the effective coupling
constant. Expression (5.12) contains not only the first mass
term determining the long-range dynamics of the n field and
absent in the massless theory (5.1) but also additional terms
with derivatives of the form �qmn�4 and �q2n q2n� (provided
the lowest loop diagrams are taken into account) [106 ± 109].
Because

�n qmn� qnn�2 � �qn�4 � �qmn qnn�2 ;

there is no reason to expect that both terms in this expression
must have equal coupling constants after the renormaliza-
tion.

The hypothesis in [94] of the infrared limit in the Yang ±
Mills theory in form (5.12) was motivated by the necessity to
obtain the desired Hamiltonian action structure, which
implies the absence of the third and higher time derivatives.
It was shown in Refs [106 ± 109] that the covariant renorma-
lization-group approach disregards the Hamiltonian inter-

pretation of the final result Ð the sought simplification is
corrupted by the emergence of the terms with the derivatives
of the form �qmn�4 and �q2n q2n�. We note that the general
conclusion concerning the existence of knotted soliton-like
n-field configurations as important infrared degrees of free-
dom in the Yang ±Mills theory remains valid.

The simplest analysis of the case where n 6� r=r with the
unknown functionK can be performed by substituting the last
term in (5.3) into the self-duality equations. For the low
symmetry under consideration [28],

G � diag
�
O�2�I 
O�2�S

�
;

where O�2�I and O�2�S are the groups of rotations about the
respective axes N3 and z, these equations (differing from the
equations in the spherically symmetric [110, 111] and axially
symmetric [102, 103] cases) have the form [112]

�qtn; qkn� � 1

2
ekms �qmn; qsn� ; �5:13�

qtK qknÿ qkK qtn � 1

2
ekms fqmK qsnÿ qsK qmng ; �5:14�

where t � it is the Euclidean time. Because the homotopy
group p4

ÿ
SU�2�� � Z2 is nontrivial [113], there is at least one

nontrivial class of the K and n field configurations.

5.2 Knots as ground states
It was proposed in Refs [59, 114] to interpret SU(2) vacuum
configurations of gauge fields in terms of knots. We consider
such an approach based on the use of the Abelian projection.

The idea of the Abelian projection was put forward in
Refs [104, 105] in order to decompose a non-Abelian field into
its neutral and charged components under an appropriate
gauge choice. In the simplest form, the Abelian projection
involves the choice of a certain observable X�x�, such as
Polyakov's exponential, undergoing gauge transformations
g y�x�X�x� g�x�. This fact may be used for the diagonalization
of X�x�, which can be performed smoothly if the matrix g has
no coincident eigenvalues. The remaining gauge freedom is
U�1�r, where r is the rank of the gauge group. The degrees of
freedom in such a gauge are associated with r via neutral
bosons.

Singularities appear when two or more eigenvalues
coincide. The coincidence leads to point-like singularities
that represent magnetic monopoles defined with respect to
the residual Abelian gauge group. A smoother but nonlocal
Abelian gauge fixing can be introduced [104] using the
Abelian field as a background [e.g., the SU(2)-component
proportional to t3 � diag �1;ÿ1�] and imposing the back-
ground gauge condition on the charged componentAch

m of the
gauge field. The gauge condition can be formulated by
minimizing the functional integral

� jAch
m j2 over the gauge

orbits.
The Abelian projection allows identifying the field n�x� of

the nonlinear O(3) sigma-model with the local color direction
in the SU(2) gauge theory. General doubts about the validity
of such an approach arise from the fact that gauge invariance
precludes independent dynamics of magnetic variables
associated with the color direction. An analysis of the
possibilities points out the necessity of introducing the dual
variables considered in Section 5.5. Moreover, the Goldstone
bosons [114] associated with the spontaneous O(3)-symmetry
violation in the nonlinear sigma-model in the dimension
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�3� 1� are undesirable in the particle-free non-Abelian gauge
theory.

Following [59, 115], we now show that the field n
expressed via CP1-variables can be related to the SU(2)
gauge field of zero strength. This leads to the interpretation
of such pure-vacuum configurations (in a particular max-
imum Abelian gauge) in terms of knots with the Hopf
invariant given by the winding number of gauge configura-
tions. In this identification,

ÿ
qmn�x�

�2 � 4jAch
m j2. We consider

the effective low-energy representation of the SU(2) gauge
theorywith the �3� 1�-dimensional action defined in terms of
the unit vector field n�x� as

S �
�
d4x

�
qmn�x� q mn�x� ÿ 1

2
FmnF

mn
�

�5:15�

with the gauge field strength

Fmn � 1

2
n�x� ÿqmn�x� ^ qnn�x�

�
:

Using the possibility of rescaling the action and coordinates,
we assumed in (5.12) that m 2 � a � 2 and used compact
notation of differential geometry. The variables qmn�x� of
the three-dimensional unit vector being orthogonal to n�x�,
qmn�x� ^ qnn�x� is proportional to n�x� with the proportion-
ality factor 2Fmn�x�. Hence,

F 2
mn �

1

4

ÿ
qmn�x� ^ qnn�x�

�2
:

The finite energy value

E �
�
d3x

�ÿ
qin�x�

�2 � 1

2
F 2
i j�x�

�
5 cjQj3=4 �5:16�

requires that n�x� tend to a constant vector at spatial infinity.
The value of the constant c � 16p233=8 � 238was corrected in
Ref. [29].

The two degrees of freedom associated with the field n are
equivalent to the two components of the CP1-field C defined
up to a common scaling complex unimodular factor. This
follows from the relation

na�x� � C y�x�t aC�x� : �5:17�

The Abelian gauge invariance of the CP1 model leads to the
composite gauge field

Am�x� � ÿiC y�x� qmC�x� : �5:18�

Direct computation may be used to verify that the 2-form
F�x� � n�x� ÿdn�x� ^ dn�x�� exactly defines the 1-form A�x�
of the Abelian gauge field by the relation F�x� � dA�x�. In
terms of the potential A�x�, the density of the Hopf invariant
is given by A�x� ^ F�x�. The following useful relations are
used in the computation: di jdkl � t ai j t

a
kl � 2dildjk and

ieabct bi j t
c
kl � t akjdil ÿ t aildjk.

In this formulation,

S �
�
d4x

�
4�DmC�y�x�D mC�x� ÿ 1

2
Fmn�x�F mn�x�

�
; �5:19�

where Dm � qm ÿ iAm�x� is the covariant variable,
C y�x�DmC�x� � 0, and E � � d3x ��ÿ2Di � Bi�x�

�
C�x���2 with

Bi � 1=2ei j kFj k.

At the next step of model reformulation, it is assumed that
any two-component complex vector with unit length uniquely
corresponds to an element g�x� of the SU(2) group. There-
fore, it is possible to write C�x� � g�x�C0. For convenience,
we choose C y0 � �1; 0�, such that

na�x� � 1

2
Tr
ÿ
t3g y�x� tag�x�

�
: �5:20�

We introduce the currents Jm�x� � itaJ a
m �x� �

g y�x� qmg�x�. They can be interpreted as components of the
gauge SU(2)-connection with zero tension, i.e., G�x� �
dJ�x� � J�x� ^ J�x� � 0, where J�x� � Jm�x� dxm. Writing in
the components gives

Ga
mn�x� � qmJ 3

n �x� ÿ qnJ 3
m �x�

ÿ 2
ÿ
J 1
m �x�J 2

n �x� ÿ J 1
n �x�J 2

m �x�
� � 0 :

Simple calculation yields

Am�x� � J 3
m �x� ; qC ym�x� q mC�x� � Ja

m �x� J m
a �x� : �5:21�

The zero tension of the non-Abelian field accounts for the
identity

Fmn�x� � 2
ÿ
J 1
m �x�J 2

n �x� ÿ J 1
n �x�J 2

m �x�
�
; �5:22�

or

F�x� � dJ 3�x� � 2J 1�x� ^ J 2�x� �5:23�

in terms of Ja � Ja
m �x� dxm.

Now, it is easy to show [59, 115, 116], with the help of
relation (5.22) and using J�x� � g y�x� dg�x�, that the Hopf
invariant is exactly equal to the winding number of the gauge
function g�x�:

1

4p2
A�x� ^ F�x� � 1

2p2
J 3�x� ^ J 1�x� ^ J 2�x�

� 1

24p2
Tr
ÿ
g y�x� dg�x��3 : �5:24�

We recall that the gauge function g�x� enters the relation
na�x�t a � g�x�t3 g y�x� and defines the SU(2) gauge potential
J�x�with zero tension. Certainly, it is possible to express [106]
the left-hand side of (5.24) via the density of the non-Abelian
Chern ± Simons term:

1

4p2
A�x� ^ F�x�

� ÿ 1

8p2
Tr

�
J�x� ^ dJ�x� � 2

3
J�x� ^ J�x� ^ J�x�

�
: �5:25�

To see that static solutions of the model in (5.15) are
actually ground states of the classical Yang ±Mills model in
the nonlinear maximally Abelian gauge, we consider the
relation

�DmC�y�x�D mC�x� � qmC y�x� q mC�x� ÿ Am�x�Am�x�
� J 1

m �x� J m
1 �x� � J 2

m �x� J m
2 �x� : �5:26�

In the absence of the neutral component J 3
m �x�, relation (5.26)

reflects the nature of the action of model (5.19) in
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SU�2�=U�1�, because both terms in (5.19) are expressed only
through J 1

m �x� and J 2
m �x�. Specifically, the static configuration

energy is expressed only through the charged components of
the non-Abelian gauge field:

E �
�
d3x

�
4
ÿ
J 1
i �x� J 1

i �x� � J 2
i �x� J 2

i �x�
�

� 2
ÿ
J 1
i �x� J 2

j �x� ÿ J 1
j �x� J 2

i �x�
�2�

: �5:27�

Here, the first term exactly corresponds to the functional
determining the maximally Abelian gauge by means of
minimization along the gauge orbits that leave the t3-
generated Abelian subgroup fixed [104]. This assertion also
holds for the total functional (5.27) because it can also be
interpreted as a gauge-fixing functional in the case of the
nonlinear maximally Abelian gauge. As long as the three
parameterizations are equivalent, there is every reason to
interpret functional minima for the energy in the sector with a
given Q value as gauge-fixed pure-gauge connections (i.e.,
zero-tension potentials) in the sector with the gauge field
winding number Q.

Difficulties in interpreting model (5.15) as an effective
low-energy representation of the SU(2) gauge theory [94, 106,
117]mentioned in this section and in Section 5.1 seem to occur
because the perturbative expansion near the state Am�x� �
qmn�x� ^ n�x� [at Cm � s � K � 0 in (5.3)] is invalid because
this state corresponds to a local energy maximum and is
unstable [59].

This inference is supported by the consideration of a one-
parameter family of potentials in the form Am�x� �
q qmn�x� ^ n�x� with a certain constant q. The estimated field
strength

Fmn�x� � q�qÿ 2� qmn�x� ^ qnn�x� �5:28�

is nonzero at q � 1. The energy of this state, proportional to
q 2�qÿ 2�2, actually has a maximum at q � 1. This accounts
for its instability.

On the other hand, the background energy vanishes not
only in the case of the trivial vacuum at q � 0 but also at
q � 2. The latter case corresponds to the pure-gauge
potential J having a topological charge Q that is defined by
the integral over the density space of the non-Abelian
Chern ± Simons term. Multiplication of the pure-gauge
connections of J by q=2 readily yields the integral of the
non-Abelian Chern ± Simons density at any q. This integral
equals q 2�3ÿ q�Q=4. The relation between the Hopf invar-
iant and the non-Abelian Chern ± Simons term at q � 1 was
also found in Ref. [106]. It should be noted that the integral
gives half the Hopf invariant at q � 1. Therefore, this
background distribution of the gauge potential lies in a
sense halfway between two vacua.

The pure-gauge backgroundwith q � 2 is useful in solving
the problem of categorizing gauge fields by their different
topological sectors because small fluctuations parameterized
with the help of the functions Cm, s, and K do not change the
winding number. Under these conditions, which could be
called the Faddeev ±Niemi gauge-fixing conditions, the
categorization by different topological sectors is possible in
the localized form irrespective of the gauge field asymptotic
behavior. This observation may bring about a new under-
standing of the approach to the nontrivial topology of non-
Abelian gauge theories.

To conclude, there is a gauge at which gauge vacua with
different winding numbers Q can be characterized using
nonequivalent knots. Topological [118] and conformal [119]
field theories allow finding the relation between the invariants
for torus knots T �s; t� with Q � st and the properties of
minimal models M�s; t� with the central charge c�s; t� �
1ÿ 6�sÿ t�2=�st� in the case of coprime integers s and t. The
relation to monopoles and instantons [106, 120] that inter-
polate between knots of different types and connect vacua are
discussed in Sections 5.3 ± 5.6.

5.3 Skyrmions and knots
The construction establishing the interconnection between
instantons and knots [29] relates the instantons to solutions
of the Skyrme problem [121, 122]. For this reason, a
consistent detailed description should be preceded by a
discussion of the main properties of skyrmions and their
relation to instantons [123]. Following [124], it is convenient
to begin from the formulation of the Skyrme model [121,
122] and thereafter move to the discussion of a one-
parameter family of models that includes the Skyrme and
Skyrme ±Faddeev models.

Using the standard units of length and energy, the Skyrme
Lagrangian can be written as

L �
�
d3x

�
ÿ 1

2
Tr �RmR

m� � 1

16
Tr
ÿ�Rm;Rn��R m;R n��� :

�5:29�

This expression involves thecurrentRm � �qmU�U�depending
on an arbitrary matrix U taking values in the SU(2)
group. The equations of motion ensuing from Eqn (5.29)
are nonlinear equations for the matrix U�t; r� and have
the form of the current conservation law ~Rm �
R m � �1=4��R n; �Rn;R

m��:
qm

�
R m � 1

4

�
R n; �Rn;R

m��� � 0 : �5:30�

With the boundary condition U�r� ! Î2 as jrj ! 1, the
configuration giving the minimal energy is the unit square
matrix U�r� � Î2 for all r.

The chiral symmetry of the Skyrme Lagrangianÿ
SU�2� � SU�2��=Z2 ' SO�4� is consistent with the transfor-
mation U! O1UO2, where O1 and O2 are constant matrices
from the SU(2) group. The boundary condition U�1� � Î2
spontaneously breaks this chiral symmetry and reduces it to
the SO(3) symmetry that corresponds to the conjugation of
U! OUO y with O 2 SU�2�.

To establish the relation between the variables considered
in this review and the variables of the pion theory using the
Skyrme model, the field U�t; r� should be written as
U � s� ips, where s is the Pauli matrix and p � �p1; p2; p3�
stands for the triplet of pion fields. The function s describes
an additional field defined by the pionic field via the
constraint s 2 � pp � 1. This constraint arises because
U 2 SU�2�. Both the amplitude and the sign of s are
determined by the requirement of field continuity and
boundary conditions p�1� � 0, s�1� � 1. In terms of the
pion field p, the isospin transformation is given by p !Mp,
whereM is the SO(3)-matrix related to O 2 SU�2� as

Mij � 1

2
Tr �tiOtjO y� :
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Static U�r� field configurations are the critical points of the
functional

E � 1

12p2

�
d3x

�
ÿ 1

2
Tr �RmR

m� ÿ 1

16
Tr
ÿ�Rm;Rn��R m;R n���;

�5:31�

which defines energy in the Skyrme model. For convenience,
an additional factor 1=12p2 is introduced into this expression.

Taking the boundary condition into consideration, the
matrixU at a given time instant realizes the mapS3 7! S3 that
identifies the original sphere S3 with R3 [ f1g. Because the
homotopy group p3�S 3� � Z is nontrivial, the maps between
three-dimensional spheres are divided into homotopy classes
characterized by the integer

B � ÿ 1

24p2

�
d3x ei j k Tr �RiRjRk� ; �5:32�

which is the degree of the map U. The number B is a
topological invariant: it is conserved under continuous U
field deformations, including its time evolution. The con-
served topological chargeBwas identified by Skyrmewith the
baryon number.

The presence of a topological charge is in itself
insufficient for the existence of stable static configurations
because it leaves the requirement of the Derrick theorem
unsatisfied [30]. Similarly to (3.1), both terms in the expres-
sion for energy (5.31), E � E2 � E4, contain the second and
the fourth powers of spatial derivatives of U. After the
transformation of spatial coordinates r! lr, the expression
for energy takes the form E�l� � lE2 � �1=l�E4. Because
rescaling affects the two terms in opposite ways, the energy
becomes minimal at a finite value l 6� 0. This means that any
distribution has a well-defined scale. It is worth noting that
for any static solution, e.g., for the skyrmion representing the
minimum-energy configuration in a given topological sector,
E�m� must also be minimal when m � 1 and contributions to
the energy from the quadratic term and the fourth-power
term in derivatives are identical.

Not infrequently, the geometric description [125] of the
energy of static skyrmions proves helpful. As in the nonlinear
elasticity theory, the skyrmion field density energy depends
on the local extension associated with the mapU:R3 7!S3. In
this approach, it is convenient to introduce the stretch tensor
Di j � ÿ�1=2�Tr �Ri�Rj defined at each point r 2 R. The
expression for Di j is a symmetric positive definite 3� 3-
matrix that can be regarded as a quantity describing the
U-induced deformation. The image obtained under the action
of U of an infinitely small sphere with radius e centered at
r 2 R3 is (in the leading order in e) an ellipsoid with the main
axes El1, El2, El3, where l21, l22, and l23 are the three
nonnegative eigenvalues of the matrix Di j. The signs of l1,
l2, and l3 are chosen such that the product l1l2l3 is positive
(negative) if U preserves (reverses) the local orientation.

In terms of these eigenvalues, the energy E and the baryon
number can be obtained by integration of the respective
densities

E � 1

12p2
�l21 � l22 � l23 � l21l

2
2 � l22l

2
3 � l23l

2
1� ; �5:33�

B � 1

2p2
l1l2l3 : �5:34�

It follows from the inequality

�l1 � l2l3�2 � �l2 � l3l1�2 � �l3 � l1l2�2 5 0 �5:35�

and expression (5.33) that E5B. Therefore, the energy in the
Skyrme model has the lower bound [1]

jEj5 jBj : �5:36�

It is worth noting that the Skyrme ±Faddeev model in
(3.1) can be derived from the Skyrme model by bounding the
field by its values at the equatorial sphere S2 of the usual
SU(2)-target space. The relation between the field n and the
matrix U has the form U � inat a. Consideration of the
relation between the models naturally leads to the question
whether a one-parameter family of models exists that
contains the Skyrme and Skyrme ±Faddeev models as
particular limit cases. The construction establishing the
relation between these models is described below [126].

From the geometrical standpoint, we first consider the
general situation with a map F from a three-dimensional
space with coordinates xk and ametric g ik into another three-
dimensional space with local coordinates j a and a metric
Hab. The Skyrme energy density E � E2 � E4 of such a map is
defined [125] in terms of the differentials qjj a of F:

E2 � g2 TrD ; E4 � 1

2
g4
��TrD�2 ÿ TrD 2

�
; �5:37�

where the 3� 3-matrix D has the form

Db
a � g jk�qjj c�Hac�qkj b� ; �5:38�

while g2 and g4 are constants.
Let the target space of the map be a three-dimensional

sphere S3 with a one-parameter family of U(2)-invariant
metrics. This family is represented by the standard SO(4)-
invariant metric when the corresponding system is the usual
SU(2) Skyrme model. The family of metrics can be described
as follows.

Let z � �z1; z2�T define, as before, a complex 2-vector
subject to the relation z yz � 1. A totality of such vectors z
forms the sphere S3. The standard metric G on S3 corre-
sponds to the squared interval ds 2 � dz y dz. The family of
metrics parameterized by a real number a is constructed based
on the vector field x obtained from the 1-formo � ÿiz y dz by
raising its index with the help of the metric in ds 2 � dz y dz.
Then, the interval for the family of metrics H under
consideration may assume the form

ds 2 � dz y dz� a�z y dz��z y dz� : �5:39�

Similarly to G and o, the metric H is invariant under the
transformations z! Lz, where L 2 U�2�.

If metric (5.39) is positive definite at a < 1, then, in the
limit a � 0, it becomes degenerate and, at a � 1, becomes the
standard metric on CP1 ' S2. In other words, the one-
parameter family being considered includes the standard
sphere S3 at a � 0 and the standard sphere S2 at a � 1.
Therefore, the values of a from the range 04a4 1 describe
the interpolation between the Skyrme and Skyrme ±Faddeev
systems.

We consider [126] the Lagrangian L of the generalized
Skyrme model compatible with expression (5.31) for the
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energy density of static configurations. Let a vector z define
the SU(2) matrix as

U � z 1 ÿz � 2
z 2 z � 1

� �
: �5:40�

In terms of the current density Lm � iLa
mta � U y qmU satisfy-

ing the commutation relation �Lm;Ln� � Kmn � iKa
mnt

a (with
the Pauli matrices t a), the Lagrangian is

L � L2 � L4 ;

where

L2 � g2g
mn�La

mL
a
n ÿ aL3

mL
3
n� ; �5:41�

L4 � 1

8
g4g

mng bg��1ÿ a�Ka
mbK

a
ng � aK 3

mbK
3
ng

�
: �5:42�

The global U(2) symmetry with a parameter y corresponds to
the transformation U 7!OUG, where G is an SU(2) matrix
and O � exp �iys3� is the diagonal SU(2) matrix preserving
La
mL

a
n and L3

m.
The case of a � 1 yields the Skyrme ±Faddeev Lagran-

gian. One way to see this is to substitute the field z by the unit
vector field na � z yt az. Then, the Lagrangian L at a � 1 is
equal to

L � 1

4
g2�qmn�2 � 1

32
g4
ÿ
n �qmn� qnn�

�2
; �5:43�

i.e., is the Skyrme ±Faddeev Lagrangian.
Fields with a finite energy satisfy the boundary condition

U! U0 as r!1, whereU0 is a constantmatrix. These fields
are classified topologically based on the winding number
B � � B d3x, where B � eikl Tr �LiLkLl�=�24p2�. In the limit
a! 1, number B equals the Hopf invariant Q for S2-valued
n fields.

As emphasized earlier, constant values are consistent
with the choice of the scale for measuring the length and
the energy. For convenience, we can consider the field
z�xk� corresponding to the identical map of the sphere
S3 onto itself. The energy of this field is E �
2p2
��3ÿ a�g2 � �3ÿ 2a�g4

�
[126]. Under the assumptions

that g2 � 1=
�
4p2�3ÿ a�� and g4 � 1=

�
4p2�3ÿ 2a��, the field

z�xk� has the energy E � 1 at any a 2 �0; 1�. The family of
Skyrme solutions from this interval at different values of B
was considered in more detail in Ref. [126].

5.4 Polyakov holonomy
The discussion of the association between knotted config-
urations and instantons is convenient to begin from the
analysis of an auxiliary problem of obtaining a skyrmion
field from Yang ±Mills instantons. The interrelation
between the Skyrme and Skyrme ±Faddeev models consid-
ered in Section 5.3 may be helpful in answering the main
question.

The scheme for obtaining Skyrme fields from instantons
includes [123] the calculation of the Polyakov exponential,
i.e., holonomy of SU(2) instanton fields along the x 4 axis in
the Euclidean space R 4:

U�r� � T exp

� �1
ÿ1

A4�r; x 4� dx 4 ; �5:44�

where T denotes time-ordering and Am is the Yang ±Mills
instanton field potential in R 4. The component A4 of the
potential taking values in the SU(2) algebra, its exponential
has values in the SU(2) group; thus, U�r� realizes a map
R3 7! SU�2� as required for the static Skyrme field.

When scrutinizing the problem more thoroughly, one
needs to suppose that both integration limits, ÿ1 and �1,
refer to one point in S4 corresponding to a point at infinity in
R 4. Then, the holonomy is taken along a closed loop inS4 and
is almost gauge invariant. The residual action of the gauge
transformation g�x� consists of a similarity transformation of
U�r� with the constant element g�1�. This corresponds to a
certain isospin rotation of the Skyrme field. The boundary
condition U! I2 at jrj ! 1 is satisfied in this scheme
because the loop size in S4 tends to zero in this limit.

When considering calculations in a practical context, it
should be remembered that the requirement that holonomy
be taken along a closed curve implies that an additional factor
in the form of a transition function that sends the point �1
back to ÿ1 must be included in (5.44). For an instanton in
the 'tHooft ansatz [127], expression (5.44) is complete,
whereas in the ansatz [128], an additional factor ÿ1 is
needed. In the axial gauge, when A4 � 0, the holonomy is
entirely contained in the transition function at infinity.

Generally speaking, there is no need to use instanton
configurations of the Yang ±Mills field, expression (5.44)
remaining valid for an arbitrary field Am. However, if the
consideration is confined to instantons, the result is a large
and finite-dimensional family of the Skyrme fields U. Such
fields are not exact solutions of the equations of motion in the
Skyrme model, but some of them can fairly well approximate
the Skyrme distributions with minimal energy.

If the potentialAm is a self-dual Yang ±Mills field with the
instanton charge N, i.e., with the Pontryagin index

N � 1

8p2

�
Tr �F �mnFmn� d4x ;

where F �mn � �1=2�emnabFab, then the resulting Skyrme field has
the baryon number B � N. This inference can be verified by
specific examples while the general result comes from
continuity. In terms of N, the construction permits obtaining
the �8Nÿ 1�-dimensional family of Skyrme fields from the
8N-dimensional instanton family with charge N. One para-
meter is lost because instanton translation in the direction of
x 4 does not change the Skyrme field due to the integration
over x 4.

Regarded as the main example, the instanton with charge
1 given by the 'tHooft ansatz

r�x� � 1� l2

jxÿ aj2

[with Am � �i=2�tmnqn log r] with scale l and coordinates of
the center a � 0 generates the Skyrme field in a `hedgehog'
form: U�r� � exp fi f �r�nat ag or p a � na cos f �r� and
s � sin f �r�, with the function

f �r� � p

"
1ÿ

�
1� l2

r 2

�ÿ1=2#
:

Instantons are gauge invariant. Therefore, the arbitrary
parameter lmay be chosen such that it minimizes the energy
of the resultant Skyrme field. The corresponding scale and
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energy values are l2 � 2:11 and E � 1=243. The latter value
is only 1% higher than the energy of the true skyrmion
solution.

The main difficulty arising in this construction consists of
the computation of holonomy because the integration in
(5.44) is path-ordered. To calculate the path-ordered expo-
nential (5.44), it is necessary to introduce a quantity Û�r; x 4�
and solve the matrix ordinary differential equation
qÛ=qx 4 � A4Û along the real line x 4 2 �ÿ1;1� with the
coordinate r considered a parameter and with the initial
condition Û�r;ÿ1� � Î2. The Skyrme field U�r� can then be
obtained at the end-point of the x 4-flow: U�r� � Û�r;1�.

After the detailed discussion of the procedure for
constructing the basic solution in the problem of the relation
between the Skyrme configuration and instantons, it is easy to
see specific features of the construction establishing the place
of instantons in the Skyrme ±Faddeev problem. To have an
approximate knotted configuration with the Hopf invariant
Q, one only needs to apply [128] the standard Hopf map [see
(4.1)] to the approximate Skyrme configurations.

Let Xm � �t; x j� denote coordinates in the Euclidean
space R 4 and Am be the SU(2) gauge potential in R 4 with a
topological charge N. Furthermore, for a fixed point with
coordinates x j 2 R3, let a function U�x j� [i.e., Polyakov's
exponential (5.44)] be a Skyrme configuration with values in
the SU(2) gauge group. The use of the Hopf map from S3 to
S2 at this step yields theS2-valued field n�x j�. Specifically, the
2� 2-matrix Uab�x j� is used in the expression for the
stereographic projection

W�x j� � n1 � in2
1� n3

; �5:45�

under the assumption that W�x j� � U21�x j�=U11�x j�. With
the appropriately decreasing gauge potential Am at jXj ! 1
(as is the case in the forthcoming discussion), the function
W�x j� satisfies the required boundary condition W�x j� ! 0
as r! 0, and its Hopf invariant equals N.

The energy of a skyrmion system is invariant under
isospin transformations U 7!Lÿ1UL, where L 2 SU�2� is a
constant matrix. Such L provide three additional parameters
that do not affect the energy in the skyrmion case. BothL and
ÿL defining the same transformation, this parameter space is
SO(3). However, the Hopf map breaks the symmetry. There-
fore, in the general case, a transformation U 7!Lÿ1UL is
essential as, for example, for N � 2 [29].

The above construction holds for any gauge field.
However, its main advantage is the use of instantons leading
to highly significant configurations. Suffice it to say that
instantons may be regarded in this context as configurations
that interpolate between different knotted vacuum configura-
tions of the field n. There is a simple formula (cf. [129]) for the
instanton solutions at N � 1; 2 when A4 has the form

A4 � i

2
Oÿ1�qjO�tj ; �5:46�

where

O�X� �
XN� 1

a� 1

l2a
jXÿ Xaj2

: �5:47�

Here, Xa denotes the coordinates of different points in R 4.
Although A4 has poles at these points, the poles can be
removed. Then, the n�x m� configuration is a smooth function

in R3. This ansatz yields the N-instanton solution for any
N5 1 and gives all instantons in the corresponding topolo-
gical sectors at N � 1 and N � 2.

We consider the sector with N � 1 for simplicity. The
special limit l2 � jX2j ! 1 in expression (5.47) gives the
'tHooft function

O�X� � 1� l21
jXÿ X1j2

: �5:48�

The function O�X� depends on five real parameters �l1;X m
1 �.

Because we integrate over t, it may be assumed, without the
loss of generality, that t1 � 0. Having the solution at the
center of the three-dimensional space, we are left with a
single parameter, the scale factor l. In this case, holonomy
can be calculated analytically [123], yielding the Hopf
configuration

W � x� iy

zÿ ir cot f �r� �5:49�

with the function

f �r� � p
�
1ÿ r���������������

r 2 � l2
p �

: �5:50�

Expressions (5.49) and (5.50) give a one-parameter family
of linked configurations analogous to the `hedgehog' config-
uration in the Skyrme model. With an appropriate choice of
coupling constants, the energy is the same functional of f in
both systems. It is already known from the consideration of
the Skyrme model (cf. [123, 130]) that the configuration
energy E�l� � 0:428l� 0:903=l has the minimum value
E � 1:243 at l � 1:45. The case of axially symmetric distribu-
tions at N � 0 is discussed at greater length in Ref. [29].

5.5 The dual picture
In (5.8), in considering a particular case of relation (5.3) for
clarity, we factored out one scalar degree of freedom and the
n-field-associated degrees of freedom having a magnetic
interpretation. In the present section, based on the results in
Refs [131, 132], we discuss the factorization in the general
situation with a duality between `magnetic' and `electric'
variables in the Yang ±Mills theory at large distances. The
decomposition of the degrees of freedom proposed in
Ref. [131], which includes the Abelian scalar multiplet with
two complex scalar fields, besides the univector field, allows
the natural electrical interpretation.Magnetic variables give a
relativistic version of the Heisenberg model. Such a factoriza-
tion realizes the symmetry between electric and magnetic
variables and leads to a dual picture for the corresponding
phases of the theory. In this case, factorization of the degrees
of freedom proves to be consistent with the fact that the
physical spectrum of states of the theory contains confining
strings arranged into stable knotted solitons.

Decomposition (5.3) [94, 95] entails the necessity of using
the unit magnetic vector field. However, string-like excita-
tions of gauge theory must correspond to variables with the
electric interpretation [105, 104]. This explains why a new
ansatz differing from (5.3) is introduced in Ref. [131] to
represent the gauge field. The variant of the decomposition
proposed in [131] contains two different unit vector fields.
These variables enter the action in a symmetric way such that
their introduction leads to a dual picture.
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The substitution of independent variables in the case of
the four-dimensional SU(2) Yang ±Mills theory (when using
compact variables) leads to structures of type (5.1) and
includes the following steps [131]. In the maximally Abelian
gauge [105, 106], the Cartan component A3

m of the SU(2) field
behaves as an Abelian gauge field, whereas the field
A�m � A1

m � iA2
m, together with its complex-conjugate part-

ner, behaves under the Abelian gauge transformations as
charged vector fields do. Two vector near-diagonal fields A1

m
and A2

m determine the two-dimensional plane in the four-
dimensional Euclidean space ± time. This plane must be
parameterized with the help of vectors e am, a � 1; 2 that
satisfy the ortonormalization conditions e ame

b
m � dab and

define a basis in the plane.
When using the variables eam, the degrees of freedom in the

components of Aa
m may be factored as

Aa
m �Ma

be
b
m : �5:51�

Two near-diagonal components of the potential Aa
m describe

eight degrees of freedom. The right-hand side of (5.51)
contains nine degrees of freedom because the matrix Ma

b

has four independent components and the two normalized
vectors eam have five independent components. However,
there is also the internal SO�2� � U�1� rotational invariance
between Ma

b and e am. Namely, if the vectors e am at a fixed
value of the index m are rotated as e am ! O a

be
b
m, decomposi-

tion (5.51) remains unaltered under the Ma
b transformation

from the right with the help of the same matrix O a
b. This

gauge invariance being taken into account, the right-hand
side of expression (5.51) actually contains eight independent
field degrees of freedom.

By introducing the combination

em � 1���
2
p �e1m � ie 2m� ; �5:52�

which satisfies the conditions

e2 � 0 ; ee� � 1 ; �5:53�
the factored degrees of freedom in (5.51) may be represented
as

A1
m � iA2

m � ic1em � ic2e
�
m : �5:54�

Here, the four matrix elementsMa
b are redistributed into two

complex scalar fields c1 and c2.
The diagonal SU(2) gage transformation leads to

A3
m � Am ! Am ÿ qmx ; �5:55�

with both fields c1 and c2 multiplied by the common phase,

c1; 2 ! exp �ix�c1; 2 ; �5:56�

while e am remains unaltered. These expressions describe the
usual electric Abelian gauge transformation with the elec-
trically charged c1; 2 fields.

On the other hand, internal U(1) rotations lead to

em ! exp �ÿiz� em �5:57�

and

c1 ! exp �iz�c1 ; c2 ! exp �ÿiz�c2 : �5:58�

In this case, the decomposition is unaffected and the
composite vector field

Cm � ie qme� �5:59�

undergoes a transformation according to the law

Cm ! Cm ÿ qmz : �5:60�

For this reason, Cm may be regarded as a gauge field for
internal rotations. Specifically, transformation (5.60) may be
interpreted as an axial or magnetic U(1) gauge transforma-
tion.

The real antisymmetric tensor

Gmn � i�eme�n ÿ ene
�
m � ; �5:61�

constructed with the help of complex vector (5.52) is invariant
under electric and magnetic transformations. Its use allows
introducing electric and magnetic combinations of the form

Ek � Gk0 ; Bk � 1

2
eklmGlm : �5:62�

In the approach proposed in Ref. [131], the two fields

u � ~E � ~B ; v � ~E ÿ ~B �5:63�

are independent three-component unit vectors. Taking (5.61)
into consideration, em can be expressed via the u and v vectors
as

em � exp �if����
2
p

�
e0;

1

2e0

�
u� v� i�u� v�	� ; �5:64�

where f is the phase of the em field zeroth component. The
normalization condition (5.53) gives e0 �

�������������
1� uv
p

for the
modulus. Magnetic gauge field (5.59) expressed through the
unit vectors u and v acquires the form

Cm � 1

1� uv
�qmu� qmv� �u� v� � 2qmf ; �5:65�

which identifies f as a magnetic phase.
To write the Yang ±Mills Lagrangian in new terms, we

define two complex vectors

Um � exp �if� qmu
ÿ
v� i�u� v���������������������
1ÿ �uv�2

q ; �5:66�

Vm � exp �if� qmv
ÿ
u� i�u� v���������������������
1ÿ �uv�2

q �5:67�

and, assuming that r 2 � jcj2, the three-component unit
vector

t � 1

r 2
�c �1 ;c �2 � r

c1

c2

� �
: �5:68�

This vector is invariant under electric gauge transformation
(5.56). Moreover, the component t3 is invariant under the
magnetic gauge transformation, while the other two compo-
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nents transform as

t� � 1

2
�t1 � it2� ! exp ��2ix� t� : �5:69�

Using the above variables and definitions and following
[131], we rewrite the Yang ±Mills Lagrangian with a partly
fixed gauge [104, 105] for the near-diagonal components Aa

m
with respect to the diagonal Cartan components Am � A3

m of
the gauge field as

L � 1

4
�F a

mn�2 �
1

2

��qmdab ÿ e abAm�Ab
m

�2
; �5:70�

where Fmn � qmAn ÿ qmAn. Substituting the gauge field written
in the new variables in Eqn (5.70) gives the following
expression for the gauge-fixed Lagrangian

L � L1 � L2 � L3 ;

L1 � 1

4
F 2
mn � jDab

m cbj2 �
1

8

ÿjc1j2 ÿ jc2j2
�2
; �5:71�

L2 � 1

2
r 2
ÿjqmuj2 � jqmvj2�� 1

2
r 2tÿUmVm � 1

2
r 2t�U �mV

�
m ;

�5:72�
L3 � 1

2
r 2t3FmnGmn : �5:73�

Expressions (5.71) ± (5.73) should be supplemented by
the Lagrangian for ghosts necessary to compute radia-
tion corrections. In representation (5.71), Dab

m �
dab�qm � iAm� ÿ is ab

3 Cm is a U�1� �U�1�-covariant variable.
Indeed, expressions (5.71) ± (5,73) are invariant with respect
to both the electric U(1) gauge group and the internal
magnetic U(1) group.

We introduce the vector field

Bm � Am � i

2r 2

�
caD̂

ab

m
�cb ÿ �caD̂

ab

m cb

� � Am � i

2r 2
Jm ;

�5:74�

where D̂
ab � dabqm ÿ is ab

3 Cm is the magnetic covariant deri-
vative, which is therefore equal to Dab

m with the field Am

eliminated. Then, the Bm field is invariant under the electric
U(1) gauge transformation.

Using definition (5.74), the electric U(1) gauge structure
can be removed from Eqns (5.71) ± (5.73) by writing the
Lagrangian in terms of manifestly invariant quantities Bm

and t as [131]

L � L01 � L02 ;

L01 �
1

4
�Hmn �Mmn � Kmnt3�2 � 1

2
�qmr�2 � r 2�H i j

m tj�2

� r 2B 2
m �

1

8
r 4t 23 ; �5:75�

L 02 �
1

2
r 2
ÿjqmuj2 � jqmvj2�� 1

2
r 2
ÿ
tÿUmVm � t�U �mV

�
m

� t3�Hmn �Mmn � Kmnt3�Gmn
�
; �5:76�

where

H i j
m � di jqm � 2ei j 3Cm �5:77�

defines the action of the magnetic covariant variable on a
vector and

Hmn � qmBn ÿ qnBm ; �5:78�
Mmn � ei j ktiH j l

m tlH km
n tm ; �5:79�

Kmn � qmCn ÿ qnCm : �5:80�

The dual structure in (5.75) and (5.76) expressed in terms
of the electric t and magnetic u and v variables becomes
especially clear if the consideration is confined to the static
configurations in the ground state described by the Hamilto-
nian

H � H1 �H2 ;

H1 � 1

4
�Hi j �Mij � Ki jt3�2 � 1

2
�qir�2 � r 2�Hi t�2

� r 2B 2
i �

1

8
r 4t 23 ; �5:81�

H2 � 1

2
r 2jqimj2

� 1

2
r 2
ÿ
t�Q 2

i � tÿ �Q
2
i � t3ei j kmi�Hjk �Mjk � Kjkt3�

�
;

�5:82�
where m is a three-component unit vector taking real values,
whose components are equal to mi � ÿ�i=2�ei j kGj k in the
static limit. Besides (5.59), there is an additional component
vector Qi � im qie together with its complex-conjugate
partner. These vector fields are charged, Qi ! exp �ix�Qi,
with respect to the magnetic gauge transformations but
remain covariant under the electric gauge transformations.
In the static case m � u � v, Qi � Ui � Vi. In this limit, the
total rotation group SO�4� � SU�2� � SU�2� in the Eucli-
dean space reduces to the spatial rotation group SO(3).
Moreover, in the static limit, Ki j � m �qim� qjm�.

Expressions (5.75) and (5.76) or (5.81) and (5.82) resemble
(2.3) in many respects, including the potential term. For the
vector field t, the following expression for the potential energy
ensues from (5.75) and (5.76):

V�t� � 1

8
r 4t 23 �

1

2
r 2
ÿ
tÿUmVm � t�U �mV

�
m

� t3�Hmn �Mmn � Kmnt3�Gmn
�
: �5:83�

The same refers to the potential term for the vector m:

V�m� � ei j kmi�Hjk �Mjk � Kjkt3� t3 : �5:84�

Although these expressions look like the terms breaking the
global SO(3) rotational invariance of the subsystems asso-
ciated with vector fields t and m, there is the manifest SO(3)-
covariance.

The logarithmic corrections in the one-loop approxima-
tion result in the function r 2 acquiring a nontrivial nonzero
mean value hr 2i � L2 in the ground state, meaning that the
last two terms in expression (5.75) are responsible for the
vector fields Bm and t becoming massive. Further studies of
the properties of Lagrangian (5.75), (5.76) require the use of
gradient expansion in which one of the variables is first
regarded as `slow' and as determining the background;
thereafter, the response of the remaining `fast' variables is
evaluated in this background.
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Let the electric variable t in this Born ±Oppenheimer
approach change rapidly in the background of slow magnetic
variables. Taking the rotational symmetry in the four-
dimensional Euclidean space into consideration, it is natural
to set hui � hvi � 0. This accounts for the disappearance of
terms linear in u and v in the zeroth approximation and the
simplification of Lagrangian (5.75), (5.76) to the expression

L � 1

4
�Hmn � t qmt� qnt�2 � L2�qmt�2 � L2B 2

m �
1

8
L4t 23

� 1

2
L2�t�S� � tÿSÿ� ; �5:85�

where

S� � hqme qmei : �5:86�

It can be seen that expression (5.85) describes the
dynamics of the unit vector field t coupled to the massive
vector field Bm. The potential term is a combination of the
mass t3-term and the analog of the external magnetic field
acting on components t�. Such terms are always present at
L2 6� 0; the background associated with the field em is not
necessarily homogeneous. Also, it is worth noting that
expression (5.85) essentially supports the hypothesis accord-
ing to which the electrical phase of the SU(2) Yang ±Mills
theory in the infrared limit describes the dynamics of massive
knotted solitons.

The structure associated with the unit vector field also
arises from the Born ±Oppenheimer approximation for dual
magnetic variables regarded as fast variables in the back-
ground of slowly changing electric variables. In the zeroth
order, averaging the Lagrangian over t under the condition
that hti � 0 and ht 21 i � ht 22 i � ht 23 i � 1=3 yields [131]

L � 1

4
K 2

mn �
1

12
H 2

mn � L2B 2
m �

1

2
L2
ÿjqmuj2 � jqmvj2�

� 1

6
L2KmnGmn : �5:87�

If expression (5.87) is confined to static configurations, the
Hamiltonian takes the form

H � L2�qim�2 � 1

4
�m qim� qjm�2 � 1

12
H 2

i j

� L2B 2
i �

1

6
L2miei j khKjki : �5:88�

It can be seen that the exact global SO(3) symmetry is
broken when the background analog of the external magnetic
field ei j kKj k is nontrivial. The potential term once again
removes the massless states from the spectrum. Also,
comparison with (5.85) reveals an obvious duality between
the electric and magnetic variables. In particular, both sets of
variables lead to the description containing massive knotted
solitons in the spectrum.

5.6 Certain peculiarities of SU(3) fields
One of the main results in Ref. [131] considered in Section 5.5
is the proof that after a change of variables, the Lagrangian of
the SU(2) Yang ±Mills field in different phase states contains
structures of the form L1 � �qmn�2 and L2 �

ÿ
n �qmn� qnn�

�2
.

Their joint contribution leads to solutions in the form of
stable string-like solitons. The study in [131] wasmotivated by

the assumption that such excitations survive in the complete
Yang ±Mills theory. A natural question arising in this
approach is how to generalize the field n and the structure
L1 � L2 to higher-rank groups, e.g., to the SU(3) group, of
importance in quantum chromodynamics. Such a problem
was considered in Refs [132, 133].

One result in [132, 133] was the finding that duality of the
SU(2) gauge field cannot be directly translated into the case of
a higher-rank group, the reason being that the Lagrangian for
`electric' variables proves to be more tightly involved in the
change of SU(3) Yang ±Mills field parameterization com-
paredwith the Lagrangian for 'magnetic' variables. This leads
to the appearance of the `electric' variables having no
`magnetic' partners. It turns out that under reparameteriza-
tions, the SU(3) Lagrangian, unlike the Lagrangian of the
SU(2) Yang ±Mills field, is not invariant under the
Aa

m ! ÿAa
m transformation of its non-Cartan components

with the index a 6� 3; 8. This accounts for the appearance of
additional `electric' angular variables in the Lagrangian.

The SU(3) generalization of the dual parameterization of
the Yang ±Mills field proposed in Ref. [132] permits expres-
sing the Lagrangian of the SU(3) theory through three neutral
scalar fields ra, two massive vector fields, three complex unit-
length vectors e am allowing magnetic interpretation, and seven
angular electric variables.

In the case of the direct product of subgroups SU�2�
3
discussed above, the Lagrangian for the `electric' unit vectors
t a �a � 1; 2; 3� defined by angular variables has the following
form upon gradient expansion [132]:

Le � Le1 � Le2 ;

Le1 � 1

12

�X3
a� 1

�ÿ
t a �qmt a � qnt a�

�
ÿ ~r 2

a

X3
b� 1

ÿ
t b �qmt b � qnt b�

��2

�
X3
a� 1

r 2
a �qmt a�2

�
; �5:89�

Le2 � 1

12

�
s3
s2

�X3
a� 1

�qmt a � t a�3 t a3
4
ÿ
1ÿ �t a3 �2

� � 3qmo a

�2

� V�t1; t 2; t 3�
�
;

�5:90�

where

r 2
a � Aa

n
�Aa
n ; ~r 2

a �
Y
b 6� a

r 2
b

r 2
1 r

2
2 � r 2

1 r
2
3 � r 2

2 r
2
3

;

s3
s2
� r 2

1 r
2
2 r

2
3

r 2
1 r

2
2 � r 2

1 r
2
3 � r 2

2r
2
3

;

where the 1-form defining the angular variable o a is one of
the aforementioned variables, andV�t1; t 2; t 3� is the potential
part.

We also note that the following assertion [132] is true in
the exact formulation, i.e., before passing to the gradient
expansion. Variables that allow the `electric' interpretation do
not generate a Lagrangian analog for an object taking values
in the quotient space SU�3�=�U�1� �U�1��; instead, they give
rise to an expression based on Kirillov's forms for the direct
product of groups SU�2�
3. A number of proposals to apply
the formalism of the Kirillov forms in the case of the quotient
space SU�3�=�U�1� �U�1�� can be found in Ref. [133].

Magnetic variables in the SU(3) decomposition enter the
Hamiltonian in a simpler way. For example, the Hamiltonian
expanded in the derivatives of slowly changing mutually
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uncorrelated `electric' derivatives splits into three copies of
the modified SU(2) Hamiltonian of `magnetic' variables m a

and contains structures of the form

Z
ÿ
m �qkm� qlm�

�2 � l�qkm�2 � k
��qkm�m�3 m3

1ÿ �m3�2
�2

�5:91�

for each magnetic unit vector m a. Here, Z, l, and k are the
coupling constants. Although this Hamiltonian differs from
the SU(2) Hamiltonian considered above owing to the
presence of the last term, it retains the main properties of
SU(2). The possibility of the emergence of such a term in the
Hamiltonian of the system having string-like solutions has
been discussed in Ref. [134].

There are more reasons to thoroughly examine the
SU(3) case than the mere necessity of a detailed analysis
of the dual picture or the known phenomenological
considerations. An important problem [135] is the general-
ization of the geometrical interpretation of the Hopf
invariant. In the case of the SU(3) group, the role of the
target space F1 � SU�2�=U�1� � CP1 � S2 into which the
unit vector n�x; y; z� maps is played by the flag space
[136 ± 139] F2 � SU�3�=�U�1� �U�1�� or, as a particular
case, by the complex projective space CP2� SU�3�=U�2� �
SU�3�=�SU�2��U�1��. The flag space F2, being a homoge-
neous nonsymmetric compact KaÈ hler manifold, is realized as
a set of upper triangular matrices of the form

1 w1 w2

0 1 w3

0 0 1

 !
: �5:92�

The entries of this matrix are parameterized by three complex
functions w1, w2, w3. In the case of the symmetric space CP2,
w3 � 0. We recall for comparison that CP1 is realized as the
set of matrices having the form

1 w
0 1

� �

with w � tan �#=2� exp �ÿij�, where # andj are the angles of
the spherical system of coordinates parameterizing the
direction of the unit vector. The dimensions of the spaces F2

and CP2 are dimF2
� 8ÿ 2 � 6 and dimCP2 � 8ÿ 4 � 4. The

2-form H � da � ÿn �dn� dn�� used for the F1 space is
substituted here by the Kirillov 2-form in the orbital
interpretation of these spaces.

One of the problems is the search for an analog of the
linking magnetic lines. Such an analog may have the form of
pre-images of the codimension-2 cycles. We recall that
codimension is the difference between the dimensions of the
ambient and embedded spaces. Generalization of the Hopf
construction is obstructed by the fact that the 2-form Q for
the F2 and CP2 spaces satisfies the condition dO � 0, i.e., is
closed but not exact [140]. It may be said that O is an element
of the second cohomology group of these spaces. This means
that the 1-form, i.e., the analog of the gauge potential, can be
only locally introduced in the flag space F2 as a KaÈ hler
manifold [136]. In other words, direct generalization [141] of
expression (3.3) is possible only when neglecting the above
circumstance, manifested as singularities on the spaces F2 and
CP2, i.e., as the critical points [137] associated with the
vanishing of the wi functions [142]. A reassuring fact pointing
out the possibility of an analog of the Hopf invariant existing
and, simultaneously, the difference between the F2 and CP2

spaces, is that the homotopy group p3�F2� � Z, as well as
p3�CP1� � Z, is nontrivial, whereas p3�CP2� � 0. Also, it is
worthwhile to note that the nontriviality of p2�F2� � Z2

accounts for the presence of two different monopoles in the
theory. It may be hoped that the use of the results from knot
theory in higher-dimensional spaces [143] will help to resolve
the problem being considered.

6. Concluding remarks

This communication has been designed to review some results
of investigations into low-energy dynamics of excitations in
the theory of strongly correlated electron systems and in the
non-Abelian field theory. The problems of strong coupling, as
well as the approach to them [144] in these systems, are in
many respects analogous. The main purpose of applying the
available results to chromodynamic phenomenology [145,
146] is to compare the estimated energies of static knotted
configurations [23] with the mass of candidate glueball
particles.

The analysis of dynamics of the spin degrees of freedom in
condensed-matter systems was focused [15] on the hierarchy
of ground states. We paid most attention to the results
concerned with the essentially inhomogeneous states in
spatially three-dimensional systems and to the phenomena
associated with quasi-one-dimensional field configuration
links. In this analysis, the homogeneous boundary condi-
tions n�1� � �0; 0; 1� were assumed to be satisfied at spatial
infinity. Whenever boundary conditions are other than
homogeneous [31, 32], the expression for the Hopf invariant
becomes more complicated. In what follows, this phenom-
enon is discussed with special reference to the results reported
in Refs [31, 32, 147, 148]. Prior to this, however, the following
fact deserves consideration.

The boundary conditions fixing the characteristic values
of the momentum c and topological invariants L and Q are
determined not only by the values of the driving parameter
r0 of the model and the external magnetic field or the
rotation frequency of the system. Their physical meaning
and concrete values also depend on the spatial dimension-
ality of the manifold on which the model is defined. In the
�3� 0�-dimensional case with free energy (3.2), Hopf
invariant (3.3) is analogous to the Chern ± Simons action
�k=4p� � dt d2x emnlamqnal. This Abelian term in the action of
�2� 1�-dimensional systems describes the dependence of the
contribution of the nonlinear modes to the free energy on the
statistical parameter k. In the non-Abelian SU�N� case, the
value of the coefficient is shifted by the group rank value:
k! k�N. The coefficient k in the Chern ± Simons action has
the geometric meaning of the number of entanglements of the
excitation world lines. Specifically, as semi-fermion excita-
tions (the so-called semions) are permuted and returned to the
initial positions on the plane, the world lines entangle twice
and k � 2. For fermions, the world lines are not entangled
and k � 1 [149]. In the classical bosonic limit, when k4 1, the
statistical gauge field am entering the Chern ± Simons action
decouples from the field describing particle states. At k � 2,
statistical correlations of the nonlinear modes are of an
attractive character, and their greatest relative contribution
to the energy at k � 2 is estimated at a few percent [150, 151],
corresponding to several dozens or hundreds of degrees for
the characteristic energy values J � 0:1ÿ1 eV. Bearing in
mind the relationship between the dimensionalities of the
systems in their dynamical and statistical descriptions, the
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�2� 1�-dimensional case at k � 2 with open ends of the
excitation world lines is equivalent (the ends having been
identified) to the compact statistical �3� 0�-dimensional
example of the Hopf link with Q � 1.

The difference between the �3� 0�- and �2� 1�-dimen-
sional situations is due to the topological difference between
the n-field definition domains [31, 32, 147, 148]. When the
statistical sum is calculated both in planar systems and in
stratified systems in the static case (2.3) when they are
periodic in one of the spatial variables, one of the three
coordinates Ð the Matsubara variable Ð is also periodic.
This implies that instead of the sphere S3, which is the
domain of definition of the n field after the compactification
of R3, we are dealing with a tree-dimensional torus,
T2�1 � S2 � S1 or T3 � S1 � S1 � S1, and the correspond-
ing classes of maps. In this case, the meaning of the Hopf
invariant proves to be enriched [31, 32, 147, 148]. The Hopf
invariant for the three-dimensional torus T3 is defined
modulo 2q, where q is the largest common divisor of
numbers q1; q2; q3f g 2 Z, interpreted as the number of
skyrmions. Here, qi is the degree of the map T2 ! S2,
where T2 is the section of T3 with a fixed ith coordinate.
The four integers fqi;Qg, where the quantity Q is defined
modulo 2q, provide a complete homotopy classification [148]
of maps T3 ! S2, with p1

�
Mapq�S2 ! S2�� � Z2q and a

fixed degree of q [31, 32, 147]. For the torus T3, the Hopf
invariant is given by [47]

Q � 1

16p2
X3
i� 0

Qi ; �6:1�

Q3 �
�
d3x e mnlam qnal ; �6:2�

Q2 �
�
xm � 0

d2x e mnlqnbmal ; �6:3�

Q1 �
�
xm; n � 0

dx e mnl�Dnbm qlbm ÿ bmqlbn� ; �6:4�

Q0 � 2p
�
n1b1 � n2b2 � n3b3 � n1D1�b2 � b3�

� n2D2�b1 � b3� � n3D3�b1 � b2�
�
x��0; 0; 0� : �6:5�

The following notation is used in these equations. The
functions b1�y; z�, b2�x; z�, and b3�x; y� enter the definition
of boundary conditions at the faces of a three-dimensional
parallelepiped with sides L1, L2, and L3 in the respective
directions. For example, the boundary condition along the
x axis for the two-component function z parameterizing the
unit vector n�x; y; z� by the relation n̂ � nr� 2zz y ÿ 1 has the
form z�x � L1; y; z� � exp

�
ib1�y; z�

�
z�x � 0; y; z�. Similar

boundary conditions along the y and z axes are defined with
the help of functions b2�x; z� and b3�x; y�. The functions bm
satisfy the relations e mnlDmbn � 2pnl and are defined via
exp �ibm�, and hence bm � bm � 2p. In expression (6.5),
Dmbn � bnjxm �Lm

ÿ bnjxm � 0 and nn is the integer-valued vector
characterizing maps T2 ! S2, where T2 is a section of T3

with a fixed ith coordinate.
The geometrical meaning of the modified Hopf invariant

(6.1), an integer from the range f0; 2qÿ 1g, remains as before.
It is the linking index of pre-images of two arbitrary points of
the map T3 ! S2. The cases of T2�1 and T3 are characterized
by physically different boundary conditions changing with
parameter variations, e.g., upon an increase in the angular
rotational velocity of the superfluid phase in He3 [31, 3]. The

discussion of boundary conditions and other problems
related to the effect of links of quasi-one-dimensional
configurations on phenomena in field theory and condensed
matter physics can be found in the works of A I Niemi,
R SWard, I MCho, E Babaev, and other authors not cited in
the present review and available from the Los-Alamos
Preprint Archive.
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7. Appendix. Gain of free energy
in the current state

The following chain of inequalities is used to prove inequality
(3.5):

jLj < kck6kHk6=5 4 61=6


�H� c�



2
kHk6=5

4 61=6


�H� c�



2
kHk2=31 kHk1=32

4 �32p2�ÿ4=3F 1=2
c F 2=3

n F 1=6
n � �32p2�ÿ4=3F 1=2

c F 5=6
n : �7:1�

Here, kHk p �
ÿ�

d3x jHj p�1=p. We used the Hoelder inequal-
ity kf gk4 kfk pkgkq with 1=p� 1=q � 1 at the first and third
steps. The second step under the condition Hc � 0 implies the
Ladyzhenskaya inequality kck6 4 61=6k�H� c�k2 [152]. The
fourth step follows after the comparison of the terms
k�H� c�k and kHk with the terms Fn and Fc. The last equality
describes individual contributions from the n- and c-parts of
the free energy to the final result. Assuming a � c brings us
back to the Vakulenko and Kapitanskii result [27] (see also
Ref. [153]).

Similarly, the use of a chain of Hoelder and Ladyzhen-
skaya inequalities leads to

F 1=2
n F 5=6

c 5 �16p2�4=3jL0j :

The coefficient in this inequality differs from that in
expression (3.5) due to the presence of the factor 1=4 in front
of the first term in the free energy Fc.
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