
Abstract. The historical development of the Nambu ± Jona-
Lasinio (NJL) model is briefly reviewed. The SU�2� � SU�2�
and U�3� �U�3� local quark NJL models are considered. The
mechanisms responsible for spontaneous breaking of chiral
symmetry and vector dominance are exhibited. The local NJL
model is adequate in describing the mass spectrum and the
strong and electroweak decay modes of the four ground-state
meson nonets: pseudoscalar, scalar, vector, and axial-vector.
The applicability of the model to mesons in a hot dense medium
is discussed. It is shown that solving problems related to the
description of meson radial excitations and quark confinement
requires the nonlocal extension of the NJL model. The primary
emphasis of this review is on themethods that are used in various
versions of the NJL model. The reader is referred to the cited
works for what these models predict in low-energy hadron
physics.

1. Introduction

In 1961, Nambu and Jona-Lasinio (NJL) proposed a
model in which an attempt was made to explain the
origin of the nucleon mass by the spontaneous breaking
of chiral symmetry [1]. The model was formulated in terms
of nucleons, pions, and scalar s-mesons. 1 We should
recall that the fundamental theory of strong interactions,

namely, quantum chromodynamics (QCD), had not yet
been constructed at that time.

Fifteen years later, the Japanese physicists T Eguchi and
K Kikkawa [4, 5] reformulated this model in the language of
quarks. It is opportune to emphasize that phenomenological
quark models are based on the assumption that all hadrons
are formed of constituent quarks with a mass m � 300 MeV,
whereas the QCD theory deals with lighter current quarks
with a mass m 0 � 5ÿ7 MeV. It has been shown in Refs [4, 5]
that light current quarks transform to massive constituent
quarks as a result of spontaneous chiral symmetry breaking.
However, their authors considered only the simplest version
of the Nambu ± Jona-Lasinio model in the chiral limit of
m 0 � 0, where all masses of pseudoscalar mesons are equal to
zero.

In 1982,MKVolkov andDEbert and co-workers started
to consider a more realistic version of the quark NJL model
with m 0 6� 0 [6 ± 8]. It enabled them to describe the mass
spectrum, internal properties, strong and electroweak inter-
actions of scalar, pseudoscalar, vector, and axial-vector
meson nonets [9, 10]. In 1984, T Hatsuda and T Kunihiro
applied this model to the description of hadrons in a hot and
dense medium [11, 12].

After 1986, the NJL model gained even greater popular-
ity, with more than 600 papers devoted to its different aspects
being published. For this reason, it is impossible to present a
comprehensive list of pertinent references. We only mention
here those countries where the NJL model particularly
received much attention.

These include Germany and Japan, where the model of
interest was applied to the description of low-energy hadron
physics. It also attracted the attention of many researchers in
Great Britain, Belarus, Italy, China, Portugal, USA, Uzbeki-
stan, Ukraine, France, SAR, and other states.

In this country, the NJL model was most extensively
developed in Dubna (Joint Institute for Nuclear Research),
Moscow (Institute of Theoretical and Experimental Physics,
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MK Volkov, A E Radzhabov Joint Institute for Nuclear Research,

141980 Dubna, Moscow region, Russian Federation

Tel. (7-49621) 63-176, (7-49621) 63-143

E-mail: volkov@theor.jinr.ru, aradzh@thsun1.jinr.ru

Received 21 September 2005, revised 29 December 2005

Uspekhi Fizicheskikh Nauk 176 (6) 569 ± 580 (2006)

Translated by Yu VMorozov; edited by A Radzig

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 12.39. ± x, 12.40. ± y, 25.75.Nq

The Nambu ± Jona-Lasinio model and its development

M K Volkov, A E Radzhabov

DOI: 10.1070/PU2006v049n06ABEH005905

Contents

1. Introduction 551
2. The SU�2� � SU�2� Nambu ± Jona-Lasinio model 552

2.1 Pseudoscalar and scalar mesons; 2.2 Vector and axial-vector mesons; 2.3 pÿa1 transitions; 2.4 Numerical

estimations

3. The U�3� �U�3� Nambu ± Jona-Lasinio model 554
4. Vector dominance 556
5. Mesons in a hot and dense medium 557
6. First radial excitations of mesons 558
7. The nonlocal Nambu ± Jona-Lasinio model and quark confinement 559
8. Conclusion 560
9. Appendix. Mass formulas in the U�3� �U�3� Nambu ± Jona-Lasinio model 560

References 560

Physics ±Uspekhi 49 (6) 551 ± 561 (2006) # 2006 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

1 It is worth noting that two papers devoted to the solution of similar

problems were published in the same year of 1961 by V G Vaks and

A I Larkin [2] in Zh. Eksp. Teor. Fiz., and by B A Arbuzov, A N Tavkhe-

lidze, and R N Faustov [3] in Dokl. Akad. Nauk SSSR.



Mathematical Institute, RAS), Protvino (Institute of High-
Energy Physics), and St.-Petersburg (St.-Petersburg State
University, B P Konstantinov Petersburg Institute of
Nuclear Physics, RAS and St.-Petersburg State Polytechni-
cal University).

It should be noted that the NJL model is now widely
employed in various applications not only in elementary
particle physics but also in nuclear physics.

One of the basic problems is the search for the
possibility of obtaining an effective NJL Lagrangian taking
advantage of the first principles of the fundamental QCD
theory. An interesting attempt to this effect was undertaken
in Ref. [13] (see also Ref. [14]), where the SU�2� � SU�2�-
symmetric four-quark interaction in the scalar and pseudos-
calar channels was obtained by using the instanton model of
the QCD vacuum. However, it proved difficult, with this
approach, to describe vector and axial-vector mesons or to
construct a U�3� �U�3�-symmetric NJL model. Here, a
definitive solution has yet to be found.

The present review is designed to consider the formulation
and applications of the NJL model for the description of the
low-energy physics of mesons. Also, the NJL model is
successfully used to describe barions. These particles may be
regarded as quark ± diquark states [15, 16], on the one hand,
and as chiral solitons [17 ± 20], on the other hand.

The review outline is as follows. Section 2 gives the
formulation of the simplest SU�2� � SU�2� NJL model
describing a single scalar s-meson and three pions. This
model is used to demonstrate the spontaneous breaking of
chiral symmetry and the fulfillment of the low-energy Gold-
berger ±Treiman and Gell-Mann ±Oakes ±Renner (GMOR)
relations. Then, vector �r� and axial-vector �a1� mesons are
included in the model and account is taken of additional
renormalization of pion fields due to pÿa1 transitions.
Section 3 is focused on the generalization of the NJL model
and its extension to the chiral U�3� �U�3� group. The
't Hooft interaction is introduced to resolve the UA�1�-
problem. Section 4 illustrates the fulfillment of vector
dominance in the U�3� �U�3� NJL model following the
introduction of electromagnetic interactions. Section 5 deals
with the NJL model in application to the description of
mesons in a hot and dense medium. The first radial
excitations of mesons are considered in Section 6, and a
nonlocal version of the NJL model (with allowance for
quark confinement) in Section 7. The review is concluded by
a discussion of the feasibility of combining the QCD
perturbation theory and the phenomenological NJL model
for the description of internal properties and interactions of
mesons in a broad energy range.

2. The SU�2� � SU�2� Nambu ± Jona-Lasinio
model

2.1 Pseudoscalar and scalar mesons
In order to illustrate the main properties of the NJL model,
we shall first consider its simplest version describing one
scalar and three pseudoscalar mesons. The initial four-quark
SU�2� � SU�2�-symmetric Lagrangian has the form

L��q; q� � �q�x��iq̂x ÿm 0�q�x�

� G

2

�ÿ
�q�x�q�x��2 � ÿ�q�x�it ag 5q�x��2� ; �1�

where �q�x� � ��u�x�; �d�x�	 are the fields of u- and d-
antiquarks, m 0 is the current quark mass, G is the four-
quark coupling constant, t a denotes the Pauli matrices, and
g 5 is the Dirac matrix.

Let us demonstrate now how meson fields are introduced
and phenomenological meson Lagrangians obtained. Using
the generating functional

Z��Z; Z� � 1

N

�
D�qDq exp

�
i

�
d4x

�L��q; q� � Z�q� �Zq
��
; �2�

this procedure can be implemented by means of identical
transformations in three stages. The initial four-fermion
interaction can be rewritten by introducing Gaussian inte-
grals over auxiliary bosonic fields p, s:

Z��Z; Z� � 1

N 0

�
D�qDqDsDp

� exp

�
i

�
d4x

�L0��q; q; s; p� � Z�q� �Zq
��

;

L0��q; q; s; p� � �q�x�ÿiq̂x ÿm 0 � s�x� � ig 5t ap a�x��q�x�
ÿ
ÿ
s�x��2 � ÿp a�x��2

2G
;

�3�
Z��Z; Z� � 1

N 0

�
Ds 0 Dp

� exp

�
i

�
d4x

�
L00�s 0; p� ÿ

�
d4y �Z�x�S�x; y� Z�y�

��
;

L00�s 0; p� � ÿ
ÿ
s 0�x��2 � ÿp a�x��2

2G
ÿ i Tr �lnSÿ1�x; y��

x� y
;

Sÿ1�x; y� � �iq̂x ÿm� s 0�x� � ig 5t ap a�x�� d�4��xÿ y� :

In the beginning, there is a purely quark Lagrangian L
under the sign of the exponent. Then, meson fields enter L0
along with quark ones. Finally, at the last stage of
integration over the quark fields, only the observed meson
fields remain in L00.

The passage from L0 to L00 resulted in vacuum
restructuring due to the spontaneous violation of chiral
symmetry, with the current quark mass matrix being
substituted by the matrix of constituent quark masses.
This substitution is due to the fact that the vacuum
expectation of the initially introduced scalar field has a
nonzero vacuum average: hsi0 � s0 6� 0. Therefore, it is
necessary to make a shift of this field in order to obtain the
physical scalar field: s 0 � s� s0. Exclusion of the terms
linear in the field s 0�x� from the Lagrangian produces the
mass gap equation

dL00
ds 0

����
s 0 � 0

� 0 ; ) m 0 � m� s0 � m
ÿ
1ÿ 8GIL1 �m�

�
: �4�

This equation describes a spontaneous breaking of chiral
symmetry. As a result, light current quarks with a mass
m 0 add on to the vacuum expectation of the field s�x� and
transform to massive constituent quarks with a mass m.
Notice that all basic physical quantities in the NJL model
are expressed through quadratically and logarithmically
divergent integrals IL1 �m� and IL2 �m� emerging in the
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consideration of quark loops:

IL1 �m� �
Nc

�2p�4
�
d4Ek y�L2 ÿ k 2�

m 2 � k 2

� Nc

�4p�2
�
L2 ÿm 2 ln

�
L2

m 2
� 1

��
;

�5�

IL2 �m� �
Nc

�2p�4
�
d4Ek y�L2 ÿ k 2�
�m 2 � k 2�2

� Nc

�4p�2
"
ln

�
L2

m 2
� 1

�
ÿ
�
1�m 2

L2

�ÿ1#
;

where the integrals are given in Euclidean space,Nc � 3 is the
number of quark colors, and L is the ultraviolet (UV) cut-off
parameter that defines the range of applicability of the local
NJL model.

The diagrams shown in Fig. 1 define the free meson
Lagrangian for pseudoscalar and scalar fields:�

ÿ 1

2G
� 4IL1 �m� � 2p 2IL2 �m�

�
� ÿpa� p� pa�ÿp� � s 0� p� s 0�ÿp��
ÿ 8m 2IL2 �m� s 0� p� s 0�ÿp�

� 1

2
� p 2 ÿM 2

p � pR
a � p� pR

a �ÿp� �6�

� 1

2
� p 2 ÿM 2

s� sR� p� sR�ÿp� ;

pR
a � p� � gpqqpa� p� ; sR� p� � gsqqs� p� ;

M 2
p � g 2

pqq

�
1

G
ÿ 8IL1 �m�

�
; M 2

s �M 2
p � 4m 2 ;

where gpqq � gsqq �
ÿ
4IL2 �m�

�ÿ1=2
are the renormalization

constants of meson fields that provide correct coefficients of
the kinetic terms in the meson Lagrangian. In the local NJL
model, only divergent parts of the integrals IL1 �m� and IL2 �m�
are taken into account in the derivation of the free
Lagrangian; the momentum dependence of these integrals is
discarded in conformity with the assumption of interaction
locality. It is only under this condition that an opportunity
appears to conserve the chiral-symmetric structure of the
Lagrangian describing meson ±meson interactions [see for-
mula (26) in Section 3].

The weak pion decay p! mn is described by the quark
loop presented in Fig. 2. This loop is expressed through the

integral IL2 �m�, resulting in the Goldberger ±Treiman (GT)
relation at the quark level [9]:

Fp � gpqqm

�
4IL2 �m� �

1

g 2
pqq

�
� m

gpqq
; �7�

where Fp � 93 MeV is the weak pion decay constant [21].
It can be shown that formulas (6) give theGMOR relation

according to which the pion mass squared is proportional to
the first power of the current quark mass. Indeed, the
following expression for the pion mass can be obtained from
Eqns (4), (6), and (7):

M 2
p � g 2

pqq
m 0

Gm
� m 0m

GF 2
p
� 2

m 0h�qqi
F 2
p
�O

ÿ�m 0�2� ; �8�

where h�qqi � ÿ4mIL1 �m� is the quark condensate. Thus, the
pion becomes a Goldstone particle with zero mass in the
chiral limit �m 0 � 0�.

2.2 Vector and axial-vector mesons
The quark Lagrangian corresponding to the vector and axial-
vector mesons has the form

L��q; q� � ÿGV

2

�ÿ
�q�x� gmt aq�x��2 � ÿ�q�x� gm g 5t aq�x��2� ;

�9�

where GV is the respective four-quark interaction constant.
This interaction is possible to bosonize by introducing

Gaussian integration over vector and axial fields interacting
with vector and axial quark currents, respectively. At the
second stage of bosonization, this Lagrangian takes the form

L0��q; q; r; a1� � �q�x�ÿgm t arm
a �x� � gmg 5t aa1ma�x�

�
q�x�

�
ÿ
rm
a �x�

�2 � ÿa1ma�x��2
2GV

; �10�

where rm
a , a1

m
a are the fields of vector �r� and axial-vector �a1�

mesons. When passing to the second bosonization stage
(during integration over the quark fields), the vector and
axial-vector fields are combined with the scalar and pseudo-
scalar fields in the fermion determinant

L00�s 0; p; r; a1� � ÿ
ÿ
s 0�x��2 � ÿp a�x��2

2G

�
ÿ
rm
a �x�

�2 � ÿa1ma�x��2
2GV

ÿ i Tr
�
lnSÿ1�x; y��

x� y
;

Sÿ1�x; y� � �iq̂x ÿm� s 0�x� � ig 5t ap a�x�
� gm t a rm

a �x� � gmg 5t aa1ma�x�
�
d�4��xÿ y� :

It is worth noting that the description of vector and axial-
vector mesons requires the use of gauge-invariant regulariza-
tion [9, 10]. For the Lagrangian of free vector and axial-vector
mesons, it gives�

ÿ 1

2GV
�

����
2

3

r
p 2IL2 �m�

��
g mn ÿ p mp n

p 2

�
� ÿrm

a � p� rn
a �ÿp� � a1

m
a� p�a1na�ÿp��

�
���
6
p

IL2 �m� a1ma� p� a1ma�ÿp� : �11�

a b

Figure 1. Diagrams defining mass and renormalization of a pion and

s-meson.

p

Figure 2.Weak pion decay.
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The quark loop with two vector vertices defines the kinetic
term of the vector meson and the renormalization constant of
vector field grqq. As a result, a simple equation relating gsqq to
grqq emerges [5 ± 7, 9]:

grqq �
���
6
p

gsqq : �12�

The r-meson mass is given by

M 2
r �

g 2
rqq

4GV
: �13�

Renormalization of the a1-meson field yields ga1qq � grqq,
and the a1-meson mass is expressed as

M 2
a1
�M 2

r � 6m 2 : �14�

2.3 pÿa1 transitions
The NJL model comprises nontrivial quark loops with
pseudoscalar and axial-vector vertices, which describe pÿa1
transitions [9, 22 ± 25]. These transitions lead to the appear-
ance of nondiagonal terms of the type

���
6
p

ma1
m
a�x� q m

x pa�x� in
the meson Lagrangian. In order to exclude these terms, it is
necessary to redefine the axial-vector field as

a1
m
a�x� � a 01

m
a�x� ÿ

���
6
p

m

M 2
a1

q m
x pa�x� : �15�

This gives rise to an additional contribution to the kinetic
terms and to the modification of constant gpqq. Now, this
constant is not equal to gsqq:

gpqq � Z 1=2gsqq ; Z �
�
1ÿ 6m 2

M 2
a1

�ÿ1
: �16�

Interestingly, the allowance for pÿa1 transitions does not
affect the Goldberger ± Treiman relation. Indeed, the dia-
gram shown in Fig. 2 acquires an additional factor Z that is,
however, cancelled in the calculation of an additional process
with an intermediate a1-meson [9].

2.4 Numerical estimations
Let us define the model parameters. Equations (7), (12), and
(16) may be used to find a constituent quark mass from the
observables Fp � 93 MeV, grqq � 6:14 [this value corre-
sponds to the experimental width of the r-meson: Gr! pp �
g 2
rqq�M 2

r ÿ 4M 2
p �3=2=48pMr � 150 MeV], and Ma1 �

1:26 GeV [21]:

grqq �
���
6
p

gsqq �
�����
6

Z

r
gpqq �

�����
6

Z

r
m

Fp
�

���������������������������
6

�
1ÿ 6m 2

M 2
a1

�s
m

Fp
:

�17�
Whence it follows that

m 2 �M 2
a1

12

 
1ÿ

�������������������������
1ÿ 4g2rqqF

2
p

M 2
a1

s !
) m � 280 MeV :

�18�

The parameter L can be found from the equation

grqq �
�������
6

4I2

r
) L � 1:25 GeV ; �19�

while G and GV from the equations (6), (13) for pion and
r-meson masses that gives the values of G � 4:9 GeVÿ2 and
GV � 16 GeVÿ2. The value of the current quark mass is
determined from the mass gap equation (4) as m 0 � 3 MeV.
The quark condensate equals h�qqi � ÿ�305 MeV�3. Notice
that the thus obtained overestimated value for the quark
condensate is consistent with the underestimated current
quark mass; hence, the correct pion mass value is in
conformity with the GMOR relation (8). Thus, these two
unobservable quantities do not distort the correct relation
between the observable quantities Mp and Fp.

It appears from this line of reasoning that the s-meson
mass is 580 MeV, and the width of its decay into two pions2

equals 500 MeV.

3. The U�3� �U�3� Nambu ± Jona-Lasinio
model

In order to introduce strange mesons into the model, it is
necessary to replace the Pauli matrices ti �i � 1; 2; 3� by the
Gell-Mann matrices li (i � 0; . . . ; 8, where l0 �

��������
2=3

p
1). It

appears appropriate to recall the UA�1�-problem related to
the correct description ofZ- andZ 0-mesonmasses. Indeed, by
using a U�3� �U�3�-symmetric Lagrangian, one obtains
`ideal' singlet ± octet mixing for pseudoscalar, isoscalar
mesons. Then, one of these states contains only u- and
d-quarks, and the other a strange quark alone. This situation
is in conflict with experimental findings.

In order to solve this problem, it is necessary to add the
't Hooft interaction [27] to the NJL Lagrangian [15, 16, 28,
29]. The addition yields a model describing scalar and
pseudoscalar meson nonets, which is composed of two
Lagrangians3: the standard U�3� �U�3�-symmetric (in the
chiral limit) Lagrangian LNJL, and the 't Hooft six-quark
Lagrangian L tH:

LNJL � �q�iq̂ÿm 0�q� G

2

X8
i� 0

���qliq�2 � ��qig5liq�2� ;
�20�

L tH � ÿKÿdet ��q�1� g5�q
�� det

�
�q�1ÿ g5�q

��
;

where �q � f�u; �d; �sg are the antiquark fields, and m 0 is the
diagonal current quark mass matrix with the elements m 0

u ,
m 0

d , m
0
s �m 0

u � m 0
d �.

It follows from numerical estimations (see below) that the
principal interaction here is the four-quark Nambu ± Jona-
Lasinio interaction, whereas the analogous diagonal terms in
the 't Hooft interaction provide only small corrections to the
principal NJL interaction. However, the 't Hooft interaction
comprises nondiagonal terms responsible for u-, d-, and
s-quark mixing. These terms are crucial for the correct
description of Z- and Z 0-meson masses, taking into account
the deviation from their ideal mixing and thus facilitating the
solution to the UA�1�-problem. Therefore, only terms
containing two quark ± antiquark pairs may be retained in

2 It is noteworthy that this value may be much smaller if pÿa1 transitions
are taken into account [26].
3 LNJL and L tH are of different natures. Indeed, the effects of UA�1�-
symmetry breakingmust disappear in the limitNc !1 [30], in agreement

with a Nc-fold suppression of the 't Hooft interaction compared with the

four-quark one. It is worth noting that such a model may pose a problem

ensuing from vacuum instability. Nevertheless, such an approximation

may be justified [31].
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the 't Hooft six-quark interaction for the further description
of the U�3� �U�3� NJL model. Such interaction can be
realized by dint of a single pairing of quark lines in all
possible ways in the six-quark interaction. The Lagrangian
possessing all the aforementioned qualities necessary for
further calculations can be written down in the form4

L � �q�iq̂ÿ �m 0�q� 1

2

X9
i� 1

�
G
�ÿ�
i ��ql0iq�2 � G

���
i ��qig5l0iq�2

�
� G �ÿ�us ��qluq���qlsq� � G ���us ��qig5luq���qig5lsq� ; �21�

where the following notation was utilized:

l0i � li ; i � 1; . . . ; 7 ; l08 � lu �
���
2
p

l0 � l8���
3
p ;

l09 � ls � ÿl0 �
���
2
p

l8���
3
p ;

G
���
1 � G

���
2 � G

���
3 � G� 4Kms I

L
1 �ms� ; �22�

G
���
4 � G

���
5 � G

���
6 � G

���
7 � G� 4Kmu I

L
1 �mu� ;

G
���
8 � G ���u � G� 4Kms I

L
1 �ms� ; G

���
9 � G ���s � G ;

G ���us � �4
���
2
p

KmuI
L
1 �mu� ;

and �m 0 is the diagonal matrix of modified current quark
masses m 0

u , m
0
d , m

0
s :

�m 0
u � m 0

u ÿ 32mumsK IL1 �mu� IL1 �ms� ;
�m 0
s � m 0

s ÿ 32K
ÿ
mu I

L
1 �mu�

�2
:

It should be emphasized that the 't Hooft interaction
increases the pseudoscalar four-quark constants, and
decreases the scalar ones, which brings about an additional
violation of chiral symmetry.

The 't Hooft interaction gives rise to an additional term in
the gap equations for the u- and s-quark masses that take the
form

mu � m 0
u � 8muG IL1 �mu� � 32mumsK IL1 �mu� IL1 �ms� ;

ms � m 0
s � 8msG IL1 �ms� � 32K

ÿ
mu I

L
1 �mu�

�2
:

�23�

Mass formulas for pseudoscalar and scalar mesons may
be derived in the same way as in Section 2. It should be
recalled that, in this case, the momentum dependence in all
divergent integrals is neglected, which corresponds to the
truncation of all the terms with higher derivatives in the
effective meson Lagrangian,5 with meson masses being
determined by their quark content alone.

The cumbersome mass formulas are presented in the
Appendix. Qualitatively, the picture looks like the following:
the calculation of isovector and strange pseudoscalar meson
masses will result in the strong compensation for large terms
associated with the contributions from contact and two-
vertex quark loop diagrams (see Fig. 1). This produces
relatively small pion and kaon mass values. Masses of scalar
mesons would exceed those of pseudoscalar ones by virtue of
two effects. First, 't Hooft interactions being taken into

account, the scalar four-quark constants turn out to be
smaller than the pseudoscalar constants. Moreover, in the
expression for scalar masses squared a substantial additional
contribution arises from quark loop diagrams of the form
4m 2

u for a0, and �mu �ms�2 for K�0.
A more complicated situation occurs in the calculation of

masses of Z- and Z 0-mesons, and of s- and f0�980�-mesons.
Here, the 't Hooft interaction leads to the appearance of
additional nondiagonal terms responsible for mixing strange
and nonstrange quarks. Thus, it requires diagonalization of
the free Lagrangian. This makes the formulas for the masses
of these particles even more complicated (they are also
compiled in the Appendix).

Two additional arbitrary parameters enter the
U�3� �U�3� NJL model, namely, the constituent mass of a
strange quark ms, and the 't Hooft interaction constant K.
These parameters can be determined from the kaon mass and
the difference between Z- and Z 0-meson masses. The result is

ms � 425 MeV ; K � 13:3 GeVÿ5 : �24�

Parameters mu and L retain their previous values,
mu � 280 MeV and L � 1:25 GeV. The same refers to the
parameter Gp � 4:9 GeVÿ2 found from the pion mass [the
SU(2) model contained simple G]. In this case, the contribu-
tions of the 't Hooft terms to constituent quark masses and
four-quark coupling constants do not exceed 10%. Indeed,
the term related to the 't Hooft interaction in the mass gap
equation for u-quarks is 27 MeV, and the NJL term amounts
to 250 MeV. For strange quarks, these contributions are
21 MeV and 330 MeV, respectively. A similar situation takes
place in the determination of four-quark coupling constants
G
���
i .
Estimates for scalar and pseudoscalar meson masses are

presented in the table below. The parameters of the model
were fixed by the masses of pseudoscalar mesons. At the same
time, the scalar meson masses qualitatively agree with
experimental data.

Vector and axial-vector mesons are introduced in
U�3� �U�3� models as in the SU�2� � SU�2� version [see
Lagrangian (9)]. As a result, bosonization of the quark
Lagrangian leads to the following expressions for vector
meson masses [9]:

M 2
r �

g 2
r

4GV
; M 2

K� �
g 2
K�

4GV
� 3

2
�ms ÿmu�2 ; M 2

f �
g 2
f

4GV
;

�25�

4 Here, we follow Ref. [28].
5 It should be once again noted that only in this way is it possible to obtain

the chiral-symmetric Lagrangian of meson ±meson interactions [see

formula (26)].

Table. Pseudoscalar, scalar, and vector meson masses in the U�3� �U�3�
NJL model versus experimental values [21].

Meson mass NJL model Experiment

Mp 0

MK0

MZ

MZ 0

135
495
520

1000

134:9766� 0:0006

497:648� 0:022

547:75� 0:12

957:78� 0:14

Ms

Mf0

Ma0

MK�0

550
1130
810
960

400 ë 1200
980� 10

985:1� 1:3

� 800

Mr

MK�

Mf

770
930

1090

775:8� 0:5

896:10� 0:27

1019:460� 0:019
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where gr �
���
6
p

ga0, gK� �
���
6
p

gK�0 , and gf �
���
6
p

gss . Notice
that loop diagrams contribute to the mass of the K�-meson
alone; as regards the remaining mesons, the loop diagrams
make contributions only to their kinetic terms. The resultant
particle masses are in fairly good agreement with experi-
mental values (see the table).

Thus far, we have discussed particle masses. To conclude
this section, here is an expression for the interaction
Lagrangian that describes strong interactions of four meson
nonets, obtained in the one-loop quark approximation:

Lint � 1

4
Tr

(
g 2

 ��
�sÿM

g

�
; �f
�2
ÿ
ÿ
��

�sÿM

g

�2

� �f 2

�2!

ÿ 1

2
�G mn

V G mn
V � G mn

A G mn
A �

�
�
Dm

�
�sÿM

g

�2

� gr
2
f �Am; �fg�

�2
�
�
Dm

�fÿ gr
2

�
�Am;

�
�sÿM

g

��
�

�2)
; �26�

where

G mn
V � qm �V n ÿ qn �V m ÿ i

gr
2

ÿ� �V m; �V n�ÿ � � �A m; �A n�ÿ
�
;

G mn
A � qm �A n ÿ qn �A m ÿ i

gr
2

ÿ� �V m; �A n�ÿ � � �A m; �V n�ÿ
�
; �27�

�a � lia i ; Dm�a � qm�aÿ i
gr
2
� �Vm; �a� :

Electroweak interactions are introduced in the model in a
gauge-invariant manner on the basis of the original quark
Lagrangian (1). This makes it possible to describe not only
strong processes (strong decays, pp- and pK-scattering, etc.)
but also different electroweak processes, such as electromag-
netic and weak decays, radii, polarizabilities, and various rare
processes (e.g., Z! p0gg).

4. Vector dominance

After introducing electromagnetic interactions into the NJL
Lagrangian, photons can interact with charged mesons only
via quark loops. In contrast to the Lagrangian terms related
to the mesons, which are composite objects, the kinetic term
for photons is independently introduced in the Lagrangian.
Taking the quark loops into consideration only results in
renormalization of both the electromagnetic fields and the
charge.

The part of the Lagrangian describing electromagnetic
interactions has the form

Lem � ÿ 1

4
�Fm n�2 ÿ i Tr ln

�
1ÿ e

iq̂ÿm
QÂ

�
; �28�

where

Fm n � qmAn ÿ qnAm ; �29�

andQ � �l3 � l8=
���
3
p �=2 is the operator of the quark electric

charge.
The calculation of the divergent self-energy photon

diagram (Fig. 3a) yields the following expression for Lem:

Lem � ÿ 1

4
�F 0m n�2 ÿ i Tr ln

�
1ÿ e 0

iq̂ÿM
QÂ

�0
; �30�

where

A 0m �
�
1� 4

3

e 2

g 2
r

�1=2

A 0m ; e 0 �
�
1� 4

3

e 2

g 2
r

�ÿ1=2
e : �31�

Besides self-energy diagrams involving a photon, there are
mixed-type divergent diagrams describing transitions gÿr0,
gÿo, and gÿf (Fig. 3b). With the inclusion of these
diagrams, the Lagrangian acquires terms of the form

1

2

e 0

gr
F 0m n

�
r 0
m n �

1

3
omn �

���
2
p

3
fmn

�
; �32�

where r 0
m n,omn, and fmn are tensors similar to that in formula

(29).
As a consequence, the part of the Lagrangian that

describes electromagnetic interactions of mesons and quarks
takes the form

Lem �
M 2

r

2
�o2

m � r 0
m
2� �M 2

f

2
f 2
m

ÿ 1

4

ÿ
r 0
m n
2 � o2

m n � f 2
m n � F 0m n

2 �
� 1

2

e 0

gr
F 0m n

�
r 0
m n �

1

3
omn �

���
2
p

3
fmn

�

ÿ i Tr ln

�
1� 1

iq̂ÿM

�
gr
2
�gmliV i

m� ÿ e 0QÂ

��0
; �33�

where Vi
m denotes the fields of vector mesons.

The kinetic terms can be diagonalized by means of the
following replacements of fields:

r 0
m � ~r 0

m �
e 0

gr
A0m ;

om � ~om � e 0

3gr
A0m ; �34�

fm � ~fm �
���
2
p

e 0

3gr
A0m :

The electromagnetic field and charge e 0 are then renormalized
as follows:

~Am �
�
1ÿ 4

3

e 0 2

g 2
r

�1=2

A0m ; �35�

~e �
�
1ÿ 4

3

e 0 2

g 2
r

�ÿ1=2
e 0

�
��

1ÿ 4

3

e 0 2

g 2
r

��
1� 4

3

e 2

g 2
r

��ÿ1=2
e! ~e � e :

It is easy to see that the two renormalizations, Eqns (30) and
(35), result in the electric charge taking the initial value. The

a

g g

b

g r0; o; f

Figure 3. (a)) Divergent quark loops with external photons, and (b) vector

mesons r0, o, f.
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final Lagrangian has the form

Lem �
M 2

r

2
�~o2

m � ~r 0
m
2� �M 2

f

2
~f 2
m

ÿ 1

4

ÿ
~r 0
m n
2 � ~o2

m n � ~f 2
m n � ~F 0m n

2 �
�
�

e

3gr

�2

�5M 2
r �m 2

f� ~A 2
m

� e

gr

�
M 2

r

�
~r 0
m �

~om

3

�
�

���
2
p

3
M 2

f
~fm

�
Am

ÿ i Tr ln

�
1� 1

iq̂ÿM

gr
2
�gmliV i

m�
�
: �36�

It is easy to verify now that photons can interact with charged
particles only through the agency of neutral vector mesons.
This automatically brings about a model describing vector
dominance. Under the sign of the logarithm, the term with
photons is completely absorbed by vector mesons.

5. Mesons in a hot and dense medium

In the last few years, researchers have become increasingly
interested in the search for a new state of matter, namely,
quark ± gluon plasma (QGP). New data for the processes of
hadron matter transition to QGP are already coming from
experiments on heavy ion collisions, carried out in a number
of large physical centres, such as Brookhaven and CERN.
New facilities are about to be commissioned (LHC, SIS-300)
for a deeper insight into the problem. QGP is expected to
manifest itself through modified properties of hadronic
reactions and their products.

The NJL model provides a very convenient tool for the
investigation of meson behavior in a hot and dense medium.
The very first calculations of this kind in the framework of the
NJL model were reported in Refs [11, 12].

A variety of methods are available for the study of meson
behavior in a hot and dense medium. The most popular one is
the Matsubara technique [33] in which `imaginary time'
formalism implies the replacement of integration over the
zero component of the momentum by the summation of
frequencies:

p 0 ! ion � m ; �37��
d4p

�2p�4 ! iT
X
n

�
d3p

�2p�3 ; �38�

where on stands for the Matsubara frequencies:
on � �2n� 1�pT for fermions, and on � 2npT for bosons;
m is the chemical potential, and T is the temperature.

In certain approximations, however, it is more convenient
to utilize a simpler method6 with which the quark propagator
is represented in a medium in the `real time' formalism [34,
37]:

S� p;T; m� � � p̂�m�
�

1

p 2 ÿm 2 � iE

� i2pd� p 2 ÿm 2�ÿy� p 0� n�p; m� � y�ÿp 0� n�p;ÿm���; �39�

where

n�p; m� �
�
1� exp

Eÿ m
T

�ÿ1
�40�

is the Fermi ±Dirac function for quarks, and E �
�����������������
p2 �m 2

p
.

This leads to the following method for the calculation of
integrals IL3

1 �m;T; m� and IL3

2 �m;T; m�. First, contour integra-
tion is performed in the complex p0 plane. It is followed by
regularization of the remaining integral with the use of three-
dimensional cut-off L3. As a result, the divergent integrals
IL3

1 �m;T; m� and IL3

2 �m;T; m� take the forms

IL3

1 �m;T; m� �
Nc

�2p�2
� L3

0

dp
p 2

E

ÿ
1ÿ Z�p; m� ÿ Z�p;ÿm�� ;

IL3

2 �m;T; m� �
Nc

2�2p�2
� L3

0

dp
p 2

E 3

ÿ
1ÿ Z�p; m� ÿ Z�p;ÿm�� :

�41�

We determine the values of model parameters in a vacuum7

under the same conditions as in Section 2.4. Furthermore, we
assume that model parameters G, GV, m

0, and L3 do not
depend on T and m. At the same time, the constituent quark
mass m, as well as the quark condensate, exhibits the
dependence on temperature and chemical potential. This
dependence can be calculated from the mass gap equation.
Thereafter, T- and m-dependences of the basic integrals
IL3

1 �m;T; m� and IL3

2 �m;T; m� are computed. This, in turn,
permits determining the T- and m-dependences of all physical
quantities.

The behavior of m�T � is illustrated in Fig. 4. The critical
value of temperature Tc in the chiral limit m 0 � 0 is that at
which the constituent quark mass turns to zero. At this point,
the chiral symmetry is restored and the quark condensate
completely `evaporates' Ð that is, the order parameter
vanishes. The critical value of the chemical parameter is
determined in a similar way. When m 0 6� 0, the sharp phase
boundary disappears. The same figure shows the behavior of
Fp for m 0 6� 0, and the behavior of meson masses Mp, Ms,
Mr, Ma1 as the functions of T (see also Ref. [37]). As T
increases, the mass of the s-meson rapidly decreases, exactly

6 It should be noted that the Matsubara technique provides a more

universal approach, while a simplified method requires a special prescrip-

tion in the case of certain more complex diagrams. These two methods are

described at length in Ref. [33]. In addition, Refs [35, 36] present a detailed

description of real time formalism.

7 It should be emphasized that three-dimensional regularization leads to a

change in three model parameters, viz., L3 � 1:03 GeV, G � 3:48 GeVÿ2,
and m 0 � 2 MeV. The two remaining parameters are unaltered:

m � 280 MeV, and GV � 16 GeVÿ2.
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Figure 4. Quark masses, constants Fp of weak pion decay (a) and meson

masses Mp,Ms,Mr,Ma1 (b) as the functions of T.
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as the constituent quark mass does. On the other hand, the
pion mass remains unaltered until the critical conditions for
the chiral restoration are reached, beyond which it begins to
grow. TheMr mass shows a weak dependence on T, whereas
Ma1 decreases like Ms. Above the critical temperature, one
has Mp �Ms and Mr �Ma1 as would be expected for the
chirally symmetric phase. In Refs [37, 38], the critical
temperature was found to be Tc � 200 MeV. At the same
time, lattice calculations gave a lower Tc value, namely,
Tc � 170 MeV [39].

Recently, very interesting results have been obtained in
the investigation of strongly interacting quark matter in the
color superconducting phase. We do not consider these issues
here and confine ourselves to references to the original works
[40, 41].

Concluding this section, we would like to emphasize that
the properties of some particles can change considerably
when approaching the phase transition boundary. Specifi-
cally, thes-meson which presents a very broad resonance in a
vacuum may become a very sharp resonance at a certain
temperature and chemical potential. As a consequence, some
processes in which thes-meson is involved as an intermediate
state may be sharply intensified at close-to-critical values of m
and T. These processes are exemplified by pp-scattering [42]
and pp! gg [43]. Such intensification, if observed in heavy
ion collision experiments, can be interpreted as indicating the
approach to the QGP region.

6. First radial excitations of mesons

It is impossible to describe radial excitations of mesons in a
local version of the NJL model. Therefore, not only the
standard local Lagrangian L (1) but also an additional
nonlocal Lagrangian L nonloc needs to be considered if both
the ground and the first radially excited states are to be
described. Form factors for each quark ± antiquark current
are introduced in the Lagrangian L nonloc:

JI�x� �
��

d4x1 d
4x2 �q�x1�FI�x; x1; x2� q�x2� : �42�

The form factors FI�x; x1; x2� can be written down in a
covariant form [44]. They are not discussed in detail here;
suffice it to point out that the form factors for the ground and
the first radially excited states may be presented in a very
simple form in momentum space:

f1�k?� � y
ÿ
L3 ÿ jk?j

�
; �43�

f2�k?� � c
ÿ
1� d jk?j2

�
y
ÿ
L3 ÿ jk?j

�
;

where k is the relative momentum of a quark ± antiquark pair,
and k? is the part of k transversal to the total momentum P:

k? � kÿ kP

P 2
P : �44�

The step function y
ÿ
L3 ÿ jk?j

�
is nothing but a covariant

generalization of the three-dimensional cut-off in the NJL
model. For d < ÿLÿ23 , the form factor f2�k?� has the form of
a wave function of the radially excited state with a node in the
interval 0 < jk?j < L3. Form factors (43) are the first terms in
a series expansion in terms of k 2

?; the inclusion of higher
radially excited states in the model would require the
introduction of higher-degree polynomials. Factor c
describes changes in the four-quark interaction force in

radially excited channels relative to the interaction force in
the ground-state channel with constant G. This factor is
determined from the mass of a radially excited pion:
M 0

p � 1300 MeV. Parameter d may be found from the
condition8

I f
1 � ÿiNc

�
L3

d4k

�2p�4
f1�k�

m 2 ÿ k 2
� 0 : �46�

The physical meaning of this condition can be explained as
follows. The model contains two gap equations

dW
ds1
� ÿiNc Tr

�
L3

d4k

�2p�4
1

k̂ÿm 0 � hs1i0 � hs2i0 f2�k�

ÿ hs1i0
G
� 0 ;

�47�
dW
ds2
� ÿiNc Tr

�
L3

d4k

�2p�4
f2�k�

k̂ÿm 0 � hs1i0 � hs2i0 f2�k�

ÿ hs2i0
G
� 0 :

In the general case, the solution of these equations
is hs2i0 6� 0; then, the constituent quark mass
ÿhs1i0 ÿ hs2i0 f1�k� �m 0 proves to be momentum-depen-
dent. Condition (46) leads to a trivial solution hs2i0 � 0 for
the second gap equation. This brings us back to the standard
gap equation of the NJL model with a constant constituent
quark mass.

The free part of the effective action for pions takes the
form

W � 1

2

�
d4P

�2p�4
X2
i; j� 1

p a
i �P�Kab

i j �P� p b
j �P� ; �48�

where Kab
i j �P� � d abKi j�P�,

K11�P� � Z1�P 2 ÿM 2
1 � ; K22�P� � Z2�P 2 ÿM 2

2 � ;

K12�P� � K21�P� �
�����������
Z1Z2

p
GP 2 �49�

and

M 2
1 �

1

Z1

�
1

G
ÿ 8I1

�
� m 0

Z1Gm
;

M 2
2 �

1

Z2

�
1

G
ÿ 8I f f

1

�
; �50�

Z1 � 4I2 ; Z2 � 4I f f
2 ; G � 4�����������

Z1Z2

p I f
2 :

In order to determine the physical p- and p 0-meson states,
it is necessary to diagonalize the quadratic part of the action.
This operation can be performed with the help of the
orthogonal transformation of fields p1 and p2 (see Ref. [44]
for details on this procedure). It should be noted that the a
series expansion in terms of small current quark masses m 0

8 Here, In, I
f
n , and I f f

n denote loop integrals with no, one, and two form

factors f �k?� � f2�k?� in the numerator, respectively:

I f...f
n � ÿiNc Tr

�
L3

d4k

�2p�4
f �k� . . . f �k�
�m 2 ÿ k 2�n : �45�
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yields for physical states 9:

M 2
p �M 2

1 �O�M 4
1 � ; �51�

M 2
p 0 �

M 2
2

1ÿ G 2

�
1� G 2 M 2

1

M 2
2

�O�M 4
1 �
�
:

Thus, in the chiral limit, the effective meson Lagrangian
actually describes a massless Goldstone boson (pion p) and
a heavy pseudoscalar meson p 0. The ratio of the weak p- and
p 0-decay constants can be directly expressed in terms of the
meson mass ratio:

Fp 0

Fp
� G��������������

1ÿ G 2
p M 2

p

M 2
p 0
: �52�

It is worth noting that the matrix element of the pseudoscalar
meson, resulting from the divergence of the axial-vector
current, must disappear in the chiral limit for both p and p 0.
In the case of the ground-state pion, the matrix element
vanishes as the pion mass turns to zero, as it likewise does in
the excited state because Fp 0 becomes zero.

Here, we considered only pions. It has been shown in
Refs [45 ± 47] that this approach can be extended to the chiral
U�3� �U�3� group for pseudoscalar, scalar, and vector
mesons. In the framework of this model, the main strong
decays of radially excitedmesons have been described [46, 48].
One of the most interesting physical results obtained in this
model concerns the identification of 19 experimentally
examined scalar states with masses 0.4 ± 1.7 GeV. These
states can be interpreted as two scalar nonets and a scalar
glueball with a mass of � 1:5 GeV [49]. The first nonet
consists of ground-state scalar mesons with masses between
0.4 and 1 GeV, and the second one of radially excited scalar
mesons with masses 1.3 ± 1.7 GeV. The four scalar states and
the scalar glueball mixes because they possess the same
quantum numbers.

7. The nonlocal Nambu ± Jona-Lasinio model
and quark confinement

NJL models have two chief drawbacks. They contain
ultraviolet (UV) divergences and do not allow quark confine-
ment. Usually, UV divergences are removed with the help of
the cut-off parameter L on the order of 1 GeV. The
employment of only the lowest power of momentum expan-
sion of quark loops makes it possible to avoid the appearance
of unphysical quark ± antiquark thresholds in the amplitudes
of different processes.

These drawbacks in the standard NJL model can be
rectified only in the framework of nonlocal models. There
are many different nonlocal versions of the NJL model (see,
for instance, Refs [50 ± 54]). In what follows, one version
based on instanton interactions will be demonstrated. Similar
models are considered in Refs [55 ± 59].

The SU�2� � SU�2�-symmetric action with the nonlocal
four-quark interaction has the form

S��q; q� �
�
d4x

�
�q�x��iq̂x ÿm 0�q�x�

� G

2

�
Js�x� Js�x� � Ja

p �x� Ja
p �x�

�
ÿ GV

2

�
J m a
r �x� J m a

r �x� � J m a
a1
�x� J m a

a1
�x��� : �53�

The nonlocal quark currents JI�x� are expressed as

JI�x� �
��

d4x1 d
4x2 f �x1� f �x2� �q�xÿ x1�GI q�x� x2� ;

�54�

where functions f �x� are normalized by the condition
f �0� � 1. In Eqn (53), matrices GI are defined as Gs � 1,
G a
p � ig 5t a, Gm a

r � gmt a, and Gm a
a1
� g 5 gmt a.

After bosonization, the scalar field s has a nonzero
vacuum expectation. In order to obtain a physical scalar
field with a zero vacuum expectation, it is necessary tomake a
shift of the scalar field. This leads to the appearance of the
nonlocal quarkmassm� p 2� instead of the current quarkmass
m 0, and the former can be found from the gap equation

m� p 2� � m 0 � G
2Nc

�2p�4 f 2� p 2�
�
d4k

f 2�k 2�m�k 2�
k 2 �m 2�k 2�

� m 0 � ÿm�0� ÿm 0
�
f 2� p 2� : �55�

The quark propagator takes the form

S� p� � ÿ p̂ÿm� p 2��ÿ1 : �56�

We use only the simple ansatz for the quark propagator.
Namely, following Refs [50, 60] we demand that the vector
part of the quark propagator be free from polar singula-
rities:

1

m 2� p 2� � p 2
� 1ÿ exp �ÿp 2=L2�

p 2
: �57�

Then, the expression for m� p 2� becomes

m� p 2� �
�

p 2

exp � p 2=L2� ÿ 1

�1=2

: �58�

The mass function m� p 2� contains a single arbitrary para-
meter L. This function possesses no singularities on the real
axis and exponentially drops as p 2 !1 in the Euclidean
region. It follows from Eqn (55) that nonlocal form factors
exhibit a similar behavior, thus providing for the absence of
UV divergences in the model. At p 2 � 0, the mass function is
equal to the cut-off parameter L: m�0� � L. It follows from
the mass gap equation that the relation between the four-
quark interaction constantG and the nonlocality parameterL
takes the form

G � 2p2

Nc

1

L2
: �59�

Moreover, the expression for the pion renormalization
constant has a very simple form

gÿ2p �0� �
Nc

4p2

�
3

8
� z�3�

2

�
; �60�

where z is the Riemann zeta function. In the chiral limit, there
are only two arbitrary parameters L, GV. Their values are
fixed with the aid of the weak pion decay constant
Fp � 93 MeV and the r-meson mass Mr � 770 MeV. The
use of the Goldberger ±Treiman relation gp�0� � m�0�=Fp

leads to L � m�0� � 340 MeV.9 It follows from Eqn (50) thatM 2
1 � m 0.
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This simple model allows for sensible predictions of
s-meson mass:Ms � 420MeV, and of strong decay r! pp:
Grpp � 135 MeV.

This nonlocal model, unlike the local NJL model, can be
successfully applied to the description of both the constant
parts of the meson process amplitudes and the momentum
dependences. Such a possibility was demonstrated by the
computation of the pion radius of the Fg �p�pÿ -process form
factor [61]. In the nonlocal model, the contributions of
contact diagrams and diagrams with intermediate mesons to
the radius have reasonable values (specifically, the contribu-
tion from the vector mesons is markedly reduced), whereas in
the local model these contributions are comparable [62]. At
the same time, the vector meson diagrams play a very
important role in the description of the Fg �p�pÿ form factor
in the time-like region. These diagrams can be employed to
describe not only the r-meson resonance but also the process
form factor in an energy region of up to 1 GeV.

8. Conclusion

Let us recall once again that the fundamental theory of strong
interactions, viz., QCD, was nonexistent when the first
version of the NJL model was proposed [1] in 1961. For this
reason, different versions of phenomenological hadron
models were used at that time to describe low-energy meson
physics, whereas the description of hadron interactions at
large energies looked highly problematic. However, the
construction of QCD theory and the discovery of the
phenomenon of asymptotic freedom made it possible to
describe hadron interactions at large energies by means of
the perturbation theory. True, it turned out that the
perturbation theory is applicable only at energies in excess
of 1 GeV, when the strong QCD coupling constant is smaller
than unity. It again required the employment of phenomen-
ological theories for the description of the low-energy region.

The NJL model proved to be one of the most attractive
models of this kind. This model is underlain by chiral
symmetry of strong interactions, which also forms the basis
of QCD. The joint application of these two theories permits
us to describe the entire energy region of strong interactions
between elementary particles.
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9. Appendix. Mass formulas
in the U�3� �U�3� Nambu ± Jona-Lasinio model

Mass formulas for isovector and strange mesons have the
form

M 2
p � g 2

p

�
1

Gp
ÿ 8IL1 �mu�

�
;

M 2
K � g 2

K

�
1

GK
ÿ 4
�
IL1 �mu� � IL1 �ms�

��� Z�ms ÿmu�2 ;
�61�

M 2
a0
� g 2

a0

�
1

Ga0

ÿ 8IL1 �mu�
�
� 4m 2

u ;

M 2
K�0
� g 2

K�0

�
1

GK�0
ÿ 4
�
IL1 �mu� � IL1 �ms�

��� �mu �ms�2 ;

where the following notation is used:

Gp � G
���
1 ; GK � G

���
4 ; Ga0 � G

�ÿ�
1 ; GK�0 � G

�ÿ�
4 ;

g 2
a0
� �4IL2 �mu�

�ÿ1
; g 2

K�0
� �4IL2 �mu;ms�

�ÿ1
;

IL2 �mu;ms� � Nc

�2p�4
�
d4E k

y�L2 ÿ k 2�
�k 2 �m 2

u ��k 2 �m 2
s �

� 3

�4p�2�m 2
s ÿm 2

u �

�
m 2

s ln

�
L2

m 2
s

� 1

�
ÿm 2

u ln

�
L2

m 2
u

� 1

��
;

gp � Z 1=2
p ga0 ; gK � Z

1=2
K gK�0 ; Zp � ZK � 1:44 :

Mass formulas for nonstrange and strange isoscalar
mesons have a more complicated form

M 2
�Z;Z 0� �

1

2

�
MP

ss �MP
uu �

���������������������������������������������������
�MP

ss ÿMP
uu�2 � 4�MP

us�2
q �

;

�62�

M 2
�s; f0� �

1

2

�
MS

ss �MS
uu �

��������������������������������������������������
�MS

ss ÿMS
uu�2 � 4�MS

us�2
q �

;

�63�

where

MP
ss � g 2

Zs

�
1

2
�TP�ÿ1ss ÿ 8IL1 �ms�

�
;

MP
us �

1

2
gZu

gZs
�TP�ÿ1us ;

MS
uu � g 2

su

�
1

2
�TS�ÿ1uu ÿ 8IL1 �mu�

�
� 4m 2

u ;

MS
ss � g 2

ss

�
1

2
�TS�ÿ1ss ÿ 8IL1 �ms�

�
� 4m 2

s ;
�64�

MS
us �

1

2
gsu

gss
�TS�ÿ1us ;

gsu
� gs�qq ; gss

� �4IL2 �ms�
�ÿ1=2

;

gZu
� gp�qq ; gZs

� Z 1=2gss
;

T P�S� � 1

2

G
���
u G

���
us

G
���
us G

���
s

 !
:
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