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Electromagnetic waves
in artificial periodic structures

R A Silin

1. Introduction

The present talk discusses artificial periodic structures for
which the propagation of electromagnetic waves is suitably
described in terms of the band theory [1], originally developed
in solid state physics to study de Broglie waves. Such crystals
are of special interest for developing short-wavelength and, in
particular, optical-wavelength devices. There is a correspon-
dence between the respective concepts associated with these
two kinds of waves (see the Table).

Devices based on such artificial crystals (also known as
photonic crystals) include resonators, transmission lines,
filters, signal splitters, etc. Underlying their operation are
crystal inhomogeneities, which produce local oscillations
analogous to impurity levels in a solid, with point inhomo-
geneities providing a resonator and line inhomogeneities
providing a waveguide channel and other radio engineering
systems.

Two major spheres of artificial crystal research are the
study of wave refraction and reflection at an interface
between such crystals and looking for media where waves
deviate from their normal behavior. For example, if the group
and phase velocities in a medium are opposite, it was shown

in [2] that a beam incident from free space is deflected
opposite to where it normally should be Ð a discovery
which was followed by a flurry of research on media that are
unconventional in the way they reflect and refract waves [3 ±
9]. Most media studied were those transmitting waves in two
dimensions, such as two-dimensionally periodic arrays of
metallic elements [4 ± 9], ferrite films that carry magneto-
static waves [10, 11], and cholesteric liquid crystals [12].
Plasmas also have unusual reflection and refraction proper-
ties [13, 14].

One can study beampaths in a medium by considering the
electric permittivity tensor e and the magnetic permeability
tensor m of themedium [13, 14]. But because the calculation of
these tensors requires averaging the fields, this approach
applies only if the structure period is small compared to the
wavelength. A more convenient and user-friendly approach,
which is in addition valid for anywavelength, is themethod of
isofrequencies. Isofrequencies, the surfaces where the wave
vector terminates for any wave directions, can be constructed
based on the e and m tensors and can also be obtained without
an averaging procedure.

The analogy between de Broglie waves in crystals and
electromagnetic waves in periodic structures led to the
discovery of a number of new physical phenomena, to be
discussed here.

We consider structures that are periodic in three dimen-
sions. The electromagnetic field in such a structure is
expanded in a triple Fourier series of spatial harmonics with
wave vectors km1

, km2
, km3

(ÿ1 < mi <1, i � 1, 2, 3). Each
harmonic corresponds to its own domain of variation (Seitz
zone).

The phase velocities of the spatial harmonics are deter-
mined by the relation vmi

� okmi
=j kmi

j2 and are different,
whereas the group velocities vg � gradko are all equal. The
group velocity determines the direction of the flow of energy
(or the beam, or information) and is directed along the
normal to the isofrequency and toward higher frequencies.

Knowing the phase velocities, wave vectors, and harmo-
nic amplitudes of electromagnetic waves is important because
these quantities determine the direction and intensity of
diffraction peaks (e.g., in diffraction and antenna gratings).
This knowledge is also essential in studying the interaction of
electrons with a wave (the Vavilov ±Cherenkov effect). In a
one-dimensionally periodic medium, this interaction is
strongest when the phase velocity v � o=k is close to the
electron velocity (ve � o=k), i.e., kve � o. The extension of
this relation to two- and three-dimensional systems is given by
the Vavilov ±Cherenkov condition kve � o, known in high-
frequency technologies as the condition for electron ±wave
synchronism and used in developing electronic devices
(traveling wave tubes, backward wave tubes, etc.).

2. Wave vector construction using isofrequencies

We generally distinguish between forward and backward
waves. The term forward refers to a wave in which the angle
y between the phase and group velocities does not exceed
p=2 �jyj < p=2�. In the case where p=2 < jyj4 p, the wave is
said to be backward.

Figure 1 depicts the cubic elementary cells of two artificial
media and shows plots, in the kx, ky plane, of their respective
isofrequencies for the zero zone in the second transmission
band. The numbers labeling the curves are proportional to the
frequencies and represent the values of a=l, where a is the size

Table. Analogy between de Broglie and electromagnetic waves.

de Broglie waves Electromagnetic waves

Electron energy E � ho
Quasimomentum p

Electron velocity vc � gradpo

Dispersion characteristic E�p�
Energy band
Forbidden band
Isoenergetic surface
Impurity or surface levels

Frequency o
Wave vector k
Wave group velocity
vG � gradko, equal
to the energy transfer velocity
Dispersion characteristic o�k�
Passband
Stop band
Isofrequency
Local oscillations
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of the cell and l is the wavelength in free space. Also shown
are the wave vectors and group velocity directions (bold and
thin arrows, respectively).

We use isofrequencies (a=l � const) to consider the
refraction of a wave at the interface of two isotropic media
and the path of beams (vb) for waves that have passed through
a parallel-plane plate. In Fig. 2, panels a, b, and e correspond
to a forward wave, and c, d, and f to a backward wave in a
refracting medium. Shown dashed in Fig. 2 and all the

following figures are the projections of the vectors k on the
abscissa. We note that the energy of the refracted wave is
transferred from the interface between the twomedia and that
the projections on the interface of the incident (kinc), reflected
(kreflec), and refracted (krefrac) waves are equal (Figs 2a ± d).

Two different vectors krefrac may have equal projections
on the interface in a refractive medium. One of the vectors
(Fig. 2a) is directed from the interface downward and
corresponds to a forward wave, whereas the other (Fig. 2c)
is directed upward and corresponds to a backward wave. Of
these two, the one that corresponds to the group velocity
(beam) directed from the interface belongs to the refracted
wave (compare Figs 2a, b and Fig. 2c, d). For each case in
Fig. 2, two constructions are made. One of them, in which the
vectors are always directed from the origin (Figs 2a, c), is
rigorous and always yields the directions of all the vectors in a
unique way. The rigorous construction is rather involved,
however. In an approach used more frequently (Figs 2b, d),
thewave vectors of the incident wave are depicted in the upper
half-plane and those of the refracted wave in the lower half-
plane. This construction, however, although easier to grasp,
sometimes leaves one uncertain as to the direction of the
beam.

Figures 2e, f demonstrate the course of beams for the
forward (Fig. 2e) and backward (Fig. 2f) waves in a plate and
demonstrate the images of objects in these plates. In the case
of a forward wave, the object and its image are on the same
side of the plate. For a backward wave, two images are
possible, one of them lying on the other side of the plate.

Backward waves and their associated propagation media
and refraction laws have been known for a long time now [ 3,
4, 8]. In 1940 ± 1966, these waves were widely used in
backward wave tubes and antennas. Pafomov 1 showed [13]
that backwardwaves are possible in an isotropicmediumwith
both a negative electric permittivity e and a negative magnetic
permeability m. Such a phenomenon can be observed in
plasma [13, 14]. It was only in 2000, i.e., about forty years
after Refs [3, 4, 8], that Ref. [16] suggested a medium Ð a
periodic array of metal rods and rings Ð that can support a
backward wave in one dimension and in the second passband
only. The isofrequencies of this structure are similar to those
shown in Fig. 1d.

The discussion above is limited to isotropic media, in
which isofrequencies form spherical or circular shapes
centered at the origin. In reality, however, propagation
media only behave isotropically in a certain limited fre-
quency band (Fig. 1b). The construction of wave vectors
and beams, i.e., group velocities, for isofrequencies of
different forms is illustrated in Fig. 3. There are two
diagrams corresponding to each shape: for the passage of
waves and beams through the interface between two media
and for the passage through a plate; in the former case, free-
space isofrequencies (origin-centered semicircles) and med-
ium isofrequencies are shown in the upper and lower half-
planes, respectively. Figure 3a corresponds to media assumed
to support a forward wave.

The situation in Fig 3a, with the interface parallel to the kx
axis, may occur for the isofrequency a=l � 0:57 shown in
Fig. 1d. An unusual feature is here that the object and its
image lie on different sides of the plate even though the wave
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Figure 1. Examples of elementary cells of three-dimensional periodic

structures and their isofrequencies constructed in coordinates kx, ky in

the zero zone and calculated in the second passband.
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Figure 2.Wave vectors k and beams vb, and objects and images in the cases

where a wave passes through the interface between two media (a, b, c, d)

and through a plate (e, f). Diagrams a, b, e: a forward wave traveling in a

refractive medium and a plate; diagrams c, d, f: the same for a backward

wave. Constructions in diagrams a and c are rigorous but difficult to grasp;

those in b and d are easy to grasp but not rigorous.

1 Although the proof of the existence of backward waves in e < 0, m < 0

media is often mistakenly credited to V G Veselago [15], it is in fact

V E Pafomov who first did it.
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is forward. The opposite should be observed when the
corresponding isofrequency (a=l � 0:556ÿ0:658 in Fig 1b,
a=l � 0:45ÿ0:56 in Fig. 1d) is that of a backward wave. In
this case, the beam is deflected from the normal to the same
side as in a dielectric, and the object and its image lie on the
same side of the lower boundary of the plate (as in Fig. 2e).
The situation shown in Fig. 3b is possible for isofrequencies
a=l � 0:694 (Fig. 1b) when the interface normal is parallel to
either the kx or ky axis. At small incidence angles (wave
vector 1), the wave does not penetrate into the artificial
medium because no isofrequencies at which the wave vector
can terminate exist in this medium. As the incidence angle
increases, the wave starts to penetrate the medium, and the
refraction angle first increases and then changes sign.

We next consider Fig. 3b, which corresponds to the
isofrequencies shown in Fig. 1b (a=l � 0:658). In a refractive
medium, there are two wave vectors with equal projections on
the interface, and therefore two refracted beams may
correspond to one beam in the incidence wave (birefrigence),
with the result that the object turns out to have two images
(beams 1 and 2 converge at different points). Importantly, the
polarization of either beam remains the same here, in contrast
to birefrigence in conventional optics.

Of greater interest are waves in ferrite films that are placed
between metallic planes and subjected to a magnetic field
(Fig. 4). In such systems, there exist isofrequencies that are
intersected only once by a straight line perpendicular to the

interface, suggesting that something seemingly unreasonable
may happen: an incident wave from which neither a refracted
wave nor a reflected wave arises. This effect was predicted in
Ref. [10] and observed experimentally in Ref. [11]. (We note
parenthetically that the energy that comes to the interface is
carried away by an edge wave).

3. Backward-wave supporting media

Two-dimensionally periodic lattices capable of supporting
backward waves were described back in 1959 inRefs [3, 4], the
former of which proposed a structure where, unlike those in
today's publications, backward waves exist in the first
passband.

According to Rayleigh, who proved the possibility of
backward waves in 1877, the phase and group velocities of
such a wave are related by

ng � nÿ l
dn

dl
;

where n � c=v and ng � v=vg are the phase and group velocity
retardation factors. At sufficiently high dispersion
dn=dl > 0, the quantities ng and n are opposite in sign, thus
giving rise to a backward wave.

Structures in which backward waves are allowed to run in
only one or two dimensions have been known since 1904
(Lamb) and have been widely used in electronic and antenna
engineering, starting from 1952. Backward waves also exist in
cholesteric liquid crystals [12], partially dielectric waveguides,
and many other systems.

Backward waves of the zero spatial harmonic in the
fundamental (i.e., longest-wavelength) passband have been
detected in one- and two-dimensionally periodic structures
[3 ± 8], but no three-dimensionally periodic structures with
such properties are known. A second-band backward wave is
relatively easy to obtain (see Ref. [5] and Fig. 1).

4. Conclusion

Artificial crystals are of particular interest for application in
and around the optical part of the spectrum. Using such
crystals allows developing integrated circuits, electronic
instruments, and devices with unusual optical properties. In
particular, not only a parallel-plane lens but also a plate can
be given a property of being opaque to a normally incident
wave while transmitting an obliquely incident one. Another
possibility is a plate that exhibits birefrigence the amount of
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Figure 3.Wave vectors (bold arrows) and beams (thin arrows) correspond-

ing to wave passage from free space through the interface between two

media and through parallel-plane plates of materials with different

isofrequency shapes.

x
y

H
1

2 kp

ky

kx

vgp

Figure 4. Isofrequencies of a ferrite film on a dielectric substrate, and

incident vectors kp and vgp for the case where no reflected and no refracted

wave are present.
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which depends on the frequency and the angle of incidence
rather than the polarization of the beam. For a ferrite film in a
magnetic film, a wave incident on the edge of the film neither
is reflected from nor passes through the film. All these results
are readily obtained using the isofrequency concept.

In conclusion, we note that the existence of backward
waves in media with e < 0 and m < 0 was first proved by
V E Pafomov [13], not by V G Veselago in Ref. [15].
Backward waves and their unusual refraction properties in
artificial crystal were first discussed by the present author [3,
4], not by Smith et al. in Ref. [16].
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