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Forward and backward noncollinear waves
in magnetic films

A V Vashkovsky, E H Lock

Thin layers of magnetically ordered media (ferrites, for
example) allow the excitation and low-loss propagation of
electromagnetic waves for which, at ultrahigh (microwave)
frequencies, the wave vector k has a value between 10 and
10* em™!, i.e., much larger than for the vacuum: k > ko=
w/c ~1cm™!. These waves, known as dipole spin waves or
magnetostatic waves (MSWs), have a remarkably low group
velocity vg, around 1-1000 km ¢!, and the angle between
their wave vector k and the group velocity vector v, may take
any value between 0 and 180°. This feature is of particular
interest because it enables both forward and backward waves
to be easily excited in an experiment.
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We consider an infinitely extended, parallel-plane ferrite
plate (or film) 2, of thickness s, sandwiched between vacuum
half-spaces 1 and 3 (we use the indices j = 1, 2, 3 to label the
field and other parameters in the respective media). We
choose the Cartesian coordinate system such that the x axis
is perpendicular to the plane of the plate and the tangential
uniform magnetic field is parallel to the z axis. The plate is
supposed to be magnetized to saturation and is characterized
by a relative dielectric constant & and a magnetic perme-
ability tensor i, of the form
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oy = yHy, oy =4nyMy, o =2nf, y is the gyromagnetic
constant, 4nM, is the saturation magnetization of the
ferrite, and f is the electromagnetic oscillation frequency.
The electromagnetic field in the plate satisfies the Maxwell
equations. Using the method of complex amplitudes (with
exp(iwt) in the inverse Fourier transform), we can write them
as

.
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rotEj:—i%,ujHj, (4)

div (&) =0,

div (i H,) = 0,

where H; and E; are complex amplitudes of the electric
and magnetic field strengths, ¢ and y; are the parameters
of the medium (j = 1—3), and c is the speed of light in the
vacuum.

With the y axis (perpendicular to Hj) taken as the
direction of the electromagnetic wave in the film plane and
the problem assumed to be uniform along the z axis, i.e.,
0H;/0z =0E;/0z = 0, system (4) for the fields within the plate
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decouples into two independent subsystems
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where Eyy, Esy, Es-, Hyy, H>,, and H>. are the projections of
the vectors E, and H, on the corresponding axes. The first
subsystem describes a TE wave with components E., Hy, H,,
and the second describes a TH wave with components E, E,,
H.. The TH wave interacts with the material of the film
through the tensor component i, , whichis y, = 1, and in fact
‘perceives’ the ferrite plate as an ordinary nonmagnetic
insulator. The first equation of system (5) — the one for the
TE wave — involves the components of the tensor , , which
can be varied from —oo to +oo by varying the frequency or
magnitude of the field H,.

System (5) for the TE wave is solved for the Ej,
component and is reduced to the Helmholtz equation

0’E,. O°E,.
an+vj+kéﬁzﬂll’:‘2: =0 (6)

withky = w/cand i, = (u*> — v*)/u. The solution for E,. can
be written as
E». = exp(—ik,y)[Aexp(kax) + Bexp(—kyx)] , (7

where A and B are arbitrary constants and k>, and k, are the
wave vector projections related by

kﬁ—kgxzqukész,ul. (8)

Satisfying the continuity of the tangential components E
and H at the plate interfaces yields the dispersion relation

211 — (ko /ey P/ 1 — eam (ko k)
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tanh(kyy s) = —

between the frequency w, the wave vector k, the layer
thickness s, and the material parameters.

Based on (9), we calculate the dispersion relation f'(k, ) for
the TE wave of interest for parameters typically used in
experiments: Hy = 300 Oe, 4nM, = 1750 G, ¢ =15, and
s = 10 um (curve 7 in Fig. 1). As seen from Fig. 1, the phase
velocity of the TE wave is reduced by a factor of 10 to 1000
from its vacuum value. With this slowdown, the time-
derivative terms in the Maxwell equations can obviously be
ignored, which leads to the magnetostatic equations

rotH; =0,
div(y;H;) = 0.
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Figure 1. Dispersion relations for a magnetostatic wave propagating
perpendicular to Hy: /, from the Maxwell equations; 2, in the magneto-
static approximation.

We next introduce the magnetostatic potential defined by
H; = grad ¥ and use Eqns (10) and (11) to obtain equations
for ¥ inside and outside the plate. Using the well-known
boundary conditions (the normal magnetic flux and potential
continuity at each ferrite — vacuum boundary) yields a system
of equations that gives the following dispersion equation for
the y-propagating wave:

2
tanh (k,s) = ad
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In Fig. 1, the dependence f (k) calculated from Eqn (12) is
indistinguishable from the exact curve obtained from Eqn (9).
The only region where the curves can be distinguished — that
of small values for k, ~ kg — is shown in the inset of the
figure. As we see, even for the wave numbers 2—3 cm™!, the
difference in frequency is given by several parts of a
megahertz. Comparing Eqns (12) and (9), we conclude
similarly that assuming (kg /ky)2 < 1 and neglecting terms
containing (ko /ky)2 transforms Eqn (9) into Eqn (12).

To summarize, if we sacrifice a small initial interval of k,
and the corresponding region of f— i.e., if we do not use
Eqn (12) when describing the TE wave for k ~ kg — thenitis
quite legitimate to use the magnetostatic approximation to
describe this wave. This means losing the expression for the
field E., but it is not necessary in most of the problems. The
boundary equations of magnetostatics — the potential and
normal magnetic flux continuity — are equivalent to the
continuity of the tangential components of E and H. The
solution we obtain is simpler in form and makes it easy to
describe wave propagation at an arbitrary angle to the y axis.
For an arbitrary wave propagation direction, the dispersion is
described by the transcendental equation
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where the x-components of the wave vector in the plate and
vacuum are given by
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Figure 2. Isofrequency curves for f'= 2800 MHz, 4nM, = 1750 G, and
s = 10 pm: curves /, 2 for a forward MSW at Hy, = 300 Oe; curves 3, 4 for
a backward MSW at Hy, = 480 Oe.

Solutions of this equation for a fixed frequency — the so-
called isofrequency curves — are shown in Fig. 2 for two
magnetization values. It can be seen that the vector k deviates
from the z axis or the y axis as its absolute magnitude
increases — implying that the static approximation is not
violated.

Before proceeding further, we recall that the direction of
the group velocity vector v, is determined by the normal to the
isofrequency curve. We also clarify the terms to be used in
what follows. The term ‘forward’ refers to a wave for which
the scalar product kv, > 0, and the term ‘backward’ to a wave
for which kv, < 0. This definition applies irrespective of the
medium in which the wave propagates (i.e., of whether it is
isotropic or anisotropic) and is more general than the one
usually found in textbooks, dictionaries, and encyclopedias,
where only collinearly propagating waves (with k and v,
parallel to each another) are considered.

The group velocity vectors v, for two arbitrarily chosen
vectors k are shown in Fig. 2, where it is seen that for
Hy =300 Oe (curves / and 2), Eqn (14) describes a forward
wave, with kv, >0 and [0w/0k| > 0; for H, =480 Oe
(curves 3 and 4), it describes a backward wave, with kvy < 0
and |[0w/0k| < 0.Itis relevant to note that the vectors k and v,
of the forward wave are collinear only when k is parallel to the
yaxis, and those of the backward wave only when k is parallel
to the z axis. The directions along which the vectors k and v,
are collinear and the isofrequency curves are symmetric are
the optical axes of the medium. A wave propagating along an
optical axis is referred to as collinear (it may be either forward
or backward), and a wave propagating at the right angle to an
optical axis as noncollinear (it can be either type as well).

The two branches of the isofrequency dependences for the
forward (curves / and 2) and backward (curves 3 and 4) waves
are absolutely identical and describe wave propagation in
opposite directions. The separation between the branches of
the isofrequency curve depends on the magnetization field,
for both the forward and the backward waves. That is, the
branches can come closer together or move farther apart as
the magnet field is varied. For the forward wave, the two
branches, / and 2, of the isofrequency curve not only look

like, but in fact are very closely approximated by hyperbolas.
This suggests the following point. If we bring the branches of
the isofrequency curves closer together and recall the TM
wave that we have neglected, we find a situation similar to
what is well known to occur in a birefringent uniaxial crystal.
For the TM wave, the ferrite film is isotropic, whereas the
isofrequency curve is (or looks very much like) a circle with a
radius about 1 cm~'. Thus, the plane of the ferrite plate
supports two waves with different refraction indices, one of
them being dependent on and the other independent of the
wave propagation direction. We therefore have a model of a
birefringent uniaxial crystal, but with a very interesting and
important twist: the index of refraction of this unusual wave
is described not by an ellipse but by a hyperbola!

Below, we discuss some characteristics of forward and
backward TE waves or those of MSWs propagating at an
arbitrary angle to an optical axis; the TM wave is not
practically excited in thin ferrite plates and is not mentioned
in the discussion below, all the more so because it is quite
trivial in propagation, reflection, and refraction terms.

In Fig. 3, the orientation of the group velocity vector (the
angle  between the vector v, and the y axis) is shown as a
function of the orientation of the wave vector (the angle ¢
between k and the y axis) for the forward and backward waves
(here and below, the angles i and ¢ are measured positively in
the counterclockwise direction). It is seen that the dependence
V(@) is single-valued for the forward wave and is not single-
valued for the backward wave. Therefore, it may happen as
the backward wave propagates that two (or occasionally even
three) beams differing in the direction and magnitude of the
wave vector (or, in other words, in the wavelength and wave
front orientation) propagate in the same direction. For
example, for y = —60°, two beams with different orienta-
tions of wave fronts (¢ = 54° and ¢ = 85°) may propagate.

Knowing the basic characteristic of an MSW beam, the
dependence (o), it is easy to consider the reflection and
refraction of the forward and backward noncollinear waves.
We first take a general look at reflection. Let the beam be
incident on a flat mirror (straight-line edge of a ferrite film).

90
W, deg

60

30 F

oL

730 -

_60 -

—90 | 2

—120 |

—150

180 | | | | | | | |
-9 —-60 =30 0 30 60 90 120 150 180

¢, deg

Figure 3. Direction of the backward wave group velocity (the angle )
versus the wave vector orientation (the angle ¢) for f= 2800 MHz,
4nMy=1750 G, and s=10 um: curve I, forward MSW for
Hy = 300 Oe (corresponding to curve / in Fig. 2); curve 2, backward
MSW for Hy = 480 Oe (corresponding to curve 3 in Fig. 2).
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Depending on the angle between the optical axis of the medium
and the mirror plane normal, several types of reflection are
recognized, differing in the relative geometry of the incident
and reflected beams. For the optical axis coinciding with the
mirror plane normal, the properties of the medium are
symmetric with respect to the normal, and reflection obeys
Euclid’s law: the angle of incidence is equal to the angle of
reflection. When the optical axis deviates from the normal, the
wave properties of the medium turn out to be asymmetric with
respect to the normal, leading to a difference between the
incidence and reflection angles. Further deviation from the
optical axis gives rise to reversed (or negative) reflection, the
most unusual situation occurring when an obliquely incident
beam is reflected in the direction opposite to the incident
direction. At large deviations, a forward noncollinear wave
incident on the mirror in a broad sector of 40 to 45° has its
beams reflected to a narrow sector of the order of 2—3°,1.e.,a
flat mirror focuses the reflected beams into a narrow beam. As
the optical axis deviates still further, a situation occurs in which
the mirror plane normal coincides with the asymptote to the
isofrequency curve (which is a hyperbola for the forward
MSW); in this case, a beam never produces a reflection,
whatever its angle of incidence. The explanation is that the
second branch of the isofrequency hyperbola lies on the other
side of the asymptote, and there exist no beams that satisfy the
boundary conditions at the surface of the mirror. So much for
a general outline of how a noncollinear wave is reflected. All
the above situations have been observed experimentally [2—4].
Some time after our first experiments [2], a theoretical study of
a similar situation was made [5].

Another important point in studying wave reflection is
that in contrast to isotropic media, where it does not matter
whether the mirror or the exciting antenna is rotated to
change the wave incidence angle to the flat mirror, these two
approaches lead to totally different results in an anisotropic
medium because the mirror or antenna also change their
orientation relative to the optical axis when rotated. Clearly,
when the mirror is turned, the parameters of the incident wave
(the wavelength /4;, the wave vector k;, the group velocity vg;,
and their associated angles ¢; and ;) remain constant,
whereas when the antenna is turned, the parameters of the
incident wave are different for each new angle of incidence
(because the vectors k; and vg; change orientation relative to
the optical axis). We note that the wave vector k; of the
reflected beam may differ considerably from k;.

We first consider what happens when a forward collinear
wave is incident on a flat mirror of varying orientation relative
to the optical axis [6]. Figure 4 shows the calculated angles ;.
and ¢, (i.e., the group velocity to wave vector orientation) asa
function of the angle 0 that the mirror normal makes with the
v axis. The incident parameters were {; = ¢; = 180°, i.e., the
collinear incident beam propagated in the negative y direction
(see also Fig. 2). When the mirror normal is parallel to the
y axis, the beam reflects backward in the direction i, = 0 and
remains collinear (i.e., ¢, =0). As the mirror is gradually
inclined, the values of ., and ¢, move apart to different sides
relative to the optical axis. ! For 0 in the interval between 15°

! The reflected beam parameters can be visualized using Fig. 2, if we draw a
straight line corresponding to the orientation of the mirror normal
through the end of the incident wave vector k; and find the second point
where the line intersects the isofrequency curve. This point determines the
parameters of the reflected beam. We leave it to the reader to perform such
constructions for various values of .
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Figure 4. Reflected beam propagation direction v, (curves /) and wave
vector (front) orientation ¢, (curves 2) versus mirror orientation 6 for a
forward wave for /= 3000 MHz, H, = 360 Oe, 4nM, = 1750 G, and
s = 10 pum (all angles are measured from the optical y axis).

and 40°, the beam is reflected at about the same angle,
Y. ~ 50°. This explains why beams in a wide range of
incidence angles are reflected in one direction even though
the phase front orientation (the angle ¢,) changes smoothly
across the reflected beam. For 0 ~ 43°, the mirror normal
coincides with the isofrequency curve asymptote, making
reflection impossible. As the mirror is rotated further, the
wave and group velocity vectors turn through 180°, to
uniformly converge in the direction of the incident beam.
The above results have been confirmed experimentally. We
note that knowing ¥, and 0, it takes straightforward algebra
and little effort to calculate the reflection angles y, as
measured from the mirror normal (see below or, for more
details, see Ref. [7]).

Analysis of the reflection from an arbitrarily oriented
mirror yields insight into the way a spherical inhomogeneity
(for example, just a hole in a film) reflects a plane wave. If the
inhomogeneity has its edges smooth and its size much larger
than the wavelength, then mirror-like reflection is to occur.
We suppose that a plane collinear wave propagates in the
negative y direction (i.e., the incident beam corresponds to the
point of intersection of curve 2 and the y axis in Fig. 2) and is
incident on a circular hole. The part of the circumference that
is closest to the point of incidence (and whose middle lies on
the y axis) produces reflected beams that correspond to the
intersection of the normal with the opposite isofrequency
curve (/ in Fig. 2). This part of the circumference produces
backward reflection that converges to a sort of ‘knot’ on the y
axis. The reflection from the remainder of the circumference
corresponds to the intersection of the normal with the original
isofrequency curve (2 in Fig. 2) and moves apart in the
direction of the incident wave. Analysis shows that part of
the backward reflected beams can be focused to a single point
by curving the mirror surface in a certain complex way rather
than making the boundary circular. It has been estimated
theoretically and experimentally [8, 9] that the focal spot can
be as small as several fractions of a millimeter. Also, if
properly shaped, a strip exciter can be used to focus beams.
It is noteworthy that in contrast to the electrodynamics of
isotropic media, MSWs are focused by a convex (rather than
concave) surface.

We next consider a backward collinear wave incident along
the z axis on a flat mirror variably oriented with respect to the
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optical axis [7]. We directly investigate the dependence of the
reflection the angle on the incidence angle y,(y;). The angles y;
and y, were measured from the normal such that if the
incident and reflected beams were on different sides of it, the
angle y, was taken to have the same sign as y;; if the two beams
were on the same side, y, was taken to have the opposite sign
to that of y;.> The orientation of the normal ¢ and all the
remaining angles (the orientation of the group velocities and
wave vectors of the incident and reflected beams, y;, V., ;,
and ¢,) were measured from the z axis. Clearly, in this picture,
the angles of incidence and reflection of the wave, y; and y,,
and the normal orientation (angle 6) are related to the angles

Y, and , as

Xi:lﬁif()JrlSOO, (15)

s =W, — 0+ 360°. (16)

The dependence of the reflection angle on the incidence
angle y,(x;) is shown in Fig. 5. The direction of the incident
wave vector k; is opposite to that of the z axis, while the group
velocity vector vy is along the z axis. The dashed straight
line 4 in Fig. 5 shows the reflection pattern for an isotropic
medium. As seen from Fig. 5, the backward wave, which is
noncollinear in character, undergoes negative reflection from
the boundary over the entire range of the incidence angles y;
(curve 1) if the incident and reflected waves are described by
opposite isofrequency curves (which are analogous to curves
3 and 4 in Fig. 2); if the incident and reflected waves are
described by one and the same isofrequency curve (which is
analogous to curve 4 in Fig. 2), then negative reflection
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Figure 5. Reflection angle as a function of incidence angle y,(y;) for a
backward wave for f= 2350 MHz, H, = 367 Oe, 4nM, = 1870 G,
s = 82 um: curve /, negative reflection; curves 2 and 3, positive reflec-
tion; straight line 4 depicts reflection in isotropic media.

2 We have to use these conventions for the reflection angle because just this
way of measuring the reflection angle is standard and corresponds to the
well-known mirror reflection law for isotropic media (the angle of
incidence is equal to the angle of reflection).
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Figure 6. Dependence of the reflection angle on the incidence angle y,(y;)
for a forward wave for /= 3400 MHz, Hy = 437 Oe, 4nM, = 1750 G,
and s = 10 pm, and various values of the angle 6 between the mirror
normal and the optical axis: 0 = 0 (curve /), 6 = 10° (curve 2), 0 = 20°
(curve 3).

occurs, observed at incidence angles |y;| > [™"| (curves 2
and 3). Therefore, for || > ™", a reflected wave may
produce two beams, with a negative and a positive y,. The
value of ™" depends on the frequency and on the parameters
of the structure (for example, z™" ~ 37° in Fig. 5). The
reflection pattern and properties of backward collinear and
noncollinear waves, including experimental data, are
described in detail in Ref. [7].

We now consider the dependence of the reflection angle
on the incidence angle y,(y;) in the case where the orientation
of the flat mirror relative to the optical axis remains
unchanged and the incidence angle y; is varied by rotating
the exciting antenna [3]. We suppose that the antenna excites a
forward wave described by the isofrequency curve / in Fig. 2.
Figure 6 shows the calculated dependence of y,(y;) for three
different orientations of the mirror. As seen from Fig. 6, if the
mirror normal is parallel to the optical axis, then the wave,
irrespective of whether it is collinear or noncollinear, is
reflected according to Euclid’s law (the angle of incidence is
equal to the angle of reflection, curve 7). But if the normal is
declined from the optical axis, then, first, the angle of
reflection is not equal to the angle of incidence and, second,
negative reflection is achieved at small negative values of the
incidence angle y; (curves 2 and 3 in Fig. 6).

In conclusion, we note that by using noncollinear waves, it
is also a simple matter to realize negative refraction [10], with
both the incident and refracted waves forward. Results of the
studies above were instrumental in the prototype develop-
ment of microwave-based analog information processing
systems [11].
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Electromagnetic waves
in artificial periodic structures

R A Silin

1. Introduction

The present talk discusses artificial periodic structures for
which the propagation of electromagnetic waves is suitably
described in terms of the band theory [1], originally developed
in solid state physics to study de Broglie waves. Such crystals
are of special interest for developing short-wavelength and, in
particular, optical-wavelength devices. There is a correspon-
dence between the respective concepts associated with these
two kinds of waves (see the Table).

Devices based on such artificial crystals (also known as
photonic crystals) include resonators, transmission lines,
filters, signal splitters, etc. Underlying their operation are
crystal inhomogeneities, which produce local oscillations
analogous to impurity levels in a solid, with point inhomo-
geneities providing a resonator and line inhomogeneities
providing a waveguide channel and other radio engineering
systems.

Two major spheres of artificial crystal research are the
study of wave refraction and reflection at an interface
between such crystals and looking for media where waves
deviate from their normal behavior. For example, if the group
and phase velocities in a medium are opposite, it was shown

Table. Analogy between de Broglie and electromagnetic waves.

de Broglie waves Electromagnetic waves

Electron energy E = hw
Quasimomentum p
Electron velocity v, = grad,w

Frequency w

Wave vector k

Wave group velocity

vr = grady o, equal

to the energy transfer velocity

Dispersion characteristic E(p)
Energy band

Forbidden band

Isoenergetic surface

Impurity or surface levels

Dispersion characteristic w (k)
Passband

Stop band

Isofrequency

Local oscillations

in [2] that a beam incident from free space is deflected
opposite to where it normally should be — a discovery
which was followed by a flurry of research on media that are
unconventional in the way they reflect and refract waves [3—
9]. Most media studied were those transmitting waves in two
dimensions, such as two-dimensionally periodic arrays of
metallic elements [4-9], ferrite films that carry magneto-
static waves [10, 11], and cholesteric liquid crystals [12].
Plasmas also have unusual reflection and refraction proper-
ties [13, 14].

One can study beampaths in a medium by considering the
electric permittivity tensor ¢ and the magnetic permeability
tensor p of the medium [13, 14]. But because the calculation of
these tensors requires averaging the fields, this approach
applies only if the structure period is small compared to the
wavelength. A more convenient and user-friendly approach,
which is in addition valid for any wavelength, is the method of
isofrequencies. Isofrequencies, the surfaces where the wave
vector terminates for any wave directions, can be constructed
based on the ¢ and u tensors and can also be obtained without
an averaging procedure.

The analogy between de Broglie waves in crystals and
electromagnetic waves in periodic structures led to the
discovery of a number of new physical phenomena, to be
discussed here.

We consider structures that are periodic in three dimen-
sions. The electromagnetic field in such a structure is
expanded in a triple Fourier series of spatial harmonics with
wave vectors Ky, , Ky, , Ky, (—oo < m; < o0,i=1,2,3). Each
harmonic corresponds to its own domain of variation (Seitz
zone).

The phase velocities of the spatial harmonics are deter-
mined by the relation v,, = wk,,/|k,,|* and are different,
whereas the group velocities v, = grad,w are all equal. The
group velocity determines the direction of the flow of energy
(or the beam, or information) and is directed along the
normal to the isofrequency and toward higher frequencies.

Knowing the phase velocities, wave vectors, and harmo-
nic amplitudes of electromagnetic waves is important because
these quantities determine the direction and intensity of
diffraction peaks (e.g., in diffraction and antenna gratings).
This knowledge is also essential in studying the interaction of
electrons with a wave (the Vavilov— Cherenkov effect). In a
one-dimensionally periodic medium, this interaction is
strongest when the phase velocity v = w/k is close to the
electron velocity (ve &~ w/k), i.e., kve = . The extension of
this relation to two- and three-dimensional systems is given by
the Vavilov—Cherenkov condition kv, = w, known in high-
frequency technologies as the condition for electron—wave
synchronism and used in developing electronic devices
(traveling wave tubes, backward wave tubes, etc.).

2. Wave vector construction using isofrequencies

We generally distinguish between forward and backward
waves. The term forward refers to a wave in which the angle
0 between the phase and group velocities does not exceed
n/2 (|0] < m/2). In the case where 1/2 < |0] < 7, the wave is
said to be backward.

Figure 1 depicts the cubic elementary cells of two artificial
media and shows plots, in the k,, k, plane, of their respective
isofrequencies for the zero zone in the second transmission
band. The numbers labeling the curves are proportional to the
frequencies and represent the values of a/A, where a is the size
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