
Abstract. We show that contrary to the commonly accepted
view, Chapter IX of Gibbs's book [1] contains the prolegomena
to a macroscopic statistical theory that is qualitatively different
from his own microscopic statistical mechanics. The formulas
obtained by Gibbs were the first results in the history of physics
related to the theory of fluctuations in any macroparameters,
including temperature.

J WGibbs's famous book Elementary Principles in Statistical
Mechanics [1] 1 was published in the USA in the summer of
1902. However, it was not until the legendary year of 1905
that the book came to be widely known in Europe, after the
publication of its German translation [3] made by E Zermelo.
It is therefore quite appropriate to place this event among
other outstanding scientific events whose centenary is cele-
brated in the context of the World Year of Physics.

Beginning with the mid-1930s, Gibbs's fundamental ideas
in the area of statistical mechanics gained widespread
acceptance in scientific and educational literature while
enjoying numerous successful applications in theoretical
scientific investigations owing to the effort mounted by
Fowler [4], Landau and Lifshitz [5], Tolman [6], and their
followers. As a result, the scientific community formed a
strong opinion that Gibbs's book was a consistent develop-
ment and, in a sense, the completion of equilibrium statistical
mechanics, which dated back to Maxwell's and Boltzmann's
works in the second half of the XIXth century. It would be
well to identify it as the microscopic statistical theory.

However, close examination of the text of Gibbs's book
(especially of Chapter IX) can also reveal the prolegomena to
the macroscopic statistical theory, which is qualitatively
different from microscopic statistical mechanics. It turned
out that the ideas expressed in Chapter IX went far beyond
those objectives which had initially been proclaimed byGibbs
himself in the title of his book. As the title implies, Gibbs
intended to derive the thermodynamic description of a
macroscopic system as a whole from the dynamic description

of a large number of microscopic objects that make up this
system.

According to Gibbs, the mathematical instrument of such
a description (for a fixed volumeV and number of particlesN
in the system) is the microscopic canonical distribution
function defined in the phase space of the system [2, formulas
(90) and (91)]:

dr� pi; qi� � exp

�
cÿ e� pi; qi�

Y

� Y
dqi dpi

� exp fÿZg
Y

dqi dpi ; �1�
where the qi- and pi-dependent quantity Z was labeled by
Gibbs as the phase probability index; the product

Q
is taken

over all the microobjects (for brevity, particles) that consti-
tute the system.

Distribution (1) contains two constants, Y and c, which
have the dimensionality of energy and are independent of
phase variables. Gibbs referred to the Y quantity as the
modulus of distribution (1); at present, it is universally
accepted thatY � kBT0, where kB is the Boltzmann constant
and T0 is the thermostat temperature. By definition, a
thermostat has an infinite number of degrees of freedom,
and hence the value of T0 is strictly fixed.

The value of c is defined by the normalization condition
for distribution (1) and has the thermodynamic interpretation
of the free energy of the system. The generalized coordinates
qi and momenta pi that enter distribution (1) and characterize
the phase space of the system are random variables owing to
the thermal contact between the system and the thermostat.
Accordingly, the pi- and qi-dependent total system energy e is
also a random function.

The total energy e is additive with respect to the total
kinetic energy ep and the total potential energy eq. That is why
Gibbs distribution (1) in statistical mechanics factors into the
product of the distributions dr� pi� and dr�qi�, which depend,
respectively, on only the momenta and only the coordinates
of individual particles. This circumstance permits calculating
both the average values and arbitrary higher-order moments
of these distributions.

This had the effect that the Gibbs method based on
microscopic distribution (1) yielded for the first time a direct
and regular method of calculating the fluctuations of any
quantities admitting a mechanical interpretation, i.e., depen-
dent on the momenta pi and coordinates qi of individual
particles of the system. Knowing the e� pi; qi� dependence and
using distribution (1), one can then determine themean values
and fluctuations of any system macroparameters whose
microlevel prototypes depend on pi and qi.

On the contrary, those macroparameters of the system
that are devoid of such prototypes (first and foremost, the
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temperature) are believed to be strictly fixed and coincident
with the similar macroparameters of the thermostat. In
particular, the zeroth law of thermodynamics is given by the
identity T � Y, and therefore the modulusY of the canonical
distribution in statistical mechanics corresponds to the
thermodynamic temperature T (in energy units) of the
system that is in thermal equilibrium with the thermostat.

Distribution (1) may also be given, following Gibbs,
another, equivalent form Ð that of a distribution over the
energy e of the system as a whole [2, formulas (266) ± (268)]:

dr�e� � exp

�
cÿ e
Y

�
dV
de

de : �2�

Here, V�e� � � Q dqi dpi is the phase volume containing the
system microstates whose energy lies below some limiting
value e. In the framework of statistical mechanics, the
quantity V�e� plays an auxiliary role, which practically
reduces to a change of the normalization condition. It can
be found, in principle, from the microscopic characteristics of
the dynamic model of the system.

Mathematically, the transition from distribution (1) to
distribution (2) in the framework of statistical mechanics is
merely a `change of variables,' specifically, the transition
from the set of 6N random variables � pi; qi� to one random
variable e. In this case, V�e� is the transformation Jacobian,
which can be calculated if the dependence e� pi; qi� is known.
Therefore, although the quantity e in distribution (2) has the
meaning of the energy of the system as a whole, i.e., might be
formally treated as a random macroparameter, it actually
remains a microparameter in the phase space owing to the
`genetic' relation of the phase volume V�e� to the initial
microparameters pi and qi.

The remarkable success achieved during the past century
in the application of themicroscopic canonical distribution in
the form of either distribution (1) or distribution (2) has led to
the establishment of a tradition whereby it is commonly
supposed that Gibbs's book is dedicated to the presentation
of equilibrium statistical mechanics in the phase space and to
the substantiation with its aid of the foundation of thermo-
dynamics. However, it should be remembered that this goal is
possible to achieve only in the thermodynamic limit, when the
number of particles (or, in a more general sense, the number
of the degrees of freedom) in the system N!1 and the
system volume V!1, with N=V � const. Of course, any
macroparameter fluctuations are out of the question in this
limit.

Furthermore, the most important intensive macropara-
meters, and above all the temperature, are introduced ad hoc
and are therefore not substantiated at all. For finite but
macroscopic values of the number N of particles in the
system, there exist fluctuations of only its extensive macro-
parameters, but their relative magnitude is of the order of
1=

����
N
p

. The fluctuations of intensive macroparameters of
suchlike systems are absent as before.

In this context, the development of the fluctuation theory
for arbitrary macroparameters, including temperature (see,
e.g., Ref. [5], 5th ed., Ch. 12), was widely believed to be alien
to Gibbs's basic ideas. Meanwhile, in the preface to his book
[2, p. 353], Gibbs himself warned about the possible
ambiguity of the statistical description of nature at thermal
equilibrium:

``We meet with other quantities, in the development of the
subject, which, when the number of degrees of freedom is very

great, coincide sensibly with the modulus, and with the
average index of probability, taken negatively, in a canonical
ensemble, and which, therefore, may also be regarded as
corresponding to temperature and entropy. The correspon-
dence is however imperfect, when the number of degrees of
freedom is not very great... .'' (italics added).

The aim of our brief article is to show that Gibbs's book
also contains another, macroscopic, version of the statistical
description of nature directly in the macroparameter space,
which is different from the prevalent microscopic version of
the statistical description in the phase space.

To do this, it suffices to address ourselves to the contents
of Chapter IX of Gibbs's book, in which the author proposes
to return ``...to the consideration of the canonical distribu-
tion, in order to investigate those properties which are
especially related to the function of the energy which we
have denoted by j.'' Formally, this function was already
introduced by him in Chapter VIII [2, formula (266)] as a
quantity in terms of which it was convenient to write the
Jacobian V�e� for the transformation from the individual
microscopic characteristics pi, qi of the constituent particles to
the variable e characterizing the system as a whole:

j � ln
dV
de
: �3�

However, it is significant that in Chapter IX, Gibbs no
longer recalled that the quantity j might be calculated from
the phase volume V defined by the dynamic model of the
system in the phase space. Proceeding from the microscopic
distribution in the form of distribution (2), he postulated the
macroscopic canonical distribution [2, formula (317)] 2

dr�E� � exp

�
Cÿ E
Y

�
expF�E� dE ; �4�

which is seemingly similar to distribution (2) but is never-
theless qualitatively different from it.

What is new here is that the quantity F�E� is initially
introduced as a random macroparameter that is independent
of any phase-space description. This signifies that the system
energy E, which appears in it, is also regarded initially as a
random macroparameter, which may depend only on other
macroparameters, for instance, the volume V and tempera-
ture T of the system, but not on the microparameters pi, qi.

Precisely this step by Gibbs opens up the way to the
development of a macroscopic statistical theory, in which the
fluctuations of any macroparameters, including temperature,
turn out to be possible. (Presently, it is commonly called the
statistical thermodynamics.) This was successfully demon-
strated by Gibbs himself in Chapter IX.

However, it is regrettable that this chapter, the most
important as regards its idea content, was not timely noticed
by the broad scientific community and, in particular, was not
given adequate interpretation in the comments made by the
leading experts concerning Gibbs's book [7, 8].

Meanwhile, it is precisely in this chapter thatGibbs proves
the two most important formulas, (336) and (337), specifi-
cally,

1

Y
�
�
dF
dE
�

0

; ÿd�Z � dF0 ; �5�

2 To distinguish between these two distributions, we use capital letters

instead of lowercase letters to denote random extensive macroparameters

of the system.
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where the subscript 0 labels the quantities corresponding to
the peak of distribution (4), i.e., to the most probable energy
value E0 of the system.

Further, Gibbs writes as follows: ``Now we have already
noticed a certain correspondence between the quantitiesY and
ÿ�Z and those which in thermodynamics are called tempera-
ture and entropy. The property just demonstrated, with those
expressed by equation (336), therefore suggests that the
quantities dE=dF and F may also correspond to the thermo-
dynamic notions of temperature and entropy.''

Therefore, according to Gibbs, there exist two pairs of
quantities, and not one pair, that can equally be considered
thermodynamic quantities Ð temperature and entropy. How
should they be treated?

It would appear quite natural that the pair of quantities

ÿ�Z � Cÿ �E
Y

and Y

would correspond to the entropy and temperature of a system
only under perfect equilibrium, which can be achieved only in
the limit asN!1. At the same time, the pair of quantitiesF
and dE=dF characterizes the system with a macroscopic but
finite number of the degrees of freedom N. One can see from
relations (5) that the above pairs of quantities coincide with
each other only to the lowest approximation.

All this allows us to assume that Gibbs's F�E� is the
entropy of a system with a large but finite number of the
degrees of freedom, which is a random function of the
macroparameter Ð the energy E Ð and therefore pertains
not only to perfect equilibrium. This is confirmed by the
expansion [2, formula (338)]

F�E� � F0 �
�
d2F

dE2
�

0

�E ÿ E0� �
�
d2F

dE2
�

0

�E ÿ E0�2
2

� . . . ;

�6�
which is, on the one hand, the expansion of F�E� around the
most probable energy value E0 and, on the other hand, as
justly noted by Gibbs, an expansion in powers of 1=

����
N
p

.
If we restrict our consideration, as was done by Gibbs, to

the lowest terms in expansion (6), then after its substitution in
distribution (4) we can see, in view of relations (5), that the
terms linear in E cancel. The result is given by an approximate
distribution [2, formula (341)] with a new normalization [2,
formula (342)]:

dr�E� � exp

�
ÿZ0 � F0 �

�
d2F

dE2
�

0

�E ÿ E0�2
2

�
dE ; �7�

where ÿZ0 � �Cÿ E0�=Y and the quantity �d2F=dE2�0 is
negative.

As regards formula (341), Gibbs noted that ``this shows
that for a very great number of degrees of freedom the
probability of deviations of energy from the most probable
value E0 approaches the form expressed by the `law of
errors','' i.e., the normal Gaussian distribution. As is well
known, this result corresponds to the universally recognized
theory of macroparameter fluctuations (see, e.g., Ref. [5],
5th ed., Ch. 12).

Next, Gibbs differentiates expansion (6), which yields, in
view of relation (5),

dF
dE ÿ

�
dF
dE
�

0

� 1

T�E� ÿ
1

Y
�
�
d2F

dE2
�

0

�E ÿ E0� ; �8�

where T�E� � dE=dF has the meaning of the temperature of
the system (in energy units). Gibbs thereby obtains (suppo-
sedly for the first time in the history of physics) the quantity
that characterizes, in thermal equilibrium, the difference
between the temperature T of a macrosystem with a finite
number of degrees of freedom and the thermostat tempera-
ture Y, which corresponds to a less strict form of the zeroth
law of thermodynamics, T� DT � Y.

By next differentiating expression (8) at the peak of
distribution (4), it is easy to find that

d2F

dE2 �
�
d2F

dE2
�

0

�
�
d

dE
�

1

T�E�
��

0

� ÿ 1

Y 2

1

CV
; �9�

where CV � �dE=dT �0 is the specific heat of the system at
constant volume. For the normal distribution (7), the average
energy value �E coincides with the most probable value E0, and
hence the system energy fluctuation (at constant volume:
V � const) assumes, in view of expression (9), the well-known
form [2, formula (343)]

�DE�2 � �E ÿ �E �2 � �E ÿ E0�2 � ÿ
�
d2F

dE2
�ÿ1

0

� CVY 2 :

�10�

Gibbs next obtains, again for the first time, the expres-
sions for the inverse temperature ± energy correlator [2,
formula (349)]

D
�

1

T�E�
�
DE �

�
d2F

dE2
�

0

�DE�2 � ÿ1 �11�

and for the fluctuation of the inverse temperature [2, formula
(350)]:

D
�

1

T�E�
�2

�
�
d2F

dE2
�2

0

�DE�2 � ÿ
�
d2F

dE2
�

0

� 1

Y 2

1

CV
: �12�

Unfortunately, at this point, Gibbs did not use the
Cauchy ±Bunyakowsky ± Schwartz inequality for the mean
values of the momenta of random quantities X and Y, which
was already known then andwhich states that these quantities
satisfy the universal relation

X 2 Y 2 5
ÿ
XY

�2
: �13�

If it is applied in the macroparameter space with
X � D

ÿ
1=T�E�� and Y � DE, then in the general case (for

V 6� const), we obtain the inequality

D
�

1

T�E�
�2

�DE�2 5
(�

D
�

1

T�E�
�
DE
�)2

; �14�

which has the meaning of the thermodynamic uncertainty
relation for the energy and the inverse temperature [9].
However, in the context of macroscopic statistical theory
outlined by Gibbs in Chapter IX [see formulas (10) ± (12)
above], uncertainty relation (14) is `saturated' (i.e., becomes
an equality) because the system volume V � const.

We note that in passing from the distribution modulus Y
to the temperature T0, there appears a factor kB on the right-
hand sides of formulas (10) ± (12) and a factor �kB�2 on the
right-hand side of formula (14). As a result, uncertainty
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relation (14) becomes

D
�

1

T�E�
�2

�DE�2 5
(�

D
�

1

T�E�
�
DE
�)2

� k 2
B ; �15�

where the right-hand side is defined by the Boltzmann
constant.

We emphasize once again that formula (15) forV � const
follows directly from the foregoing Gibbs formulas. The
prolegomena to the macroscopic statistical theory contained
in Chapter IX of Gibbs's book are presumably the first (the
year 1902!) example of a nonclassical theory involving
uncertainty relations. It is quite surprising that discussions
about the validity of suchlike relations in thermodynamics
still persist.

Thus, one is forced to accept the fact that Gibbs's book
does not reduce, as is commonly supposed, exclusively to the
construction of the microscopic theory, i.e., statistical
mechanics. As follows from the foregoing, in his last
writings, Gibbs intuitively came close to the formulation of
the macroscopic theory, i.e., statistical thermodynamics,
which equally allows the fluctuations of extensive and
intensive thermodynamic characteristics.

One is thereby forced to admit that the rather common
belief about the absence, in Gibbs's book, of the notions of
temperature fluctuations in a system and of a correlation
between its energy and temperature, which was also shared by
the authors of this article earlier [10], is a fallacy. In reality, for
more than a century, there have existed two qualitatively
different statistical theories based on canonical distributions
of similar form Ð the microscopic distribution in the form of
distribution (1) or (2) in the phase space and the macroscopic
distribution (4) in themacroparameter space. Of fundamental
significance is the fact that these two theories are based on
different versions of the zeroth law of thermodynamics and
therefore lead to different results for the thermodynamic
fluctuations of some macroparameters and the correlations
between them.

Unfortunately, Gibbs's fate left him no time to elaborate
the views embodied in Chapter IX of his book. In particular,
only once (in Chapter XIV) did he apply formula (12) for
temperature fluctuations to show that increasing the number
of the degrees of freedom of a thermostat entails an unrest-
ricted decrease in its temperature fluctuation Ð the magni-
tude of DY. By and large, Gibbs nevertheless regarded, as
suggested by his numerous statements, the problem of
macroparameter fluctuations as physically insufficiently
interesting due to the impossibility of their experimental
observation. We let Gibbs have the floor [2, p. 484]:

``When we wish to give a body a certain temperature, we
place it in a bath of the proper temperature, and when we
regard what we call thermal equilibrium as established, we say
that the body has the same temperature as the bath. Perhaps
we place a second body of standard character, which we call a
thermometer, in the bath, and say that the first body, the bath,
and the thermometer, have all the same temperature. But the
body under such circumstances, as well as the bath, and the
thermometer, even if they were entirely isolated from external
influences (which it is convenient to suppose in a theoretical
discussion), would be continually changing in phase (i.e., in
entropy3), and in energy as well as in other respects, although

our means of observation are not fine enough to perceive these
variations'' (italics added).

From this standpoint, to the accomplishments of physics
of the past century must undoubtedly be added the fact that
the development of statistical thermodynamics as a macro-
scopic statistical theory, the credit for which indisputably goes
to Einstein [11 ± 13] and his followers, has led to the
construction of the modern theory of thermodynamic
fluctuations and its numerous applications (for details, see
review Ref. [14]).

In this connection, we recall that precisely the fluctuation
analysis of thermal radiation permitted Einstein to arrive at
the notion of a photon, which gave impetus to the construc-
tion of quantum radiation theory. Today, the fluctuation
study of the cosmic background radiation in its turn has
become one of the main methods of investigating the past and
future of the Universe, which opens up a new chapter in the
progress of physics as a whole [15].
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