
Abstract. We present the results of analytical and computer
predictions about the spatio ± spectral configuration of the
radiation generated at consecutive two-stage processes of
parametric scattering and the sum frequency generation in a
layered nonlinear crystal. A procedure for the derivation of
analytical estimates, including the solution of the phase
matching problem. Some quite bizarre spatio-frequency spec-
tra are shown.

1. Introduction

Current advances in nonlinear quantum optics permit
devising and realizing wonderful and sometimes exotic
processes that could not even be dreamed of until recently.
A prominent example from this area is brought to the readers'
notice.

The emergence of nonlinear quantum optics is commonly
associated with light frequency doubling [1]. The red beam of
a ruby laser with the wavelength 694.2 nm was directed into a
transparent quartz crystal, and an ultraviolet beam with the
wavelength 347.1 nm emanated from the crystal. In this case,
`red' laser photon pairs transformed into single ultraviolet
photons of the second harmonic. Approximately 15 years
later it was determined that a peculiar ordering of the laser
photon flux occurs in this case [2, 3]. Since pairs of photons
are `snatched out' of the laser beam, fluctuation intensity
peaks are smoothed. In other words, the photon bunches are
thinned. The shot noise in the detection of such a radiation
can be suppressed. This is an amazing result, because it had

been assumed for a rather long time that shot noise
determined the limiting precision of measuring photoelectric
devices and represented the so-called standard quantum limit.
The nature of shot noise for a constant intensity of detector-
illuminating light is related to the randomness of the
detachment of a photoelectron from a photocathode, i.e.,
the photocathode has some minimal noise level (see, for
instance, Ref. [4]).

The feasibility of light frequency doubling determines the
feasibility of the inverse process as well [5]. This process was
indeed realized in the so-called parametric light scattering [6],
also in crystals, whereby single photons `break down' to
photon pairs. The pairs behave not only amazingly but also
paradoxically. Being united by the common instant of
production, the photons of each pair retain, like twins, exact
interrelation even upon separation. For example, when one of
the photons of a pair is recorded by a measuring device, the
quantum state of the other changes instantaneously (!), even
though the photons may be spaced at a huge distance:
according to the universally accepted viewpoint, which has
been borne out in experiment, the reduction occurs instantly
(of course, to within the capability of the experimenter). The
photons may fly several kilometers apart, but `the informa-
tion' about the results of detection of the first photon
instantly changes the quantum state of the second one. Is it
valid to say in this case that a supraluminal speed of
information transmission is effected by way of parametric
light scattering? Apparently not. The operation of a commu-
nication line between the remote observers of the photon
pairs necessitates, apart from detectors, a `telephone' as well:
not knowing the results of the first photon detection, the
observer of the second witnesses in effect a random signal
(see, e.g., Ref. [7] and the references therein).

The light frequency doubling may be regarded as a special
case of the summation of the frequencies of two beams:

o1 � o2 ! o3 � o1 � o2 : �1�

Equality (1) follows from the energy conservation law when
two photons merge into one. Similarly, in the parametric
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scattering,

o2 ! o 01 � o 001 � o2 : �2�
Is it possible to consecutively realize both processes in a

common crystal? In principle, yes, but it is quite difficult. The
reason is that the velocities of all propagating beams should
be equal, otherwise some beams would outrun the others and
the nonlinear conversion efficiency would drastically
decrease. But the dispersion effect should inhibit the fulfill-
ment of the so-called phase matching condition. Further-
more, the crystal anisotropy has the effect that the phase
velocities are different in different directions. Nevertheless,
consecutive interaction is possible. This effect was investi-
gated in crystals [8 ± 10]. Arakelyan et al. [10] draw the
conclusion, in particular, that the consecutive interaction
may be highly efficient. However, employing periodic
layered crystal structures provides additional degrees of
freedom and considerable possibilities and at the same time
complicates the theoretical solution to the problem [11]
(Fig. 1). In this case, the spatial configuration of the
radiation spectra takes on quite bizarre forms. Their descrip-
tion is the subject of this paper.

2. Parametric biphotons

We begin the formal description of consecutive light conver-
sion with a parametric conversion where the frequencies of
interacting light beams satisfy relation (2). In this case, the
pump radiation photons with a frequency o2 decay into
signal (o 01) and idler (o 001 ) photons, i.e., a down frequency
conversion (from a higher frequency to lower ones) occurs.

We first assume that there are only three plane mono-
chromatic radiation modes: the pump mode, which is
characterized by the photon creation and annihilation
operators â

y
2 and â2, the signal mode (â

00 y
1 , â 001 ), and the idler

mode (â
00 y
1 , â 001 ). Then, the operator â2 â

0 y
1 â

00 y
1 takes the single-

photon pumpmode j1i2 and the vacuum j0i1 of the signal and
idler modes into a biphoton: â2â

0 y
1 â
00 y
1 j1i2j0i01j0i001 �

j0i2j1i01j1i001. The Hermitian-conjugate operator â
y
2 â
0
1â
00
1 per-

forms the inverse transformation. These two mutually
conjugate operators multiplied by constant coefficients
make up the Hamiltonian of parametric interaction.

In a real situation, the interacting light beams are, of
course, multimodal and have a certain spatial configuration
and a finite spectral width. Therefore, light beams must be
combined when they are resolved into plane monochromatic
modes. The effective interaction Hamiltonian in a medium
with a quadratic nonlinearity w �2� can then be written as
[13 ± 16]

Ĥ � ÿ 1

2

�
V

w �2��o2;o 01;o
00
1 ; r� Ê ���2 �t; r�

� Ê
0 �ÿ�
1 �t; r� Ê 00 �ÿ�1 �t; r� d3r�H:c: ; �3�

where the integration is performed over the crystal volumeV,
H.c. denotes the Hermitian-conjugate term, and the fre-
quency-positive pump field operator

Ê
���
2 �t; r� � i

X
k2

����������������������
�ho2

�
2p
L3

�s
âk2 exp

�
i�k2rÿ o2t�

� �4�

is the sum of all possible planemodes in the quantization cube
L3 (see, e,g., Ref. [17]), which are characterized by the wave
vectors k2 and the corresponding photon annihilation
operators âk2 .

Similarly, the frequency-negative operators of the signal
and idler fields are given by

Ê
�ÿ�
1 �t; r� � ÿi

X
k1

����������������������
�ho1

�
2p
L3

�s
â
y
k1

exp
�ÿ i�k1rÿ o1t�

�
;

�5�
where the quantities with a subscript 1 should be marked with
either a prime when the signal mode is described or a double
prime in the description of the idler mode.

We now consider the consecutive interaction diagrammed
schematically in Fig. 1. Because the frequencieso 03 ando

00
3 are

higher than the pump frequency, this process is termed
parametric amplification at low-frequency pumping, to distin-
guish it from parametric scattering, which is a down frequency
conversion, wheno 01 ando 001 are lower thano2.

3. Parametric amplification
at low-frequency pumping

We thus consider the spatial effects in consecutive three-
frequency processes. In this case, the interacting frequencies
satisfy the relations

o2 � o 01 � o 001 ;
o2 � o 01 � o 03 ; �6�
o2 � o 001 � o 003 :

The first process is the parametric amplification (or decay) at
high-frequency pumping, whereby the beams with frequen-
cies o 01 and o 001 are generated. In the next two processes,
generation of the beams with the sum frequencies o 03 and o 003
occurs.

The first and the second processes in relations (6), as well
as the first and the third, are consecutive, while the second and
the third processes are simultaneous. The interaction Hamil-
tonian in the general form can then bewritten by analogywith
the Hamiltonian that describes the production of two-photon
light (3):

Ĥ � ÿ 1

2

X
m;n

�
V

d3r
�
w �2��o2;o 01m;o

00
1n; r�

� Ê
���
2 �t; r� Ê 0 �ÿ�1 �t; r� Ê 00 �ÿ�1 �t; r�

� w �2��o2;o 01m;o
0
3n; r� Ê ���2 �t; r� Ê 0 �ÿ�1 �t; r� Ê 0 �ÿ�3 �t; r�

�w �2��o2;o 001m;o
00
3n; r� Ê ���2 �t; r� Ê 00 �ÿ�1 �t; r� Ê 00 �ÿ�3 �t; r���H:c:;

�7�

o2

�w�2� ÿw�2�

o
0
1

o
00
1

o
0
3

o
00
3

Figure 1.Diagram of consecutive parametric light conversion in a periodic

structure consisting of domains with oppositely directed optical axes,

which is formally equivalent to the change of sign in the quadratic

nonlinearity coefficient w�2�. The collimated laser pump beam with a

circular radiation frequency o2 decays into beams with frequencies o 01
and o 001 , which satisfy relation (2). Each of these beams interacts with the

laser beam to produce radiation with the sum frequency, i.e.,

o 03 � o2 � o 01 and o 003 � o2 � o 001 .
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where

Ê ���a �t; r� � i
X
ka

����������������������
�hoa

�
2p
L3

�s
âa exp

�
i�karÿ oat�

�
; �8a�

Ê �ÿ�a �t; r� � ÿi
X
ka

����������������������
�hoa

�
2p
L3

�s
â ya exp

�ÿ i�karÿ oat�
�
:

�8b�

The first term in interaction Hamiltonian (7) corresponds
to the first process in relations (6), and the second and the
third terms correspond to the second and third processes in
relations (6), respectively. In the approximation of collinear
plane interacting modes, this process was studied in Refs [11,
12]. A spatially limited Gaussian pump for parametric
interactions was considered in several papers (see, e.g.,
Refs [9, 16, 18 ± 20]), although for monocrystalline nonlinear
media only.

The pump is assumed to be fixed, classical, cylindrical,
Gaussian, and monochromatic:

Ê
�ÿ�
2 � E2 exp

�
ÿ
�
r?
r2

�2

ÿ i�k2zÿ o2t�
�
; �9�

where E2 � E0i
�������������������������
�ho2�2p=L3�p

is the complex pump ampli-
tude, r2 is the waist radius (in this case, the focal region is
assumed to be substantially longer than the crystal length),o2

is the pump frequency, and k2 is its corresponding wavenum-
ber.

We note that although the pump is monochromatic, the
parametrically scattered beams 10 and 100 are broadband, with
the effect that an additional double sum overm and n appears
in Hamiltonian (7).

The solution of the SchroÈ dinger equation

i�h
djji
dt
� Ĥ jji �10�

can be formally written as��j�t�� � Ûjji ; �11�

where jj�t�i is the field state vector. In the problem involved,
the unitary evolution operator Û can be calculated using the
perturbation theory technique. In the second order of the
perturbation theory, it is given by (see, e.g., Ref. [20])

Û � Î� 1

i�h

�t
t0

dt 0Ĥ�t 0� �
�

1

i�h

�2 �t
t0

dt 0
�t 0
t0

dt 00Ĥ�t 0� Ĥ�t 00�;
�12�

where Î is the unit operator. From the normalization
condition


j�t�jj�t�� � 
j�t0�jj�t0�� ; �13�

we have�t
t0

dt 0
�t 0
t0

dt 00Ĥ�t 0� Ĥ�t 00� � 1

2

� �t
t0

dt 0Ĥ�t 0�
�2
; �14�

where t0 and t are the instants of engagement and termination
of the pump. As t0 ! ÿ1 and t!1, the integration with

respect to t yields the delta function:�1
ÿ1

dt exp �iot� � 2pd�o� : �15�

If the vacuum is at the input of the nonlinear crystal, it is
transformed by the last term in expression (12) into the single-
photon states j1i 03 and j1i 003 . In the determination of the
intensities of these states, of the hj�t�jay3 a3jj�t�i type, the
nonlinearity is of the fourth order of smallness, although we
restricted ourselves to only the second order in formula (12).
Nevertheless, the accuracy of calculation by the perturbation
theory is not exceeded because higher orders of expansion
(12) (the third and the fourth) do not make contributions to
the intensity of the field at the frequencies o3 in the fourth
order in intensity. Indeed, the fourth order in intensity may
appear, for instance, in a combination of the first and third
orders in amplitude. But in the first order in amplitude, the
state of the field at the frequencies o2 is the vacuum, and the
intensity is zero. The same is true for the combination of the
zeroth and the fourth orders in amplitude.

IntegratingHamiltonian (7) with respect to time yields the
result�1

ÿ1
dt 0Ĥ�t 0� � 2p3

L3

�X
m; n

exp

�
ÿ �k 0?1m � k 00?1n�2

r 22
4

�
� F �Dk1� w �2��o2;o 01m;o

00
1n�

����������������
o 01mo

00
1n

q
d�Do1� â 0 �1m â 00 �1n

�
X
m; n

exp

�
ÿ �k 0?1m ÿ k 0?3n�2

r 22
4

�

� F�Dk2� w �2��o2;o 01m;o
0
3n�

����������������
o 01mo

0
3n

q
d�Do2� â 01m â

0 y
3n

�
X
m; n

exp

�
ÿ �k 00?1m ÿ k 00?3n�2

r 22
4

�
� F �Dk3� w �2��o2;o 001m;o

00
3n�

����������������
o 001mo

00
3n

q
d�Do3� â 00 �1m â

00 y
3n

�
�H:c: ; �16�

where, forM � l=lc periodic layers,

F �Dk� �
�l
0

dzw �2��z� exp�izDk�

� w �2�0

Dk

n
1ÿ �ÿ exp�iDklc�

�Mo
tan

�
Dklc
2

�
; �17�

l is the crystal length, and lc is the layer length. Here, we have
taken into account that the coupling coefficient w �2� in the
layered nonlinear crystal depends on z. In the integration, we
used the relation�1

ÿ1
d2r? exp

�
ÿ r 2?

r 22
ÿ ik?r?

�
� pr 22 exp

�
ÿ k2?r

2
2

4

�
; �18�

where the infinite integration limits are justified when the
transverse dimension of the nonlinear medium is far greater
than the diameter of the pump waist.

The process peaks in efficiency when the quasi-phase-
matching condition

Dklc � �p ; �3p ; . . . �19�

is satisfied, because F�Dk� in expression (17) is maximized in
this case.
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We can now write the expression for the vector of the
quantum state at the frequencieso 03 ando

00
3 in the absence of a

seed field at the frequencies o 01, o
00
1 and o 03, o

00
3 :

jj3i �
1

�i�h�2
�1
ÿ1

dt 0Ĥ�t 0�
�t 0
ÿ1

dtĤ�t�j0i

� 1

2�i�h�2
�1
ÿ1

dtĤ�t�
�1
ÿ1

dtĤ�t�j0i

� ÿ 2p6

L6
r 42E

2
2

� X
m; n; p

exp

�
ÿ �k 0?1m � k 00?1n�2

r 22
4

�

� F�k2 ÿ k 0z1m ÿ k 00z1n�

� w �2��o2;o 01m;o
00
1n�

����������������
o 01mo

00
1n

q
d�o2 ÿ o 01m ÿ o 001n�

�
�
exp

�
ÿ �k 0?1m ÿ k 0?3p�2

r 22
4

�
F �k2 � k 0z1m ÿ k 0z3p�

� w �2��o2;o 01m;o
0
3p�

����������������
o 01mo

0
3p

q
d�o2 � o 01m ÿ o 03p�j1i 03p

� exp

�
ÿ �k 00?1m ÿ k 00?3p�2

r 22
4

�
F�k2 � k 00z1m ÿ k 00z3p�

�w �2��o2;o 001m;o
00
3p�

����������������
o 001mo

00
3p

q
� d�o2 � o 001m ÿ o 003p�j1i 003p

��
: �20�

From the standpoint of computer calculations, we
emphasize that the choice of the quantization volume has a
significant effect on the computation time because the step of
calculation in k is equal to 2p=L. The field should substan-
tially decrease toward the boundary of the quantization
volume, and therefore the length L of the quantization cube
edge should exceed the diameter of the pump, at least in the
transverse direction.

We replace the sums over m and n with integrals:

jj3i � ÿ
r 42E

2
2

32

�
�1
ÿ1

d�3�k 01

�1
ÿ1

d�3�k 001 exp

�
ÿ �k 0?1 � k 00?1�2

r 22
4

�
� F �k2 ÿ k 0z1 ÿ k 00z1�

� w�2��o2;o 01;o
00
1 �

������������
o 01o

00
1

q
d�o2 ÿ o 01 ÿ o 001 �

�
X
p

�
exp

�
ÿ �k 0?1 ÿ k 0?3p�2

r 22
4

�
F �k2 � k 0z1ÿ k 0z3p�

� w �2��o2;o 01;o
0
3p�

�������������
o 01o

0
3p

q
d�o2 � o 01 ÿ o 03p�j1i 03p

� exp

�
ÿ �k 00?1 ÿ k 00?3p�2

r 22
4

�
F �k2 � k 00z1 ÿ k 00z3p�

� w �2��o2;o 001 ;o
00
3p�

��������������
o 001o

00
3p

q
d�o2 � o 001 ÿ o 003p�j1i 003p

�
:

�21�
We express the primed kz of the extraordinary waves in terms
of the correspondingo for the optical crystal axis alignedwith

the y axis,

kz �
���������������������������������������������������������
neo
c

�2

ÿ k 2
x ÿ

�
ne
no

ky

�2
s

; �22�

where c is the speed of light in empty space and the refractive
indices of the extraordinary ne and ordinary no waves are
involved in Sellmeyer's formulas [21]

n2a � aa � bao2

�2pc�2 � cao2
ÿ da

�
2pc
o

�2

; �23�

where aa, ba, ca, and da are constants for the selected nonlinear
crystal at a specific temperature and a � o; e. In the subse-
quent calculations, the coefficients aa, ba, ca, and da are taken
for the lithium niobate crystal [22].

We make a change of variables kz ! o in expression (21)
and integrate it with respect to o. Hence, we obtain the
amplitude of the state j1i 03 with the selected wave vector k 03:

A 03 � ÿ
r42E

2
2

32
w �2��o2;o 03 ÿ o2; 2o2 ÿ o 03�

� w �2��o2;o 03 ÿ o2;o 03��o 03 ÿ o2�
�����������������������������
o 03�2o2 ÿ o 03�

q
�
�1
ÿ1

d2k 0?1

�1
ÿ1

d2k 00?1

�
�
exp

�
ÿ ��k 0?1 � k 00?1�2 � �k 0?1 ÿ k 0?3�2

� r 22
4

�
�
���� dk 0z1do 01

����
o 0

1
�o 0

3
ÿo2

���� dk 00z1do 001

����
o 00

1
�2o2ÿo 03

� F
ÿ
k2 ÿ k 0z1jo 0

1
�o 0

3
ÿo2
ÿ k 00z1jo 00

1
�2o2ÿo 03�

� F
ÿ
k2 � k 0z1jo 0

1
�o 0

3
ÿo2
ÿ k 0z3jo 0

3

��
: �24�

The amplitude of the single-photon state mode (with two
primes) is given by the same expression.

4. Analysis of the calculated relation
for the amplitude of a state mode

To analytically estimate expression (24), it is expedient to
make the following simplifying assumptions. From the
totality of possible values of the wave vectors, we may select
only those that correspond to the phase quasi-phase-match-
ing conditions (19), i.e., satisfy the system of nonlinear
equations����������������������������������������������������������������������������� �o3 ÿ o2� n 0e

c

�2

ÿ k2x3 ÿ
�
n 0e
n 0o

ky3

�2
s

ÿ
�����������������������������������������������������������������
o3n 000e
c

�2

ÿ k2x3 ÿ
�
n 000e
n 000o

ky3

�2
s

� ÿk2 � p� 2pm
lc

;

�25������������������������������������������������������������������������������ �o3 ÿ o2� n 0e
c

�2

ÿ k2x3 ÿ
�
n 0e
n 0o

ky3

�2
s

�
��������������������������������������������������������������������������������� �2o2 ÿ o3� n 00e

c

�2

ÿ k2x3 ÿ
�
n 00e
n 00o

ky3

�2
s

� k2 � p� 2pn
lc

; �26�
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and assume that the radiation at the frequency o3 occurs
only for these values. Here, n 0a is the refractive index at the
frequency o3 ÿ o2, n 00a is the refractive index at the
frequency 2o2 ÿ o3, and n 000a is the refractive index at the
frequency o3. The integers m and n can be set equal to zero
because the magnitude of F is, according to expression (17),
inversely proportional to Dk, and therefore, even with a unit
value of one of these integers, the intensity of the spectral
component is lower by an order of magnitude than for their
zero values. The system of equations (25), (26) is to be
solved for k?3 � fkx3; ky3g and o3. The intensity of every
such component of the spectrum is therefore determined by
the equation

I�k?3;o3� � o3�2o2 ÿ o3��o3 ÿ o2�2

� �w �2��o2;o3 ÿ o2; 2o2 ÿ o3� w�2��o2;o3 ÿ o2;o3�
�2

�
���� dkzdo

����2
o�o3ÿo2

���� dkzdo

����2
o�2o2ÿo3

: �27�

The solution of nonlinear system of equations (25), (26) in
the general form is rather cumbersome; however, a compact
analytical solution can be obtained in our special case.

We introduce coefficients A, B, C, D, E, and G as

A �
� �o3 ÿ o2� n 0e

c

�2

; B �
� �2o2 ÿ o3� n 00e

c

�2

;

C �
�
o3n

000
e

c

�2

; D �
�
n 0e
n 0o

�2

; �28�

E �
�
n 00e
n 00o

�2

; G �
�
n 000e
n 000o

�2

and introduce the notation for the right-hand sides of
Eqns (25) and (26):

S � ÿk2 � p� 2pm
lc

; T � k2 � p� 2pn
lc

: �29�

System (25), (26) then becomes������������������������
Aÿ xÿDy

p
ÿ

������������������������
Cÿ xÿ Gy

p
� S ;������������������������

Aÿ xÿDy
p

�
������������������������
Bÿ xÿ Ey

p
� T ; �30�

or ������������������������
Aÿ xÿDy

p
ÿ S �

������������������������
Cÿ xÿ Gy

p
;

Tÿ
������������������������
Aÿ xÿDy

p
�

������������������������
Bÿ xÿ Ey

p
; �31�

where x � k2x3 and y � k2y3. Because solutions are sought for
real wavenumbers (S and T are real), the following inequal-
ities must be satisfied:������������������������

Aÿ xÿDy
p

5S ;

Cÿ xÿ Gy5 0 ;������������������������
Aÿ xÿDy

p
4T ;

Bÿ xÿ Ey5 0 : �32�

Hence, we obtain

AÿDyÿ 2S
������������������������
Aÿ xÿDy

p
� S 2 � Cÿ Gy ;

AÿDyÿ 2T
������������������������
Aÿ xÿDy

p
� T 2 � Bÿ Ey : �33�

With the notation Z � ������������������������
Aÿ xÿDy
p �Z5 0�, we eventually

arrive at a system linear in Z and y:

AÿDyÿ 2SZ� S 2 � Cÿ Gy ;

AÿDyÿ 2TZ� T 2 � Bÿ Ey ; �34�

which has a solution

y � �Aÿ B�=Tÿ �Aÿ C�=S� Tÿ S

�GÿD�=Sÿ �EÿD�=T : �35�

Next, passing to the variables x and y, it can be verified
that the solution with both these quantities being positive and
hence the quantities k 0x3 and k 0y3 simultaneously real exists
only in several narrow frequency ranges.

Plotted in Fig. 2 are the functions k 0x3�l3� and k 0y3�l3� that
are solutions of the system of equations (25), (26) for the laser
radiation wavelength l2 � 1338 nm. It is easily seen that the
real solution of the system, determined by the intersection of
the curves that represent these functions, exists only in several
narrow wavelength domains l3. This signifies that the
generation of light may be observed only in narrow spectral
ranges and by nomeans everywhere. These are the values near
800, 940, and 1200 nm of all possible wavelengths l3, which
reflects the fact that the radiation at a given wavelength has
quite a specific directivity. Figure 3 shows the domain of
solutions of system (25), (26) in the fk 0x3; k 0y3; l3g space for the
second range, near the 940 nmwavelength. In a rather narrow
wavelength range, from 942 to 943 nm, the k 03 projection
values change from ÿ0:4 to 0.4 mmÿ1, which gives values of
the spatial angle about 3:5� with the z axis for radiation at this
wavelength. A similar estimate for wavelengths in the vicinity
of 800 nm yields a strictly forward direction, i.e., an angle of
0� with the z axis.

Therefore, in the first approximation, it is possible to
estimate the radiation spectrum at the o3 frequency. But it is
impossible to determine the spectral shape or its dependence
on the number of layers of a periodically nonuniformmedium
in this way. To do this requires amore exact calculation of the
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Figure 2. Transverse components of the wave vector k 03 � fk 0x3; k 0y3g
(dashed and solid curves) that are real solutions of system of equations

(25), (26). Radiation is produced at the wavelengths l3 that correspond to

intersections of the dashed and solid curves (domains I, II, and III).
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integral by formula (24). In this case, it is noteworthy that the
domain of integration in which the integrand is nonzero is
determined both by the exponential in the integrand and by
the functions F.

The quantities���� dk 0z1do 01

����
o 0

1
�o 0

3
ÿo2

and

���� dk 00z1do 001

����
o 00

1
�2o2ÿo 03

change only slightly in this domain and may therefore be
factored out from the integrand. If the width of the Gaussian
function

exp

�
ÿ ��k 0?1 � k 00?1�2 � �k 0?1 ÿ k 0?3�2

� r 22
4

�

is substantially narrower than the width of the functions F,
the exponential may be replaced with the delta function. We
express the integrand in terms of the integration variables (in
this case, k?3 ando3 play the role of parameters) to obtain the
field amplitude

A 03 � ÿ
r 42E

2
2

32
w �2��o2;o 03 ÿ o2; 2o2 ÿ o 03�

� w �2��o2;o 03 ÿ o2;o 03��o 03 ÿ o2�

�
�����������������������������
o 03�2o2 ÿ o 03�

q ���� dk 0z1do 01

����
o 0

1
�o 0

3
ÿo2

���� dk 00z1do 001

����
o 00

1
�2o2ÿo 03

�
�1
ÿ1

dk 0x1 dk
0
y1 dk

00
x1 dk

00
y1d�k 0x1 � k 00x1� d�k 0y1 � k 00y1�

� d�k 0x1 ÿ k 0x3� d�k 0y1 ÿ k 0y3�

� F1�k 0x1; k 0y1; k 00x1; k 00y1�F2�k 0x1; k 0y1; k 00x1; k 00y1� ; �36�

where

F1 � F
ÿ
k2 ÿ k 0z1jo 0

1
�o 0

3
ÿo2
ÿ k 00z1jo 00

1
�2o2ÿo 03

�
;

F2 � F
ÿ
k2 � k 0z1jo 0

1
�o 0

3
ÿo2
ÿ k 0z3jo 0

3

�
:

Introducing the function G � F1F2, we write the final
expression

A 03 � ÿ
r 42E

2
2

32
w �2��o2;o 03 ÿ o2; 2o2 ÿ o 03�

� w �2��o2;o 03 ÿ o2;o 03��o 03 ÿ o2�

�
�����������������������������
o 03�2o2 ÿ o 03�

q ���� dk 0z1do 01

����
o 0

1
�o 0

3
ÿo2

���� dk 00z1do 001

����
o 00

1
�2o2ÿo 03

� G�k 0x3; k 0y3;ÿk 0x3;ÿk 0y3� : �37�

5. Spatial configuration of radiation spectra

The spatio ± frequency spectrum of light at the frequency o is
determined by the function G in formula (37). The spatial
spectrum of radiation with the wavelength l3 � 805:2 nm is
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Figure 3.The curve that corresponds to the solution of nonlinear system of

equations (25), (26) in range II (see Fig. 2) for wavelengths� 940 nm. The

curve yields the interrelation between the direction of the generated light

and its wavelength l3.
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Figure 4. Intensity I of l3 � 805:2 nm light as a function of its propagation direction for periodic layer numbers M � 10 (a) andM � 100 (b).

528 A V Belinsky, A V Isaeva, E V Makeev, A A Novikov Physics ±Uspekhi 49 (5)



depicted in Fig. 4a for 10 layers. One can see that the radiation
is primarily directed along the z axis and its divergence is
equal to 1 ± 2�, i.e., a bright spot is observable at the center
surrounded by a halo of pale luminous rings.

Alternatively, at the light wavelength l3 � 942:5 nm
(Fig. 5), one can see one luminous ring with a sharper
directivity, � 0:2�. This result is to be compared with the
result presented in Fig. 3, where the range of possible k3
values is confined to a relatively narrow interval.

It is also instructive to analyze how the increase in the
number of crystal structure layers affects the spatial radiation
spectrum (see Figs 4 and 5). The structure of the spectrum
becomes more complicated: a large number of oscillations
appear and the peaks become sharper. Therefore, with an
increase in the number of layers, one might expect, on the one
hand, a sharper picture and, on the other hand, an enrichment
of the spectrum. In the former case (see Fig. 4), in particular
the rings that fringe the central spot become brighter and,
furthermore, both the rings and the spot itself are defined
more clearly. In the latter case (see Fig. 5), the ring width
becomes smaller, but the ring fringes, which were previously
faintly visible, are more pronounced. This effect is attribu-
table to the fact that a perfectly rigorous phase matching is,
strictly speaking, possible only for an infinite number of

layers. Decreasing the number of layers has the effect that
the phase matching condition becomes less severe. Accord-
ingly, the spatial configuration of the generated radiation and
its directivity turn out to be smoother and more blurred.

The spatial pump configuration effect is similar. The
larger its transverse dimensions, the sharper the radiation
directivity. With decreasing the pump radius, the generated
radiation `spreads' in space. This follows explicitly from the
resultant expression (24), in which the exponential involving
the pump radius occurs in the integrand as a convolution with
the function that describes the spatial radiation distribution
for a plane pump. Figure 6 illustrates the character of how the
spatial configuration of the generated radiation depends on
the pump radius. The kx3-projection value of the wave vector
k3 is plotted on the abscissa; in this case, the value of its
projection on the y axis is taken to be zero (ky3 � 0).

6. Conclusion

Despite the seemingly hopeless complexity of the problem, we
have managed to solve it almost completely in the framework
of an analytic approach. A computer was required only at the
final stage to construct the spectra. This fortunate opportu-
nity, which occurs rather infrequently in nonlinear optics and
presented itself to us, impelled us to share these results with
the reader. We hope that the results outlined above will be of
interest not only to experts but also to a wide circle of people
who take an interest in physics.
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