Physics— Uspekhi 49 (5) 517—-522 (2006)

©2006 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

METHODOLOGICAL NOTES

PACS numbers: 03.50 De, 41.20.Cv

The interaction energy of electric multipoles in a plane
and a point-multipole approximation

for the electric field of conductors

V P Kazantsev, O A Zolotov, M V Dolgopolova

DOI: 10.1070/PU2006v049n05ABEH005844

Contents

1. Introduction 517
2. Multipolar expansions in two-dimensional electrostatics 517
3. Approximating the electric fields of circular conductors by the fields of their characteristic multipoles 518
4. A circular conductor in an external electric field 519
5. The problem of two identical circular charged conductors 519
6. The problem of the outer conformal radius of three circles identical in size and relative positions 521
7. Conclusion 522

References 522

Abstract. A complex representation of the electric potential is
applied to derive relationships describing the interaction energy
of electric multipoles in a plane, which prove to be highly useful
for variational calculations of the electric field in a system of
parallel circular conductors.

1. Introduction

Formulation of two-dimensional electrostatic problems is
dictated by the need to determine the electric field depending
on only two Cartesian coordinates. For example, this is the
case for a system of parallel, infinite, perfectly conducting and
dielectric cylinders with electric parameters dependent on
only two Cartesian coordinates in a plane normal to the
elements of the cylinders. In this case, the areas on the plane
produced by intersections between the plane and the cylinders
correspond to the cylinders themselves, which are the models
of real physical bodies. The physical parameters of these areas
are characteristic of the materials of the cylinders and are
invariable along the cylinders. Hereinafter, we will consider
cylindrical conductors whereto conducting areas in a plane
(i.e., planar conductors) correspond.

The concept of multipoles is associated with the
decomposition of the electric potential of a spatially
bounded system of charges into components at distances
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far exceeding the size of the system [1—3]. In this case, the
applied expansion in a Taylor series in the Cartesian
coordinate system is not quite convenient, since it contains
many essentially similar terms that should be collected by
moving to an expansion into spherical functions in a
spherical coordinate system. The problem of collecting
similar terms also emerges as the electric potential is
decomposed in a planar Cartesian coordinate system. It
can be solved by expanding the complex potential of a finite
system of charges in a Laurent series [4].

In approximating an electric field [5], the relationships
determining the interaction energy of the approximating
systems of charge are important, in particular, expressions
for the interaction energy of point multipoles. The electro-
dynamics literature presents only expressions for the lower-
order interaction energy of point multipoles [1 —3]. We will
obtain below formulas for the arbitrary-order interaction
energy of multipoles in a plane; on this basis, we will
construct variational schemes approximating the electric
field of a system of parallel circular conductors.

2. Multipolar expansions in two-dimensional
electrostatics

For two-dimensional electrostatics problems, it is convenient
in many cases to fall back on the concept of complex
multipoles that naturally appear in the expansion of the
complex potential IT;(z) of a charge system di'(z) in
powers of the complex variable z [6]:
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and the following expansion applies outside a certain circle,
centered at the point z;, in which all charges are located:

A0 z—1z ] & i
I = _0 1 _ T 1
1(2) 2meg n ( R ) + 2mey =~ n(z — )" (1)
where
20— J(z — )y di (). 2)

We will describe the quantity A, = A, + i4,; as the nth-order
complex multipole moment of the charge system dil(z),
bounded on the plane, with respect to the point z. In
particular, the quantlty A(() determines the total charge of

the system; Re) D = )vglr) is the prOJectlon of the dipole
moment of the charge system dA (z) with respect to the
point z; onto the x-axis, and Imzl X 1s the projection of

the dipole moment of the charge system dA
to the point z; onto the y-axis.

Now assume that two systems of charges are located on a
plane inside nonintersecting circles centered at the points z;
and z;. The interaction energy of these systems of charges can
be represented, using the Green reciprocity formulas [2], as

)(z) with respect

Wia = Re [ 113241 (:) = Re [ 1) 42 (2),

where I1,(z) is the complex potential of the second system of
charges. The potential IT;(z) is an analytical function within a
certain circle centered at the point z; and bounding the system
of charges dA?(z); therefore, it can be written as the Taylor
series

(z — )~

=1y

:i%&ﬂ z

k=0

The substitution of this expansion of IT;(z) into the expres-
sion for the interaction energy W, yields

2 (2
e (3)

In view of representation (1), we rewrite this relationship as

/1(1)/1(2) B
Wi, = Re( _ gnsz In (Zz R21 )
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The quantity
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can be 1nterpreted dS the interaction energy of two point
charges /1 and ) ) located at the points z; and zj,
respectlvely, while the quantity

k 2
(n+k— 1) (=121

Wnk(zl’ZZ) = Re n)n+k (5)
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can be regarded as the interaction energy of the two point
multipoles A" and 2(*) located at the points z, and z,.

Itis interesting that the force exerted by the first system of
charges on the second one can be found by differentiating the
complex quantity W, with respect to z;:

=22 3

n=0 k=0

(n+k)! (
neon'k'

)kj-;gl)/l]((z)
l)n+k+1 : (6)

An individual term in this sum can be treated as the force
exerted by the first multipole on the second one.

If the second system of charges is rotated as a whole
through the angle ¢, the multipole moments

;L,((Z) = exp(ika) /11(62) ,

along with the energy defined in formula (4), will change
according to definition (2). We determine the derivative of the
energy with respect to o for an angle of « = 0 and change its
sign to obtain the moment of forces exerted by the first system
of charges on the second one:

_ )k OIS
—z )n+/c : (7)

3. Approximating the electric fields of circular
conductors by the fields of their characteristic
multipoles

Let us consider a system of conducting nonintersecting circles
|z —zp| < a, in a complex plane. Kazantsev [4] has shown
that any region in the complex plane possesses its specific
system of characteristic multipoles — basis charge distribu-
tions over the boundary of the region. In particular, for the
pth circle [4] we find

) 1 ) cos k0
‘7(()”(2) :m; o (2) :Wﬂp§
iz
) sin k0
o,?(z) = ?kﬂp ; 0, =arg(z—z,). (8)
»

Under the approximation in which the fields of the circles
are replaced with the fields of a finite number of their
characteristic multipoles, we can choose

+ 2 : kr O—kr

Then, the proper energy of the charges of the pth circle can be
found using the relationship [4]

ol)(z) = +’1k1 le (z )] -(9)

/«L(()P) 2
Wi =

+;°k1 ) (10)
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We calculate the interaction energy between the charges on
the pth and gth circles using formula (4) with the subscripts
1 and 2 substituted by p and ¢, and with the summation over n
and k restricted to N, and N, numbers. We also obtain the
charge energy of all circles as the sum of the corresponding



May, 2006

The interaction energy of electric multipoles in a plane and a point-multipole approximation for the electric field of conductors 519

energies:

P P
W= Z 1?11+ZZW1H17

p=1 q>p

(11)

where P is the total number of circles.

The solution to the fundamental electrostatics problem for a
system of circular conductors in an external electric field can be
obtained based on the Thomson variational principle [7],
according to which the true charge distributions over the
circle boundaries correspond to the minimum electrostatic
energy. If the term corresponding to the constant energy of
the charges that produce the external field is excluded from
this energy, the procedure of solving the problem will require

the minimization of the energy functional
L= W+ VVinh (12)

where Wiy is the interaction energy between the approximat-
ing charges and the external field. If we denote the complex
potential of the external field as I1(z), we can write down that

= Re3T3 e

p=1 k=0

(13)

z=z,

The energy functional L can be minimized with respect to
i;(p ) under various conditions depending on the formulation
of the problem in question. In particular, if we seek the
capacitance coefficients of a system of parallel circular
conductors, we should assume

ReIl(z) (14)
where the real U, are the constant potentials of the
conductors; in this case, the energy functional should be
minimized over all multipole moments.

To solve the problem of the dipolar polarizabilities of a
system of circles, we should set

II1(z) =E,z,

2=zl < ay

(15)

where the constant complex quantities £, specify the uniform
electric fields E = E, —1E,, in which individual circular
conductors are located The energy functional should be
minimized for A; (") under the condition that the circles are
neutral: )(m = 0

In the problem of the system of uncharged circular
conductors in an external electric field, we have to assume
that /lép ) =0 and carry out minimization for A;{” ) multipoles
of orders higher than zero. Systems of linear equations in
multipole moments of the circles will appear in all these
problems, and the minimized values L, of the energy
functional will correspond to the solutions of these pro-
blems. The quality of the approximation can be judged by
the convergence of these quantities. Let us illustrate our
variational procedure of solving the fundamental electro-
statics problem for a system of circular conductors by some
particular examples.

4. A circular conductor
in an external electric field

It is quite natural to consider first, as a very simple example,
the problem of a conducting uncharged circle |z| < a in an
electric field with a complex potential I1(z). In this case, the

energy functional (12) assumes the form

N
1
LW = o M+ | O
; {4n50ka2k T { WG A1(2) ::
+ 7 (afn(z)L:O)*] } . (16)
The minimization of L&) yields
. 2megak X .
A = —ﬁ (aZH(Z)|Z:0) . (17)

We denote the sequence of approximating potentials of the
charges in the circle as H(N)(z). Based on expansion (1), we

may write
N *
Z 2:0) :

The exact solution of the problem can be obtained in the limit
N — oo as

(18)

1z k

(19)

The second equality here follows from the power-series
expansion of the complex potential of the external field in
the circle |z| < a. This relationship is very useful in solving the
particular problems, since II(z) is an arbitrary analytical
function.

For example, let a neutral conducting circle |z| < a be in
an external field of a point multipole A, located at the point
Z (|2] > a). Using relationship (19), we then obtain

1 Ay
Mz)=—— 2"
2) 2meon (z —2)"

- (=) AF z"
Hz)=— 2L({l—-—— | .
) 2megn ZH" (z—a?/z*)"
Similarly, if the circle is found in an external electric field of a

point charge, then
Ay z—3% . Ay at — 3z
II(z)=—=—1In ; H(z) ==—In{ — ).
© (35 i@ (")
(21)

2meg 2meg
We note that the problem of a charged circle in an external
electric field no longer raises any difficulties; thus, we move to
a more sophisticated example.

(20)

5. The problem of two identical circular charged
conductors

Let two conducting circles of the same radius a, centered at
the pomts 21 = 142 and zz = —1/2 of the x-axis, have equal
charges /1 /2 Such conditions correspond to
the problem of the capdcndnce of a conductor formed by
connected circles; its solution gives one of the basis potentials
1) (z). The second basis potential IT(7)(z) can be obtained
by solving the problem of the capacitance of the system of two
circles as capacnor plates. In this case, we should set

l )L0> = ) . The general solution to the problem of
two 51m11c1r conductlng circles that carry the charges Af) ) and
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/1(()2) is found as the superposition of the basis potentials:

m(z) =" + 8 mt — ().

As for the capacitance of two circles forming a capacitor,
the solution to the problem has long been known [6, 8] and
can be obtained using relationship (21); it can be concluded
from its form that IT(7)(z) is a superposition of the potentials
of point charges equal to 1 and —1, and located at conjugate
points with respect to the inversion transformation for both
circles at once [6], namely

1 In z—1/2+bY

21y z+1/2-0b)
! 1\

—— (=) -

b 3 <2> at.

Then, the capacitance C (-
equal

H(_)(z) =

) of the system in question will

TEY
In(a/b)

To obtain the complete solution to the problem of two
similar conducting charged circles, we should find IT ) (z); to
this end, we apply the above-described variational approach
based on the Thomson principle. We approximate IT*)(z) by
a superposition of the potentials of characteristic multipoles
(8) of the circles. In formula (9), taking into account the
symmetry of the problem, we choose N; =N, =N,

W=7 =52 and

c) =

A — (1D = A D =

D =0. (22)
To determine A, we minimize the electrostatic energy (11) for
these parameters, writing it down in the form

2

(b+2b-A+A- B- A), (23)
4TC €0
where
1 R? =n"
— o hm — 5m
b 2" ( al > ’ m
|
Bﬁ‘lﬁ‘l = 2 +2 w 52m
+m—1)! a

an _ 2 _1 n+m (I’l 5n+m 5 == 24
e o ; ] (24)

Atany A, according to the Thomson variational principle, the
quantity W will be larger than the true energy W, expressed in
terms of the capacitance C*) of the connected cylinders and
the outer conformal radius A [7] of the exterior to the two
circles as
ph X R
We =560 = meg " 4

With the use of the inequality

22
. A ~
We<minW=-"(b—b-B"-b),

47e

we obtain for the outer conformal radius the following
estimate

iexp(b-l?’1 -b).

A >
Ve

(25)

We will judge the accuracy to which the trial field
approximates the true field by the proximity of the right-
hand side of inequality (25) to the true value of A.

For a few lower-order approximations, the inequality (25)
can be written down as follows:

a a o
A>Ay=—4=, A>A 1 =—exp| —— |, (26
0 75 1 75 p<2(1+52)> (26)
a 26% + 6" + 30° )
A> Ay =—ex 27
TV p<4(1+52+354+5") @7)
A > As
_a ( 5 (118" 4 128" + 505°+ 115" + 35” + 6) )
RV 12(6" + 66" +76% + 116° +36* + 8> + 1))
(28)
The values of
A=—-B"'.p, (29)
corresponding to these inequalities, are equal to
o
=0, AA=——5 ),
A : <2(1+52)>
5(1426%); —6°(1 —&°
py = U2 2571 =) (30)
2(0°+30"4+0"+1)
| 8 +20° +987 4+ 35"
A= — 52 1— 2 (O 8
ey | o\
0'(1 =207 =30"49)
D(S) =02 +65"0 + 76 +116° +35* +6* +1.  (31)

As one would expect, the analytical formulas determining A
and (b-B~'-b), become more complex as the order of
approximation is increased. Thus, in particular, they can be
written down in one line at N = 3, whereas more space is
needed for them at N = 4. For example, one finds

- f4(9)
b-B'.b), =" ,
( )i =%0)
fa(8) = 62(256"® + 5806 44095 + 315" + 1815°

+4236% + 1036 +220* + 667 + 12),
24(8) = 24(0% + 106842550 + 63614 4 56512
+370"0 44268 + 116° + 304 + 62+ 1).

Obviously, the accuracy of the approximations Ay and,
accordingly, the accuracy to which the trial fields approx-
imate the true electric-field distribution will grow with a
decrease in d. For this reason, we analyze the convergence of
Ay for the least favorable case of 6 = 0.5, in which the circles
are tangent to each other at the origin of coordinates. The
substitution of ¢ = 0.5 into formulas (26)—(31) yields

A 314142135,

a

A 1

71 =V2exp (E) = 1.56294770,
A 13

22— V2exp [ — ) = 1.57052868,
a 124

A 282
A _ frexp (ﬂ

P 26919) =1.57071312,
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Ay 4827473
22 —— ) =1. 2
- V2exp (45990744> 570728896,

As A ( 27199086917

m) = 1.57076623,

As _ NG 40833357818741
N 388865710509000

) = 1.570791939.

A comparison of the obtained approximate values with the
exact value

A

2T 157079633
a 2

indicates that the error in calculating the outer conformal

radius based on the octupole approximation is

A— A;

A= =5.30 x 10~ = 0.00530 %,

e., it amounts to a few thousandths of a percent. The
quantity

VA=073%

can be regarded as the rms error in approximating the true
field with the trial field. As the distance between the centers of
the circles is increased (i.e., 0 is decreased), these errors
decrease.

If the obtained accuracy is sufficient for practical
calculations, the approximating complex potential can be
found using formula (1) with the substitutions N, = N =3
and

(120; —426; 84)

Ay =

’ 6729

If the mutual capacitance of the two conducting circles
and the approximate value of

CH) _ 2TE8()
N T In(R/Ay)

are known, we can arrive at a lower-bound estimate for the
matrix of the capacitance coefficients for the system of two
identical conducting circles:

cO 4 Llew 1 ) _ o)
A() _ 4N
o= O L ew
c 4+ ) Cy

Thus, the variational procedure of solving the problem of
the capacitance coefficients of two identical circular conduc-
tors yields very simple and accurate approximations which
can be represented analytically to the point of tangency of the
circles.

Let us consider now a particular case of the three-body
problem as a more sophisticated example.

% clH )

6. The problem of the outer conformal radius

of three circles identical in size and relative
positions

Assume that three circles of the same radius «a are centered at

the vertices of a regular triangle with its side equal to / > 2a
and with its center located at the origin of coordinates. Let the

center of the first circle be at the semiaxis of x > 0; in this case,

/ lex <i2n) / o ( i2n)
II=—%=, I=—7x = ) BE—= 15
1 /3 2 /3 p 3 3 /3 p 3

Since the problem at hand is equivalent to the problem of
the capacitance of three connected circular conductors, we
approximate IT*)(z) by a superposition of the potentials of
the characteristic multipoles (8) of the circles. In formula (9),
in view of the symmetry of the {)roblem we choose Ny = N, =
N3 =N, A( ) = / 3, and

2
A0 =20 = Joa"A,, 2P =exp <1 %n>)~,(1p7

(32)

Thus, the number of parameters that can be varied reduces by
a factor of six compared to the problem in which there is no
symmetry in the disposition of the circles.
The electric-field energy corresponding to this approx-
imation can be written down as
2

W—4’1 (b+2b-A+A-B-A),
€0

where, as follows from the computations based on formulas
(4) and (10), one has

(33)

1. R 2 ;
§1nﬁ’ b, = (=1)" ;cos<6>5

Bm7 — 3<l+ Méh) ,
n n!?

(itm=1) (=1)"*" cos <(m - n)%) 5" (34)

b=

an =6 Y]
m:mn!

At any A, the quantity W will be greater than the true

energy W, expressed in terms of the capacitance C(*) of the
connected circles and the outer conformal radius A4 as
h 2 R
Wye==-—2_—=-"9[n=.
TT2CH) T 4me &
According to the inequality
o .
We <minW=-""(b—b-B"b),
47eg
we find for the outer conformal radius that
A>adPexp(b-B'-b). (35)

The accuracy to which the trial field approximates the true
field can be judged by the proximity of the right-hand side of
inequality (35) to the true value of 4.

Next, we write down inequality (35) for a few lower-order
approximations:

2
A>Ag=ad?, A>A1=ad"ex ( )
0 ! Plitas
(36)
652 4 0% +266° ) 37)
1+20%+65*+65% /)"

A>As=ad e (%) (38)
3

F(8)=062(1578" +208° + 1205°+ 265*+ 5% + 6),
23(8) = 6(305' + 485" + 376° +260° + 66* + 20> + 1).

A> Ay =as ex <
2 P 6(
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The following values of

A=—-B'.b (39)
correspond to these inequalities:
V38 )
=0, A= )
o 1 (3(1+252)
30(1 4+ 56%); —62(1 — 45°
o= Y45 20%0 4 0
3(60° + 60* + 262 + 1)
V38(1 4+ 56* +208° + 345'7)
A= —0%(1 — 452 +205° —475%) |, (41)

3D(5
©) —3v38°(1 + 267 — 36%)

D(6) = 305" + 486" + 3756 +260° + 65* +26% + 1.

As could be expected, the analytical formulas determining A
and (b-B~'-b), become more complex as the order of
approximation is increased. One more estimate for the outer
conformal radius, corresponding to N = 4, is given by

_ f4(9)
b oga(0)”
14(8) = 6%(29506 '8 + 72860 + 56770 + 29865 12
+ 480510 + 8820% +2416° + 526 +20% 4+ 12),

(b-B7"-b)

24(0)=12(2500% + 5605 '+ 7900 '® + 8205 '* + 4000 '?
+ 18850 + 1075 +260° 4 6% +26% +1).

Obviously, the smaller 9, the higher the accuracy of the
approximations Ay and, accordingly, the accuracy to which
the trial fields approximate the true field. For this reason, let
us analyze the convergence of Ay for the least favorable case
of § = 0.5 in which the circles are tangent at the origin of
coordinates. The substitution of 6 = 0.5 into formulas (36)—
(41) yields

% =2%3=1.58740105, % =2%3exp (é) =1.87529276,
A A Ay 3407 \
= =2 ex 20316 ) = 1.87723219,

A 1071625

A 2Wexp (i 070 — 1.87744924

a P <6385716> 87744924,

A5 6616067471

D _p2exp (X001 _ 87745987 .

x <39423215880)

A comparison of the obtained values of the outer radius
with the subsequent ones

% = 1.87749291, % = 1.87749902,

Ag

— = 1.87749913 , A = 1.87750048
a a

shows that a reasonable estimate of the error in the octupole-
approximation-based value of the outer conformal radius is
Ay — A3

9

A= =143%x 107 =0.0143%,

amounting to about one hundredth of a percent. The quantity

VA=119%

can be regarded as the rms error in the approximation of the
true field by the trial field. These errors will be smaller for
larger distances between the centers of the circles (for
smaller §).

If the achieved accuracy is sufficient for practical calcula-
tions, the approximating complex potential can be found
from formula (1) with the substitutions of N = 3 and Az from
formula (41). If necessary, for a given accuracy of approxima-
tion, we can obviously find an N value corresponding to this
accuracy.

7. Conclusion

To conclude, we call attention to the fact that it is the
employment of a complex representation of electrostatic
relationships that enabled us to compactly formulate the
concept of point multipoles in a plane and find their
interaction energy. The natural combination of this
approach with the variational principles made it possible to
construct the complete solution to an electrostatics many-
body problem. Calculations of the electric fields in the system
of a large number of parallel circular wires, based on the
constructed variational procedure, could be done only with
computer.
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