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Abstract. Antiferromagnetic correlations in superconducting
cuprates can lead to the mirror nesting of Fermi contour seg-
ments near saddle points of the electron spectrum and to a
logarithmic singularity of the scattering amplitude for a large
pair momentum. The Coulomb potential defined within a kine-
matically allowed region allows a negative eigenvalue, which
provides superconducting pairing and weakly decaying, quasi-
stationary, large-momentum pair states. The Ginzburg — Lan-
dau equations for the two-component superconducting order
parameter provide pairs of coupled particles and pairs of
coupled orbital current circulations, which explains the funda-
mental cuprate properties such as strong and weak pseudogaps,
the superconducting transition temperature, the diamagnetic
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pseudogap state, and details of the isotope effect. A quantum
critical point and a transition of two superconducting phases,
one of which displays superconductivity with current circula-
tions, are predicted.

1. Introduction

In the two decades following the discovery of high-tempera-
ture cuprate superconductivity [1], a considerable amount of
experimental data has been accumulated testifying to the
specific behavior of these compounds in the superconducting
and normal states.

The basic structural element of layered cuprate com-
pounds is represented by copper —oxygen planes, the atomic
layers between which play the role of reservoirs supplying
(under hole or electron doping of the parent compound)
excessive (with a concentration x) charge carriers to these
planes. Parent cuprates are quasi-two-dimensional (2D)
antiferromagnetic insulators with the forbidden band of
about 2 eV, whose occurrence is due to sufficiently strong
electron correlations [2].

It follows from the Knight shift experiments [3] that in
the superconducting state, electrons form singlet pairs
similar to Cooper pairs [4] in conventional superconduc-
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tors described by the Bardeen—Cooper— Schrieffer (BCS)
theory [5].

Superconductivity is only one of the manifestations of the
rich phase diagram of cuprates, and describing the super-
conducting phase transition requires taking the competition
and coexistence of different ordered states into account [6—9].
In this respect, cuprates differ notably from conventional
superconductors, in which the superconducting state is a
result of the instability of a normal Fermi liquid under
Cooper pairing [10].

The microscopic mechanism of superconducting pairing
in cuprates remains unclear. The strong electron correlations
and spin antiferromagnetism of the parent compound allow
assuming that this mechanism can differ from the traditional
electron attraction due to the electron—phonon interaction
(EPI), which is suggested by the unusual symmetry of the
superconducting energy gap [11—14].

The on-site Coulomb correlations in a 2D electron
cuprate system, which in fact forbid a double occupation of
copper atom lattice sites in cuprate planes, are an obvious
cause of the spin antiferromagnetism of parent compounds.
The screened Coulomb repulsion, which has a finite range of
action, also induces sufficiently strong on-site correlations
and may be a dominant interaction leading to a super-
conducting pairing of charge carriers. Hence, the same
interaction can occur in an insulator and a superconducting
pairing channel. It is therefore natural to assume that the
screened Coulomb repulsion is precisely the interaction
underlying cuprate physics and allowing a unified descrip-
tion of the superconducting and normal states [15].

In this review, we present a concept of the superconduct-
ing pairing from Coulomb repulsion and consider the ensuing
possibility of qualitatively interpreting experiments that are
crucial for cuprates.

2. Phase diagram of cuprates

The phase diagram [16, 17] typical of cuprates is shown in
Fig. 1. Increasing the temperature leads to an increase in the
thermal disorder and to a phase transition from the anti-
ferromagnetic to the paramagnetic phase at the Néel
temperature Tn. Doping induces a Tn-lowering increase in
the disorder in the structure of chemical bonds in cuprate
planes. The long-range antiferromagnetic order at 7=0
already vanishes at the level of hole doping xn =~ 0.03,
whereas the short-range order survives in a vast region of
the phase diagram for x > xn.

Superconductivity in cuprates occurs upon doping of the
parent compound and exists in a limited carrier concentration
range x, < x < x*. The ranges x < Xqp and x > xop, where
Xopt 18 the optimum doping level corresponding to the
maximum superconducting phase transition temperature,
are conventionally called the underdoped and overdoped
states, respectively. As the temperature increases, the over-
doped cuprates move from the superconducting to the
metallic state with a Fermi surface that degenerates into a
Fermi contour because of the 2D anisotropy.

The energy band in which the Fermi level is located occurs
from the electron states of atoms in cuprate planes, weakly
bounded through charge reservoirs [18]. Hence, in the normal
phase, the Fermi contour has properties that are universal for
all cuprates. A considerable part of the contour belongs to an
extended neighborhood of the saddle point of the dispersion
law [19, 20]. As the hole doping increases, the closed Fermi
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Figure 1. Schematic phase diagram of cuprate compounds. Regions of the
Fermi-liquid (FL) behavior and of the antiferromagnetic (AF) and
superconducting (SC) phases, and also the weak pseudogap (WPG) and
strong pseudogap (SPG) regions are shown. The diagram unifies the
electron and hole doping, even though both these possibilities are not
realized for one and the same parent compound.

contour approaches the saddle point and passes through it at
a certain concentration x;. The topological center of the
Fermi contour then shifts by the vector Q = (n/a,n/a),
where a is the spacing between neighboring copper atoms in
the cuprate plane. For x > x;, aclosed Fermi contour restricts
the electron occupation region [21].

In underdoped compounds, in a temperature range
T. < T < T*, the Fermi contour turns out to be discontin-
uous and consists of arcs centered at the diagonals of the 2D
Brillouin zones [22]. A pseudogap occurs instead of the
disappearing parts of the Fermi contour [10, 16, 17, 23], and
superconductivity occurs at the critical temperature 7, not
from the metallic state of a normal Fermi liquid but from the
pseudogap state. Various versions now exist concerning the
origin of this pseudogap state. The arc length of the Fermi
contour decreases to zero as the temperature decreases from
T* to the superconducting transition temperature 7.

The upper temperature boundary 7*(x) of the weak
pseudogap [17], below which some physical properties show
anomalies, is not manifested as a phase transition line and
significantly exceeds 7. in strongly underdoped cuprates.
Immediately above T,(x), the strong pseudogap region [17,
24] is limited from above by a temperature T;,(x) of the same
scale as 7. (x). Diamagnetic fluctuations and the anomalous
Nernst effect are observed in this region, which may be due to
vortex excitations. There are grounds to believe that the
pseudogap extends even into the region of extremely weak
doping, x < x, [27].

3. Superconductivity upon repulsion

Taking the Coulomb repulsion into account in the framework
of the EPI mechanism of superconductivity has shown [28]
that the superconducting pairing requires the effective EPI
coupling constant | V| to exceed the Coulomb energy Uc not
averaged over the Brillouin zone and its logarithmically
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weakened value to be

Uc

V> )
| | 1+ grUcln (E]:/th)

(1)

where g is the density of states at the Fermi level Er and /iwp
is the Debye energy, which determines the energy scale of the
EPI region of electron attraction near the Fermi surface (the
dynamically allowed region). The energy gap parameter in the
Bogolyubov—Tolmachev—Shirkov (BTS) model [28],
defined in the entire Brillouin zone, reverses sign at the
boundary of the dynamically allowed region, which explains
the weakened effect of the Coulomb repulsion upon super-
conducting pairing. We note that a formal narrowing of the
dynamically allowed region (wp — 0), for instance, as a
result of the intersection of the line of zero values of the
energy gap parameter with the Fermi surface, lifts the
restriction from the effective EPI coupling constant alto-
gether (but decreases the pre-exponential factor to zero in
the expression for the pair binding energy).

The study of repulsive interaction as the mechanism of
superconductivity began soon after the creation of the BCS
theory. In the consideration of superconductivity of transi-
tion metals within the two-band model [29, 30], it was shown
that a nontrivial solution of the energy gap equation appears
in the case of repulsion when the Suhl inequality holds:

UnUyp - UpUy; <0, (2)

where U,  are intraband (for n =n’) and interband (for
n # n') matrix elements of the interaction operator.

Kohn and Luttinger [31] showed that superconducting
pairing can be caused by the repulsive potential U(r), which,
under the condition

JU(r)dV>07 (3)

where the integration ranges the entire space, assumes
negative values in a finite region of real space. Such a
property is inherent (see, e.g., Ref. [31]) in the screened
Coulomb potential in a degenerate electron system, which
shows Friedel oscillations owing to the presence of an
occupied Fermi sphere. The general conditions for the
appearance of bound (and quasistationary) states in the
given potential U(r) are determined by Levinson’s
theorem [32].

As noted by Landau [33], the superconducting pairing due
to repulsion takes place if at least one partial scattering length
in the expansion of the pairing potential in spherical
harmonics is negative. The symmetry of the energy gap 4(k)
as a function of the momentum k of the relative motion of the
pair is determined by a linear combination of spherical
harmonics with a given value of the orbital angular
momentum / [34]. We note that condition (3) excludes the
possibility of pairing in the case of repulsion with /=0
(which corresponds to the s-wave symmetry of the order
parameter).

The Kohn singularity of the permittivity of a degenerate
electron system [35], which results in Friedel oscillations of
the effective repulsive potential

U(r) ~ r~3 cos (2kgr),
leads to the inevitable occurrence of negative partial scatter-

ing lengths among those with / # 0, corresponding to effective
attraction [31]. For the model of a weakly nonideal electron

gas with screened Coulomb repulsion, it is shown [36] that all
the partial scattering lengths with / # 0 are negative, which
results in the superconducting instability in the pairing
channel with zero total pair momentum.

Singlet superconducting pairing in cuprates corresponds
to even /, and therefore, in the simplest case, the pairing due to
repulsion results in a d-wave symmetry of the energy gap
(which vanishes at four points of the Fermi contour and
reverses sign under rotation by ©/2 in the 2D momentum
space). The one-dimensional irreducible representation By, of
the point symmetry group of a cuprate plane corresponds to a
gap with the d-wave symmetry.

The trivial irreducible representation Aj, can refer not
only to an isotropic gap with the s-wave symmetry but also to
a more complicated dependence of 4(k) on the direction in
the momentum space [13, 14], for instance, to an anisotropic
s-wave symmetry when 4(k) has no zeros on the Fermi
contour, or to an extended s-wave symmetry when 4(k) has
eight zeros grouped in pairs (s + g-symmetry [13, 14]). In the
case of the s-wave symmetry, the gap does not change sign
under rotation by ©t/2.

For an interaction satisfying the Kohn— Luttinger condi-
tion, the equation for 4(k) has a sign-alternating solution in
momentum space. It is only in this case that competing
contributions of opposite signs can occur in this equation,
and the prevalence of the negative contribution can be
guaranteed if U(k) > 0, where U(K) is the Fourier transform
of the pairing potential U(r). This means that according to the
Suhl inequality, the contribution of particle scattering
between regions of momentum space with different signs of
A(k) prevails over the contribution of scattering between
regions with the same sign of A(k). Hence, experimental
evidence of the existence of energy-gap zeros in superconduct-
ing cuprates with hole doping is an argument in favor of the
microscopic mechanism of superconductivity in these com-
pounds, based on the pairing repulsion.

Superconducting paring in a channel with a nonzero
orbital an§ular momentum leads to rather low T, ~
exp {—(2/)"} values [31]. The dimensionless coupling con-
stants determining the exponential dependence of T, for
Coulomb repulsion and EPI-induced attraction are esti-
mated similarly by the order of magnitude, we ~ wpp ~ 1,
while the pre-exponential factors are essentially different, the
characteristic Coulomb energy ¢, exceeding the Debye energy
hwp by several orders of magnitude. However, in contrast to
the EPI mechanism leading to an isotropic s-wave order
parameter [37], the pairing repulsion inevitably corresponds
to an energy gap with zeros at several points of the Fermi
contour.

The Friedel oscillations of a screened Coulomb potential
occur owing to a rather weak Kohn singularity of screening
[35], and therefore such a potential, as well as the strongly
anisotropic repulsion due to antiferromagnetic spin fluctua-
tions [38, 39], corresponds to a small coupling constant w < 1
and, accordingly, to low superconducting transition tempera-
tures [40]. In the 2D electron system of cuprate planes, this
singularity is enhanced, but because of developed fluctuations
the phase transition can [17] acquire features of the Bere-
zinski— Kosterlitz— Thouless (BKT) transition [33].

4. Pairing with large momentum

Yang showed [41] that the states formed of singlet pairs
localized on one crystal lattice site (n-pairing) are eigen-
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states, but are simultaneously metastable states of the simple
Hubbard model for the total pair momenta K =0 and
K = (m, ). In the Penson—Kolb—Hubbard model [42], i.e.,
an extended Hubbard model allowing repulsive-pair hopping
between neighboring sites, a state in the form of a super-
conducting condensate of n -pairs with the large momentum
K = (n,n) can become the ground state [43, 44] competing
successfully with the superconducting condensate state of
No-pairs with the momentum K = 0 and with energetically
close insulating states [44].

In superconducting pairing with a nonzero pair momen-
tum K, a spatially inhomogeneous state similar to the Fulde —
Ferrell — Larkin — Ovchinnikov (FFLO) state [45, 46] occurs
in weakly ferromagnetic superconductors. For pairs with
K = 0, the regions of momentum space accessible for pairing
of both electrons and holes contract considerably, with the
result that the FFLO state corresponds to a pair condensate
with a momentum close to zero and a long-wave order
parameter modulation.

The Fermi contour determined by the equation &(q) = g,
where u is the chemical potential, separates the momentum
space into regions of occupied and vacant states. In
superconducting pairing, both particles must be located in
one of these regions, and this condition restricts the domain
of definition of the momenta k, and k_ of pair-constituting
particles [or, for a given k, +k_ =K, the domain of
definition of the relative motion momentum k=
(ky —k_)/2] [47].

Figure 2a shows how the kinematically allowed region &
occurs in the case of the two-dimensional isotropic dispersion
law when the Fermi contour is a circle with the radius equal to
the Fermi momentum kg. For K # 0, the region E does not
coincide with the Brillouin zone. The sum of kinetic energies
of a pair of particles, counted from the chemical potential,

25(]():8(%-"-]()4—8(%—]()_2#7 (4)

vanishes not on the entire Fermi contour as in the case where
K = 0 [when £(k) has the meaning of the kinetic energy of a
particle or a hole with respect to the Fermi level] but, generally
speaking, only at some of its points (the intersection points,
marked in Fig. 2a, of circles displaced relative to each other by
the vector K). For large K, the region Z is comparatively
small, and so are the momenta of the relative motion. On the
contrary, for K =0, the momenta of the relative motion,
coincident with the momenta of pair-constituting particles,
are large: k ~ k.

Singlet pairing with K #0 can be described by the
Hamiltonian H = H, + V, with the kinetic energy operator

Hy = Zg(l@r)fllém + Zg(k—)éliék, (5)
K K
and the potential energy operator
V=> Uk-K) ¢ b, (6)
Kk’

where summation over momenta k and k' of the relative
motion is performed for a given total momentum K. Here,
ke =K/2+Kk, ki =K/2 £k, élii and ¢, are the creation
and annihilation operators of a particle with momentum k..
and spin £1/2, and U(k — k') is the matrix element of the
pairing interaction energy.

Figure 2. Kinematically allowed region (shaded) inside the crystallo-
graphic Brillouin zone for pairs of particles and holes with a total
momentum K. (a) Isotropic Fermi contour (FC) with two marked points
pertaining to the kinematically allowed region; (b) Fermi contour with
mirror nesting. The thick line shows finite regions of the Fermi contour
within the kinematically allowed region.

One can introduce anomalous averages (Cx,Ck ) corre-
sponding to singlet pairing with the total momentum K;
having found the energy gap parameter depending on the
momentum of the relative motion of the pair [48],

Ak) =Y Uk = k') (& éw), (7)

one then diagonalizes the Hamiltonian H using the Bogolyu-
bov transformation. This defines the new Fermi quasiparticle
operators relating the creation and annihilation operators of
particles with momenta k; and k_ and opposite spins:

(:’](Jr = I/thr[)kJr +Uk,[7]i , k. = uk75k7 — 'Uk+bl;r. . (8)

The coherence factors found in diagonalizing the Hamilto-
nian are given by

iP
ug, = sinvexp (%) exp (Lip, ),
©)

i® .
vk, = cosJexp (7) exp (Fiop,),

where @, ¢, and ¢_ are arbitrary phases and the parameter ¢
is determined by the relation tan 29 = |4(k)|/&(k).
The anomalous average assumes the form

Ok;T)

(6k, &k ) = —sin29 exp (iD) 7

(10)
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where O(k; T') = 1 — ng, — ny_, with ny, being the distribu-
tion function of quasiparticles with the momentum k. and
spin £1/2. The energy gap parameter 4(k) = |4(k)|exp (i®)
determines the internal (associated with the relative motion)
structure of a pair with the momentum K and satisfies the self-
consistency equation

1 Uk —k') A(k')

oK T).
/) + Ak

(11)

The anomalous average in (10) and the parameter 4(k)
are determined up to a phase factor, where the phase can be
represented as @ = @, + f§, where the phase @, refers to the
center-of-mass motion and is related to the establishment of
phase coherence in the system of pairs at temperatures below
T. and f determines the internal structure of the pair
associated with the relative motion.

The contribution, diagonal in quasiparticle operators, to
the transformed Hamiltonian determines two branches of the
quasiparticle dispersion law [48]

E.(k) = E(K) iw (12)
where
E(K) = /&> (k) + [AK)[* . (13)

The gap in the quasiparticle spectrum occurs under the mirror
nesting condition [49]

(2= ()

which, in the case of Cooper pairing with K =0, holds
trivially due to the general property of the dispersion law
&(—q) = &(q).

For K # 0, condition (14) is normally satisfied only at
some points of the Fermi contour (Fig. 2a), and therefore no
logarithmic singularity is present in (11). But for a special
form of the electron dispersion law, the condition can hold on
separate finite regions of the Fermi contour (Fig. 2b). In this
case, because £(k) =0 on the Fermi contour, the self-
consistency equation becomes singular and, if the kernel of
this equation U(k — k') allows a bound state, the equation
already has a solution for arbitrarily low pairing interaction
intensity [50]. When the mirror nesting condition is satisfied
approximately, the logarithmic singularity is smoothed and
the effective coupling constant must exceed a certain thresh-
old value for relative motion of the bound state of the pair to
occur [51].

The perfect mirror nesting condition (14) uniquely defines
the momentum K of pairs precipitating to the superconduct-
ing condensate. This momentum corresponds to the free-
energy minimum (the maximum energy of superconducting
condensation [49]), which also determines the momentum K
(which may be incommensurate) when condition (14) is
satisfied approximately.

Equation (14) specifies the locus of points in the
momentum space of the relative motion to which the
quasiparticle spectrum E(k) with an anisotropic energy gap
2|4(k)| corresponds. Another equation, ViE(k) = 0, speci-
fies the locus of points at which the quasiparticle group
velocity becomes zero in the case of mirror nesting. Because

(14)

of the energy gap parameter anisotropy, the corresponding
line of the quasiparticle excitation energy minima does not
coincide with the Fermi contour [52] as it would in the case of
s-wave pairing.

If the mirror nesting condition is satisfied, the occupation
numbers ny, are equal to unity or zero at 7= 0and 4 — 0if
the momenta ki are inside or outside the Fermi contour.
Hence, ©(k;0) = 1 whenever the momenta K/2 £ k of both
particles constituting a pair with the momentum K are inside
or outside the Fermi contour, and @ (k; 0) = 0 otherwise. This
condition describes the kinematically allowed region over
which the summation is performed in (11). At a nonzero
temperature, the Fermi step in the distribution function of
quasiparticles is smeared, and therefore @(k; 7) < 1 within
the kinematically allowed region and ©(k; T') < 1 outside it
at sufficiently low temperatures.

The mirror nesting of the Fermi contour makes the
channel of superconducting (particle — particle) pairing effec-
tive without affecting the channel of insulating (particle—
hole) pairing, in which a logarithmic singularity does not
occur. Therefore, the mirror nesting, in contrast to the
ordinary nesting, cannot cause a radical reconstruction of
the phonon spectrum.

5. Pairing condition in the case of repulsion
The matrix element U(k — k') is related to the pairing
potential U(r) in real space by the Fourier transformation

Uk—k') = J U(r)exp [i(k — k') r] d*r. (15)

Itis taken into account here that the momenta k and k' belong
to the two-dimensional momentum space. Multiplying self-
consistency equation (11) by A(k)©(k;T)/E(k) and sum-
ming over k leads to the relation

2 .
;m‘”ﬂ#z —%JU(r)L(r)dzr, (16)
where the nonnegative function L(r) is given by
. 2
L(r) = zk: % exp (ikr) (17)

Relation (16) shows that the self-consistency equation cannot
have a nontrivial solution if the effective potential U(r) is
nonnegative for all values of r.

The self-consistency equation is a nonlinear integral
Hammerstein equation with a symmetric kernel U(k —k').
The eigenfunctions and eigenvalues of the linear Hermitian
operator with the kernel U(k —k’) are defined by the
equation

o,(k) =4 Y Uk —k') (k')

k'ez

(18)

As usual, we assume transition from summation to integra-
tion over the kinematically allowed region in which the kernel
U(k — k') is defined and which is the domain of definition of
the eigenfunctions ¢ (k) forming a complete orthonormal
system

Yo oiW k) =by, D> o]k e k) =g (19)
k s
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Figure 3. Schematic representation of pairing potential (20) in real space
(x = 2kgr). The energy levels of the bound state (BS) and two quasista-
tionary states (QSS) that can arise in such a potential are shown.

All eigenvalues of the Hermitian operator kernel are real
and form a discrete spectrum /,, which for a nondegenerate
kernel has an accumulation point |4,| — oo asn — oo [53]. If
the kernel U(k — k') is the Fourier transform of an every-
where positive potential U(r), then all its eigenvalues are
positive. In this case, the self-consistency equation has a
trivial solution only. The necessary and sufficient condition
for the existence of a nontrivial solution is the presence of at
least one negative eigenvalue in the spectrum of the kernel
U(k — k') [50], which may happen if U(r) <0 in a finite
region of the real space.

Screening significantly affects the effective pairing poten-
tial of Coulomb repulsion, which, for the interaction in an
empty space and in a classical electron gas (for Debye
screening) corresponds to positive eigenvalues only. In a
degenerate electron gas, the presence of a Fermi surface
leads to a Kohn singularity in screening and, as a conse-
quence, to the appearance of one negative eigenvalue.

In contrast to the screened Coulomb potential with a
Kohn singularity at k = 2kg, defined in the case of pairing
with K = 0 in the entire Brillouin zone, the matrix element
U(k) of pairing interaction with large momentum is defined in
the kinematically allowed domain, which corresponds to a
cutoff of U(k) at the boundary of this domain. As a result, the
effective pairing potential U(r) in real space, which is the
inverse Fourier transform of the matrix element U(k), proves
to be a sign-alternating function of its argument (Fig. 3). The
effective coupling constant corresponding to such a potential
considerably exceeds the constant corresponding to the
screened Coulomb potential with Friedel oscillations. We
note that for large momenta, the screening singularities can be
due to sign reversal of the inverse permittivity [54].

The kinematically allowed region is a part of the Brillouin
zone, and therefore the momentum k of the relative motion of
a pair with momentum K is small because of the smallness of
this region, and the matrix element of the screened Coulomb
potential can be represented by first several terms of the series
expansion in powers of its argument. Up to second-order
terms, we have [50]

2
Uk—-Kk') = UOSrg (1 _ (k_lz‘,) ”g) 7

(20)

where U, is the characteristic Coulomb energy, ry has the
meaning of the screening radius, and S is the normalization

area. This approximation is sufficient for a qualitative study
of Coulomb pairing if the domain of definition of the
momentum of relative motion, 0 < k2 < &, is such that
matrix element (20) is positive for all k from Z. This
condition can be satisfied for a sufficiently strong screening,
when r$= < 1.

Matrix element (20) determines the degenerate kernel of
the self-consistency equation, which has four eigenfunctions,
two of which are even and the other two are odd under the
transformation k — —k [50]. One of the even functions, sign-
alternating in the region Z, corresponds to a negative
eigenvalue, while the other three belong to positive eigenval-
ues. Kernel (20) is minimal (in the sense of the dimension of
the linear space spanned by the kernel eigenfunctions) and
leads to a negative eigenvalue under condition (3). The
simplest kernel given by a positive constant in the = region
has a single eigenfunction ¢ = const corresponding to a
positive eigenvalue. Although such a kernel leads to an
oscillating effective potential U(r), the respective self-consis-
tency equation has a trivial solution only. Therefore, the
necessary condition U(r) < 0in a certain region of real space
is not sufficient for the existence of a nontrivial solution of the
self-consistency equation for pairing repulsion.

6. Single-pair problem

The bound state that occurs in the Cooper problem of two
particles or holes with zero total momentum attracting in a
thin dynamically restricted layer (with the energy scale
~ hwp) near the Fermi surface testifies to the instability of
the ground state of the system in which all the one-particle
states inside (outside) the Fermi surface are occupied
(vacant). The same conclusion is suggested by the solution
of the Cooper problem with a long-range attracting interac-
tion [55] leading to a fairly involved internal structure of the
pair, and by the solution of the problem of two repulsive
particles with K = 0 under the condition that the potential
U(k — k') has at least one negative eigenvalue and that the
kinematically allowed region of the 2D electron system
includes, owing to mirror nesting, finite regions of the Fermi
contour [56]. Moreover, long-lived quasistationary states
(QSSs) may in this case arise in the continuum of the relative
motion of a pair. Such states, which manifest themselves as
fluctuations of the superconducting order parameter above
T., are incoherent pairs with different total momenta close to
the momentum K of the superconducting condensate.

The wave function (k) of the relative motion of a pair
with momentum K can be found from the equation [56]

Y(k) =Gk E)Y Uk —k")OK';T)y(k'), (21)
—

where FE is the energy of the pair counted from the chemical
potential 2u and G(k;E) = [E — {(k)rl is the retarded
Green’s function of the free relative motion.

Expanding the function ©(k; T) (k) in eigenfunctions
¢, (k) of the kernel U(k — k') in Eqn (21), we can reduce this
equation to a linear algebraic system for the expansion
coefficients o (7'):

Z{ém’ - };l Gsx\"(E§ T)} OC‘\"(T) = 0 . (22)
Its solvability condition
det {85 — 2, Gy (E;T)} =0 (23)



May, 2006

Superconductivity of repulsive particles 447

allows finding the temperature-dependent energy spectrum of
the relative motion of the pair. The matrix elements of the
Green'’s function have the form

Gy (E;T) =Y ¢; (k)G E) O(k; T) g, (k). (24)

K

In general, Eqns (22) represent an infinite system solved
(using the standard technique of approximate solution) by
replacing the nondegenerate kernel with a degenerate kernel
close to it.

For kernel (20), the Green’s function is a 4 x 4 matrix
diagonal in odd eigenfunctions. Therefore, the left-hand side
of (23) is a product of the 2 x 2 determinant pertaining to the
even eigenfunctions and the factors of the form A, —
G (E; T) pertaining to the odd eigenfunctions. For E < 0,
these factors cannot vanish, and therefore the energy
spectrum of the relative motion of a pair is found from the
vanishing condition for the determinant of form (23)
constructed of the even eigenfunctions:

Jla = Gn — 4G + G11Ga — GGy = 0. (25)
This condition allows both finding the discrete level of the
bound state of the relative motion falling out of the
continuum band and investigating specific features of the
continuum.

Because one of the eigenvalues is negative (4; <0),
Eqn (25) has a solution for E < 0. The character of the
solution for a small coupling constant wy = Uoroz, which
corresponds to the limit case |E| — 0, can be analyzed by
extracting the singular part of the integral (the Kantorovich
technique) [57] determining the matrix element of the Green’s
function. The leading singularity has the form Gy ~
—glIn (& /|E|), where & is the energy scale of the kinemati-
cally allowed region and g is the density of states (per spin) of
the relative motion on the Fermi contour within this region.
Such a singularity leads to the expression (the same as in the
Cooper problem) for the binding energy

1
Eb = &y €Xp (—T()g> y

which is already nonzero for an arbitrarily small coupling
constant if the density of states g of the relative motion is a
finite quantity. This is the case for perfect mirror nesting of
the Fermi contour that has a finite length within the
kinematically allowed region. Otherwise, when the boundary
separating the occupied and vacant states in the region =
consists of points, the density of states of the relative motion
on the Fermi contour vanishes, g =0, and the leading
singularity of the matrix elements of the Green’s function is
weaker,

&0
Gy ~ —g'|E|In | —
8§ g‘ |n<|E|>7

(26)

(27)

where g’ is the derivative, with respect to energy, of the
density of states of the relative motion calculated on the
Fermi contour [56]. In the case of deviation from perfect
mirror nesting, a bound state can arise if the effective coupling
constant exceeds a certain threshold value.

Assuming the mirror nesting condition to be satisfied, we
can represent the matrix elements of the Green’s function in
the weak coupling limit wog < 1 as a sum of the sin%ular,

GS,)(E;T), and the energy-independent regular, Gs(s,(T),

parts. In the weak-coupling limit, the regular contribution to
Gy, can be neglected in determining the binding energy from
Eqn (25).

7. Quasistationary pair states

For E >0, Eqn (25) can allow complex-energy solutions:
E — E —iI'/2. The real part of the energy E then determines
the position of the maximum density of pair states in the
continuum band and I' has the meaning of the QSS damping
corresponding to this maximum. Separating the real and
imaginary parts in (25) leads to a system of two equations
for E and I'. For perfect mirror nesting (g # 0), in the case of
a QSS with small damping near the continuum band edge, the
singular contribution to the matrix elements of the Green’s
function is estimated as Re GS(;,) ~gln(p/e), where
p*> = E? +I'?/4, and the regular contribution (which must
be taken into account in determining the QSS parameters) is
independent of E and I'. Evaluation of the imaginary part of
the matrix element gives Im G,» ~ garctan (I'/2E).

The graphical analysis of the system of equations for E
and I" shows [56] that QSSs may occur if the effective coupling
constant exceeds a certain value wé*) dependent on the
geometry of the kinematically allowed region and the form
of the dispersion law. In the weak-coupling limit (wog < 1),
the QSS energy and damping are related as

() e (F)
p=¢gexp|———], arctan|—)=C,
wo& r

where wi ~wy and C are constants depending on the
geometry of the region =Z. Equation (21) for g # 0 can admit
several solutions in the form of long-lived QSSs for a given K.
Different QSSs correspond to different K.

The wave function of the relative motion of a pair,
corresponding to both bound and quasistationary states, is a
linear combination of two even eigenfunctions of kernel (20).
One of these functions, belonging to the negative eigenvalue,
is sign-alternating in the kinematically allowed region. As a
consequence, the bound state and QSS under repulsion
correspond to the wave function that in the momentum
representation has a line of zeros intersecting the Fermi
contour in the kinematically allowed region.

We emphasize that both the QSS and the bound state
occur as solutions of the same equation (21) for the wave
function of the relative motion of a pair.

The QSSs representing fluctuations in the superconduct-
ing order parameter exist in a limited temperature range,
which is natural to associate [58] with the strong pseudogap
region. The equation of motion of a pair (21) involves the
particle interaction energy U(k —k’) with the weight
©(k’; T'), which singles out the kinematically allowed region
at T=0. The temperature weakening of the interaction
between the components of a pair is caused by the tempera-
ture dependence of mean occupation numbers. The corre-
sponding decrease in the effective coupling constant forbids
the existence of a QSS with small damping at temperatures
exceeding the characteristic temperature 7, related to the
coupling constant value wéf). The temperature T3, assumes
different (but close) values for a QSS with different momenta
close to the momentum of superconducting condensate and
has the same energy scale as 7.. The excess over Tg,
corresponds to the crossover from the state in which two-
particle elementary excitations exist in the form of incoherent

(28)
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pairs to a state with one-particle elementary excitations.
Taking into account that pair incoherence occurs as T is
exceeded, we can evaluate the crossover temperature as [56]

T*

wl N
e~ T [artanh < 0 )] .
wo

The effective coupling constant wy = Upré shows the
tendency to decrease with an increase in the doping level x
caused by an increase in the screening of the Coulomb
interaction. In underdoped compounds, the superconduct-
ing transition temperature 7.(x) increases with x, and
therefore the crossover temperature 7. (x) also first
increases to its maximum, then begins decreasing, and can
reach T, for a certain x. Such T, (x) behavior agrees
qualitatively with the characteristic form of the upper

boundary of a strong pseudogap (see Fig. 1).

(29)

8. Superconducting gap

Self-consistency equation (11) derived within the mean-field
theory determines (under conditions of mirror nesting of the
Fermi contour) the energy gap ‘A (k)] in the spectrum of one-
particle superconductor excitations. In the case of pairing
repulsion, the phase ®@(k) of the energy gap parameter A(k)
must jump by 7 on a certain line of zeros of the parameter
A(k) within the kinematically allowed region. It is only under
this condition that the self-consistency equation can allow a
nontrivial solution that has the same dependence on the
momentum of relative motion as the kernel Uk — k')
whenever this kernel is degenerate. This resembles the
situation with the EPI spectral density in the Eliashberg
theory of superconductivity [59] which (by virtue of the
dynamic restriction on the electron—phonon attraction)
repeats, in fact, the energy dependence of the density of
phonon states.

For symmetric kernel (20), the general solution of the self-
consistency equation can be written as A(k) = a — bk?, where
a and b are determined by Eqn (11) [50]. In view of the
dispersion law property &(k) = £(—k) and the symmetry of
the kinematic restriction under the inversion transformation
k — —k, the odd eigenfunctions do not enter the expansion of
the energy gap parameter in the complete system of functions

@,(k),

2
AK) =Y A 0,(K),

s=1

(30)

and this parameter is determined by two complex compo-
nents 4, and 4, corresponding to the even eigenfunctions of
(20). The energy gap parameter is conveniently represented as

A(k) = b(ki —k?), (31)

where b and k¢ = a/b are determined by the system of
equations [50]
Wo O; T)rd" (k> — k")
$ X0 + kg — k2

=21 n=1,2, (32)

into which the self-consistency equation with kernel (20) can
be transformed.

In the weak-coupling limit, » — 0 and the leading
contribution to the integrals into which the sums in the
system of equations (32) can be transformed is made by a
small area of momentum space enveloping the part of the
Fermi contour that pertains to the kinematically allowed
region. The pair-excitation kinetic energy 2¢(k) vanishes on
the Fermi contour, and therefore, as b — 0, the singular parts
[which are proportional to In(1/b)] and the corresponding
regular contributions [which are independent of b but, just as
the coefficients at In (1/b), depend on kZ] can be segregated
from integrals (32). The system of equations thus transformed
results in an exponential dependence of form (26) of the
superconducting gap amplitude » on the coupling constant w
and determines the radius k( of the circle on which the gap
vanishes.

This circle necessarily has an even (in view of the
symmetry under the inversion transformation k — —k)
number of intersection points with the Fermi contour within
the kinematically allowed region because otherwise the two
equations of system (32) turn out to be inconsistent [50]. The
circle of zeros k = kg crosses the Fermi circle when the latter is
pronouncedly anisotropic. The approach of the Fermi
contour to the circle of zeros can be regarded as an effective
increase in the number of zeros, degenerating into a line when
the Fermi contour becomes coincident with the circle k = k.
This results in suppression of the energy gap amplitude even if
the mirror nesting condition is satisfied [50]. Scattering
processes taking the particle momenta outside the kinemati-
cally allowed region (e.g., scattering by impurities) violate the
mirror nesting condition and eliminate the logarithmic
singularity from the self-consistency equation.

The closeness of the Fermi level and the logarithmic Van
Hove singularity of the density of states in an extended
neighborhood of the saddle point of the electron dispersion
law, encountered in cuprates [20, 60], and, accordingly, the
hyperbolic metric of momentum space with a clearly
pronounced effective-mass anisotropy [61] in the kinemati-
cally allowed region lead to isolines of the kinetic energy of
the relative pair motion that almost coincide with the finite
regions of the Fermi contour (approximate satisfaction of the
mirror nesting condition) and promote an increase in the gap
amplitude.

The superconducting phase transition temperature Ty
corresponding to the mean-field approximation can be
found from the gap amplitude vanishing condition. This
allows linearizing self-consistency equation (11), i.e., neglect-
ing the term |A(k)|2 in the square root as T — Ty. Using
series expansion (30) of the energy gap parameter in
eigenfunctions of kernel (20), which can be conveniently
written as the spectral Hilbert— Schmidt expansion

o, (k) o] (k')
kK —Kk') = s s

Uk —K) =) ===, (33)

we can write the linearized self-consistency equation as
2

Z {/l.\‘ésx\" + A.\‘S’(T)}A,\" =0 ’ (34)

s'=1
where

1 ol (k). (k)Ok;T)
A (T) =5 (35)
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From the solvability condition for system of equations
(34),

det {isass/ + Ass’(T)} =0, (36)
we then find the temperature 7.

The integrals to which the elements of matrix (35) are
reduced depend both on the dispersion law of the relative
motion of a pair and on the size and shape of the
kinematically allowed region. To estimate these elements, we
can use an approximate approach similar to the known
method of zero-radius potential [32].

If we assume that in the limit as the efficiency of the
screened Coulomb potential tends to zero, rop — 0, the
effective coupling constant wy = Uyré remains unchanged,
then the two even eigenfunctions of kernel (20) prove to be
piecewise constant [62],

—

o N\ £1/2
<p1<k>:ﬂ*/2(:—*) L e =22, (37)

S
where Z is the area of the kinematically allowed region and = .
(Z_) is the area of the part of this region in which the function
¢, (k) corresponding to the negative eigenvalue A; < 0 is
positive (negative). The upper (lower) sign in (37) corre-
spondstok € 2, (Z_).

The separation of the kinematically allowed region into
the parts £, and Z_ is determined by the kernel U(k — k') of
the operator of the pairing interaction in the equation for
eigenvalues (18) irrespective of self-consistency equation (11)
or equation (21) for the wave function of the relative motion
of a pair.

Approximately representing the energy gap parameter
A(k) by its values Ay = A} and A_ = A, averaged over the
respective regions =, and £_, we can write Eqn (11)at 7=0
as the system of self-consistency equations

241 = =Un fi — U fods, (38)

24y = —Us fi — Un oAz,

where f; = In(2¢,/|4,]) and ¢;(e2) is the energy scale of the
region £, (E_).

Passing to the limit rp — 0, we obtain a finite eigenvalue
A = (on)_l, while the other eigenvalue tends to infinity,
Al — —oo. As in the zero-radius potential method, we can
make A, a finite negative quantity by constructing, instead
of (20), a new degenerate kernel on eigenfunctions (37) with
the help of Hilbert—Schmidt expansion (33) and requiring
that this new kernel lead to the same binding energy (26) of
the pair as kernel (20) does [62]. As a result, we obtain
A==

The new piecewise constant kernel is characterized by
three parameters, U;;, Uy, and Uy, = Uy, of which the first
two pertain to the scattering inside the regions £, and & _,
and the third pertains to the scattering between these regions.
For the parameters of the kernel, Suhl inequality (2) holds,
and in the simplest case where &, = Z_, these parameters are
given by [62]

U|1 :U22:0, U|2:2W(). (39)
The solution of the system of self-consistency equations (38)
with kernel (39) leads to a piecewise constant energy-gap

parameter

1
A+:2806Xp <—@>, k65+,

A,:7A+, kEE,7

(40)

where g is the energy scale of the kinematically allowed
region corresponding to the total momentum K of the pair.

Matrix elements (35) become A, =0 and A} = Ay =
(g/&) In(2yep/nT), where Iny=C=0.577 is the Euler
constant. The solution of Eqn (36) determining the super-
conducting transition temperature in the mean-field approx-
imation gives the standard BCS relation between T and the
gap amplitude 4 =|44| at zero temperature: 24/T, =
2n/y ~ 3.52.

In underdoped compounds, the critical temperature 7,
increases from zero at x, to its maximum value at x,p; after
transition to the overdoped regime, it decreases to zero at x*,
which can be associated with the properties of the energy
spectrum of cuprates and with the amplification of the
Coulomb interaction screening with increasing x [47].

The vast region of the phase diagram above T¢(x) belongs
to the pseudogap state in which both fluctuations of the
superconducting order parameter [58] and the competition of
the superconducting order with other ordered states inherent
in cuprates can exist [6, 63]. Because T. < Ty, the relation
24/ T, = 3.52(Ts/Tc) observed in underdoped cuprates [64]
considerably exceeds the value 3.52 typical of the mean-field
theory.

9. Fermi contour of doped cuprates

The superconducting state of a system of pairs with a large
momentum can occur if the Fermi-contour mirror nesting
condition is satisfied (at least approximately), i.e., if the
electron dispersion law has a specific form providing a
logarithmic singularity in the scattering amplitude.

The considerable on-site correlation energy allows con-
sidering the cuprate plane of the parent compound as a 2D
Mott insulator [17] in which the energy band is split into two
Hubbard subbands, of which the lower is occupied and the
upper is vacant. In hole doping, a part of the electrons from
the lower subband is removed the reservoirs, thus vacating the
momentum space region bounded by the Fermi contour that
originates in the neighborhood of the points (+7n/2, +1/2) in
the form of small hole pockets with the area increasing in
proportion to x.

At T > T*, the data of angle-resolved photoemission
spectroscopy (ARPES) point to the existence of a large
Fermi contour with the area proportional to the electron
concentration (1 — x) and the maximum spectral intensity
[65, 66]. Weaker maxima form shadow bands caused by
antiferromagnetic correlations [67]. The shadow bands are
mirror reflections of regions of the main bands of the Fermi
contour with respect to the boundaries of the magnetic
Brillouin zone and, together with these regions, reproduce
the hole pocket structure. The Fermi contour evolution upon
doping is one of the key problems in cuprate physics.

The doping-induced evolution of a large Fermi contour
(Fig. 4) can be described qualitatively within the rigid-band
model [20] with the electron dispersion law

(k) = —2t,(cosk, + cosk,) + 41, cosk, cosk,, (41)
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Figure 4. (a) Scheme of evolution of the electron (centered at the point 0, 0) and hole [centered at (r, )] Fermi contour upon doping. The half-occupation
isolines (0.5), the separatrix (s) passing through the saddle points (£, 0) and (0, +7), and two isolines corresponding to the weak (x) and strong (e) hole
doping are shown. The dashed lines indicate the boundary of the magnetic Brillouin zone. (b) The energy band structure for some directions in momentum
space (schematically); regions of electron filling for weak doping are outlined. On the left: the energy spectrum corresponding to rigid-band model (41).
On the right: two subbands (42) and the insulating forbidden band 24, that occurs at the boundary of the magnetic Brillouin zone and is due to the short-

range spin antiferromagnetic order.

where #; and #, are the electron hopping integrals between
atoms of the first and second coordination spheres, respec-
tively, and k, and k, are components of the momentum k in
units @~ .

The hopping integrals are normally found in fitting the
rigid-band model to the Fermi contour shape observed in
ARPES experiments [68]. The parameters ¢, and ¢, are
determined by the properties of not only the cuprate plane
but also the reservoirs, and therefore the values of these
parameters may be different in the families of cuprate
compounds with different numbers of cuprate planes in an
elementary cell. These parameters can be calculated (for
each cuprate compound) within the density functional
method [69, 70].

In the nearest-neighbor approximation (#, = 0) with half
filling, the Fermi contour coincides with the boundary of
the magnetic Brillouin zone, i.e., has the shape of a square
with the nesting vector Q = (m, m); it passes through the
saddle points (+m,0) and (0,£m) and is a separatrix
between two families of closed isolines. For 0 < #, < 2#,
the separatrix changes its shape but passes through the same
saddle points and bounds the momentum-space region
smaller than the half-filling region x =0. Hence, the
occupation x =0 corresponds to the isolines with the
energy higher than the saddle-point energy. The closed
Fermi contour bounds the region of vacant states with the
topological center (m, ). Doping brings the Fermi contour
closer to the separatrix, and for a certain hole concentration
X = X, the separatrix and the Fermi contour coincide. This
corresponds to an umklapp of the topological center to the
point (0,0) (for x > x, a closed line bounds the region of
occupied electron states), i.e., to the electron topological
transition [71] due to the Van Hove singularity at the saddle
point.

The simply connected Fermi contour for holes of under-
doped cuprates has the shape of a distorted square with

rounded corners [20, 65, 66] aligned along the boundaries of
the crystallographic Brillouin zone, inside which it bounds a
momentum space region with the area proportional to the
total hole concentration (1 + x). In reduction to the first
magnetic Brillouin zone, the arcs of the pockets of the Fermi
contour are transferred into this zone. The shadow arcs
remain in the second magnetic zone. The hole pocket area
increases with x until a topological transition occurs at
X = Xx;, accompanied by sign reversal of the current charge
carriers. The large Fermi contour bounding the electron
occupation region with the area (1 — x) assumes the shape
of a distorted square oriented along the boundaries of the
magnetic Brillouin zone.

The Fermi contour in the form of hole pockets satisfies
perfect mirror nesting condition (14) at the momentum
K = Q. The kinematically allowed region is a quarter of the
crystallographic Brillouin zone containing a pocket.

Because of the antiferromagnetic spin correlations, an
insulating gap 4 occurs at the boundary of the magnetic
zone, which survives as a pseudogap in transition to the short-
range order and decreases monotonically with increasing x up
to the optimum doping [17]. The band with the dispersion law
¢(k) is split into two subbands with

81,2(1() = 8+(k7Q) + \/m7

where 2¢, (k, Q) = ¢(k) £ ¢(k + Q). The minus (plus) sign
corresponds to the lower (upper) subband &y (k). Disper-
sion law (42) is defined in the magnetic Brillouin zone such
that the Fermi contour can be obtained by simple extension to
the crystallographic zone (Fig. 5). Because the insulating gap
width 4 depends on x, the structure of the isolines
¢1,2(k) = const changes with doping [72], in contrast to the
rigid-band model.

The pseudogap state of cuprates can be associated with
the short-range order, which can explain the formation of

(42)
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Figure 5. Fermi contour in the form of hole pockets in the neighborhood of
(m,0)-type points. Reduction to the magnetic Brillouin zone (the zone
boundaries are marked out). The arcs of the Fermi contour arising in the
scheme of extended zones are labeled with numerals (solid lines). Primed
numbers label the Fermi-contour arcs with a low spectral intensity (dashed
lines), occurring in the second magnetic Brillouin zone and corresponding
to the shadow bands.

Fermi-contour arcs contracting to zero points of the super-
conducting gap parameter at T, [73].

For weak doping, almost the whole first magnetic zone
and comparatively small neighborhoods of (r, 0)-type points
in the second magnetic zone correspond to the electron
occupation. Accordingly, the first magnetic zone has small
regions (pockets) with hole occupation. The excess holes
introduced in these regions are the main current carriers in
underdoped cuprates, and they alone participate in super-
conducting pairing, thus determining the particle number
density ng ~ x in the condensate.

The occupation of the energy subbands is determined by
the factors @y and ok in the Bogolyubov transformation
diagonalizing the Hamiltonian that describes the electron —
hole pairing responsible for the occurrence of a spin density
wave (SDW). The occupation probability is characterized by
the coefficient ¢ which, in the order of magnitude, is equal to
unity within the first magnetic zone. The spectral intensity of
the ARPES signal is therefore high for the hole pocket arcs
from the first magnetic zone. The substitution k — k + Q
corresponds to transition to the second magnetic zone.
Because Ukt = ik, the ARPES response from the second
magnetic zone, which keeps memory of the long-range
antiferromagnetic order, is significantly weakened, which
gives grounds for identification of these arcs with the shadow
energy band [74].

The insulating s-wave forbidden band 4, related to the
SDW, occurs at the boundary of the magnetic Brillouin
zone. Orbital antiferromagnetic (OAF) ordering in a
cuprate plane with the order parameter, e.g., given by an
orbital-current density wave with the d-wave symmetry
(DDW) also leads to a pseudogap state [63]. In the region
of relatively weak doping (x < xop), orbital and spin
antiferromagnetism can coexist. This is promoted by the
Fermi contour hole-pocket structure, which in the OAF

pairing channel exhibits perfect nesting with the different
pockets related by the same vector Q = (n,n) as in the
SDW channel, leading to the doubling of an elementary cell
[72]. The spectral intensities of the ARPES signal are
determined by x-dependent coherence factors in the SDW
and AOF channels of insulating pairing. The intensity
redistribution between these two channels, observed as x
increases, shows up as attenuation of the ARPES signal
pertaining to the spin ordering with its simultaneous
amplification in the OAF channel [75]. The energy band
formation on the Fermi contour due to OAF ordering
causes the chemical potential to be positioned inside this
gap, and in this sense, the system in the pseudogap state
behaves as an insulator.

The observation of resistance to an alternating current,
due to the vortex motion in relatively weak (~ 1 T) magnetic
fields in an optimally doped compound YBa,Cu3O¢ ., [76],
suggests the conclusion [76] that the state occurring in the
vortex core is insulating rather than metallic, as it would be in
conventional superconductors. Such a conclusion, which
agrees with the interpretation [63] of the weak pseudogap as
an insulating state with a long-range orbital antiferromag-
netic order, can be considered an argument in favor of the fact
that cuprate superconductivity (at least up to the optimal
doping level [77]) is due to the competition not with the
normal Fermi liquid but with the insulating state existing
above T, as an independent pseudogap phase.

10. Order parameter

For a nonzero pair momentum, several crystal-equivalent
momenta K; exist, each of which corresponds to its own
kinematically allowed region Z;, and therefore the order
parameter describing the superconducting state of pairs with
K; # 0 must account for the degeneracy associated with the
cuprate plane symmetry [78].

The order parameter, which has the meaning of the wave
function of a pair, can be written in the mixed representation
as

Y(R,k) = ZY; exp (IK;R) #;(k) ,

(43)

where R is the center-of-mass radius vector, ¥;(k) ~ 4;(k)
has the meaning of the wave function of the relative motion of
a pair with the total momentum K;, and 4;(k) is the energy
gap parameter with the domain of definition 5j; the choice of
the coefficients y; normalized by the condition ) [y; > =1is
determined by the one-dimensional irreducible representa-
tion of the symmetry group of the cuprate plane, to which
function (43) corresponds.

To determine the irreducible representation specifying the
order parameter in (43), we must take the interelectron
interactions into account, which, along with Coulomb
repulsion (20), occur in the cuprate compound: the pairing
attraction of electrons associated with the phonon exchange
and strongly anisotropic pairing repulsion in the exchange of
antiferromagnetic (AF) magnons. Considering these interac-
tions to be small (compared to Coulomb repulsion) perturba-
tions, we can find the explicit form of the y;.

The attraction associated with EPI, which is significant in
the thin layer enveloping the Fermi contour and has the
energy width ~ Awp, is characterized by a dimensionless
coupling constant of the same order of magnitude as the
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Coulomb coupling constant: wyn ~ wc [37]. The ratio of the
momentum-space areas in which the electron scattering due
to the EPI attraction and Coulomb repulsion is significant has
the order of magnitude /iwp /gy < 1. This gives grounds to
regarding the EPI-induced isotropic interaction as a small
perturbation of repulsive potential (20).

The repulsive interaction associated with the exchange of
antiferromagnetic magnons [38, 39] is essentially anisotropic
and can approximately be represented as Uar(k) ~ Upy(k),
where Uy is the Coulomb energy of the on-site correlation that
defines potential (20) and y(k) is the magnetic susceptibility.
The interaction Uap (k) is defined in the entire Brillouin zone
and corresponds to electron attraction on neighboring sites.
Hence, the pairing potential Uag (k) leads to the d-wave order
parameter [79]. Such an interaction can also be considered a
small perturbation of Coulomb potential (20) because the
magnetic susceptibility averaged over the Brillouin zone is
1<l

If the EPI attraction is predominant among the two
perturbing interactions (which is certainly the case with
overdoped cuprates), the coefficients y; in (43) define the
irreducible representation Ajg:y; = y, = 73 = 74. Because the
order parameter does not change sign under rotation by /2
in the momentum space, the zeros of the order parameter are
determined exclusively by the Coulomb repulsion, which
corresponds to an extended s-wave symmetry. The irreduci-
ble representation By,: y; = —y, = y3 = —7, can correspond
to the dominating repulsion Upg(k), which may occur in
underdoped cuprates. In this case, the order parameter does
change sign under rotation by /2 in the momentum space,
and the zeros due to the Coulomb repulsion are supplemented
with four more zeros, which leads to an extended d-wave
symmetry.

The order parameter normalization

2 ng
> IPRK[ =7,

kez

(44)

where 74 is the particle number density in the superconducting
condensate determined by the carrier concentration in the
conduction band and Z is the union of all regions Z; when
they do not overlap (or when their overlap can be ignored),
results in the normalization of each of the functions ¥;(k) to
ns/2.

The system of eigenfunctions ¢;(k) of the kernel
U(k — k') must be defined in each domain Z;, and ¥;(k) can
be expanded in these functions:

Vik) =D VoK) (45)

It is taken into account here that in view of the crystal
equivalence of the regions Z;, the expansion coefficients ¥,
are independent of j, and the eigenfunctions ¢ (k) for
different j differ by the domain of definition only. The
eigenfunctions of the kernel of the pairing interaction
operator, defined in the entire kinematically allowed region,

¢,(R, k) = > y;exp (IKR) (k) ,

J

(46)

form a complete orthonormal system of functions transform-
ing under one of the one-dimensional irreducible representa-
tions of the point symmetry group of the cuprate plane.

1.0

ke ko

Figure 6. Top: the Fermi contour (FC, thick line), the line of order
parameter zeros (circle N, thin solid line), and the line of group velocity
zeros (GV, dashed line). Bottom: the dependence of the coherence factor
vZ on the momentum of the relative motion of a pair for the directions
denoted by numbers /, 2 in the top figure. Positions of the Fermi
momentum kg and the radius of the circle of order parameter zeros kg
are indicated.

The expansion of the order parameter in the system of
functions in (46) has the form

W(Rv k) = Z 'PX(R) (p‘\,(R, k) ) (47)

where the expansion coefficients (components of the order
parameter) are written as

'P.\'(R) = Z T(Rvk) ‘P.:(Rvk) :

kez

(48)

We note that in the case of pairing repulsion, the order
parameter has not less than two components [80].

The order parameter describing pairing of repulsive
particles for a large pair momentum is related to three
characteristic lines in the momentum space:

(1) A consequence of the mirror nesting is the separation
of the occupied and vacant parts of the kinematically allowed
region by finite regions of the Fermi contours, i.e., by the line
on which the kinetic excitation energy of a pair of particles
with momentum K vanishes, 2¢(k) = 0, and the quasiparticle
charge passes through zero.

(2) A consequence of the pairing repulsion is the line of
zeros of the order parameter in the kinematically allowed
region.

(3) The mirror nesting and pairing repulsion lead to the
quasiparticle spectrum with an anisotropic energy gap and
the group velocity vanishing within the kinematically allowed
region on the line of minima of the quasiparticle excitation
energy.
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The Fermi contour, the line of zeros of the order
parameters, and the line of minima of the quasiparticle
excitation energy have common intersection points (Fig. 6).
A consequence of the asymmetry between the occupied and
vacant parts of the kinematically allowed region (and the
corresponding asymmetry in the positions of maxima of the
coherence factor v?, as shown in Fig. 6) is that in the
superconducting transition, the chemical potential deter-
mined from the electroneutrality condition shows a shift
Ap ~ |¥| that is linear in the order parameter modulus [49].

11. Ginzburg — Landau functional

If the regions Z; do not overlap, components (48) of the
order parameter of a spatially homogeneous system are
independent of the radius vector of the center of mass:
Y,(R) = ¥,. In a spatially inhomogeneous system, the
exponential factors (the wave functions of the free motion
of the center of mass) in (43) are replaced by the wave
functions of the center-of-mass motion in the external field.
Hence, the use of the system of eigenfunctions (46) as a basis
for the order parameter expansion makes its components
(48) functions of R.

The free energy of the system (per one cuprate plane) is a
functional of the components ¥(R) of the order parameter,

F= dezR, (49)

where [ is the free energy density. Near the superconducting
transition temperature, it can be represented as an expansion
in powers of the components and their spatial derivatives,

S=l+fe+/m, (50)
where fy denotes contributions to the free energy density of
the second and fourth order in ¥ (R), f, is the magnetic field
energy density, and f, is the gradient term in which it suffices
to keep only the second-order contribution in V¥ for slowly
varying ¥(R).

The expansion of the free energy density in powers of the
order parameter components ¥(R) can in general be written
as [78]

Jo= Z Assr lPs* Yo+ % Z Byt 'Ps* l‘U;’ vy (51)

ss’

ss'tt!

In the case of kernel (20), only two order parameter
components exist, and the summation indices in (51) and
further on take the values 1 and 2. The matrices A, and By
are functions of 7'and x and have three and five independent
components, respectively.

The gradient term can be represented as [80]

B i 1 .
fg_4—m2[m@] M, DY),

ss’

(52)

where the positive definite matrix M, is a function of T'and x
and has three independent components. The operator of
covariant differentiation with respect to coordinates of the
center-of-mass radius vector is

(53)

where A = A(R) is the vector potential determining the
induction of the magnetic field averaged over the relative
motion of the pair, B=rotA. The field A includes the
contributions of both the external magnetic field and the
field that can be related to the appearance of spontaneous
orbital currents.

The change in the energy density of the medium upon the
occurrence of the magnetic field is written as

20

fm =— (rot A)2,

> (54)

where zy is the distance between neighboring cuprate
planes.

In compounds with several cuprate planes in an elemen-
tary cell, the concentration of holes introduced during doping
is different in different planes and is determined from the
condition of the electrostatic energy minimum [81]. The
superconducting transition temperature 7, shows a universal
dependence on the number n of cuprate planes in an
elementary cell and reaches its maximum at n = 3 [82, 83].
This dependence can be explained [84] by the competition of
the superconducting and insulating (pseudogap) ordered
states described by different components ¥, of the order
parameter.

The free energy is invariant under a unitary transforma-
tion of the order parameter components, realized by 2 x 2
matrices belonging to the SU(2) group. A special choice of
such a transformation allows diagonalizing the matrices
Az and M. Assuming that such a diagonalization has
been performed, we can assume that Ay = A0y and
My = Mo, where A; and M are functions of T and x.

The superconducting phase transition temperature
Ts(x) corresponding to the mean-field approximation is
determined from the condition det A (7,x) =0, which,
after diagonalization of the matrix A, assumes the form
A (T, x) A>(T, x) = 0. Because both components of the order
parameter vanish at the same temperature, it is necessary that
the two conditions A4;(7,x) =0 and 4,(7,x) =0 hold
simultaneously; this is the case with repulsive-interaction
pairing.

We note that states with a mixed symmetry of the
d,2_,> +exp (i) x type, where y is the contribution of
states, e.g., with the s or d-symmetry and 0 is the relative
phase of the order parameter components, in general
correspond to different mean-field temperatures of the
phase transitions to states with the d,»_,2- and y-symmetry
(in particular, the phase transition can be absent altogether
for one of such states) [85, 86].

Thus, near the phase transition line, we can set
A(T, x) = —1,49 (x), where A0 (x) are positive functions
of doping,

and assume |t;| < 1. The matrices By, and My, do not
vanish at T = Ty, and therefore, near the phase transition
line, we can replace their argument 7 by Ty and consider
these matrices to be functions of x only. We note that
such an approximation suffices when the transition
temperature 7T.(x) coincides with Ty (x), which in cup-
rates is customarily believed to take place in overdoped
regions only.
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12. System of Ginzburg — Landau equations

The variational procedure leads to the system of two
equations specifying the order parameter [80]

i 2e 2
SN M [ -iv-2A) v,
4msz, . ( v Tic ) :

+> AW+ By VW =0,

s'tt!

(55)

and the equation for the current density specifying the vector
potential

. he . o 207
=) My 5 (Ve = WaVW) == WIPA

(56)

where we use the notation

c
j =20 -— rotrotA. 57
f=20 4 (57)
The system of boundary conditions can in particular be
written as

Qe
S My <iV +h—‘ A) Pon=0,
s’ ¢

where n is the outer normal to the boundary of a 2D region in
the cuprate plane.

A system of two equations instead of a single equation for
a system with a one-component order parameter can lead to
several (for example, differing in the relative phase of
components) nontrivial solutions corresponding to the
minima of functional (49), their positions and energy values
being dependent on the relation between the elements of the
matrices Az and By,

Gradient contribution (52) to the free energy describes the
long-wave fluctuations of the order parameter with respect to
the thermal equilibrium value. Order parameter (43) allows a
special current state whose nature can be clarified using the
Ginzburg—Landau equations [80]. Singling out the order-
parameter phase

(58)

¥,(R) = |7,(R)| exp [iO(R)] , (59)
we can write the superconducting current in the absence of the
external magnetic field as

hie —
j= 5 MV, (60)
where

M=) WMy (61)
A

The components ¥, are rapidly varying functions of R, and
therefore the circulation of the current along any closed
contour L in the cuprate plane,

. _
V:j[ﬁ jdl:—"J &R 0y [V x V], (62)
Lo m)s,

is generally nonzero; here, n3 is a unit vector of the normal to
the plane and Sy is the area of the surface bounded by the

contour L. If the characteristic dimension of the contour L
considerably exceeds the scale ~ K~! on which the order
parameter varies, then 7 = 0. The structure of the order
parameter of the FFLO periodic structure type [87] corre-
sponds to the division of the real 2D space into cells with the
area ~ K~! such that the projection of the vector product in
the n3 direction has opposite signs in the neighboring cells.
Thus, as a result of long-wave fluctuations of the order-
parameter phase (especially significant in underdoped cup-
rates because of the low phase stiffness), an antiferromagne-
tically ordered structure occurs (on the phase fluctuation
scale) in the form of orbital current fluctuations.

We can estimate phase stiffness near the superconducting
transition temperature. In the absence of a magnetic field, the
gradient contribution to functional (49) can be written as

1
F@ ~ E[ d’R p, (VO)?

i (63)

which implies that p, = 7> M/2m, where the order parameter
components in M should be set equal to their equilibrium
values. We thus have p, ~ 71 near the transition tempera-
ture. If we assume that p, depends linearly on temperature
[88, 89], then owing to the order-parameter normalization in
(44), the phase stiffness at zero temperature p (0) is
proportional to the area of the kinematically allowed region
5; ~ x. We note that the smallness of the phase stiffness for
x — 0 is not directly related to the x-dependence of the
energy-gap parameter 4 (k).

The existence of a system of two equations instead of a
single Ginzburg— Landau equation corresponding to the BCS
model can result, as in the case of s—d pairing [85], in several
(e.g., differing in the relative phase) nontrivial solutions
corresponding to Ginzburg—Landau functional minima
with positions and energies dependent on the relation
between the elements of the matrices Ay and Bgyr.
Furthermore, a system of consistent equations for the order-
parameter components can cause topological defects in the
order-parameter phase, other than the vortices and antivor-
tices that arise as solutions of the Ginzburg—Landau
equations corresponding to the BCS model. This is the case,
for example, with the coupling via the electromagnetic field
only [90].

13. Spatially homogeneous order

In the absence of an external magnetic field and structural
inhomogeneities, the superconducting state of a long-range
order system is determined from the minimum condition for
the free energy density fy. The complex components of the
order parameter can be specified in terms of their moduli ¥,
and v/, and the relative phase f:

Y=y, exp(i®), Y2 =y,exp(if) exp (iD). (64)
The obvious trivial solution ¥; =y, = 0 with an unde-
fined relative phase corresponds to the free energy minimum
at T > Ts.. At T < Ty, nontrivial solutions exist for which the
equilibrium values of the three parameters ¥/, ,, and f§ are
determined by the x-dependent matrices 4 and By [78].
The moduli of the order parameter components are
related by normalization condition (44), 1//12 + 1//22 =ng/2,
and therefore minimization of the free energy is reduced to a
variational problem with two unknown quantities. Without
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loss of generality, we can set ¥/, =\, = and write the free
energy density as

fozau//ZJr%(B+2Ccosﬁ+Dcos2[3)tﬁ4, (65)
where a; = —art, a = A(lo) + Ago), and the other coefficients
are expressed in terms of the elements of the matrix Bjg/y,:.

The search for the extremum of function (65) shows that
at T < Ty, the minimum is attained for f == and ¥ # 0
under the condition C > D. Otherwise, a nontrivial solution
corresponds to the relative phase f < n defined by the
relation cos f = —C/D.

The equality C(x) = D(x) can be regarded as an equation
describing the doping level x for which the superconducting
order changes qualitatively. In a small neighborhood of the
point xo, the ratio C/D = ¢(x) can be represented as ¢(x) =
1+ ¢’(x0)(x — x¢). If we assume that the state with the
relative phase f =m corresponds to the doping x > X
(¢’(x0) > 0), then for x < Xy, the relative phase is f(x) <=
with f(x) being a continuous function of its argument such
that f(x) — mas x — Xxo.

The order parameter that distinguishes between the two
thermal equilibrium superconducting phases with f < n
(B phase) and f = n (n phase) can naturally be defined as
o =m—f, and therefore « =0 for x > xy and o > 0 for
Xx < xg. Near the transition point x¢ and for t; < 1, the free
energy density can be written as an expansion in even powers
of o and .

The free energy minimum is attained at « =0 in the
n phase (x > x¢) and at «? = 2¢/(xg)(xo — x) in the B phase
(x < x¢). In a small neighborhood of the phase transition
point xg, the squared modulus of the equilibrium order
parameter is equal to > =art,/(B— D), and hence the
expression for the free energy density of the B phase becomes

fo=fa—vii(x = x0)?, (66)
where f; = —at1 > + (B — D)y */2 is the free energy density
of the © phase and v = ¢2D/(B — D)* > 0.

14. Spontaneous orbital currents

Different signs of the real components of the order parameter
(which corresponds to the relative phase equal to m)
necessarily occur in superconducting pairing with repulsive
interaction [78]. A deviation in the relative phase from =«
corresponds to the solution of the self-consistency equation
with complex coherence factors and allows a rather demon-
strative interpretation. The phase change of the annihilation
operator of an electron with the spin ¢ =T, | at the crystal
lattice site with a radius vector n can be related to the vector
potential A(n) of the magnetic field as

. . e
Cng — Cng EXP [1 e A(n)n} . (67)

Then, the phase f(n,n’) of the anomalous average (¢aj¢n’))
(which determines the superconducting order parameter),
written in the site representation is given by

Bn,n') =7 — % [A(m)n+ A(n')n’]. (68)

Expressing nand n’ in terms of the radius vectors of the center
of mass, R = (n+n’)/2, and of the relative motion of a pair,

r=n—n’, we can segregate the contribution to the super-
conducting condensate phase that depends on R only,

2e

@.(R) = A(R)R,
of which the expansion of the free energy density is
independent.

The correction to 7 [except for the phase ®.(R) of the
superconducting condensate] in (68) due to the relative
motion determines the relative phase o of the order para-
meter components, which near the phase transition point
X = Xxg, where o < 1, can be estimated as

X Xp . (69)

Here, we imply summation from 1 to 2 over the repeated
indices labeling the 2D coordinates x; of the radius vector r of
the relative motion.

It can be assumed that the occurrence of a superconduct-
ing order parameter phase different from =© is due to the
orbital antiferromagnetic (OAF) ordering, which manifests
itself in the superconducting state as antiferromagnetically
correlated orbital current circulations [91] and can survive
above T, as a long-range [63] or short-range [92] OAF order.
In this case, the real magnetic field in (69) generated by orbital
currents can be treated as a certain gauge field that relates the
charge and current degrees of freedom (i and «, respectively)
and is similar to the gauge fields introduced into the
Ginzburg—Landau functional, for instance, in the boson
scheme of spin—charge separation [93, 94]. In neighboring
crystal cells, the current circulations have opposite signs. In
the Ginzburg— Landau phenomenology, the order parameter
should be understood as being averaged over the relative
motion of a pair, and therefore, recalling the checkered order
in the distribution of orbital currents, we can estimate the
root-mean-square (within a cell) value of the OAF-ordering
parameter as

a2~n2 e \* B2
~ 2 \2hc) KP

where B is the magnetic induction of the orbital current field
averaged over a cell.

The occurrence of orbital currents in the superconducting
state requires taking the contribution fp(a) = xa? into
account in the Ginzburg— Landau functional. This contribu-
tion is proportional to B2 and is related to the energy of the
magnetic field of the orbital currents. It can be verified that
the inequality » > 0 forbids the occurrence of the minimum
free energy density fo + fm (o) for o # 0. This naturally makes
it necessary to consider the competition between the super-
conducting and insulating OAF pairing channels [95]. We
note that the breakdown of cuprate superconductivity by a
magnetic field leads to precisely the insulating state [76, 77].

The OAF ordering considered in Ref. [63] as a pseudogap
phase state (a flux phase in a two-dimensional lattice [96], the
same as the toroidal magnetic ordering in three-dimensional
crystals [97, 98]) reduces the cuprate-plane magnetic transla-
tional symmetry because of the occurrence of a d-wave
symmetry, which corresponds to the orbital currents circulat-
ing along the chemical bonds between nearest-neighbor
copper atoms. The state of orbital currents that does not
violate the translational symmetry (but violates the time

(70)
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reversal symmetry [99]) can be represented in the same way. In
this case, the circular current corresponds to the orbital
motion along the chemical bonds between the nearest-
neighbor copper and oxygen atoms in each quarter of an
elementary cell [99]. An experimental determination of the
type of OAF order encounters great difficulties because the
generated magnetic fields are weak [17]. In this connection, a
lively discussion [102] concerning the existence and a possible
origin of orbital antiferromagnetism in cuprates was stimu-
lated by paper [100], reporting the observation of a sponta-
neous time-reversal symmetry breaking in ARPES experi-
ments with circularly polarized light, and by communication
[101] that reported on the magnetic order not violating the
translational symmetry, observed in the experiment on elastic
diffraction of polarized neutrons in the YBaCuO system.

15. Free energy

Spontaneous orbital currents can also occur in the absence of
a superconducting order. The corresponding insulating OAF
order in a 2D system is characterized by a single parameter
that has the meaning of the magnetization difference in two
sublattices of an orbital antiferromagnet. This difference is
proportional to o, and therefore the free energy density (in the
absence of superconductivity) near an OAF transition can be
represented as an expansion in even powers of o,

.fa:a212+%b20€47 (71)
where b is a positive function of x and the coefficient a, (T, x)
vanishes at the insulating phase transition temperature 74(x)
corresponding to the mean-field approximation; for |1,| < 1,
where 1, = (Tqy — T')/ T4, we can write a = —a’t,, where a’
is a positive function of x. The energy fi, () of the magnetic
field of spontaneous currents, proportional to a2, is included
in the first termin (71) via a redefinition of the dielectric phase
transition temperature Tq(x).

Consideration of the spatially homogeneous case in the
absence of an external magnetic field allows establishing a
relation between the two types of ordering. In this case,
neither {y nor a depend on the radius vector R of the center
of mass, and the contribution of only the field of spontaneous
orbital currents must be kept in the gradient term (52) of the
Ginzburg—Landau functional. Because the vector potential
of this field is A ~ q, it follows that the gradient term averaged
over the relative motion of a pair can be written as
Ji2 = b121/12oc2, where by, is an x-dependent phenomenologi-
cal parameter.

In the case of pairing repulsion, self-consistency equation
(11) determines the position of the line of zeros on which the
energy gap parameter 4(k) reverses sign and the phase @(k)
of anomalous average (10) jumps by «. The phase @ (k) itself is
determined by Eqn (11) up to an arbitrary k-independent
summand o that manifests itself in the gradient term of the
Ginzburg—Landau functional and is therefore related to the
orbital current degree of freedom of the relative pair motion.
Hence, the orbital current proportional to o plays the role of
the order parameter. To derive the equation determining it,
we must diagonalize the Hamiltonian in Eqns (5) and (6)
using a Bogolyubov transformation that couples particles in
the superconducting and insulating OAF pairing channels.
For this reason, transformation (8), which only accounts for
superconducting pairing, involves arbitrariness in the defini-
tion of the relative phase o and does not allow determining its

Figure 7. Region of the phase diagram corresponding to the coexistence of
the insulating OAF and SC phases in the neighborhood of the tetracritical
point ¢ (encircled). Thick lines show phase transitions. The WPG region
corresponds to a weak pseudogap with a long-range OAF order and the
SPG region belongs to a strong pseudogap with developed superconduct-
ing order-parameter fluctuations against the background of the long-
range OAF order. The superconducting (SC) region is separated into two
phases: the conventional superconducting phase © and the phase B in
which superconductivity coexists with antiferromagnetically ordered
orbital circular currents. A region of developed OAF fluctuations against
the background of long-range superconducting order lies between the B
and r phases. FL is Fermi liquid.

k-dependence. Correspondingly, in the phenomenological
approach, the phase component « of the two-component
superconducting order parameter should be treated as
averaged (within a crystal elementary cell) over the relative
pair motion.

The zeros of the modulus () and phase (x) of the
superconducting order parameter do not coincide on the
Fermi contour, which makes the system insensitive to
scattering by nonmagnetic impurities.

Thus, the free energy density describing the competition
between superconductivity and orbital antiferromagnetism
assumes the form [78, 103]

= a1¢2+azoc2+%b11//4+b12¢2a2+%b214 (72)
up to fourth-order terms. The decomposition of free energy
density (72) makes sense in a comparatively small region of
the phase diagram in which the graphs of the dependences
T (x) and Ty4(x) either intersect or pass close to each other.

It is natural to consider the corresponding phase transi-
tion temperatures T4 (x) and Ty (x), which are determined in
the mean-field approximation in the absence of coupling
between competing ordered states, i.e., for b = 0in (72), to
be monotonically decreasing functions of x because doping
causes suppression of both orbital antiferromagnetism and
superconductivity. The properties of the phase diagram of
cuprates (see Fig. 1) suggest the assumption that orbital
antiferromagnetism dominates for small x but is suppressed
faster than superconductivity as x increases. This enables the
graphs of the functions Ty(x) and Ty (x) to intersect at a
certain point corresponding to xo (Fig. 7). The assumption
that the superconducting transition temperature calculated in
the mean-field approximation in the absence of orbital
antiferromagnetism exceeds the temperature of the mean
field of an orbital antiferromagnetic transition for a weak
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doping in the absence of superconductivity (7. > Ty) is in
contradiction with the phase diagram structure. The decom-
position of the free energy density (72) is valid in a small
neighborhood of the intersection point of the functions 7g4(x)
and Ty (x), and therefore the extension (shown in Fig. 7) of
the lines outside this neighborhood is rather dubious.

16. Tetracritical point

For T > max (Tyg, Ty ), the free energy minimum is reached at
Yy = 0 and o = 0, which corresponds to the normal (N) phase.
For x < xp, the boundary separating the normal and
insulating o phase, in which y = 0 and a?> = —ay/b,, is the
phase transition line 7= T4(x). The lower boundary of the
o, phase is the line (defined by the condition ba; = byza,) of
phase transition into the B phase,

bza— blza,

T =TTy —F
W ATy —bpa' Ty

(73)
in which superconductivity coexists with orbital antiferro-
magnetism. In the B phase, both components of the order
parameter are nonzero:

_bya; —bnay 2 biay —bpa

Y= , = 74
biby — b, biby — b}, (74)
For x > xq, the transition from the N phase to the super-
conducting © phase with the order parameter > = —a; /by,
o = 0 occurs at T = T (x). The temperature
bia' —b
Tﬁn =TTy 14 124 (75)

b]d’Td — b]zaTSC

corresponds to the transition between two superconducting
phases. The line 7' = Tp.(x) starts at the intersection point of
the lines 7= T4(x) and T = T (x) for x = x¢ (point ¢ in
Fig. 7) and terminates on the x axis at a point xy > xy. Thus,
the point ¢ is a tetracritical point, at which four phase
transition lines meet, and the point with the coordinates
x = xp and T = 0 acquires the meaning of a quantum critical
point.

The scheme of phase symmetry submission in the
neighborhood of a tetracritical point is determined by the
cuprate plane symmetry. In the case of a square lattice of the
two-dimensional crystal class G = Cy,, the extended point
group of the most symmetric N phase is the direct product

Gn =G x Rx U(1),

where R denotes the group consisting of the identity
transformation and the time reversal transformation R
(reversing the directions of the currents) and U(1) is a gauge
transformation group. The transition from the N phase to the
superconducting  phase is accompanied by a gauge symme-
try loss, and therefore the point symmetry group of the
7 phase is a nonmagnetic crystal class G, = G x R. In the
transition from the N phase to the insulating o phase, some
elements of the crystal symmetry (to which the H group,
which is one of the index-2 subgroups of G, now corresponds)
are lost because of the occurrence of spontaneous circular
currents. The point symmetry group of the o phase is the
superconducting magnetic class with the set of elements
G, = (H+ RgH) x U(1), where g is an element of the group
G not belonging to H. As a result of the loss of gauge
symmetry in the transition from the o phase to the p phase,

the point symmetry group of the B phase is the magnetic class
Gg = (H + RgH). The group Gg is simultaneously one of the
subgroups of G, and G, which are, in turn, subgroups of the
group Gn. The group G = Cy, has two subgroups of index 2:
H = C4 and H = C,,. The former leads to the ferromagnetic
class C4,(Cy) and the latter corresponds to the antiferromag-
netic class Cy,(Cy,) with the distribution of currents in a 2D
flux phase [78].

17. Phase portrait

In the sector of the phase diagram corresponding to the
normal phase, the free energy has a minimum at =0,
o = 0, which in passage through the line 7= T4(x) to the
o. phase shifts along the « axis to the point ¥ =0,
o = /—ay/b,. However, this minimum is the only singular
point of free energy not in the entire existence region of the
insulating o phase but only in its upper part with
T (x) < T < T4(x). Passing through the line 7= Ty (x) to
the minimum determining the thermal stable insulating state
adds a saddle point at y = \/— a;/b1, « = 0. In the B phase
for T < T,p, the orbital antiferromagnetism and supercon-
ductivity coexist. The free energy density has an absolute
minimum at o # 0 and y # 0 and two saddle points (on both
coordinate axes). On the line 7' = 7§, of the transition from
the B phase to the 7 phase, the minimum on the i axis shifts
and replaces one of the saddle points. In passing through the
line T = Ty4(x), the saddle point on the a-axis shifts to the
origin (Fig. 8).

In the neighborhood of the tetracritical point, the states
from the sector Ty (x) < T < Ty4(x) corresponding to the
absolute minimum and to the saddle point have close free
energies. Therefore, the probability of the fluctuation-
induced incoherent long-lived quasistationary states of
superconducting pairs with the relative phase m (to which
the state of the saddle point = +/—a;/b;, « =0 corre-
sponds) is sufficiently high in the temperature range
T.(x) < T < Ts(x). The decay of such a quasistationary
state (QSS), followed by a decrease in the modulus of the SC
order parameter  from = y/—a;/b; to zero with increas-
ing the relative phase « from zero to the equilibrium value
o = y/—ay/by, can be regarded as the creation of decoupled
pairs of oppositely oriented circular currents or unbound
vortex —antivortex pairs. The intermediate states during the
QSS decay are the fluctuation states of the f phase belonging
to close isolines passing from the neighborhood of the saddle
point to the neighborhood of the free-energy absolute
minimum.

Thus, for x < x, the temperature Ty (x) that is the upper
bound of the region of developed fluctuations of the SC order
parameter modulus is not associated with any phase transi-
tion. It can be considered as the upper bound of the phase
diagram region in which vortex orbital currents exist owing to
the creation and decay of QSS superconducting pairs with the
relative phase m. Such currents can lead to a substantial
increase in the Nernst effect observed in cuprates in the
strong-pseudogap region. Therefore, the temperature Ty (x)
for x < x¢ can be identified with the crossover that bounds
this region from above: Ty (x) ~ T, (x). We note that a
strong pseudogap can penetrate the extremely low-doping
region, x < X, in which T, (x) = 0.

In passage through the line 7= Ty (x) from the N phase
to the m phase, the free-energy minimum shifts from the point

W =0, o =0 to the point Yy = \/—a;/b;, o« = 0. This mini-
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Figure 8. Topology of free energy isolines in coordinates s (horizontal axis) and o (vertical axis). Numbers denote sectors of the phase diagram near the
tetracritical point: normal Fermi-liquid (1), weak pseudogap (2), strong pseudogap (3), superconducting B phase (4), region of developed OAF
fluctuations against the background of long-range superconducting order (5), and superconducting n phase (6). The maxima (M), minima (m), and saddle

points (S) are marked with filled dots.

mum is absolute in the entire region of the © phase existence,
but a saddle point with coordinates ¥ =0, o = y/—a2/b;
appears in the sector Tp(x) < T < Tq4(x) (see Fig. 8). In the
neighborhood of the tetracritical point ¢, the free energies at
the minimum and at the saddle point are close, and therefore
the fluctuation-generated QSS orbital circular currents are
highly probable in the sector Tp(x) < T < Tq4(x). The decay
of' such a QSS, i.e., a decrease in the relative phase of the order
parameter from its saddle-point value o = \/—ay /b, to zero

:

with a simultaneous increase in the modulus of the order
parameter y from zero to the thermal equilibrium value
W = +/—a1 /by, proceeds through nonequilibrium states of
the B phase. For xp < x < x*, the temperature Tg(x)
corresponding to the mean-field approximation is the
temperature of the phase transition from the N to the
7 phase, T (x) = Tc(x).

The two-component order parameter, naturally following
from the concept of large-momentum repulsion-induced
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pairing accounts for the charge and current degrees of
freedom and necessarily leads to the picture of developed
order-parameter fluctuations. The phase transition between
the normal and superconducting © phase in the overdoped
region of the phase diagram proceeds for « = 0 and can be
described within the Landau theory of phase transitions with
a single-component order parameter.

The concentration x,p; formally determined by the
position of the T¢(x) maximum is certainly lower than the
concentration of the tetracritical point, xop < Xo, and there-
fore, when extended to the low-temperature range, the lower
bound of the = phase ends at a point x}, in the interval (xg, x*).
In this interval, the temperature lowering after the phase
transition N — 7 first brings the system to the region of
developed fluctuations in the form of QSS orbital circular
currents and then the system undergoes a second phase
transition between two superconducting states at a tempera-
ture T (x). Such a phase transition within the superconduct-
ing state could be registered, for instance, by the anomaly in
the temperature dependence of heat capacity. The modulus of
the order parameter i remains continuous at the phase
transition temperature 7Tp;(x), and the relative phase o,
which is equal to zero in the © phase, becomes nonzero at
T < Tpr(x) [78].

18. Diamagnetism of the pseudogap state

The observation [26, 104, 105] of the giant Nernst effect in an
extended part of the pseudogap region in hole-doped cuprates
can be thought of as evidence of the existence of vortex-type
excitations at temperatures much higher than 7.

The Nernst effect (the thermogalvanomagnetic effect, i.e.,
the appearance of an electric field perpendicular to mutually
perpendicular magnetic field and temperature gradient) is
rather weak in normal metals in which transport phenomena
are associated with quasiparticle excitations and transfer. The
Nernst effect is considerably amplified in the transition of a
metal into the state of a type-II superconductor in the region
between the first and second critical magnetic fields. In this
case, a vortex excited in a magnetic field B drifts in the
temperature gradient field with the velocity v ~ VT, leading
to the Nernst electric field E = [B x v]/c. We can assume that
developed fluctuations in the phase of the superconducting
order parameter occur in the strong pseudogap region,
violating the phase coherence [58].

The elementary vortex excitations leading to the phase
coherence loss occur in a system with strong electron
correlations within various theoretical schemes. In the
boson version [93, 94] of the charge and spin separation
scheme [106], the phase coherence violation at 7 is associated
with the thermal excitation of spins in the form of free spinon
vortices in a rather wide temperature range with the upper
boundary having the interpretation of the holon condensa-
tion temperature and corresponding to depairing of incoher-
ent superconducting pairs.

The low phase stiffness leads to developed fluctuations
suppressing the long-range order in a 2D system, and
therefore 7, can be regarded as the temperature of the
Berezinski— Kosterlitz— Thouless transition corresponding
to the occurrence of unbound vortices and antivortices of
the superconducting order parameter phase. The Dirac
character of the nodal quasiparticle spectrum [16] allows the
description (using the analogy with quantum electrodynamics
in two dimensions) of the pseudogap state within the frame-

work of the phenomenological scheme [107] in which vortices
and antivortices (which are elementary excitations in this
scheme) manifest themselves as topological defects of the
order parameter phase and are due to quantum or thermal
fluctuations. Such defects can result from sign reversal of
separate current circulations [108] in a flux phase.

A consequence of the superconducting pairing with large
momentum and screened Coulomb repulsion is the occur-
rence of a QSS having momenta close to the superconducting
condensate momentum and existing as incoherent pair states
in a sufficiently wide temperature range above 7.. The upper
boundary of this range can be associated with the crossover
between states of the strong and weak pseudogap. The
dependence of the crossover temperature on doping in (29)
agrees qualitatively with the upper boundary of the region in
which a giant Nernst effect is observed [26, 104, 105].

The thermodynamic states in the region of a strong
pseudogap, corresponding to the absolute minimum at
V=0, a =+/—ay/b, and to the saddle point at ¢ =
v/—ai/bi, « =0, have close free energies. Therefore, the
probability of the fluctuation-induced long-lived QSS of
superconducting pairs with the relative phase © (to which
the saddle-point state corresponds) is rather high in the
temperature range 7¢(x) < T < Ty (x). The decay of such a
QSS, followed by a decrease in the modulus of the super-
conducting order parameter from yy = /—a; /b; to zero, with
the relative phase increase from zero to the thermal equili-
brium value & = \/—ay /b, can be regarded as the creation of
pairs of oppositely oriented circular currents. The intermedi-
ate states during QSS decay are fluctuation B-phase states
that belong to the isolines connecting the neighborhoods of
the saddle point and the free-energy absolute minimum.

The temperature Ty (x) for x < x¢ bounding the region of
developed fluctuations of the superconducting order para-
meter modulus from above is not related to any phase
transition and can be considered the upper boundary of the
region in the phase diagram where orbital vortex currents
exist owing to the occurrence and decay of the QSS of
superconducting pairs with the relative phase m. Such
currents can be responsible for a notable amplification of
the Nernst effect, and therefore Ty (x) for x < xo can be
identified with the crossover bounding the strong-pseudogap
region from above. In the neighborhood of the tetracritical
point, Ty (x) =~ T (x). We note that the strong pseudogap
can penetrate the region of an extremely weak doping x < x.,.

In the absence of phase coherence above T, the circular
orbital currents can lead to the giant diamagnetism (nonlinear
Meissner effect), which was predicted in [78, 103] and
observed in underdoped cuprates in the temperature range
above T¢ [25].

The order parameter defined as

dB?
ML 76)

corresponds to the homogeneous state of the o phase in a
magnetic field. The magnetic susceptibility of the o phase can
accordingly be represented as

2db,

XuN)(N—i_ a )

(77)

where yy is the magnetic susceptibility of the N phase,
d = d| + d> in the case of a transverse field and d = d in the
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case of a longitudinal field relative to the cuprate plane.
Here, d; and d, are phenomenological parameters in the
expansion of the free energy of the Landau antiferromagnet
in power series of the order parameter and magnetic field
strength [109]. In the neighborhood of the tetracritical point,
a transition from the paramagnetic N phase to the diamag-
netic state of the o phase occurs at the temperature

- 17271\1)
Ta=Tyql 1 —-—== .
d d( 2da’

(78)

19. Cuprate electrodynamics

The electromagnetic response of superconducting cuprates
differs essentially from that of conventional superconduc-
tors [23]. In contrast to conventional superconductors,
cuprates do not have a clearly pronounced superconduct-
ing gap in the frequency dependence of the real part
a1(w, T) of the complex conductivity. The residual absorp-
tion in the superconducting state persists down to extre-
mely low frequencies in all the superconducting cuprate
compounds and is satisfactorily described by the two-fluid
Drude model [23]. The conductivity a(w,T) for T < T,
turns out to be suppressed in a wide energy range (compared
to the conductivity observed for 7' 2 T.). The conductivity
passes through the minimum and shows the Drude behavior
o1 ~ ® 2 as w — 0. The minimum of o (w, T) is not related
to T. and frequently occurs in the normal state above T,
(Fig. 9).

The integral characteristic of the electromagnetic
response is the total spectral weight

00 -2
S:J o1(w, T)do ~ 25 (79)

0 2m*

where m * has the meaning of the effective carrier mass and the
total particle number density n = n, + ng is the sum of the
particle number densities of the normal (n,) and super-
conducting (ns) components. Only a rather small part of the
spectral weight from the low-frequency spectral region can
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Figure 9. Frequency dependence (schematically, according to [23]) of the
real part ¢ of the complex conductivity at 7' < T (thick line) and 7" > T¢
(thin line).

pertain to the superconducting condensate occurring at
T < T.: the coherent (Drude) component of the spectral
weight exceeds the spectral weight of the condensate.

Attempts to explain the residual conductivity by the
d-wave symmetry of the superconducting gap have led to a
quantitative contradiction with experimental data in that the
conductivity in the low-frequency range turns out to be too
high [23]. A finite density of states in the superconducting gap
region is the necessary condition for the appearance of
residual conductivity. Because of the order parameter zeros,
the quasiparticles are excited even at very low temperatures.
But in a pure d-wave superconductor, we have g, (w, T) — 0
asw — Ofor T < T..

It is assumed [23] that the observed large value of the
residual low-temperature conductivity can be due to the
inhomogeneities inherent in the cuprate electron system.

The residual optical conductivity and the related large
density of the particles outside the condensate at 7 < T,
naturally follow from the Coulomb mechanism of pairing
with large momentum. First, when the mirror nesting
condition holds on only a part of the Fermi contour, the
other part of it corresponds to gapless excitations responsible
for the increase in the normal component n, of the carrier
number density and, therefore, for the increase in the Drude
component of the complex conductivity. Second, if, as is the
case with cuprates for a relatively low doping level, the Fermi
contour has the form of small hole pockets and the mirror
nesting holds on the entire Fermi contour, then different
spectral intensities correspond to parts of each pocket
belonging to different magnetic Brillouin zones. The pair
creation probability is then determined by the spectral
intensity of the pocket part belonging to the second
(shadow) magnetic zone. This results in a relatively low
particle number density ng ~ ;0 of the superfluid compo-
nent (compared to the particle number density n, ~ i1} — 07
of the normal component) and in a relative increase in the
Drude component of conductivity. Here, # and o, are
coherence factors in the Bogolyubov transformation that
describe the electron—hole pairing accompanied by an
SDW. We note that the difference #? — @7 specifying the
Drude component of the optical conductivity is quite
analogous to the difference between the electron and hole
concentrations n. — ny, (due to doping) that characterizes the
semimetal —insulator transition [110, 111] and the difference
ny —n) of spin populations in the case of superconducting
pairing in a weak ferromagnet [112, 113]. Moreover, a large
number of closely located order-parameter zeros occurring in
pairing repulsion leads to a high (compared with a d-wave
superconductor) density of states inside the energy gap and to
a large number of quasiparticles excited at T < Tt.

The optical sum rule [114—116] allows analyzing the
spectral weight redistribution upon the occurrence of a
superconducting condensate. In conventional superconduc-
tors, such a redistribution occurs in the frequency range
0 < hiw < 24, where 24 is the superconducting energy gap.

The spectroscopic measurements [117] show that the
spectral weight of a superconducting condensate in cuprates
is related not only to the states fiw < 24 in the energy gap
region but also, and to a large extent, to the spectral weight
transfer from much more energetic states. This apparent
violation of the optical sum rule finds a qualitative explana-
tion in the assumption that the superconducting condensa-
tion energy in cuprates is associated not with the lowering of
the potential energy, as is the case with pairing attraction in a



May, 2006

Superconductivity of repulsive particles 461

narrow (of the order of Zwp) energy band, but with the
lowering of the kinetic energy of carriers [118, 119], which is
possible in paring repulsion in a much wider energy range
g > hop.

Segregating the contributions of kinetic and potential
energies to the superconducting order parameter is rather
arbitrary and generally makes no sense in the absence of
pairing interaction. However, the occurrence of the order
parameters (linear in the absolute value) of the chemical
potential shift [49] leading to a redistribution of carriers over
momenta within the kinematically allowed region formally
allows relating the superconducting condensation energy to
the lowering of the kinetic energy of carriers participating in
the pairing.

The suppression of antiferromagnetic correlations and the
occurrence of superconductivity with increasing doping are
accompanied by an increase in the superfluid density
p = 4mnge? /m* ~ x, which is correlated with the super-
conducting transition temperature: p, ~ T, [120]. Refining
this Uemura graph gives the relation pg ~ 4.7, [121], which
is satisfied in a wide doping range for all the investigated
cuprate compounds. Here, g4 is the normal-state conductiv-
ity in a constant field. The correlation dependence
T. ~ ng/m* does not appear in the BCS theory, but occurs
for the Bose — Einstein condensation [122].

20. Cuprate spectroscopy

The experimental data obtained by the photoemission and
tunnel spectroscopy methods definitely point to a substantial
distinction between the spectra of cuprates and conventional
superconductors. The ARPES measurements of photoemis-
sion intensity proportional to the probability of detection of
an electron with given energy E and momentum p show that
for a fixed p [in the (m,0) direction of the energy gap
maximum], the broad quasiparticle maximum observed in
the normal state of overdoped cuprates is very rapidly
transformed (near 7¢) into a narrow peak in passing to the
superconducting state. The leading edge of this peak has an
energy shift equal to the energy gap and the trailing edge
smoothly passes into a notable dip in the spectral density
followed by a sufficiently broad maximum, which at higher
energies tends to the value corresponding to the normal state.
Such a ‘peak —dip—hump’ (PDH) structure (Fig. 10) of the
photoemission spectrum at T < T, reflects the features of
superconducting pairing in cuprates.

In underdoped cuprates, the PDH structure of the
ARPES spectrum also takes place at 7 < T,, but the
structure is rapidly smoothed above 7. and, moreover, the
position of the leading edge of the quasiparticle peak is
preserved. This implies that a superconductor does not go to
the normal Fermi-liquid state at 7, and can be treated as
evidence of the fact that incoherent pairs remain in the
pseudogap (insulating) state at 7' > T.

Such a PDH structure is also observed in tunnel spectra,
which, in addition, show asymmetry under sign reversal of the
bias voltage. This electron —hole asymmetry can naturally be
explained [49] as the asymmetry between the occupied and
vacant parts of the kinematically allowed region, with the
relation between its areas determining the shift of the
chemical potential with a component linear in ‘A(k)| (the
necessity of introducing such a component for the explana-
tion of the asymmetry of cuprate tunnel spectra is pointed out
in Ref. [123]).

100 50 Eg, meV

Figure 10. Structure of the ARPES spectrum, typical of cuprates, for a
(m,0) type direction in the superconducting (7' < T) state immediately
above the phase transition temperature (7' > 7,) and in the normal state
(T>T.).

It is natural to assume that the PDH structures of the
photoemission and tunnel spectra have a common origin.

The differential conductivity (tunnel conductance)
oy = dI/dV, where Iis the current through the tunnel contact
and V is the bias voltage, can be written as

o =—A szk [ug 6(Ex —eV) +vg 8(Ex +eV)],  (80)

where A is a positive constant, Ey is quasiparticle energy (14),
and u? and v are coherence factors that are defined in (9) and
have the form

1 & 1 ¢
2 L Sk 2 [ _ Sk
Uy —2<1+Ek), Uy 2(1 Ek),

where 2&, is the kinetic energy of a pair, Eqn (4). The
conductance is defined by the first summand in (80) for a
positive bias (e} > 0) and by the second summand for a
negative bias (el < 0).

If the line of minima of the quasiparticle excitation energy
Ex coincides with the Fermi contour (which is the case not
only with an isotropic s-wave gap, but also with a d-wave gap
for which the lines of zeros are straight lines k, = £k.), the
conductance in (80) has an obvious symmetry under the bias
sign reversal: a,(—V) = o((V'). The assumption [123, 124]
that the superconducting gap depends on the kinetic energy of
the relative motion of the pair, 4y = A(&y), leads to an
asymmetric conductance because different values of the
coherence factors u? and v correspond to bias values equal
in modulus but opposite in sign. The superconducting gap
considered in [124], with the energy slope 4(¢) = a — b¢,
where a and b are phenomenological parameters, corre-
sponds to the fact that the line of minima of the quasiparticle

(81)
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Figure 11. A characteristic asymmetric tunnel spectrum of a cuprate
compound at 7' < T, showing the PHD structure.

energy Ex lies entirely either inside or outside the Fermi
contour and therefore has no intersection points with the
Fermi contour (except at the nodal points if, for instance, the
gap has a d-wave symmetry and the parameters ¢ and b
depend on the angular variable ¥ in the momentum space).

In the large-momentum pairing with Coulomb repulsion,
the quasiparticle energy also has the line of minima non-
coincident with the Fermi contour, but the line of gap zeros
crosses the Fermi contour, which is responsible for the
specific behavior of the coherence factors (see Fig. 6).

In sectors corresponding to kg () < ko [where kg (¢#) is the
Fermi momentum dependent on the angular variable], the
factor U]f vanishes for ky, showing its minimum in the
neighborhood of this point. In sectors kg(¢) > ko, the factor
v¢ has a maximum at the point ko where v, = 1. For a hole-
pocket type Fermi contour, the energy corresponding to the
maximum exceeds (on the average) the energy of the
minimum, and therefore the minimum and maximum at kg
in the integration in (80), which smoothes these extremums
[52], manifest themselves as a shallow dip followed by a small
hump of the conductance (Fig. 11).

21. Andreev reflection

An electron moving towards the interface between a normal
metal (N) and a superconductor (S) can experience Andreev
reflection [125], forming a hole with sign reversal of the energy
(counted from the chemical potential) and of all the three
velocity components. For conventional superconductors at
T < T, a consequence of the Andreev reflection is a twofold
increase in the NS transition conductivity for voltages below
the superconducting gap, compared to the conductivity at
T = T.. In superconducting cuprates, the NS interface
conductivity is much lower [126]. This experimental fact can
be explained by the assumption that cuprate superconductiv-
ity is due to Coulomb pairing with large pair momenta,
leading to a change in the Andreev reflection kinematics [127].

In underdoped cuprates, the Fermi contour with perfect
mirror nesting is represented by four hole pockets centered at
the points (+mn/2, £n/2). For each of the four crystal-
equivalent pair momenta K; = (£m, £r), the nonintersecting
kinematically allowed regions are the corresponding quarters
of the Brillouin zone (Fig. 12).

Because the line of zeros of the quasiparticle group
velocity and the Fermi contour (the line of zeros of the
quasiparticle charge) do not coincide in each kinematically
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Figure 12. Pairs with large momenta K; = (£, £m). The direction of the
momentum K coincides with the normal to the NS interface. The particle
with the momentum k(f) undergoes Andreev reflection with the momen-
tum k?, and the particle with the momentum k(+1) penetrates into the
superconductor as a hole with the momentum k") (geometrical Andreev

transmission).

allowed region Z; (except at their intersection points, see
Fig. 6), a range of directions exists in the momentum space
where reflection does not entail sign reversal of the quasipar-
ticle charge, and therefore only a part of the electrons with
momenta not belonging to this range undergo Andreev
reflection.

If the normal to the NS interface corresponds to the
direction of one of the equivalent momenta K; (K; in Fig. 12),
the direction of motion of a hole that appears after the
Andreev reflection turns out to be not exactly opposite to the
momentum K;. The angle of the Andreev reflection is
determined by the total pair momentum. A particle
approaching the NS interface with a momentum k(+) finds
a partner with the momentum k' to make a pair in the
region Z;. In this case, the direction of motion of the newly
formed hole corresponds to transmission (the geometrical
Andreev transmission), and therefore the probability of
Andreev reflection is equal to zero for the entire = region.
The current transported by the newly formed pair with the
momentum K is partially compensated by the current of the
hole that occurred simultaneously, and, in contrast to the case
K = 0, the entire = region fails to contribute to the total
Andreev reflection probability.

If a particle approaches the NS phase boundary with the
momentum k(f), it finds a partner with the momentum k@ in
the =, region (see Fig. 12) and the direction of the occurring
hole corresponds to reflection.

In momentum space, two direction sectors exist such that
the Fermi momentum kg in one of them exceeds the
momentum ky, for which the quasiparticle energy minimum
is attained and the quasiparticle group velocity vanishes
(kg > km); in the other sector, on the contrary, kp < kp,.
Particle transmission from the N region into the super-
conductor is shown in Fig. 13 for the directions in the sector
k]: > km.

Moving deep into the superconductor, a particle with an
energy E; < Enin, Where Epny, is the minimum quasiparticle
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Figure 13. Electron transmission through the NS phase boundary:
Andreev reflection (E|), Andreev transmission due to charge asymmetry
(E»), and normal transmission (E3).

energy in the depth of the superconductor, first reaches a
point at which the particle momentum is kr and the
quasiparticle charge reverses sign. Then, the particle reaches
the point of the quasiparticle energy minimum, where the
velocity of the relative motion is reversed and the hole is
reflected into the N region (Andreev reflection).

Moving towards the S region, a particle with an energy
E> < Er, where Ep is the Fermi energy in the depth of the
superconductor, crosses the Fermi contour passing onto the
hole branch of the spectrum (see Fig. 13). But it does not reach
the turning point of the group velocity, and therefore the
newly formed hole continues moving inside the superconduc-
tor (Andreev transmission due to charge asymmetry, as
distinct from the barrier transmission [128] also occurring in
conventional superconductors).

At an energy E3 > Ep, the particle reaches neither the
point kg nor the point k;, and therefore the ordinary
quasiparticle transmission into the superconductor occurs
(see Fig. 13).

In the other direction sector of the momentum space,
km > kg, the region of Andreev transmission due to charge
asymmetry is absent because during the particle motion deep
into the superconductor, the turning point of the relative
motion velocity of the pair is reached before the point of
quasiparticle charge reversal.

22. Competition of pairing interactions

The degeneration in crystal-equivalent pair momenta, which
occurs in the case of large-momentum pairing with screened
Coulomb repulsion, is removed by interactions due to
phonon or antiferromagnetic magnon exchange; these pro-
cesses determine the symmetry of the superconducting order
parameter. Furthermore, these interactions (which may not
be negligibly small compared to the Coulomb repulsion)
contribute to the binding energy of the pair, thus influencing
the superconducting transition temperature.

The competing pairing interactions can be taken into
account in self-consistency equation (11) by replacing the
true kernel U(k —k’) of the interaction operator by an
approximate degenerate piecewise constant kernel leading
to the same binding energy of the pair as the true kernel
does [62]. The simplest such kernel (39), yielding two
piecewise constant eigenfunctions (37) with opposite-sign
eigenvalues, can be extended [129] such that interactions
competing with the Coulomb repulsion are taken into
account.

We consider a Fermi contour in the form of a hole pocket,
which corresponds to perfect nesting in the case of pairing

[}
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Figure 14. Competition between Coulomb pairing repulsion and EPI-
induced attraction. Separation of the kinematically allowed region
corresponding to a hole pocket: (a) for pairing repulsion of form (39);
(b) for the BCS model [28]. The numbers indicate constant-sign regions of
the superconducting order parameter.

with the momentum K = (r,n), and whose kinematically
allowed region is a quarter of the Brillouin zone (Fig. 14).
The Coulomb repulsion is defined in the entire kinematically
allowed region, whereas the EPI-induced attraction is only
significant in a narrow neighborhood of the Fermi contour
with the energy width ~ 2Awp, where the contribution of the
EPI attraction can be considered momentum-independent
(=¥ = const).

The pairing Coulomb repulsion in (20) leads to the
intersection of the line of zeros of A(k), which is a circle
centered at the point K/2, with the Fermi contour (see
Fig. 6). Then, already in the absence of the EPI attraction,
the kinematically allowed region is separated by this line
into regions in which A(k) has opposite signs. Accord-
ingly, in considering the EPI attraction, each of these
regions is separated into parts in one of which (adjoining
the Fermi contour) kernel (39) of the pairing Coulomb
interaction should be supplemented with the contribution
of the EPI attraction. If only a part of the Fermi contour
belongs to the kinematically allowed region, the EPI
attraction must be taken into account in the entire
dynamically allowed region in the neighborhood of
the entire Fermi contour. As a result, instead of two
equations (38), we must write a system of four equations
for each of the four regions Z; (s = 1,2,3,4) with constant
(averaged over these regions) values 4, of the energy gap
parameter 4(k):

24\ = +VAL fi — (U= V) Ao fo — Udafa,
24y = —(U— WAL fi +VArfo — Uds fs,
2A3 *Uﬂzfz - UA4ﬁh

244 = —UA\ fi — UAs fy.

Here, A, and 4, are the respective average values of the
energy gap parameter near the Fermi contour (in the EPI
attraction region) inside and outside the circle k = k¢ and 43
and A4 are the order parameter values inside and outside the
circle k = ko outside the EPI attraction region. For each of
the = regions, the quantities

A pp—

—— (83)
KEE, 1/E2(K) + 4
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can be estimated to logarithmic accuracy as

= gln (2@) s= 1,2

£
s = 1
f gin (2th

(84)

>Ef‘7 S:3747

where g is the density of states and &g is the energy scale of the
kinematically allowed region, & > hiwp.

System of equations (82) can be reduced [129] to a system
of two equations for 4, and 4,:

Ay +wofdy =9V [fidi + fady] — wo fads
Ay +wofdr = V[ fidi +fods] — wofidy,

where 2wy = Uand y = (1 + wy f)/2.

The derived system of equation is invariant under the
transformations 4y — —A4, and 4; — A4, and, therefore, has
two solutions.

The asymmetric solution 4 = —A4; leads to 43 — 4; and
Ay — —A,, where A3 and A4 are solutions of the system of
self-consistency equations outside the EPI attraction band in
the regions inside and outside the circle of zeros, respectively.
In this case, the EPI coupling constant V" drops out of the
system of equations, and the only independent parameter
characterizing the energy gap is

(85)

1
Al = 280 eXp (— —) (86)
gwWo
for any V.
The symmetric solution 4; = 4, is given by
Ay =20 : (87)
= 2hwpexp | —
1 D €Xp gV* )

where V* =V -V, with V)= wo/[l + gwoIn (so/th)]
Thus, a symmetric solution exists if V> ¥V} in accordance
with inequality (1). The energy gap parameters outside the
EPI attraction band are equal to

A1W0
V1 +gwoln (eo/hewop)] —wo

Ay =Ay=— (88)

For a weak EPI attraction, V' < V), the pairing is due to
the Coulomb repulsion with an asymmetric order para-
meter with an extended s-wave symmetry. The appearance
of a symmetric solution for V' > V; corresponds to an
increase in the contribution of the isotropic component of
the order parameter until its symmetry changes to an
anisotropic s-wave symmetry (without zeros on the Fermi
contour) for

2wy
> 2
1 — g?w¢[In (g9/hwp)]

Figure 15a shows the diagram illustrating the competition
between the pairing Coulomb repulsion and the EPI attrac-
tion. In a strongly correlated electron system, the Coulomb
repulsion occurs in the case of a weak EPI (region I in the
diagram), whereas in the opposite limit case (region I1I), the
EPI attraction is observed, which can lead to the dominance
of the Cooper (for K = 0) channel of superconducting pairing
as V increases. Transition region II corresponds to the
competition between the Coulomb and EPI pairing channels.

wo

— = wp = const

N Tl

Figure 15. (a) Competition between the Coulomb pairing repulsion and the
EPI attraction depending on the effective coupling constants wy and V.
(b) Dependence of the isotope effect coefficient a7, on the EPI coupling
constant V for wy = const.

We note that if we assume the Coulomb repulsion to be
constant in the entire kinematically allowed region
(Uc = const) and the contribution of the EPI attraction
to be nonzero and constant in the neighborhood of the
Fermi contour, that is, if we choose elements of the
piecewise constant kernel in the system of self-consistency
equations (82) as U;y=Uc—V, Up=Uy = Uyp = Uc
(subscript 1 refers to the neighborhood of the Fermi contour
in which the EPI attraction is substantial and subscript 2
refers to the remaining part of the kinematically allowed
region, Fig. 14b), then a nontrivial solution exists under the
known [28] restriction (1) on the EPI attraction constant and
determines the value above which the superconducting
pairing is possible. With this assumption concerning the
form of the elements Uy of the degenerate kernel, the
solution of system of equations (38) specifies the energy gap
parameter that has opposite signs in the regions =; and Z.
Thus, A(k) has lines of zeros coincident with the boundary of
the EPI attraction region, i.e., not intersecting the Fermi
contour [129].

The antiferromagnetic magnon exchange can also be
taken into account within the semi-phenomenological
scheme based on the system of self-consistency equa-
tions (38). For the Fermi contour in the form of four hole
pockets, the coupling constants for such a pairing interaction
correspond to repulsion for scattering inside a pocket and
between pockets along the diagonal of the Brillouin zone and
to attraction for scattering between nearest-neighbor pockets.
The interaction due to the antiferromagnetic magnon
exchange has a rather weak effect on the magnitude of the
energy gap parameter, which is mainly determined by the
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Coulomb pairing. However, for certain relations between the
coupling constants, this interaction can cause a change in the
order parameter symmetry from the extended s-wave to the
d-wave symmetry with additional (associated with the
Coulomb repulsion from large-momentum pairing) zeros on
the Fermi contour.

23. Isotope effect

The pairing caused by the EPI repulsion leads to a universal
dependence of the superconducting transition temperature
and other superconductor characteristics on its isotopic
composition. The isotope effect index for 7,

" 7_dlnTc71 din4
= "dinM 2 dn2kop

(89)

is then equal to 0.5. Here, M is the atomic mass that changes
under the isotope substitution.

In cuprate superconductors, the best investigated effect is
that of the oxygen isotope substitution 10O — 80O [130—133].
In optimally doped compounds, a7, deviates from the value
0.5 that is universal for the EPI superconductivity mechan-
ism. This value increases with decreasing doping.

Small (close to zero) a values imply that the dominant
mechanism of cuprate superconductivity is the Coulomb
pairing, which corresponds to the strictly zero isotope effect
index. However, nonzero doping-dependent a7, values, as
well as the observation of the so-called negative isotope effect
[134], suggest that the EPI contribution to the superconduct-
ing pairing in cuprates is not negligibly small [37, 135, 136].

Because the superconducting pairing in cuprates occurs in
cuprate planes with approximately equal parameters for all
cuprate compounds [18], it is natural to believe that the
Coulomb coupling constant wy is also approximately the
same for all such compounds. Using the obtained expres-
sions (86) and (87) for the energy gap, we can verify that in
region I, corresponding to the weak EPI coupling (Fig. 15a),
we have a7, = 0, whereas in regions III (with the strong EPI
coupling) and II (corresponding to the transition from the
extended to anisotropic s-wave symmetry of the order
parameter), the isotope effect index is given by

_l B wo ?

The dependence a7, (V') for wy = const is given in Fig. 15b.
The index oy, — 0.5 as V/wy — oo and is negative for
Vo <V <2V.

The values of the isotope effect indices in the same cuprate
compound for different doping levels can be different because
a change in the chemical composition results in the corre-
sponding change in the effective coupling constants U and V,
and (which is perhaps most important) in the density of states
g of the relative pair motion, which is proportional to the
Fermi contour length within the kinematically allowed
region.

24. Conclusion

Strong Coulomb correlations in quasi-two-dimensional
parent cuprates, leading to a spin antiferromagnetic insulat-
ing ground state and manifesting themselves as a short-range
order in doped compounds, play a decisive role in the
formation of the electron structure of cuprates. The Fermi

contour of doped cuprates observed in experiments on
photoemission is located in extended neighborhoods of the
saddle points of the electron dispersion law. The approximate
mirror nesting of finite regions of the Fermi contour for pairs
of particles with a large total momentum K equal or close to
the vector of the reciprocal lattice of the antiferromagnetic
parent compound occurs in a rather wide doping range in the
region of the superconducting ground state.

A logarithmic singularity of the scattering amplitude of
two interacting particles with a total momentum K corre-
sponds to perfect nesting, not only in the pairing attraction (as
in the Cooper problem for K = 0) but also in the screened
Coulomb repulsion, which can thus be considered the
fundamental pairing interaction determining both the insu-
lating and superconducting states of cuprates. In the case of
approximate mirror nesting, the superconducting pairing
with K # 0 is possible if the effective coupling constant
exceeds a certain value, which increases with the deviation
from the ideal mirror nesting.

Because of the kinematic restriction that holds for pairing
with K # 0, the screened Coulomb repulsion also allows
weakly damping quasistationary states of incoherent pairs,
which can exist in a wide temperature range (~ 100 K) of a
strong pseudogap corresponding to developed fluctuations of
the superconducting order parameter.

If mirror nesting holds not on the entire Fermi contour
but only on its part, not all the particles precipitate to the
superconducting condensate and the two-fluid behavior
persists to the lowest temperatures and is displayed in the
Drude component of optical conductivity (observed at
T < T,) corresponding to more than half the free carriers. In
underdoped cuprates, the Fermi contour shows up as hole
pockets with the perfect mirror and ordinary nesting with the
momentum corresponding to the antiferromagnetic vector of
the parent composition. As a result of weakening of
antiferromagnetic correlations, half of the hole pocket,
pertaining to the main band, preserves the weakly doping-
dependent spectral intensity, while the other half, correspond-
ing to the shadow band, gradually attenuates with increasing
doping. The probability of pairing with K # 0 of a carrier
from the main band with a carrier from the shadow zone is
determined by the occupation of the latter. The difference in
occupations of the main and shadow bands is equal to the
fraction of carriers outside the superconducting condensate,
characterizing the Drude component of the optical conduc-
tivity at T' < T,. Similar behavior of the particles outside the
condensate at 7 < T, is observed in the temperature
dependence of thermal capacity: Cy ~ yT[137].

In Ginzburg—Landau-type macroscopic equations, the
relative phase of a two-component superconducting order
parameter manifests itself as an orbital current degree of
freedom of the relative motion of a pair. This allows a phase
transition inside the superconducting state. One of the
superconducting phases corresponds to the coexistence of
superconductivity and circular orbital currents (bound
vortex —antivortex pairs), while the other phase (corre-
sponding to higher doping levels) represents a spatially
inhomogeneous condensate of pairs of particles with the
momentum K # 0. The study of nonuniform order para-
meter component distributions within the model in [90]
shows [138, 139] that the occurrence of current states in a
system of strongly correlated electrons with a large (as
distinct from the FFLO state) total pair momentum is
accompanied by a decrease in the free energy.
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In the underdoped part of the superconducting region, the
main state competing with superconductivity and existing
above T. up to the weak-pseudogap temperature 7* is the
insulating state with an orbital antiferromagnetic order. The
pseudogap state displays diamagnetic behavior strengthened
in the region of developed superconducting fluctuations
(strong pseudogap) and manifests itself as a nonlinear
Meissner effect. The superconducting order parameter as a
function of the momentum of the relative motion of a pair in
pairing repulsion has the line of zeros crossing the Fermi
contour in the kinematically allowed region. Therefore, the
line of zeros of the quasiparticle group velocity does not
coincide with the Fermi contour, which explains some of the
observed specific features of superconducting cuprates,
namely, the weak Andreev reflection, the asymmetry of the
tunnel volt—ampere characteristics, and the ‘peak—dip—
hump’ structure of the tunnel and photoemission spectra.

The very existence of the line of zeros of a superconduct-
ing order parameter is associated with the predominant
pairing-induced Coulomb repulsion. The interactions due to
the phonon or antiferromagnetic magnon exchange not only
affect the position of this line and the superconducting gap
amplitude but also determine the relations between the order-
parameter phases for each of the crystal-equivalent momenta
K. This determines the observed symmetry of the super-
conducting gap, as well as specific manifestations of the
isotope effect and the low sensitivity to scattering by
nonmagnetic impurities in cuprates.

This work was supported by the Russian Foundation for
Basic Research (grant 05-02-17077a and 06-02-17186a).
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