
Abstract. A systematic theory of first-order electrodynamic
relativistic effects in media moving with a spatially nonuniform
velocity is presented. A geometrical optics approach is devel-
oped and used to calculate the bending of rays and the change of
polarization characteristics of radiation propagating through a
continuous medium moving with a nonuniform velocity. Non-
reciprocal (i.e., propagation direction-dependent) waveguides
and lenses in media moving with a transversely nonuniform
velocity are demonstrated. Radiation scattering (diffraction)
by localized velocity nonuniformities is studied. Peculiarities
of propagation of short-wave (X-ray) radiation in a moving
medium are discussed, and some prospects for experimentation
are reviewed.

1. Introduction and basic relationships

The electrodynamics of moving continuous media is an
important part of the theory of relativity, the main postulates
of which were formulated by A Einstein exactly a century ago
[1]. It is worthwhile to note here that one of the most striking
effects in this field Ð the partial light entrainment by a
moving medium Ð had been intuitively predicted by Fresnel
(in 1818) long before the theory of relativity was forwarded;
the prediction was based on themodel concept of ether and its

condensation in the pores of a medium, which has been
rejected by modern science [2].

Nevertheless, Fresnel's hypothesis was experimentally
verified by Fizeau (in 1851) and deduced from the prerelati-
vistic Lorentz electron theory corrected for frequency disper-
sion (1895) detected in Zeeman's experiments (1914) [2]. Only
after that, Fresnel's result was consistently derived from the
relativistic formula of velocity summation in the first
approximation in the ratio of a moving medium's velocity to
the speed of light in vacuum.

Apart from the Fresnel ± Fizeau effect, much more
attention within the theory of relativity was given to the
problems of sharp interfaces between moving media. In the
very first paper [1], Einstein considered light reflection from a
mirror uniformly moving along the normal to its (flat)
surface. This work was continued and led to the formulation
of conditions for fields at moving interfaces and the
derivation of the Minkowski constitutive equations [3].

An important contribution to the further development of
the theory was the discovery of the Vavilov ±Cherenkov
effect (the emission of a charge traveling through a medium
with a velocity exceeding the phase velocity of light in this
medium [4, 5]) and of transient radiation effect (the emission
of a charge intersecting an interface [6]). The growing interest
in these problems in the 1950s was due to the development of
acceleration equipment and plasma physics; investigations of
that period were reviewed in Refs [7, 8].

Today, the electrodynamics of moving continuous media
based on the Maxwell differential equations and the Min-
kowski constitutive equations is a self-sufficient theory
expounded in a number of monographs and textbooks [9 ±
11]. At the same time, it is not free from debatable questions,
such as the forms of the energy ±momentum tensor and the
pondermotive force that is different in the Minkowski and
Abraham approaches [9]. More important, however, is the
fact that theoretical studies were largely confined to the

N N Rozanov, G B Sochilin All-Russia Scientific Center

`S I Vavilov State Optical Institute',

Research Institute for Laser Physics,

Birzhevaya liniya 12, 199034 St.-Petersburg, Russian Federation

Tel. (7-812) 328 10 93

E-mail: nrosanov@yahoo.com, goga.ilph@yahoo.com

Received 10 October 2005

Uspekhi Fizicheskikh Nauk 176 (4) 421 ± 439 (2006)

Translated by Yu VMorozov; edited by A Radzig

METHODOLOGICAL NOTES PACS numbers: 03.30.+p, 03.50.De, 41.20. ± q, 42.25. ± p

First-order relativistic effects in the electrodynamics of media moving

with a nonuniform velocity

N N Rozanov, G B Sochilin

DOI: 10.1070/PU2006v049n04ABEH005940

Contents

1. Introduction and basic relationships 407
2. Electro- and magnetostatic fields in moving dielectrics 409
3. Geometrical optics of moving media 409

3.1 Basic relationships and an eikonal equation; 3.2 Energy relations and ray trajectories; 3.3 Polarization effects

4. Nonreciprocal waveguides and lenses 412
5. Light scattering by velocity nonuniformities of a moving medium 414

5.1 General relationships; 5.2 Small region of a rotating medium; 5.3 Finite region of a rotating medium (analytics);

5.4 Finite region of a rotating medium (numerical simulation)

6. X-ray radiation in moving media 421
7. Conclusions 423

References 424

Physics ±Uspekhi 49 (4) 407 ± 424 (2006) # 2006 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



spatially uniform velocity of medium motion, whereas the
influence of the velocity nonuniformity on the propagation of
electromagnetic radiation was outside the main stream of
research [11 ± 13].

In the meantime, taking into consideration velocity
nonuniformity brings about a number of new important
effects. For example, it is assumed in the standard descrip-
tion of the classical Fizeau experiment that the velocity of a
fluid (water) moving through a tube is spatially uniform.
However, the velocity of water laminar motion shows
parabolic dependence on the distance from the tube axis;
this observation implies that the phase velocity of light
exhibits a similar dependence and the radiation wave fronts
for the two said counter directions bent in an opposite
manner. Light is focused or defocused depending on the
direction of propagation; in other words, the nonuniformly
moving water creates a nonreciprocal lens (with different
signs of the focal distance for the opposite directions) [14].

Another example is a cylinder or a sphere that rotates
about its symmetry axis in the bulk of the same transparent
medium (having the same refractive index). We are interested
in the characteristics of incident electromagnetic radiation
scattered by a rotating body [15]. In this case, the velocity of
motion is apparent `in the pure form' because, in the absence
of rotation, the entire space is uniform and no scattering takes
place. In other words, relativistic effects lead to a new
scattering mechanism.

In this paper, we expound a systematic electrodynamic
theory of media moving with a spatially nonuniform velocity;
we confine our consideration to the first-order effects in the
ratio of the moving medium velocity v to the speed of light in
vacuum c. This theory describes a number of nontrivial
effects, whereas the reported experiments are few. Although
these effects are rather small, they are quite possible to detect
and even employ by virtue of modern high-precision optical
experimental techniques, including lasers [16, 17].

The basic equations used throughout this paper (except in
Section 6) are the Maxwell differential equations for the
strengths E and H of electric and magnetic fields, respec-
tively, as well as for electric and magnetic inductionsD and B
of the medium:

divB � 0 ; rotE � ÿ 1

c

qB
qt

; �1:1�
divD � 0 ; rotH � 1

c

qD
qt

;

and the Minkowski constitutive equations written in the first
order in the parameter v=c:

D � eE� emÿ 1

c
�vH� ;

�1:2�
B � mH� emÿ 1

c
�Ev� :

Here, t is the time; e and m are the permittivity and
permeability of a continuous medium, respectively, and v is
its velocity. Medium dispersion is considered to be negligibly
small. To be more precise, Eqns (1.2) should be written down
as

D � e0E� e0 m0 ÿ 1

c
�vH� � dD ;

�1:3�
B � m0H�

e0 m0 ÿ 1

c
�Ev� � dB ;

where e0 and m0 are the respective permittivity and perme-
ability of the homogeneous medium at rest (at v � 0).

Quantities dD and dB describe dynamo-optical and
gyromagnetic phenomena, respectively, and also other
minor perturbations such as ordinary scattering by medium
nonuniformities. For example, in solids with small mechan-
ical deformations caused by their motions with a nonuniform
velocity, components of the vector dD have the form [11]

dDi � ai k lm ulmEk : �1:4�
Here, ai k lm is the fourth-rank tensor associated with
elastooptical constants, ui k is the strain tensor, Ek are the
components of vector E, indices run from 1 to 2, 3
corresponding to the Cartesian coordinates x; y; z, respec-
tively, and the repeating indices imply summation. The
relationship for dB and the corrections for scattering by
medium nonuniformities are written down in analogy with
formula (1.4) [11].

The solution of the problem being considered is markedly
facilitated by the smallness of the parameter v=c. To begin
with (no matter how surprising it may seem), the smallness of
v=c makes it possible to get rid of parasitic nonrelativistic
effects. Indeed, when radiation propagation is considered,
say, in a rotating solid dielectric, the rotation causes
mechanical stress that in turn leads to a change in its optical
properties (photoelastic effects). However, these effects are
quadratic in the velocity of motion Ð that is, they change the
effective refractive index of the medium by � �v=vs�2, where
vs is the speed of sound in the medium [11, 18]. On the other
hand, the magnitude of relativistic effects is of the first order
in velocity (� v=c, where c is the speed of light).

Thus, the relativistic effects of interest may be regarded as
the dominant ones if the velocity of motion of the medium is
small [15]:

v < v0 � v
2
s

c
:

To be more precise, velocity v in this relationships should be
replaced by its step.

Methodically, the smallness of the parameter v=cmakes it
possible to obviate the technically difficult problem of
accounting for the continuity conditions at the medium
interface (see also Ref. [8]). By way of demonstrating this
approach, we present in Section 2 the analysis of the influence
of dielectric rotational motion on the static electric and
magnetic fields. Thereafter, the propagation of electromag-
netic waves is discussed. Section 3 deals with the case of high-
frequency fields, opposite to the static one; specifically, the
basic equations of geometrical optics of moving media are
derived, which permits us to consistently calculate the shifts
and bending of light rays and polarization changes caused by
the nonuniform motion of a given medium along relatively
short trajectories (shorter than the diffraction length).

In Section 4, the above nonreciprocal lens and waveguide
effects are analyzed in the same approximation and also with
the use of the wave approach. Radiation diffraction (scatter-
ing) on velocity distribution nonuniformities is considered in
Section 5. Propagation of X-ray radiation in moving media is
beyond the scope of electrodynamics of continuous media
because the macroscopic description of the medium for such
short wavelengths is not justified; the relevant analysis is
presented in Section 6.

Finally, the concluding Section 7 summarizes the results
reviewed, compares them with the propagation of sound
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waves in moving media, and discusses prospects for the
arrangement of further experiments.

2. Electro- and magnetostatic fields
in moving dielectrics

Although the electrodynamics of moving media, based on
Eqns (1.1) and (1.2), permits, in principle, solving a large
variety of problems, the continuity equations at interfaces
between two media are difficult to use. For this reason, such
interfaces are assumed in almost all approximations to be
either flat, cylindrical, or spherical [7, 8, 11, 13]. This difficulty
can be obviated by taking into account that the continuity
conditions at medium interfaces are not independent of the
Maxwell equations themselves; just the opposite, they are
corollaries from these equations. They may be made
unnecessary by introducing a smooth change between
characteristics of the media and thereafter reducing the
width of the transition region to zero.

This methodical section is designed to demonstrate the
possibility of introducing an integral approach (without
applying the continuity conditions at interfaces) for the
evaluation of the strengths of static electric and magnetic
fields in the case of a relatively arbitrary velocity distribution
ofmotion of a homogeneousmedium.More precisely, it deals
with the case of stationary (time-independent) velocity
distribution of a moving medium that arises, for example,
when a part of a body having an axisymmetric shape rotates
about the axis of symmetry. In this case, the electric and/or
magnetic field remains static in a moving medium, too.

Permittivity and permeability of the moving and station-
ary parts of the medium are assumed to be identical, and the
analysis refers to the effects of the first order of smallness in
the ratio of the moving medium velocity to the speed of light
in vacuum.We shall demonstrate that, in the specific case of a
rotating sphere for which the solution can also be found in a
traditional way (using the continuity conditions at the
interface between the moving and the stationary parts of the
medium [11]), the results of these two approaches agree with
each other [19].

Maxwell `differential' equations (1.1) for static fields have
the form

divB � 0 ; rotE � 0 ; �2:1�
divD � 0 ; rotH � 0 :

Permittivity �e� and permeability �m� are assumed to be
constant, as appropriate for a medium at rest. With such an
approach, relativistic effects manifest themselves in the purest
form. Let us consider the motion of a medium with a
coordinate-dependent velocity in a uniform static electric
field of strength E0 � const.

In the zeroth order of the perturbation theory with respect
to v=c, an electric field coincides with E0, and magnetic field
with H0 � 0. In the first order in v=c, the constitutive
relationships (1.2) take the form

D1 � eE1 ; B1 � mH1 � emÿ 1

c
�E0v� : �2:2�

Then, it follows from the first Maxwell equation (2.1) that

divH1 � ÿ emÿ 1

mc
div �E0v� : �2:3�

It appears from the last equation (2.1) that the magnetic
field is irrotational and possesses the potential:

H1 � ÿgradC : �2:4�

Taking into account Eqn (2.3) and the uniformity of field E0,
the potential assumes the form

C�r� � ÿ 1

4p

�
divH1�r 0�

R
dr 0

� emÿ 1

4pmc

�
div
�
E0 v�r 0�

�
R

dr 0

� ÿ emÿ 1

4pmc

�
E0 rot v�r 0�

R
dr 0 ; �2:5�

whereR � jrÿ r 0j is the distance between point r at which the
field is calculated and the vector r 0 of integration variable.

Relationship (2.5) presents the general solution of the
problem being considered for an arbitrary velocity distribu-
tion of moving medium. It may be applied to the case of
rotation of a sphere with radius a and angular velocity X

directed along the z-axis, i.e., X � �0; 0;O�. If the external
electric field is assumed to be also parallel to the z-axis:
E0 � �0; 0;E0�, then themagnetic potential outside the sphere
is equal to

C � ÿ 4

15

emÿ 1

mc
E0O

a 5

r 3

�
1ÿ 3

z 2

r 2

�
: �2:6�

Here, r is the distance to the center of the sphere. Similarly, for
a dielectric sphere rotating in a static magnetic field of
strength H0 directed along the axis of rotation, the electric
potential F outside the sphere has the form

F � 4

15

emÿ 1

ec
H0O

a 5

r 3

�
1ÿ 3

z 2

r 2

�
: �2:7�

In can be shown that the same result is obtainable by the
traditional approach based on matching solutions at the
interface between the rotating sphere and the stationary
medium. To this effect, it is necessary to generalize the
solution of the problem posed in Ref. [11] where the authors
considered the rotation of a dielectric sphere in a vacuum.
(The problem of the surrounding medium with an arbitrary
permittivity cannot be reduced to this case because the
velocity-dependent terms in the Minkowski constitutive
equations (1.2) disappear for vacuum). The result obtained
confirms the validity of the integral approach. At the same
time, the integral approach and the general relationship (2.5)
make it possible to solve a broader circle of problems, e.g., for
a rotating finite cylinder [15].

3. Geometrical optics of moving media

3.1 Basic relationships and an eikonal equation
Let us consider the distribution of monochromatic radiation
with frequency o in a medium possessing a smooth
(compared to the radiation wavelength) nonuniformity of
the velocity of motion [20]. This motion is assumed to be
stationary, and its velocity is independent of time at each
point of the space. Then, as is easy to see from the general
relationships (1.1) and (1.2), the radiation remains mono-
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chromatic even after it passes through the moving medium
(noDoppler frequency shifts are apparent). We are interested
in the trajectories of light rays and the changes in polarization
of light associated with the motion of the medium.

In the case of small velocities v of medium motion and
with the utilization of complex field representation [with
factor exp �ÿiot� being omitted], the Maxwell equations
(1.1) are substituted by

rotE � i
o
c
B ; rotH � ÿi o

c
D : �3:1�

Whence, the following wave equations for a nonuniformly
moving medium can be deduced:

H 2E� k 2
0 emE� �grad ln m� rotE� � grad �grad ln e � E�

� ÿ emÿ 1

c

�
k 2
0 m�vH� � ik0 rot �Ev�

� 1

e
grad div �vH� ÿ ik0

�
grad lnm� �Ev���

ÿ ik0
2n

c

�
grad n� �Ev��ÿ div �vH� grad emÿ 1

ce

ÿ 2

c
grad

�
n

e
grad n �vH�

�
; �3:2�

H 2H� k 2
0 emH� �grad ln e� rotH� � grad �grad lnm �H�

� ÿ emÿ 1

c

�
k 2
0 e�Ev� ÿ ik0 rot �vH�

� 1

m
grad div �Ev� � ik0

�
grad ln e� �Ev���

ÿ ik0
2n

c

�
grad n� �vH��ÿ rot �Ev� grad emÿ 1

cm

ÿ 2

c
grad

�
n

m
grad n � �Ev�

�
; �3:3�

where k0 � o=c is the wave number in a vacuum, and
n � �em�1=2 is the medium refractive index. It is worth noting
that the right-hand sides of these equations contain a small
multiplier v=c.

In the geometrical optics approximation, the local field
structure is the same as for a plane wave propagating in a
homogeneous medium. It is important to note that even in a
medium moving with a constant velocity v, the directions of
the wave vector k and the time-averaged energy flux
(Poynting vector)

S � c

8p
Re �EH�� �3:4�

are different (as in an anisotropic medium, because the
motion of the medium distinguishes a certain direction in
the space [9]).

Indeed, in the case under consideration, it follows from
Eqns (3.1) and (1.2) for a plane wave of the form

E � e0 exp �ikr� ; H � h0 exp �ikr�

that

�qe0� � o
c
mh0 ; �qh0� � ÿo

c
ee0 ; �3:5�

where

q � k� o
c

emÿ 1

c
v : �3:6�

It is readily seen that after the substitution of q by k equations
(3.5) coincide with the equations for a plane wave propagat-
ing in a stationary medium. Therefore, the Poynting vector in
a moving medium is directed along vector q (nonnormalized
ray vector).

Let us consider now a medium with a smooth spatial
change in the motion velocity v � v�r�. The solution is sought
after in the form [11, 21]

E � e�r� exp ÿik0 L�r�� ; �3:7�
H � h�r� exp ÿik0 L�r�� ;

where the wave number k0 is regarded as a large parameter of
the asymptotic theory, while vectors e�r� and h�r� are complex
in the general case.

By substituting expressions (3.7) into Eqns (3.1) and (1.2)
we arrive, in the first approximation in v=c and in the main
order with respect to the small parameter kÿ10 , at the
following:

e � ÿ 1

e

�
�gradL h� � emÿ 1

c
�vh�
�
;

�3:8�
h � ÿ 1

m

�
�e gradL� � emÿ 1

c
�ev�
�
;

e gradL � ÿ emÿ 1

c
ev ;

�3:9�
h gradL � ÿ emÿ 1

c
hv :

It follows from Eqn (3.8) that

n 2 ÿ �gradL�2 ÿ 2
emÿ 1

c
v gradL � 0 : �3:10�

This is the eikonal equation for the case of a slowly moving
medium. (At v � 0, it transforms to the standard eikonal
equation). It can also be written in the form�

gradL� emÿ 1

c
v

�2

� n 2 : �3:11�

The arbitrary distribution of the velocity v can be
decomposed into irrotational (index 1) and solenoidal
(without sources, index 2) to obtain

v � v1 � v2 ; rot v1 � 0 ; v1 � gradU ;

div v2 � 0 ; v2 � rotW ;

U � ÿ 1

4p

�
div v

r
dV ; W � 1

4p

�
rot v

r
dV ; �3:12�

or

v1 � ÿ 1

4p
grad

�
div v

r
dV ; v2 � ÿ 1

4p
rot

�
rot v

r
dV ;

�3:13�

where r is the distance from the integration volume element
dV to the point of observation.
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For the motion with velocity v1 (potential flow, vorticity
rot v1 � 0), the eikonal equation acquires the form

�gradM�2 � n 2 ; M � L� emÿ 1

c
U : �3:14�

The eikonal equation forM is applicable to a medium at rest.
In the case of a homogeneousmedium, equation (3.14) has the
solution in the form of a flat wave front. Knowing M, it is
possible to find L from formula (3.14), but wave fronts in a
nonuniformly moving medium will be bent.

The second case (movement with velocity v2) is character-
istic of an incompressible fluid. The eikonal equation acquires
the form�

gradM� emÿ 1

c
v2

�2

� n 2 ; div v2 � 0 : �3:15�

3.2 Energy relations and ray trajectories
It follows from Eqns (3.7) ± (3.9) that the time-averaged
Poynting vector (3.4) has the form

S � c

8pm
ee�
�
gradL� emÿ 1

c
v

�
: �3:16�

Let us introduce time-averaged electric and magnetic
energy densities, as well as the total energy density [9, 21]:

hwei � 1

16p
ed� ;

�3:17�
hwmi � 1

16p
hb� ;

hwi � hwei � hwmi ;

where d and b are the amplitudes of electric and magnetic
induction, respectively. It can be shown that

hwei � ÿ 1

16p
e �gradL h�� � 1

16p
�eh�� gradL ;

�3:18�
hwmi � 1

16p
h� �gradL e� � 1

16p
�eh�� gradL ;

hSi � scphwi
�
s
gradL

n

�ÿ1
: �3:19�

Here, cp � c=n is the phase velocity of light in a stationary
medium, and s is the unit ray vector directed along the
Poynting vector:

s � 1

n

�
gradL� emÿ 1

c
v

�
: �3:20�

It is easily seen that a ray vector in a mediummoving with
the uniform velocity is directed parallel to vector q. According
to Ref. [9], the component of the velocity of light directed
along vector s is given by

cs � hSihwi � scp

�
s
gradL

n

�ÿ1
: �3:21�

The velocity component normal to the wave front equals
phase velocity cp [9, 21]. Indeed, projecting cs onto this
direction and using formula (3.21) yield

cp � cs
gradL

n
: �3:22�

The ray may be defined as a trajectory, the tangent to
which at each point is directed along the ray vector s. If the
radius vector r�s� of a point on the ray is regarded as a
function of the ray length s, the equation for the ray in a
moving medium takes the form

n
dr

ds
�
�
gradL� emÿ 1

c
v

�
�3:23�

or

d

ds

�
n
dr

ds

�
� grad n� 2

c

ÿ
v�s grad n� ÿ grad n �sv��

� n 2 ÿ 1

c
�s rot v� : �3:24�

Equations (3.23) and (3.24) may also be used to derive an
expression for the intensity ratio at two arbitrary points of the
ray:

I2
I1
� n2

n1
exp

�
ÿ
� s2

s1

H 2L

n
ds

�
�
�
1ÿ

� s2

s1

1

n

�
2n

c
grad n v� n 2 ÿ 1

c
div v

�
ds

�
: �3:25�

Here, integration is performed along the ray, and the light
intensity I is defined as the absolute value of vector hSi.

The above results are analogous to those in traditional
geometrical optics, with the exception of the term propor-
tional to the velocity in the eikonal (3.10), (3.11) and in the ray
vector (3.20). The presence of this term results in the
distortion of the geometric wave front and effective aniso-
tropy of the moving medium. For a medium with a spatially
uniform refractive index, it follows from Eqn (3.24) that

d2r

ds 2
� n 2 ÿ 1

cn
�s rot v� : �3:26�

Evidently, the rays remain straight in an irrotationally
moving medium (i.e., when vorticity rot v � 0) with a uni-
form refractive index, and bent in the presence of vortices. A
change in light intensity in a uniform incompressible medium
�grad n � 0, div v � 0� due to wave front curvature is
analogous to a change in intensity in a vacuum, for example,
during propagation of a spherical wave [20].

3.3 Polarization effects
We now go over to analyzing the changes in the amplitudes of
vectors e and h during propagation of radiation. In the
general case of an inhomogeneous medium, the equations
for amplitudes are cumbersome; therefore, we confine the
consideration to a medium with a uniform refractive index
(but a nonuniform velocity distribution). Then, the wave
equations acquire the form

H 2E� k 2
0 emE � ÿ

emÿ 1

c

�
�
k 2
0 m �vH� � ik0 rot �Ev� � 1

e
grad div �vH�

�
; �3:27�

H 2H� k 2
0 emH � ÿ

emÿ 1

c

�
�
k 2
0 e �Ev� ÿ ik0 rot �vH� � 1

m
grad div �Ev�

�
: �3:28�
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Substituting expressions (3.7) into Eqns (3.27) and (3.28)
and equating the terms with equal powers of k0 yield not only
the eikonal equation (3.10) (terms with k 2

0 ) but also the
equations for the amplitudes of e and h (terms involving ik0):

�gradL grad�e� 1

2
eH 2L

� emÿ 1

c

�
�e rot v� � �v grad�e� 1

2
e div v

ÿ 1

2em
�rot v gradL� �e gradL�

�
� 0 ; �3:29�

�gradL grad�h� 1

2
hH 2L

� emÿ 1

c

�
�h rot v� � �v grad�hÿ 1

2
h div v

ÿ 1

2em
�rot v gradL� �h gradL�

�
� 0 : �3:30�

These are the vector transport equations being sought that
describe the changes in e and h along the ray. Let us introduce
the complex vectors with a unit modulus:

u � e

�ee��1=2
; w � h

�hh��1=2
; �3:31�

and the parameter t characterizing the position along the ray,
with

q
qt
�
��

gradL� emÿ 1

c
v

�
grad

�
: �3:32�

Then, it follows from Eqns (3.29) ± (3.32) that

q
qt
�ee�� � ee�

�
H 2L� emÿ 1

c
div v

�
� 0 ; �3:33�

q
qt
�hh�� � hh�

�
H 2Lÿ emÿ 1

c
div v

�
� 0 : �3:34�

For the amplitudes themselves, taking into consideration the
identity d=dt � n d=ds, one obtains

du

ds
� ÿ emÿ 1

cn

�
�u rot v� � 1

2
w�s rot v�

�
; �3:35�

dw

ds
� ÿ emÿ 1

cn

�
�w rot v� ÿ 1

2
u�s rot v�

�
: �3:36�

The last two relationships may be used to find changes in
polarization of radiation resulting from the motion of the
medium. The right-hand sides of Eqns (3.35), (3.36) are
proportional to the small parameter v=c; therefore, u and w
may be substituted by their values in a medium at rest. This
accounts for the uncoupling of these equations.

The solution is convenient to present in the matrix form

ux
uy

� �
� 1 ÿy

y 1

� �
ux0
uy0

� �
�3:37�

(zero indices correspond to a stationary medium). Equation
(3.37) contains the Jones matrix [22, 23] describing a turn of

the polarization vector through the angle

y �
�
A ds ; �3:38�

where

A � emÿ 1

cn

�
�rot v�z ÿ

1

2
s rot v

�
: �3:39�

The expression for the turn of the polarization plane
(3.38) is consistent with the Fermi prediction [12] (see also
Ref. [11]) that should be regardedmore likely as an evaluating
one because when the initial plane wave passes through a
layer of the rotating medium it may be considered plane only
locally, in the geometrical optics approximation. In a more
accurate description (see Section 5), the spatial nonunifor-
mity of the medium velocity leads to the scattering (diffrac-
tion) of incident radiation. Neglect of diffraction effects is
justified for light trajectories much shorter than the char-
acteristic diffraction length L0 � kl 2, where l is the character-
istic nonuniformity size.

4. Nonreciprocal waveguides and lenses

In this section, we shall demonstrate that the Fresnel ±Fizeau
effect of partial light entrainment by amoving fluid in the case
of transverse nonuniformity of the medium velocity may lead
to the waveguide propagation of radiation and its focusing. It
turns out to be a nonreciprocal effect (different for opposite
directions of radiation propagation) [24].

Let us consider first a plane monochromatic wave
propagating towards the x-axis and having frequency o,
wave number k, and electric and magnetic field strengths
(written in the complex form)

E � E0 exp �ikxÿ iot� ; H � H0 exp �ikxÿ iot� : �4:1�

Let the medium in which the plane wave propagates also
move parallel to the x-axis with the velocity v (v > 0 if the
directions of motion of the medium and the light coincide,
and v < 0 if they move in opposite directions). Then, for the
phase velocity vph � o=k of the wave in the first approxima-
tion with respect to parameter v=c5 1 [10, 11], one finds

vph � cp � v
�
1ÿ 1

n 2

�
: �4:2�

Here, n is the refractive index of a stationary medium at
frequency o (the radiation frequency in the medium is meant
that differs by virtue of the Doppler effect from the frequency
of radiation incident from the outside on the moving
medium). This relation can be rewritten in the form

vph � c

neff
; �4:3�

where an effective refractive index was introduced:

neff � nÿ v
c
�n 2 ÿ 1� : �4:4�

For gases at moderate pressures, the refractive index is
close to unity and the light entrainment effect (the dependence
of the effective refractive index on the velocity of medium
motion) is insignificant. As the estimates imply, this effect for
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gases is small even in the anomalous dispersion region.
However, the same effect is not so small for liquids. For
ordinary liquids with a refractive index higher than unity, the
effective refractive index for side flow (counter flow)
decreases (increases) with the velocity of motion. Here, the
above conditions at which it is possible to neglect any
additional effects caused by the medium motion (e.g., density
changes) are considered to be fulfilled.

Let us consider now a medium (liquid) moving with a
spatially nonuniform velocity. More precisely, let us assume
that velocity v depends on the transverse (relative to the
x-axis) coordinates. If the velocity varies smoothly, the
radiation is locally close to the plane wave and then the
effective refractive index can be described by expression (4.4).
In that case, the effective refractive index changes in the
transverse direction. The medium possesses either a wave-
guide or antiwaveguide character depending on the sign of
velocity v. This suggests the possibility of creating a non-
reciprocal waveguide (with different properties for waves
propagating in opposite directions).

It is worth noting that the nonuniform velocity of a fluid
motion is characteristic of the majority of variants of fluid
flow in pipes because the velocity of stationary motion is
usually highest on the tube axis, whereas v � 0 on the walls.

Let us consider two variants of a stationary flow of a
viscous incompressible fluid [18]. In the first variant, the fluid
flows between two parallel planes separated by distance h
(along the y-axis orthogonal to the planes), i.e., coordinates of
the planes are y � �h=2.

The rate of the laminar flow shows the quadratic
dependence on the coordinate y:

v�y� � v0
�
1ÿ 4

y 2

h 2

�
; �4:5�

and is maximum on the symmetry axis:

v0 � v�0� � Dp
2Zl

h 2

4
: �4:6�

Here, Z is the dynamic fluid viscosity, p is the pressure, and
the pressure gradient Dp=l � const (where Dp is the pressure
difference at the pipe ends, and l is the pipe length). In this
case, relationship (4.4) takes the form

neff�y� � n0y ÿ 1

2
n1yy

2 ; �4:7�

where

n0y � nÿ v0
c
�n 2 ÿ 1� ; n1y � ÿ 8

h 2

v0
c
�n 2 ÿ 1� : �4:8�

The second variant corresponds to a pipe of circular
section of radius R. In this case, there are analogous relations
for the rate of flow (r is the radial coordinate):

v�r� � Dp
4Zl
�R2 ÿ r 2� ; v0 � v�0� � Dp

4Zl
R2 ; �4:9�

and for the radial profile of the effective refractive index:

neff�r� � n0r ÿ 1

2
n1r r

2 ; �4:10�

n0r � nÿ v0
c
�n 2 ÿ 1� ; n1r � ÿ 2

R2

v0
c
�n 2 ÿ 1� : �4:11�

It can be seen from Eqns (4.7) and (4.10) that the effective
refractive index in either variant is quadratically dependent
on the transverse coordinate. The radiation propagation in
such a quadratic media has been described at length in the
literature (see, for instance, Ref. [23]). The waveguide is
realized for n1 > 0, i.e., as v0 < 0. The medium may be
regarded as unbounded in the transverse direction if the
lateral dimensions of the pipe are much larger than the
width of the mode. The half-width of the lowest (funda-
mental) mode w is given by the relationship

w 2 � 2

k0�nn1�1=2
: �4:12�

Taking into account the smallness of the parameter v=c in
formula (4.1), it is possible to disregard the difference between
n0 and n, and determine the wave number k0 as in a
homogeneous medium at rest. For the two above variants of
the flow, one obtains

w 2
y �

h

k0

�
c

2v0 n�n 2 ÿ 1�
�1=2

; w 2
r �

d

k0

�
c

2v0 n�n 2 ÿ 1�
�1=2

;

�4:13�

respectively. The latter formula is derived from the former by
substituting h with the pipe diameter d � 2R.

The waveguide effect is realized in a pipe whose length
exceeds the characteristic diffraction length of a light beam
with a half-width w:

l4Ld � k0w
2 : �4:14�

In the opposite case of a short pipe, it is equivalent to a lens
with the focal distance

f � 1

n1L
: �4:15�

Although the effect in question heightens with increasing
rate of the fluid flow, the possibility of such an increase is
limited due to the constraints imposed by the laminarity of the
flow. The flow can transform into a turbulent one if the
Reynolds number

Re � vD
nm

�4:16�

exceeds a certain critical value Recr [6]. Here, nm is the
kinematic viscosity, and D is the characteristic lateral
dimension (in a pipe Ð its diameter). Generally speaking,
the critical value Recr is not universal.

For a pipe of circular section, the motion is stable with
respect to infinitesimally small perturbations at any Reynolds
number. By eliminating the perturbations at the entrance to
the pipe in thoroughly performed experiments, the laminar
flow is maintained up to Re � 105 [18]. Also, fluid viscosity
determining the Reynolds number is strongly dependent on
temperature and increases as the temperature decreases [18,
25].

Let us evaluate the effect under conditions close to those
realized in the classical Fizeau experiment [2]. In this
experiment, water travelled with velocity v � 7 m sÿ1 in a
pipe of length L � 150 cm and diameter d � 5:3 mm. For
radiation with wavelength l � 0:5 mm, formula (4.13) gives
wr � 1:38 mm, which is much smaller than the pipe radius;
therefore, the medium may be regarded as unbounded in the
transverse direction.
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However, the diffraction length under these conditions is
Ld � 22:8m; hence, the length of the pipe must be increased if
the waveguide effect is to be observed.When the pipe length is
large, it is necessary to take into account that the radiation
becomes weaker due to its absorption and scattering by the
water (extinction). This attenuation is characterized by the
total extinction coefficient or the damping decrement of
radiation flux density during its propagation in the absorb-
ing and scattering medium [11]. For distilled water and a light
wavelength range from 440 to 480 nm, this coefficient equals
0.012 mÿ1, with the contribution from the light scattering
being less than 30% [26]. For this reason, both attenuation of
the light beam and scattering that causes its broadening are
small within the diffraction length.

Substituting parameters of the Fizeau experimental setup
and viscosity nm � 0:01 cm2 sÿ1 into formula (4.16) gives the
Reynolds number Re � 3:7� 104 at a water temperature of
20 �C. At 0 �C, the Reynolds number Re � 2� 104. This
presumably accounts for the turbulent water motion in the
Fizeau experiments, although it can be made laminar
provided the experiment is accurately performed.

It should be borne in mind that the question of turbulence
in pipes of such a small diameter is not as simple as it may
seem. The point is that the characteristic minimal size of
vortices (Kolmogorov scale) ranges 1 ± 10 mm, in which case
they are no longer splitted but simply disperse due to
viscosity. Therefore, it may be supposed that turbulence is
absent altogether in the pipes with such a diameter. Note also
that relationship (4.15) gives the focal distance f � 129 m of
an equivalent lens for the parameters of the Fizeau setup,
which is quite possible to register in experiment.

Thus, the passage of a light beam throughwater flowing in
a pipe in the opposite direction results in its waveguide
propagation; when the directions of the water flow and the
light beam coincide, the latter broadens. Both the beam
(mode) radius and the focal distance can be decreased by
using a transparent fluid with a higher refractive index than
that of water.

To conclude the present section, it should be noted that
the rotation of a dielectric waveguide (optical fiber) affects the
structure of its modes [27]. An example is a fiber whose
refractive index undergoes axisymmetric smooth or jumplike
transverse variations. Its rotation about the axis makes
unequal the clockwise and counterclockwise directions of
the axis bypass; this results in the removal of degeneracy of
the spectrum of modes with different signs of the azimuthal
index.

This situation is especially well-apparent in media with a
constant (spatially uniform) refractive index, where a single
nonuniformity corresponds to the transverse (with respect to
the rotation axis) dependence of the angular rotation velocity.
Naturally, a homogeneous medium exhibits no waveguide
properties in the absence of its rotation.

Interestingly, the exact solutions of the Maxwell equa-
tions for the quadratic transverse dependence of the rota-
tional velocity are presented by the Gaussian beams (Gauss ±
Hermite or Gauss ±Laguerre modes), whereas for ordinary
media with quadratic transverse variations in the refractive
index, the Gaussian beams appear only in the quasioptical
(paraxial) approximation on neglecting polarization effects
[23]. To be more precise, the Gaussian profile is intrinsic to
longitudinal components of electric and magnetic fields Ez

andHz, whereas their transverse components (defined by the
application of differential operators to them) contain an

admixture of higher-order Gaussian modes. Moreover,
degeneracy of mode frequencies in the sign of the azimuthal
index is removed in a rotating waveguide. Due to this, such a
waveguide may serve as a rotation sensor [27].

5. Light scattering by velocity nonuniformities
of a moving medium

5.1 General relationships
Let us consider the problem of diffraction of electromagnetic
radiation by nonuniformities of the medium motion velocity
[15]. To this end, it is convenient to employ the wave
equations for D and B derived from Eqns (1.1) and (1.3):

&D � fD ; &B � fB ;
�5:1�

& � Dÿ e0m0
c 2

q2

qt 2
; D � q2

qx 2
� q2

qy 2
� q2

qz 2
;

where

fD � ÿ e0m0 ÿ 1

c

�
rot rot �vH� ÿ e0

c

q
qt

rot �Ev�
�

ÿ rot rot dD� e0
c

q
qt

rot dB ;
�5:2�

fB � ÿ e0m0 ÿ 1

c

�
rot rot �Ev� � m0

c

q
qt

rot �vH�
�

ÿ rot rot dBÿ m0
c

q
qt

rot dD :

Because the velocity of medium motion is small,
Eqns (5.1), (5.2) can be solved in the framework of the
perturbation theory. In this case, the scattered radiation is
found from the first-order perturbation theory by solving
Eqn (5.1) in the form of retarded potentials [28] and
considering the right-hand sides of these equations as given
[expressed through zero-order solutions: see Eqns (5.3) ±
(5.5)]. The terms in braces in Eqn (5.2) represent relativistic
effects, and the terms following them (outside the brackets)
nonrelativistic ones. In what follows we take into considera-
tion only relativistic effects, i.e., we neglect dD and dB
assuming that the velocity of the moving medium satisfies
the condition v5 v0.

In order to solve equations (5.1), assume that E �
E0 � E1 � . . . , H � H0 �H1 � . . . , etc. In the zero approx-
imation in the parameter v=c (a continuous uniform medium
at rest), the unperturbed solution E0, H0 is regarded as
known. In the first approximation of the perturbation
theory, Eqns (5.1) give

&E1 � fE ; &H1 � fH ; �5:3�

fE � ÿ e0m0 ÿ 1

ce0

�
grad div �vH0� ÿ e0m0

c 2
q2

qt 2
�vH0�

ÿ e0
c

q
qt

rot �E0v�
�
;

�5:4�
fH � ÿ e0m0 ÿ 1

cm0

�
grad div �E0v� ÿ e0m0

c 2
q2

qt 2
�E0v�

� m0
c

q
qt

rot �vH0�
�
:
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The right-hand sides of Eqns (5.3) being known, their
solutions are presented as retarded potentials [28]:

E1 � ÿ 1

4p

�
1

R
fE

�
tÿ R

c

�
dV ;

�5:5�
H1 � ÿ 1

4p

�
1

R
fH

�
tÿ R

c

�
dV :

Here, integration is performed over the bulk of the moving
medium, andR is the distance between the elementary volume
dV and the point at which the fields are sought. Naturally, the
amplitudes of a scattered field (in the first approximation) are
proportional, like f, to the parameter v=c. Let us assume that
velocity nonuniformities are concentrated within a certain
bounded region of the medium, and place the origin of the
coordinates at an `average' point of this region.

Following Ref. [11], we denote the radius vector connect-
ing the origin of coordinates and the point of observation as
R0, the unit vector in the same direction as n, the radius vector
of the integration volume as r, and the radius vector drawn
from the integration volume to the point of observation as R,
so that R0 � R� r. In the far field (at a sufficiently large
distance from the velocity nonuniformity region), R in the
denominator of the integrands in formulas (5.5) may be
substituted by R0, and in the arguments of the functions in
the numerators by a more exact expression R � R0 ÿ nr.
Then, Eqns (5.5) acquire the form

E1 � ÿ 1

4pR0

�
fE

�
tÿ R0

c
� nr

c

�
dV ;

�5:6�
H1 � ÿ 1

4pR0

�
fH

�
tÿ R0

c
� nr

c

�
dV :

Expressions (5.5) and (5.6) give the general solution to the
problem of radiation diffraction (scattering) by arbitrary
velocity nonuniformities of a moving medium. Incident
radiation also has an arbitrary form. Moreover, it is
sufficient to solve only one equation, (5.3) or (5.4), and the
other can be obtained by the simple substitution of the initial
parameters. Indeed, the right-hand sides of these equations
transform into each other upon the substitution of e$ ÿm
and of E0 $ H0 [29].

Another important case is represented by the stationary
motion of a medium when its velocity at each point is time-
independent. In this case, the radiation spectrum remains
unaltered Ð that is, the scattered radiation frequency
coincides with the incident radiation frequency (with the
Doppler frequency shift being absent). This makes it possible
to reduce the linear problem of electromagnetic radiation
pulse scattering to the consideration of scattering of indivi-
dual plane monochromatic waves.

Below, we shall apply this result to the case of incident
radiation exemplified by a plane monochromatic wave with
frequency o and wave number k � no=c:

E0 � exp �ÿiot� ikrm��bI; bII; 0� ; �5:7�

H0 �
�
e0
m0

�1=2

exp �ÿiot� ikrm��bI;ÿbII; 0� ;

where m is the unit vector of wave incidence direction, and
bI; II � jbI; IIj exp �iDI; II� are the complex amplitudes of the
incident radiation with elliptic polarization; the result is also
applicable to concrete variants of the velocity distribution.

Practically speaking, it is also possible to reduce to this
problem (owing to the high speed of light) a case of quasi-
stationary motion of the medium, when its velocity is not
substantially altered as the light propagates through the
region of a nonuniform velocity distribution. We believe
that the scattering object (nonuniformity) is a body of
revolution with a linear rotational velocity

v � �X r� ; r 2 V ;

0 ; r =2 V ;

�
�5:8�

where V is the volume of the rotating body, and X is the
angular rotational velocity.

This section deals with the scattering of electromagnetic
waves in situations where the solution of a problem is
represented in an analytical form. One such problem
concerns light scattering by rotational velocity nonuniformi-
ties, the sizes of which are small compared with the
wavelength l, and which have an arbitrary axisymmetric
shape. Another problem is that of the light scattering by a
velocity nonuniformity having a cylindrical form.

Let us separate polarizations by representing the electric
and magnetic fields of an incident wave as

E0 � bIE0I � bIIE0II ; H0 � bIH0I � bIIH0II ; �5:9�
E0I � ~E0 exp �ÿiot� ikrm� ;

H0I � ÿ
�
e
m

�1=2

~H0 exp �ÿiot� ikrm� ;
�5:10�

E0II � ~H0 exp �ÿiot� ikrm� ;

H0II �
�
e
m

�1=2

~E0 exp �ÿiot� ikrm� ;

where ~E0, ~H0 are the constant vectors. Because the problem is
linear, the general solution in the case of the incidence of such
a wave is entirely similar to formulas (5.9):

E1 � bIEI � bIIEII ; H1 � bIHI � bIIHII : �5:11�

Due to the aforementioned symmetry of the problem, the
fields EII and HII are related to EI and HI by the simple
relationships

EII � ÿ
�
m
e

�1=2

HI ; HII �
�
e
m

�1=2

EI : �5:12�

Note that the vectors in triples EI, HI, n and EII, HII, n are
mutually orthogonal.

By introducing the dimensionless variable q � kr, the
expressions for the scattered field can be presented, based on
Eqns (5.3), (5.4), and (5.8) ± (5.10), in the form

E1 � SE

���
dq
�
X?� ~H0q� ÿ q?� ~H0X�

� �nq� �~E0X� ÿ �nX� �~E0q�
	
F�q� exp�ÿiq�nÿm�	 ;

�5:13�
H1 � SH

���
dq
�ÿX?�~E0q� � q?�~E0X�

� �nq� � ~H0X� ÿ �nX� � ~H0q�
	
F�q� exp�ÿiq�nÿm�	 :

�5:14�
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Here, X?, q? are the two-dimensional vectors perpendicular
to the direction of the incident wavem, and the coefficients of
the integrals have the form

SE � n 2 ÿ 1

4pcnk 2

exp �ÿiot� ikR0�
R0

; SH �
�
e
m

�1=2

SE ;

�5:15�
while

F�q� � 1 ; r 2 V ;
0 ; r =2 V :

�

In the case of direct registering of scattered radiation
unmixed with the reference wave, the energy characteristics
are quadratic in angular velocity (and in parameter v=c) and
defined by the differential scattering cross section P�y;f; a�,
where a is the angle between the rotation axis and the incident
direction of the electromagnetic wave. The cross section is
introduced by the relationship

P�y;f; a� � w

w0
R 2

0 : �5:16�

Here,w0 is the energy density in the incident wave, andw is the
density of the scattered electromagnetic energy given by the
expression

w � e0
4p
�ReE1�2 � m0

4p
�ReH1�2 : �5:17�

Integration of the differential cross section P�y;f; a� over the
solid angle yields the total scattering cross section s.

Before passing to concrete results, it is worthwhile to
specify the coordinate systems being used. The xyz-system
shown in Fig. 1 is associated with the rotating medium region,
and the y-axis coincides with the nonuniformity rotation axis.
System x 0y 0z 0 is associated with the incident plane wave. The
direction of wave propagation coincides with the z 0-axis and
forms an angle a with the y-axis of rotation. Axes x and x 0

coincide; therefore, z 0- and y 0-axes lie in the plane zy. The
radius vector OR0 connecting the center of the coordinate
system and the point of observation forms an angle ywith the
z 0-axis, while its projection R 00 onto the plane x 0y 0 forms an
angle f with the x 0-axis.

5.2 Small region of a rotating medium
Let us consider the case of small scattering nonuniformities
with jqj < 1 in Eqns (5.13), (5.14). It is well known [11, 30]
that in the case of small-sized nonuniformities a scattering
particle resides in an effectively uniform field and is
characterized by certain electric and magnetic moments P
and M, respectively. Their time dependence is given by the
factor exp �ÿiot�. When the exponent under the integrands in
Eqns (5.13), (5.14) is expanded in a Taylor series, the first
nonvanishing term turns out quadratic in q. Regarding the
rotation-axis direction as the y-axis and taking into account
the symmetry of the solution in x and z for small scattering
nonuniformities, it is easy to reduce relationships (5.13),
(5.14) to the following [29]:

E1 � KE K�m; n;X� ; H1 � KH M�m; n;X� ; �5:18�

KE;H � ÿi f SE;H ; f �
�
dq q 2

x �
p
4
k 5

�
dy r 4�y� : �5:19�

The vector functions on the right-hand sides of Eqn (5.18)
depend only on the angular characteristics of the problem,
while the dependence on size and form contains the factor f.

As follows fromEqn (5.18), the angular dependence of the
scattered field is identical for small rotating nonuniformities
of an arbitrary form. The fields are different only in form
factor f determined by the nonuniformity size. Given below
is the expression forK becauseM is straightforwardly derived
from it in accordance with formulas (5.11) and (5.12):

K�m; n;X� � 4O
ÿ
A�m; n� ex � B�m; n� ey � C�m; n� ez

�
;

�5:20�
A � bIA1 � bIIA2 ; B � bIB1 � bIIB2 ; C � bIC1 � bIIC2 :

Here, the following notation was used:

A1 � 2g 2nx 0 sin a� �1� sin2 aÿ ny 0 cos a� 2nx 0 �nz 0 ÿ sin a� ;

A2 � g 2�ny 0 � cos a�
�
1� 2 sin a

nz 0 ÿ sin a
g 2

�
�5:21�

� �ny 0 � cos a�ÿn 2
x 0 ÿ �nz 0 ÿ sin a�2� ;

B1 � 2�nz 0 ÿ sin a��ny 0 � cos a��1ÿ ny 0 cos a� � 2ny 0g 2 sin a ;

B2 � 2nx 0 �n 2
y 0 ÿ cos2 a� ; �5:22�

C1 � 2g 2nz 0 sin a

ÿ cos a �ny 0 � cos a�ÿg 2 � 2�nz 0 ÿ sin a� sin a�
ÿ �1� sin2 aÿ ny 0 cos a�

ÿ
n 2
x 0 ÿ �nz 0 ÿ sin a�2� ; �5:23�

C2 � 2nx 0 �nz 0 ÿ sin a��ny 0 ÿ cos a� :
Introduced into formulas (5.21) ± (5.23) are the projections of
the unit vector specifying the scattering direction:

nx 0 � sin y cosf ;

ny 0 � sin y sinf sin aÿ cos y cos a ; �5:24�
nz 0 � sin y sinf cos a� cos y sin a ;

and the parameter g is related to them by the formula

g � ÿn 2
x 0 � �nz 0 ÿ sin a�2�1=2 :

When an incident wave is perpendicular to the rotation
axis, the differential cross sections of light scattering by small
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Figure 1. The frames of reference (see the text).
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nonuniformities have the form [31]

Ps

�
y;f;

p
2

�
� jSj2 f 2�1ÿ cos y�2 sin2 f sin2 y : �5:25�

Their maxima in angle f occur at f � p=2; 3p=2, and in angle
y at y � 2p=3. Similarly, when an incident wave is parallel to
the rotation axis �a � 0� [32], one has

Ps�y;f; 0� � jS j2 f 2 sin4 y ; �5:26�

in other words, maximum scattering occurs through the angle
y � p=2. Moreover, the cross section in this case does not
depend on the polar angle f; therefore, the scattering of
polarized and natural light differs only in the numerical
coefficient.

Here are expressions for the total scattering cross sections

ss

�
p
2

�
� 8p

5
jSj2 f 2 ; ss�0� � 32p

15
jSj2 f 2 : �5:27�

The total cross sections in formulas (5.27) differ only in the
close-to-unity numerical multiplier. Figure 2 depicts (in two
forms) normalized differential cross sections p�y;f� �
P�y;f�=s for a small nonuniformity. Unlike the total cross
section s, these functions are independent of the angular
rotational velocity.

Calculations indicate that, similar to the Mie theory, the
small-particle approximation may be used up to dimensions l
defined by the relation kl < 0:5. A substantial difference
between the light scattering by small-sized velocity nonuni-
formities and that by small particles is due to the multipole
character of the former [15, 21]. This inference ensues from
the shape of the dependence of scattering cross sections on the
incident radiation wavelength (lÿ6 for a velocity nonunifor-
mity, instead of lÿ4 for a particle) and on the size of the
scatterer (l 10 in the former case, and l 6 in the latter).

5.3 Finite region of a rotating medium (analytics)
Let us consider now the problem of the scattering of a plane
wave by a dielectric nonuniformity in the form of a circular
cylinder (see Fig. 1) with a base radius r0 and height 2h
(rotation axis y), rotating with a constant angular velocity O
in a medium having the same refractive index. We shall
assume that the incident direction of the plane wave is
perpendicular to the rotation axis. In this case, integration
in formulas (5.6) gives

E1 � bIEI � bIIEII ; �5:28�
EI � KE

�ÿex cosf sinf sin2 y

� ey�1ÿ cos yÿ sin2 f sin2 y�
� ez sinf sin y�1ÿ cos y�	 ; �5:29�

EII � KE

�ÿex�1ÿ cos yÿ cos2 f sin2 y�
� ey cosf sinf sin2 yÿ ez cosf sin y�1ÿ cos y�	 ;

KE � ÿi n
2 ÿ 1

cn

O
R0

exp �ÿiot� ikR0�

� r 2
0 J2�kr0g�

g 2
sin �kh sinf sin y� ;

�5:30�
g � ÿ�1ÿ cos y�2 � cos2 y sin2 f

�1=2
;

where J2 is the second-order Bessel function.

The magnetic field is obtained from Eqns (5.28) ± (5.30) in
accordance with formulas (5.12). Generalization of these
results to the case of oblique incidence of a plane wave on a
cylinder was reported in Ref. [15]. Here is the value of the
coefficient KE alone:

KE � ÿi n
2 ÿ 1

2cn

O
R0

exp �ÿiot� ikR0�

� r 2
0 J2�kr0g�

g 2
sin
ÿ
kh�n 0y ÿ cos a��
n 0y ÿ cos a

: �5:31�

The angular dependence for this case is described exactly as
for small particles, i.e., by the functions K�m; n;X� and
M�m; n;X� [see Eqns (5.18), (5.20)].

The differential cross section of light scattering by a finite
circular cylinder, when the incident radiation is perpendicular
to the rotation axis, has the form [15]

P

�
y;f;

p
2

�
�
����KE

�
p
2

�����2 sin2 �kh sinf sin y� �1ÿ cos y�2 :
�5:32�

When the wave vector of the incident wave is parallel to the
rotation angle, one obtains

P�y;f; 0� � ��KE�0�
��2 sin2

ÿ
kh�1ÿ cos y��
�1ÿ cos y�2 : �5:33�

Let us analyze the angular dependences of differential
cross sections (5.32), (5.33) in the limiting cases of a small-
sized cylinder and a long thin cylinder. For the small-sized
cylinder �kr0; kh5 1�, the differential scattering cross section
P�y;f; p=2� is obtained by substituting

f � p
2
�kr0�4kh �5:34�

into Eqns (5.25) ± (5.27). It should be noted that for a small
sphere �kr0 5 1� of radius r0, one has

f � 4p
15
�kr0�5 : �5:35�

For the elongated cylinder �kh4 1�, the square of the sine
in formula (5.32) accounts for high-frequency oscillations.
Considering their envelope, when substituting the sine
squared by 1=2, reveals a weak dependence on the angle f
(only via the parameter g). It totally disappears when the
diameter of the cylinder is small. The dependence on angle y
has the form

Pt

�
y;f;

p
2

�
� �n

2 ÿ 1�2
128n 2

O2

c 2
k 4r 8

0 �1ÿ cos y�2 : �5:36�

The maximum value is reached at y � p. It is important to
note that expression (5.36) holds beyond a small region of
angles, where the product sinf sin y is close to zero. At small
angles y, the differential scattering cross section is propor-
tional to y 6, whereas as y! p it is only proportional to
�yÿ p�2.

If the total scattering cross sections for the small and long
cylinders are denoted as ss and st, respectively, then

ss

�
p
2

�
� �n

2 ÿ 1�2
40n 2

O 2

c 2
pk 6r 8

0 h
2 ;

�5:37�

st

�
p
2

�
� �n

2 ÿ 1�2
96n 2

O 2

c 2
pk 4r 8

0 :
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The dependence of differential and total scattering cross
sections on the light wavelength l is of special interest. It
follows from formulas (5.37) that ss � lÿ6 for the small

cylinder, while st � lÿ4 for the long thin cylinder (as in the
case of Rayleigh scattering).
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Figure 2.Normalized differential cross sections of light scattering by a small nonuniformity at different tilt angles a: leftÐ spatial graphs, and rightÐ flat

images (top view).
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In the case described by Eqn (5.33), one finds for small
sizes of the cylinder:

Ps�y;f; 0� � �n
2 ÿ 1�2
64n 2

O 2

c 2
k 6r 8

0 h
2 sin4 y ; �5:38�

i.e., the maximum scattering by small nonuniformities is
directed toward the angle y � p=2. For the elongated
cylinder, one obtains

Pt�y;f; 0� � �n
2 ÿ 1�2
128n 2

O 2

c 2
k 4r 8

0 sin
4 y : �5:39�

The total cross sections have the form

ss�0� � �n
2 ÿ 1�2
30n 2

O 2

c 2
pk 6r 8

0 h
2 ;

�5:40�

st�0� � �n
2 ÿ 1�2
60n 2

O 2

c 2
pk 4r 8

0 :

Naturally, the scattered radiation amplitude found in the
first-order perturbation theory is linear in the angular
rotational velocity of the body. Such a linear effect is possible
to register if the scattered radiation ismixedwith the reference
(unscattered) coherent radiation of the same frequency.

Let the mixing (interference) take place in the plane
z � Z0, and the reference radiation be a plane wave

Es � exp �ikL� ikqaÿ iot� �exaI � eyaII� : �5:41�

Here, the first term in the exponent stands for the constant
phase incursion, and the second term takes into account the
turn of the wave front through a small two-dimensional angle
a with components ax and ay in the Cartesian coordinate
system, and q � �x; y� is the two-dimensional vector of the
transverse coordinates. Quantities aI and aII characterize the
state of polarization of radiation and are represented in the
form

aj � jajj exp �idj� ; j � I; II :

Then, the interference term has the form

I12 � 2Re hEsE
�
1i ; �5:42�

where the angle brackets denote averaging over time for a
period significantly longer than the light oscillation period.

Taking into account formulas (5.28) ± (5.31) and (5.41)
yields

I12 � Or0
c

r0
R0

n 2 ÿ 1

n

J2�kr0g�
g 2

� sin �kh sinf sin y��cosf sinf sin2 y

� �jaIj jbIj sin �SI ÿ LI� ÿ jaIIj jbIIj sin �SII ÿ LII�
�

� �1ÿ cos yÿ sin2 f sin2 y�
� �jaIj jbIIj sin �SI ÿ LII� ÿ jaIIj jbIj sin �SII ÿ LI�

�	
: �5:43�

Sj � kL� k qa� dj ; Lj � kR0 � Dj ; j � I; II : �5:44�

The first multiplier in expression (5.43) coincides with the
ratio vc=c of the linear rotational velocity at the lateral face of

the cylinder to the speed of light; the second one is the ratio of
the cylinder radius to the distance from the receipt point, and
the third is proportional to the Fresnel entrainment coeffi-
cient.

In the region not far from the axis, i.e., at small angles y,
one has

I12 � Or0
c

r0
R0

n 2 ÿ 1

2n
�kr0�2y 2 sin �khy sinf�

� �sin 2f �jaIj jbIj sin �SI ÿ LI� ÿ jaIIj jbIIj sin �SII ÿ LII�
�

� cos 2f
�jaIj jbIIj sin �SI ÿ LII� ÿ jaIIj jbIj sin �SII ÿ LI�

�	
:

�5:45�

Here, it was assumed that khy > 1. In the Fresnel diffraction
zone R0 � kr 2

0 , and the interference term is estimated as

I12 � kr0y
2 vc
c
;

i.e., it is essentially determined by the velocity ratio. The
relationships (5.43) and (5.45) acquire the simplest formwhen
the electric vector in the wave incident on the cylinder and in
the reference wave is directed along the x-axis: aII � bII � 0,
or the y-axis: aI � bI � 0.

5.4 Finite region of a rotating medium
(numerical simulation)
It appears from the above expressions for fields and scattering
cross sections by a cylinder that the scattering by finite
velocity nonuniformities differs from the scattering by small
particles in the form of both the angular dependence and the
dependence on the radiation wavelength l. However, no
explicit solution has been obtained to the problem of light
scattering by nonuniformities of other types (e.g., a finite
sphere). In this case, a numerical approach may be used to
study differential scattering cross section [15, 31, 32].

Figure 3 depicts (in two forms) normalized differential
cross sections p�y;f� � P�y;f�=s for a rotating cylinder of
finite dimensions. In all calculations of s, the angular velocity
O was assumed to differ, and the linear rotational velocity at
the boundary (vc � 1 cm sÿ1 5 v0) to be constant, which
allowed dynamo-optical effects in water to be disregarded. In
the glass medium, the rotational velocity may be as high as
10 m sÿ1 [15], which accounts for the significant enlargement
of the scattering cross section.

The results of calculations presented in Fig. 3 were
obtained for a cylinder with the dimensions kr0 � 5, kh � 5.
The total scattering cross section reached s�0� �
4:653� 10ÿ30 cm2. A 1000-fold rise in the rotational velocity
resulted in an increase in the cross section by six orders of
magnitude. It was shown in Ref. [15] how strongly distorted
the scattering field practically on a `filament' �r0 5 h� is, and
what an important role is played by diffraction in this case.

Figure 4 presents the dependences of total scattering cross
sections on the angle of incidence for small nonuniformities
and cylinders of different sizes [32]. Interestingly, the total
scattering cross sections for both the small scatterer and the
`filament' exhibit only a weak dependence on the angle of
rotation axis tilt toward the direction of incidence. In the
latter case, however, weak oscillations of the cross section are
apparent (curves 1 and 2). Simultaneously, the total cross
section changes considerably (a threefold variation, see
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curve 3). An unexpected result (curve 4) was obtained when
the base diameter �2r0� of the cylinder was equal to its height
�2h�. As awas altered from 0 to p=2, the cross section changed

by almost one order of magnitude. This means that in the case
of scattering from a large number of scatterers the averaging
over the tilt angles may acquire significance.
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For spherical nonuniformities, there is a single geometric
parameter Ð the sphere radius r0. Differential cross sections
for a sphere with kr0 � 5 are shown in Fig. 5 (without
normalization to the total cross section). It can be seen that
scattering into the back hemisphere at a � 0 is replaced by
that into the front hemisphere as a grows, with all the maxima
being symmetrically localized along the line f � p. Simulta-
neously, the scattering cross section decreases two-fold, from
s�0� � 4:11� 10ÿ28 cm2 to s�p=2� � 2:45� 10ÿ28 cm2. It is
noteworthy that the scattering cross section from a sphere is
more by two orders of magnitude than that from a cylinder of
approximately the same size.

6. X-ray radiation in moving media

In the preceding sections, we considered light scattering by
velocity nonuniformities of moving continuous media, based
on the macroscopic Maxwell equations and the Minkowski
constitutive relationships. However, the averaging of micro-
scopic equations over an infinitesimally small volume is
inapplicable to short-wave (X-ray) radiation with a wave-
length on the order of interatomic distances. The present
section is focused on the propagation and diffraction of short-
wavelength (X-ray) radiation in a (nonuniformly) moving
crystal examined by a generally accepted method [11].

The following microscopic Maxwell equations

divHm � 0 ; rotEm � ÿ 1

c

qHm

qt
;

�6:1�
divEm � 0 ; rotHm � 1

c

qEm

qt
� 4p

c
jm ;

are needed to describe the strengths of the electric and
magnetic microfields Em and Hm, and the current density jm
created by microfield-induced electron motions (in what
follows, subscripts on field strengths and currents are
omitted). Let a monochromatic plane wave be incident on
the crystal, so that the field strengths in a laboratory system of
coordinates have the form

E � E0 exp �ÿiot� ikr� ; �6:2�
H � H0 exp �ÿiot� ikr� ;

where the vectors E0 and H0 are coordinate- and time-
independent. The local (and instantaneous) crystal velocity
in the laboratory frame of reference is a slowly varying
function of the coordinates and time: u � u�r; t�. The crystal
is regarded as an absolutely solid body, which is justified by its
rather small sizes. Quantities in the frame of reference rigidly
aligned with the crystal are labelled by primes.

The equation of electron motion, neglecting the terms
quadratic in the velocity of motion and in the field strengths,
has the form

m
dv 0

dt 0
� eE 0 ; �6:3�

where m is the mass, e is the charge, and v 0 is the electron
velocity. In the crystal-aligned system of coordinates, an
electron is under the action of the field

E 0 �
�
E0 � 1

c
�uH0�

�
exp �ÿio 0t 0 � ik 0r 0� ; �6:4�

where

o 0 � oÿ uk ; k 0 � kÿ o
c

u

c
:

The steady solution of Eqn (6.3) has the form

v 0 � i
e

mo 0 2

�
E0 � 1

c
�uH0�

�
exp �ÿio 0t 0 � ik 0r 0� : �6:5�

It is supposed that the field-induced electron displacements
are small; therefore, the velocity u may be regarded as
practically constant. The expression for the current density j
created by electrons with the number density n takes the form

j 0 � e n�r 0� v 0 : �6:6�
In order to solve the system of equations (6.1), it is

necessary to go over to a laboratory (stationary) system of
coordinates. According to Ref. [9], in such a system, with the
quadratic-in-velocity terms being neglected, the expression
for the current density remains unaltered:

j � i
e n�r; t�
mo2

�
E0 � 1

c
�uH0�

�
exp �ÿiot� ikr� : �6:7�

We specially singled out the time- and coordinate-depen-
dences of electron number density (without giving them an
explicit form) because all other quantities, including u,
acquire their former values in the lab system.

Using the standard method [11, 33], it is not difficult to
derive from Eqn (6.1) the equation defining the scattered
field:

DE1 ÿ 1

c 2
q2E1

qt 2
� 4p

c

qj
qt
: �6:8�

Here, both the fields and the coordinates refer to the
laboratory (stationary) frame of reference.

The solution of Eqn (6.8) has the form

E1 � ÿ
�
1

R
fE

�
tÿ R

c

�
dV ; �6:9�

where

fE�t� � 1

c

qj
qt
;

1.45

1.00

0.50

0 0.5 1.0 1.5 2.0
a, rad

s=s0

2

1

3

4

Figure 4. Tilt-angle dependence of the total scattering cross section for a

small scatterer (curve 1) and cylinders of different sizes (curve 2 Ð

kr0 � 0:02, kh � 10; curve 3 Ð kr0 � 5, kh � 0:05, and curve 4 Ð

kr0 � 5, kh � 5); s0 � s�a � 0�.
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integration is carried out over the crystal volume, and
R is the distance between the elementary volume dV

and the point at which the fields are sought (see
Section 5).
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In the far zone, Eqn (6.9) can be rewritten as

E1 � ÿ 1

R0

�
fE

�
tÿ R0

c
� nr

c

�
dV : �6:10�

The frequency of changes in density and velocity of motion
being much smaller than o, it may be assumed that

1

c

qj
qt
� ÿi o

c
j :

In this model, both the electron number density and the
current in the crystal-aligned frame of reference are time-
independent and the solution can be represented in the
following form

E1� e 2

mo2

1

R0
exp �ÿiot� ikR0�

�
�
dr n�r; t� exp�ir�kÿ ks�

	
�
��

ks

�
ks

�
E0 � 1

c
�uH0�

����
: �6:11�

Here, ks is the wave number of the scattered radiation, and

H0 � ÿ
�
k

k
E0

�
� ÿ�mE0� ;

where m is the unit vector of the direction of the incident
wave.

By introducing the unit vector in the scattering direction n
[see formula (5.7)], Eqn (6.11) may be rewritten in the form

E1 � e 2k 2
s

mo2

1

R0
exp �ÿiot� ikR0�

�
�
dr n�r; t� exp�ÿir�ks ÿ k�	

�
��

1ÿ um

c

��
n �nE0�

�� uE0

c

�
n �nm��� : �6:12�

It is worth noting that the scattered radiation is no longer
monochromatic. It can be accounted for by the spatial
nonuniformity of the electron number density in the crystal-
aligned lab frame, and by the corresponding nonstationary
distribution in the fixed coordinate system.

Indeed, the crystal motion (including turns) is accompa-
nied by a change in the mutual orientation of the incident
radiation wave vector and the crystallographic axes. Specifi-
cally, rotation of a crystal with the angular velocity O must
give rise to scattered radiation with the frequencies o� O.
Disregarding fluctuations, the electron number density in the
crystal may be expanded in a Fourier series over all vectors of
the reciprocal lattice b 0 [11, 34, 35], the direction of which is
given by its translational periods [35]:

n�r 0� �
X
b 0

nb 0 exp �i2p r 0b 0� : �6:13�

For further calculations, the form of the crystal motion
needs to be given (a rule for coordinate transformations
during passage from the system co-moving with the crystal
to the lab system). In the quasistatic approximation, time
plays the role of the parameter determining the angle of wave
incidence on an effectively fixed crystal. It follows from
Ref. [11] that the location of angular maxima of diffracted
radiation is defined by the expression (the Laue equation)

ks ÿ k � 2p b 0�t� : �6:14�

Naturally, their positions alter with time. This case corre-
sponds to the Bragg method employed in the X-ray structural
analysis to determine lattice constants or to the `swing' and
rotating sample method. In the general case, the relationship
(6.2) describes additional relativistic corrections.

7. Conclusions

Let us consider the magnitudes of the above effects starting
with the assessment of geometro-optical effects arising when
radiation propagates through a moving medium. The first
one is a deflection of the ray trajectory from the rectilinear
direction as the radiation propagates across a moving
medium layer of thickness z0. By the order of magnitude, the
deflection angle modulus equals

a � n 2 ÿ 1

n

jvj
c
; �7:1�

and the shift in the ray's transverse coordinates d � az0.
Section 1 of this paper and Ref. [15] present estimates of

medium motion velocities at which relativistic effects prevail
over dynamo-optical ones. The critical velocity v0 for water is
on the order of a few centimeters per second, while for glass
the value of v0 may reach 10 m sÿ1. Then, the angle of
deflection for water (having refractive index n � 1:34) is
a � 10ÿ10, and for glass �n � 1:5� a � 3� 10ÿ8. Ray shifts
become apparent for sufficiently long trajectories.

The second effect concerns a change in polarization
characteristics described by relationships (3.37) ± (3.39). Ray
bending being insignificant, integration in formula (3.38) may
be replaced by integration along the z-axis, i.e., ds � dz
(paraxial approximation [23]). If the medium being consid-
ered rotates about the light propagation direction with an
angular velocity O, the angle of rotation equals

y � n 2 ÿ 1

n

Oz0
c
� a
�
z0
r0

�
; �7:2�

where z0 is the thickness of the medium layer, and r0 is the
distance of the ray from the rotation axis.

As can be seen from Eqn (7.2), the angle of rotation of the
polarization vector may be considerably larger than the ray
deflection angle a. If the thickness z0 of the layer is 100 times
larger than r0, the rotation angle in water y � 10ÿ8, while in
glass the angle y may be as large as 10ÿ6. Such rotations are
readily observable due to the high accuracy of polarization
measurements. They may have to be taken into account in
long-haul optical communication schemes. There is a real
opportunity to use these effects for diagnostics of the velocity
distribution in moving liquids and, probably, gases.

It was shown in Section 4 that the focal distance of an
equivalent lens resulting from the distinction of the flow
velocity profile from a rectilinear one is large enough for the
parameters of the Fizeau setup to be examined in experiment.
In this way, allowing a light beam to pass through a pipe with
water flowing in the opposite direction, it is possible to obtain
its waveguide propagation; when the light and the water are
moving in the same direction, the light beam broadens. The
achievement of the waveguide propagation and focusing due
to the Fresnel ± Fizeau effect in the optical range is facilitated
by the use of a transparent fluid with a larger refractive index
than in water. Liquid xenon may serve as such transparent
fluid at a wavelength of 10 mm and a pressure of 40 atm.

These considerations suggest the possibility of realizing
nonreciprocal elements that in the previous laser technique
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were largely built up around the Faraday effect in magneto-
optic materials [24]. The application of such nonreciprocal
elements can probably ensure the reliable unilateral genera-
tion in ring lasers. The relativistic effects discussed above may
also be essential when applied to gas-dynamic lasers.

In light scattering by velocity nonuniformities, the
scattering cross sections are small. However, if the nonuni-
formities are as large as a few radiation wavelengths, they are
commensurate with the Raman scattering cross sections. It is
also worth noting that disturbances in a laminar fluid flow are
responsible for the appearance of an instability (fluctuation)
domain [18, 36] in which light scattering is observable, even if
weak. When it exceeds the light scattering by rotating
nonuniformities, the changes introduced by these uniformi-
ties into the shape of the angular dependence of cross sections
may be significant. The development of laser-based precision
techniques [16, 17] gives hope that it will be possible to
reliably observe relativistic effects. For example, it is not
very difficult to detect a nonreciprocal lens in a ring laser,
because its presence makes it even possible to ensure stable
generation in a single propagation direction.

A few words about acoustic analogs of the above effects
are in order. It was shown in Ref. [37] that waveguide
propagation of acoustic oscillations may occur in a homo-
geneous moving medium in the case of a nonuniform velocity
of motion. An important sign of the contribution from this
mechanism (compared to the standard mechanism of wave-
guide propagation) is the difference in the conditions of sound
propagation in the opposite directions. This nonreciprocity
could be used to protect powerful acoustic radiators from the
action of reflected radiation. Another analog is exemplified
by acoustic wave scattering from velocity nonuniformities in
a moving medium, described in Ref. [38]. Estimates reported
in this work suggest the possibility of acoustic diagnostics of
hydrodynamic velocity nonuniformities.

To summarize, the consideration of velocity nonunifor-
mities in moving media leads to a wide circle of first-order
electrodynamic relativistic effects. Their theory is fairly well
described by the macroscopic Maxwell and Minkowski
equations. For all that, further experiments are needed both
because of the lack of observed data in support of moving
media electrodynamics and because these effects have
important technical implications, for example, for the
development of non-Doppler methods with which to mea-
sure the velocity of drowned flows.
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