Physics— Uspekhi 49 (4) 353 -368 (2006)

©2006 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

REVIEWS OF TOPICAL PROBLEMS

PACS numbers: 73.21.-b, 73.22.-f, 73.43.Lp, 78.67.—u

Inelastic light scattering spectroscopy of electron systems in single

and double quantum wells

L V Kulik, V E Kirpichev

DOI: 10.1070/PU2006v049n04ABEH005885

Contents

o

. Introduction
. Experimental method
3. Combined cyclotron excitations in single quantum wells

N

353
356
357

3.1 Combined cyclotron excitations in the ultraquantum limit; 3.2 Cyclotron spin wave; 3.3 Spin-triplet excitations in

even integer QHE states.

4. Intersubband magnetoexcitations in single quantum wells

359

4.1 Intersubband magnetoexcitations with zero generalized momentum; 4.2 Dispersion of intersubband magnetoexci-

tations in the longwave limit; 4.3 Intersubband excitations and magnetoexcitations in a parallel magnetic field.

5. Excitations and magnetoexcitations in double quantum wells

363

5.1 Single-particle excitations in double quantum wells in a parallel magnetic field; 5.2 Plasma excitations in double

quantum wells; 5.3 Magnetoplasma excitations in double quantum wells.

6. Conclusion
References

Abstract. Inelastic light scattering is used to study the spectra of
neutral excitations and magnetoexcitations in single and double
quantum wells. New excitation branches of charge, spin, and
charge —spin densities are observed. It is shown that various
electron and phonon excitation modes interact with one an-
other to form hybrid modes. Exchange and correlation correc-
tions for the combined resonance energies in the integer and
fractional Hall effects are estimated. The effect of a spatial
inversion asymmetry on the excitation spectra of single-parti-
cle and collective excitations is considered.

1. Introduction

The interpretation of elementary excitations as quasiparticles
suggested by Landau in 1941 [1] offers an effective method for
the description of physical properties of multielectron
systems. It is postulated in the quasiparticle theory that
electrons or quasielectrons in the p-space fill the same volume
of radius pg as free electrons, while excitation states are
described by weakly interacting quasiparticles with charges
—e and +e, spin 1/2, and corresponding effective masses and
lifetimes. The concept of quasiparticles allows reducing the
complex dynamics of a system to simple dynamics of a totality
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of quasi-independent objects. Practically speaking, the pro-
blem may be reduced to the consideration of a gas-like
system; such an approach allows equilibrium and non-
equilibrium systems with strong interactions to be described
by relatively simple methods of statistical thermodynamics
and kinetics of gases.

Elementary excitations are categorized into single-
particle and collective. Single-particle excitations in an
electron system may be likened to an elementary act in
which an electron inside the Fermi sphere acquires an
additional momentum ¢ and passes from a state with
momentum p to one of the free states with momentum p’
outside the sphere. Collective excitations are exemplified by
plasma excitations. In the simplest theory of plasma
excitations developed by Bohm and Pines [2], positive ions
of a solid are substituted by a uniformly distributed positive
charge or ‘gel’ with the density equalling the average charge
density of the electrons. Conduction electrons with an
effective mass m* are regarded as a gas of a mean density
n whose rarification and compression cause longitudinal
oscillations. These oscillations are due to Coulomb interac-
tions between electrons and the positively charged ion
backbone; they are referred to as plasma waves and their
quanta as plasmons.

The plasmon dispersion law is given by

T, (1)

2 2
W0 (q) = o+
where @} = 4ne’n/em* is the squared plasma frequency, y is
the elasticity modulus of an electron gas regardless of charges,
and ¢ is the dielectric permittivity. At e — 0, electrostatic
effects vanish and w(q) %q(y/m*n)l/z. This dependence
coincides with the dispersion law for sound waves that
propagate in a gas with the speed (y/m*n)l/z. Usually,
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wp > q(y/m*n)l/2 and the dispersion of plasma waves is
insignificant.

The concept of quasiparticles is successfully applied to
the description of spatially anisotropic multielectron sys-
tems composed of electrons at the surface of liquid helium,
silicon MIS structures, and semiconducting heterostructures
with quantum wells. The motion of such systems is possible
only in one spatial direction because of the splitting of their
energy spectrum into a set of dimensional quantization
subbands.

When energy scales related to transverse quantization
exceed all other characteristic energies (the Fermi energy and
the thermal energy), the electron system becomes two-
dimensional (2D) and its density of states constant, depend-
ing on the electron effective mass alone. The excitation
spectrum of a 2D electron system displays a number of
unique properties. Specifically, new excitation branches are
observed, some in the lowest dimensionally quantized sub-
band (intrasubband or proper two-dimensional excitations)
and others with an altered subband index (intersubband
excitations). Both intra- and intersubband excitations can be
single-particle or collective.

Intrasubband excitations or plasma waves were first
described in 1967 [3]. Their dispersion in the longwave limit
(m*w > gky) is determined by

Zfﬁ_F G (2)
7= 2ne?N/m*e )’

where N is the electron surface density. At ¢ > 2me* N/m*c?,
the first term on the right-hand side of Eqn (2) is small and the
plasmon dispersion becomes root-like:

_ 2ne*gN
ot

’(q) 3)

Atgq < 2me’ N/m*c?, the second term on the right-hand side of
(2) may be neglected and ¢ = v/ w/c, which corresponds to
the light-wave dispersion in a medium with the refractive
index /e.

Plasma wave dispersion changes from root to linear when
the phase velocity of the waves approaches the speed of light
(the delay effect). For the typical parameters of heterostruc-
tures, it occursat ¢ = 10 cm™~! and the frequency 10— 30 GHz.
A few years ago, 2D plasmons could not be observed at such
low frequencies, the linewidth of plasma resonance being
some 1000 GHz because of the poor quality of the study
structures. The quality of samples has been improved
substantially in recent years. The mobility of two-dimen-
sional electrons has increased by several orders of magnitude
and the linewidth of plasma resonance has decreased to 1—
3 GHz. GaAs/GaAs-based heterostructures exhibit weakly
damping hybrid plasmon—polariton modes (light-bound
plasmon states), whose energy is described by formula (2) [4].

We note that expression (2) was derived on the assump-
tion that the plane occupied by the electron system is located
in a homogeneous medium with a uniform dielectric permit-
tivity. In a real situation, however, the picture may be more
complicated. For example, in the case of silicon MIS
structures, electrons forming the inversion layer in a semi-
conductor lie between the dielectric layer adjacent to the
metal gate and the spatial charge layer adjoining the bulk
semiconductor. Metal electrodes can also be found in the
immediate proximity to the electron system at the liquid

helium surface. The presence of conducting boundaries
changes the dispersion ratio for a plasmon [5]. The metal
electrodes screen Coulomb interactions, thus softening the
plasmon frequency; in the longwave limit, the plasmon
dispersion becomes linear [6—8].

Application of an external magnetic field oriented
normally to the plane of a 2D system results in the
quantization of electron motion in this plane while the
energy spectrum becomes totally discrete. The density of
states is a set of d-functions (Landau levels) separated by the
cyclotron energy. Filling of the Landau levels with electrons
is characterized by a filling factor v defined as the ratio of
the electron density to the multiplicity of degeneracy per
unit area. In real 2D systems, the Landau levels acquire a
finite width due to the interaction of electrons with a
random potential and the distribution of the single-particle
density of states is determined by the character of
inhomogeneities [9].

The appearance of gaps in the electron state density leads
to fundamental macroscopic phenomena such as the integer
and fractional quantum Hall effects (QHEs) [10, 11]. We
recall that the integer QHE consists in the fact that at roughly
integer-valued filling factors, the longitudinal tensor compo-
nent vanishes and the transverse (Hall) one is quantized.
These events can be accounted for by the fact that the
conductivity of a 2D system is a topological invariant
independent of the properties of the random impurity
potential.

In the fractional QHE, the Hall conductivity is quantized
at fractional values of filling factors due to the formation of
incompressible quantum liquids in the ground state of a given
electron system that are separated from the excited states by
energy gaps [12—14]. A theory describing the fractional QHE
as an integer one, not for electrons but for new quasiparticles,
composite fermions that are bound states of electrons and an
integer number of magnetic field quanta, has become popular
in recent years. Fractional QHE states of electrons with the
filling factor v=p/(2np £1) correspond to integer QHE
states of composite fermions with the filling factor v* = p,
whereas composite fermions themselves move in the effective
magnetic field Ber = B — B3, where By, is the magnetic
field atv =1/2n[15-18].

Excitations of a 2D electron system in a magnetic field are
represented by magnetoexcitons and magnetoplasmons, i.e.,
bound states of a hole at a filled level with a number # and of
an electron at one of the vacant Landau levels with a number
n’ [19]. The Hamiltonian of a magnetoexciton is translation-
ally invariant, and the corresponding integral of motion is the
generalized momentum, all of whose components commute
with each other:

o

k:—i(V1+V2)+§(A1—Az)—%[(rz—rl) < B], (4)

where /i = 1, the respective indices 1 and 2 denote negatively
and positively charged particles, and A; and A, are vector
potentials [20—22].

Excitations in a magnetic field are classified in terms of the
dispersion dependences on the generalized momentum. At
we > 62/813, the function

Em(k) = mw. + g,uBBSz + AEm(k) ) (5)

where m = n’ — nis a nonnegative integer, @, is the cyclotron
frequency, /gy = (c/eB)l/2 is the magnetic length, gugBS. is
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the Zeeman splitting energy for spin-flip transitions, and
AE, (k) is a function given by the Coulomb interaction. The
function AE,,(k) depends on m and on the initially filled
Landau level; moreover, in the general case, a few AE,,
branches may exist and additional indices must be intro-
duced to distinguish them.

Low-energy excitations with m =0,1 are the most
interesting ones. When both spin sublevels of the Landau
levels with the indices n=0,1,...,vg — 1 are filled, the
ground state is characterized by an eigenfunction with the
spin number S =0, and excitations with m =1 may be
classified as singlets or triplets.

The singlet branch is a magnetoplasmon with the linear
longwave dispersion (gl < 1)

E(k) = o, +ak, (6)

which assumes the known classical form in small fields:

E(k) = (o} + ()", (7)

where w,(g) is the plasma frequency without the magnetic
field with the momentum ¢ = k. Triplet excitations with
S=1, §.=0,£1 have energies given by the cyclotron
energy S. = 0 and shifted relative to it by the Zeeman energy
gugB3S. (S, = =+1). The longwave dispersion of a triplet
magnetoexciton is quadratic.

In the case of differentially filled spin sublevels, the
excited states cannot be divided into singlet or triplet ones.
If vy =v; + 1, where v| and v; are the respective numbers
of the filled Landau levels for the downward and upward
spins, and v; >0, the excitation spectrum with m =1
contains two plasma modes. In the longwave limit, one of
them has magnetoplasmon dispersion (6) and the other is
characterized by a quadratic dispersion. There is also a spin-
flip mode, i.e., the electron excitation with a spin flip. When
only one spin sublevel of the lowest Landau level vy =0 is
filled, there is a single plasma mode (6) and a single spin-flip
mode. In the longwave limit, the spin-flip mode has an
energy much in excess of the cyclotron energy, due to the
difference in the exchange energies at the zeroth and the first
Landau levels [23].

In all these cases, the excitation branch with m = 1 and
3S. = 0 has the energy E(k) — o, as k — 0, and the Kohn
theorem [24] holds, claiming that electron —electron interac-
tions have no effect on the cyclotron resonance energy in a
spatially uniform system. As regards excitations with
8S, = +1, —1, their energies at k — 0 may be shifted with
respect to the cyclotron energy by the exchange energy value.
In the absence of scattering on the alloy potential, longwave
excitations with m =1, 8S, =0 have an infinite lifetime
because the system can have no other states with the same
energy, generalized momentum, and spin quantum number.
Excitations with S, = +1, —1 may decay into a spin exciton
with m =0, 8S, =1 and a magnetoplasmon with m =1,
3S.=0.

There are no excitations with m =0 when an equal
number of Landau spin sublevels are filled. Otherwise, the
spectrum shows spin-flip excitations, i.e., spin excitons or
magnons. In the quantum ferromagnetic state vy = 1,v; =0,
the longwave magnon dispersion is quadratic,

EO(k) - g:uBB ~ kz )

while in the shortwave limit, it is described by a constant given
by the exchange energy at the zeroth Landau level. Also, there
are excitations in the shortwave limit, whose energy is smaller
than the magnon energy. These are skyrmion —antiskyrmion
pairs [25]. A skyrmion with the energy Es = (1/4) Ey(c0) is a
topological excitation over the vector field of electron spins,
and the energy of a skyrmion—antiskyrmion pair is lower
than the energy of a shortwave magnon. Despite extensive
literature on the theory of skyrmion excitations [26], no direct
experimental observation of skyrmions has thus far been
reported. This can be accounted for by the fact that the
electrons in the 2D systems being studied have a large
effective g-factor. The value of 8S. in skyrmion excitations
being high, the loss of the Zeeman energy by an excited
skyrmion —antiskyrmion pair is not compensated by the gain
of the exchange energy.

Excitations with m = 0 without spin flip are ‘magneto-
phonons’ or electron excitations inside partially filled Landau
levels in fractional QHE states. Having a roton minimum,
these excitations resemble phonons in superfluid helium. The
shortwave gap on the magnetophonon dispersion curve is due
to the excitation of a pair of charged quasiparticles formed by
a quasielectron with a fractional charge —v and a quasihole
with the fractional charge v. The size of the gap in this region
is easy to deduce from the measurement of the activation
energy in dissipative conductivity [27]. The most difficult for
experimental analysis is the section of the dispersion curve
with small momenta and momenta of the order of the inverse
magnetic length, where the dispersion has a roton minimum.
A few characteristic points at the dispersion curve of the
magnetophonon mode at v = 1/3 were obtained by inelastic
light scattering spectroscopy [28].

Recently, a new line of 2D-system research has emerged,
focused on electron systems with spatial charge separation or
double electron layers. The physical realization of double
layers is a semiconducting heterostructure with two symme-
trically alloyed quantum wells (DQWSs) separated by a
narrow potential barrier. The presence of two layers in
DQWs gives rise to an additional degree of freedom
(pseudospin), which enables electrons to change the layer
index.

Double layers may be categorized into two groups
based on their physical properties: those with the Coulomb
coupling and those with the tunnel coupling between the
layers. Double layers with Coulomb couplings are of
interest for fundamental research. Coulomb correlations
between electrons of different wells may be responsible for
physical phenomena such as Coulomb drag, ferromagnet-
ism, superconductivity, and Wigner crystallization [29 —32].
Double layers with tunnel bonds, in their turn, are
interesting for technological applications. DQWs with a
spatially modulated tunnel coupling are the most likely
candidates for the creation of basic elements of quantum
computers, qubits, and quantum logical gates integrated
into standard electron circuits. By varying the number and
distribution of surface gates for DQWs, it is possible to
organize any quantum computation [33].

The additional degree of freedom gives rise to new
oscillation branches, one of which resembles ion waves in
gas plasma and others are analogous to exciton-type oscilla-
tions [34, 35]. In double-layer systems, Landau damping is
also characterized by specific features. With the delay effects
neglected, the dispersion equation for plasma waves in thin
layers separated by a barrier d in the small-momentum region
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gag < 1 has the form

2ne’q
2 _
wz(g) =— = (N1 + N2)
11 4NN, 12
X |zF- (112 l—exp—2qd> . (8

where N, , are the electron surface densities in each layer and
ap is the effective Bohr radius in a layer. In experimentally
realized systems, N, , are densities of ionized donors from
two sides of a DQW and the phenomenological parameter d
includes the nonlocality of electron wave functions in the
direction of heterostructure growth. The distance between the
centers of the DQW-forming quantum wells is a good
approximation for d.

Equation (8) describes two branches of plasma oscilla-
tions. One is w,(g) (optic plasmon), corresponding to in-
phase oscillations of particles in two wells and characterized
by the root dispersion law usual for a two-dimensional
plasmon. The other is w_(g) (acoustic plasmon), describing
out-of-phase electron oscillations in DQWs with the acoustic
dispersion [36, 37]. This branch is analogous to the ion sound
in gas plasma in terms of the ¢g-dependence and the decay
mechanism. At vg; # vgy (vg; 1s the Fermi velocity in the ith
layer), one branch always (even at zero temperature) involves
Landau damping: a plasmon in the layer with a lower Fermi
velocity damps down on electrons of the other layer. At
qd > 1, the layers become decoupled and Eqn (8) gives two
independent 2D plasma waves. The plasmon phase velocity in
either wave is higher than its ‘own’ Fermi velocity, that is,
w1 > qug; and w, > qug; for infinitely large ¢.

Double layers with tunnel couplings may contain three
plasma branches. In symmetric DQW, one of them is an
acoustic plasmon that damps down if the criterion

(1}1—1’12>{1+#2())r<1 )

1s not satisfied, where

_dp

D(k) = Il — Iy

k:O’
Lijir = (bi(2) W (2) [ exp (= klz — 2| [ (") Y(27))

V1 »(z) are the wave functions components along the growth
axis in the symmetric and asymmetric dimensionally quan-
tized subbands, and n, , are electron surface densities in these
subbands [34].

We note that the sum of surface densities in the subbands
equals the sum of the densities of ionized donors in DQW
barriers (the electroneutrality property), even though »; and
N, taken separately are not equal. Criterion (9) usually fails to
be satisfied, and the spectrum of two layers retains two
plasma branches, in-phase and tunnel. The energy of the in-
phase oscillations of the charge in the two subbands is not
very sensitive to the tunnel coupling value and is determined
by the total electron density. Properties of the second branch
are considered below.

The dissipative conductivity of DQWs shows integer
QHE states with an odd total filling factor in two layers. It is
a rather surprising observation because single layers have no
half-integer QHE states. It turns out that even weak interlayer
tunneling gives rise to an odd-integer state of QHEs promoted

by the opening of the energy gap between symmetric and
antisymmetric subbands of dimensional quantization [38, 39].
The ground state is a single completely filled Landau spin
sublayer of the symmetric subband separated from the
corresponding Landau spin sublayer of the asymmetric
subband by an energy gap. If the interlayer Coulomb
interaction is sufficiently strong and the total filling factor is
unity, the collective QHE state can be observed even in the
absence of tunneling [40, 41].

At a certain critical distance between the layers, a phase
transition occurs from the incompressible to the compressible
QHE state, which is a superfluid quantum liquid, a boson
condensate formed by electrons and holes in different layers
[30, 42, 43]. The order parameter in the compressible state is
introduced by analogy with superconductors or superfluid
He* and its spatial fluctuations lead to the Goldstone mode. It
is expected that the new state may be associated with the
Kosterlitz— Thouless transition and with the Josephson and
Meissner effects [44, 45]. Despite voluminous theoretical
literature on double electron layers, experimental studies
have largely been confined to magnetotransport investiga-
tions of the ground state. This is because the excitation of
asymmetric modes during electromagnetic field absorption
and emission is forbidden by symmetry, and the study of
symmetric modes is of low informative value.

The objective of the present review is to discuss the results
of experimental studies on excitations in single and double
quantum wells that are inactive in the processes of absorption
and emission of electromagnetic radiation. The review is
organized as follows. Section 2 contains the description of
an original experimental method for the measurement of
inelastic light scattering spectra in perpendicular and tilted
magnetic fields. Section 3 is focused on cyclotron excitations
of spin density in single quantum wells, whose energy is
sufficient to measure exchange and correlation interactions
in integer-valued and fractional QHEs. Section 4 considers
intersubband magnetoexcitation spectra in the small-momen-
tum region, new branches of collective excitations, and
experimental confirmation of a fundamental relation for the
energy of the intersubband Bernstein modes in a spatially
homogeneous system. Also discussed in this section are
interactions of the intersubband Bernstein modes with the
principal charge and spin density excitations and with
excitations of the phonon subsystem of semiconductor
quantum wells. Section 5 considers excitations and magne-
toexcitations in double quantum wells and the effects of
spatial asymmetry on collective excitations. It also describes
a method for measuring asymmetry from the spectrum of
single-particle excitations in a parallel magnetic field.

2. Experimental method

The authors have developed a method for the measurement of
2D electron system spectra in an arbitrarily oriented external
magnetic field at superlow temperatures using a pair of
optical waveguides. One lightguide serves to induce optical
excitation of the electron system and the other to detect the
inelastic light scattering signal. The detector lightguide is an
effective in-situ premonochromator that filters laser radiation
reflected from the sample surface and the entire signal of
intrinsic inelastic light scattering from the exciting waveguide.

Because 2D systems have translational symmetry only in
the quantum-well plane, inelastic light scattering processes
retain the longitudinal component of a radiation pulse. This
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opens up a unique possibility to study the dispersion of 2D
excitations without readjustment of the exciting radiation
wavelength. The pulse strength depends on the waveguide
orientation with respect to the test sample surface and its
maximum value is limited by the wavelength of the exciting
photon. Both the waveguides and the test sample are firmly
fixed on a rotating holder, with the sample attached at an
arbitrary angle to the holder axis. The holder is placed in a
cryostat with a superconducting solenoid in which the field
is directed either horizontally or vertically. By rotating the
holder in the solenoid with the horizontal field, it is possible
to continuously vary the angle between the directions of the
magnetic field, the pulse, and the normal to the 2D system.
The horizontally oriented field is used to carry out
experiments in the Foigt geometry, and the vertical
orientation of the field allows experimenting with the
Faraday geometry.

The waveguide technique for the study of inelastic light
scattering has the advantage of being free from drawbacks
inherent in the standard method using an optical window,
such as contamination of the optical guide or misalignment of
the optical system caused by magnetic field scanning. This
technique enables measurements in parallel and perpendicu-
lar configurations of the polarization vectors of exciting and
scattered photons [46]. Light polarization is analyzed by
linear polarizers and phase-rotating plates placed in liquid
helium straight in front of the test sample.

The present study was carried out using a group of high-
quality heterostructures grown by molecular beam epitaxy.
The heterostructures were asymmetric selectively alloyed
Al,Ga;_As/GaAs (x=0.3—1) 12-45-nm-wide single
quantum wells and symmetric 12—25-nm-wide double quan-
tum wells separated by insulating barriers 2.5—5 nm in width.
The electron densities were (1—7) x 10!! cm~ and mobilities
of the order (1—10) x 10° cm? ~'s~!. The density of the
heterostructures was varied as described in [47]. The same
method was used to balance double quantum wells.

3. Combined cyclotron excitations
in single quantum wells

This section deals with investigations into inelastic light
scattering by combined electron excitations associated with
concomitant variations in the Landau level number and spin
quantum number. Combined excitations are essentially
different from excitations actively absorbing electromag-
netic radiation, i.e., magnetoplasmons and magnons. The
energy of the latter satisfies the Kohn and Larmor
theorems. The Kohn theorem forbids contributions to the
magnetoplasmon energy from the electron—electron inter-
action in a spatially homogeneous system and the Larmor
theorem forbids contributions to the magnon energy in a
system invariant under rotations in the spin space. No such
limitations are imposed on the energy of combined excita-
tions, and their experimental observation opens up a unique
possibility to study electron—electron interactions in 2D
systems.

Section 3.1 is focused on combined excitations in the
ultraquantum limit when the electron filling factor at the
lowest Landau level is smaller than 1/2 [48]. A new quantum
excitation, a cyclotron spin wave in the range of filling factors
from 1 to 2 [49], is discussed in Section 3.2. Section 3.3 is
devoted to considering a special case of even integer filling
factors [50].

3.1 Combined cyclotron excitations

in the ultraquantum limit

It is convenient to start the description of the properties of
combined excitations from the ultraquantum limit v ~ 1/10
in which Coulomb correlations play only an insignificant role.
Almost all electrons in the ultraquantum limit are bound to
positively charged impurities, thus giving rise to complexes
located in the AlGaAs barrier of the quantum well [52]. In the
range of magnetic fields under consideration, the lowest
energy is inherent in the singlet state of a localized trion, a
three-particle complex in which two electrons with different
spins in the quantum well are bound to a charged impurity in
the barrier [S1]. This accounts for the zero spin quantum
number of the ground state and the division of excitations
into singlet or triplet.

The inelastic light scattering spectrum consists of four
lines, two of which coincide and have the energy equal to the
cyclotron energy, whereas the energy difference between two
others is as large as the Zeeman energy. The coincident lines
correspond to the magnetoplasmon (m =1, S=0, S. =0)
and spin wave (m = 1, S = 1, S. = 0), respectively, while the
split ones correspond to spin-flip modes (m=1, S=1,
S, = +1) (Fig. 1). As the filling factor grows, the exchange
interaction between electrons at the zero Landau level leads to
a rise in the effective g-factor of the electrons. As a
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Figure 1. Inealstic light scattering spectra of a quantum well in the
cyclotron energy region at different filling factors. The bottom figure
presents classification of spectral lines and their energy counted from the
cyclotron energy.
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consequence, the electron system acquires spin polarization,
which results in the disappearance of the spin wave line and a
low-energy spin-flip mode. The energy of the second spin-flip
mode simultaneously increases. The energy difference
between the high-energy spin-flip mode and the magneto-
plasmon is reflected in the amount of the exchange-correla-
tion energy that is lost by the electron during transition from
the zeroth to the first Landau level.

Comparison between theory and experiment reveals a
two-fold exceeding of the computed value over the observed
one if only exchange interaction is taken into account. Such a
substantial discrepancy between theoretical and experimental
findings ensues from the correlation between electrons at a
partially filled Landau level. This inference can be verified in
the framework of the single-mode approximation proposed
by Feynman for the description of phonons in superfluid
helium [53]. Excitation energies are given by

where
S(k) = J dr exp(—ikr) [g (r) — 1]

is the static structural factor, g(r) is the pair correlation
function, and F(k) is the oscillator strength [54]. When the

1 (0), meV
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B=68T
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Figure 2. Experimentally found difference between the spin-flip mode and
magnetoplasmon energies for two magnetic field values depending on the
electron filling factor v (circles); triangles and solid lines represent values
calculated in the framework of the single-mode and Hartree—Fock
approximations, respectively; dashed lines show the Zeeman energy E..

filling factor has an arbitrary value, the correlation function
remains unknown, but its numerical approximation for
certain Laughlin states of fractional QHEs can be obtained
by the Monte Carlo method [14, 55]. Taking correlations in
both the ground and excited states into account significantly
reduces the energy of the spin-flip mode, in excellent
agreement with experiment (Fig. 2) [48, 56].

We note that the spin-flip mode, unlike the magnetoplas-
mon, is a decay excitation because an electron system may
contain pairs of excited states with the same energy, total
generalized momentum, and spin quantum number that
consist of a spin exciton (m =0, dS =1, 6S; =+1) and a
magnetoplasmon (m = 1,85 =0, 3S. = 0).

Indeed, it is observed in experiment that the linewidth or
the inverse lifetime of the spin-flip mode significantly
increases as the filling factor changes from v =1/10 to
v = 1/2. Conversely, no line corresponding to the spin-flip
mode can be detected at the filling factor v = 1/2 because its
lifetime is very short [48]. In the range of v — 1, the line of the
spin-flip mode narrows again, probably due to a decrease in
the number of decay channels in the integer QHE state. A
further rise in the filling factor leads to spin depolarization of
the electron system, whereas the lifetime of the spin-flip mode
continues to decrease.

3.2 Cyclotron spin wave

The filling of the second spin Landau sublevel (v > 1) is
accompanied by a new collective excitation of the charge-spin
type or a cyclotron spin wave (Fig. 3). The magnetoplasmon
and cyclotron spin wave represent in-phase and out-of-phase
oscillations of the spin subsystem in a 2D electron system with
the cyclotron frequency. In the case of a zero generalized
momentum, the cyclotron spin wave is a spin-type excitation,
whereas in the shortwave limit g/lg — 00, it becomes a charge-
type excitation [57].

In the longwave limit, the cyclotron spin wave is
dispersionless and its energy equals the cyclotron energy and
is independent of the electron distribution over two spin
Landau sublevels. Therefore, the spin wave energy may be
regarded as a measure of the cyclotron electron mass more
accurate than the cyclotron resonance energy. It is known
that longwave fluctuations of a random potential from the
ionized donor level in 2D systems cause a shift of the
cyclotron resonance energy toward the energy of a magneto-
plasmon with the momentum given by the inverse length of
fluctuations, while the energies themselves differ in samples
with different distributions of the impurity potential [58]. The
energy of the cyclotron spin wave is resistant to fluctuations
of the random potential, and the tilt of its magnetic field
dependence may be used to accurately determine the cyclo-
tron mass of electrons [49].

3.3 Spin-triplet excitations in even integer QHE states

A special case for combined cyclotron excitations is the filling
factor v =2, at which the ground state of a 2D electron
system is not spin-polarized (S = 0) and the excited states
may be classified as singlet or triplet. It is assumed that the
state v — 2 is equivalent to the state v — 0 considered above
because the properties of an electron system at a virtually
vacant Landau level are equivalent to the properties of a hole
system at an almost completely filled Landau level (the
electron—hole symmetry). The energies of excitations at
¢ =0 in the first order of smallness in the parameter
re = (€?/elg) /w, coincide at v = 2 and v — 0.
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Figure 3. Inelastic light scattering spectra at B=4.2 T and different
electron filling factors. In an electron system with a single filled spin
Landau sublevel, there is only an in-phase cyclotron excitation, the
magnetoplasmon (MP). Filling of the second spin sublevel v > 1 opens
up the possibility for the formation of an out-of-phase excitation, the
cyclotron spin wave (CSW).

It can be shown that Coulomb corrections to the energy of
spin-triplet excitations also vanish in the remaining orders of
the perturbation theory. However, exchange corrections to
the spin-triplet excitation energy do not vanish even in the
second order. Exchange interaction decreases the energy of
spin-triplet excitations relative to the cyclotron resonance
energy, while the exchange contribution AE, is independent
of the magnetic field (Fig. 4). Such a behavior of the exchange
energy leads to a nontrivial physical result. The energy needed
to transfer an electron to the first Landau level from the
zeroth level and simultaneously invert its spin is lower than
the cyclotron energy. Because second-order corrections
‘work’ in relatively small fields, the exchange contribution
makes a considerable portion of the cyclotron energy, while
the Zeeman energy may be infinitely low.

Summation of all exchange corrections in the second
order of the perturbation theory gives the exchange contribu-
tion value

e 1_21*}1
AEx = _Z Rn YU RN

nn?—1)’ (10)

Magnetic field, T

Figure 4. Magnetic field dependence of the energy of a spin-triplet
magnetoexciton at the electron filling factor v =2. The dashed line
represents the cyclotron energy. The inset shows the characteristic
spectrum of inelastic light scattering.

in units of rga)C ~ 11.34 meV. In an ideal 2D system,
AE, = (In2—-1)/2 = —-0.1534... [50, 59]. In a real 2D
electron system, the nonlocality of electron wave functions
in the direction of a quantum well smoothes the Coulomb
interaction. Then, the 2D expression for V' (g) = 1/¢ should
be substituted by V(q) = F(q)/q, where F(q) is the form-
factor depending on the quantum well width and electron
density. With the formfactor taken into account, the
exchange contribution value is in good agreement with
experimental data.

We note that exchange contributions of the second order
reduce the energy of spin-triplet excitations not only at v =2
but also in all other integer QHE states. The exchange
contribution simultaneously decreases due to the ‘broad-
ening’ of magnetoexciton wave functions. By way of exam-
ple, the negative exchange contribution to the energy of a
spin-triplet magnetoexciton at v = 4 is two times smaller than
that at v = 2 [50].

4. Intersubband magnetoexcitations
in single quantum wells

This section is concerned with the modification of intersub-
band excitations by a magnetic field. Similarly to combined
cyclotron excitations, the majority of intersubband excita-
tions are not active in absorbing electromagnetic radiation;
hence, inelastic light scattering is the sole method suitable for
their investigation. Section 4.1 presents experimental verifica-
tion of a Kohn theorem analog for intersubband excitations
and examines new branches of intersubband magnetoexcita-
tions related to the multicomponent nature of the ground
state of the electron system with a few filled Landau levels [60,
61]. Section 4.2 discusses dispersion dependences of intersub-
band excitations and information on the collective properties
of 2D electron systems, the interaction between collective
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modes of different natures, and the interaction of the electron
and phonon subsystems of quantum wells [60, 62, 63]. Finally,
Section 4.3 is devoted to the effect of a parallel magnetic field
on the energy of intersubband excitations and magnetoexcita-
tions [64].

4.1 Intersubband magnetoexcitations with zero generalized
momentum

We first consider the well-known spectrum of intersubband
excitations in a zero field. It comprises two collective modes of
the exciton type that may be regarded as singlet and triplet
states of the exciton formed by an electron in the excited
subband and a hole below the Fermi level of electrons in the
ground subband [65—68]. At ¢ — 0, the energy of the triplet
exciton is smaller than the single-particle energy of intersub-
band splitting due to the Coulomb interaction between the
electron and the hole (the exciton shift). The energy of a
singlet exciton may be either higher or lower than the single-
particle energy. Besides the exciton shift, it contains the
energy of the macroscopic polarization electron system (the
depolarization shift).

Inelastic light scattering shows two narrow lines of
exciton-like collective excitations and a broad line corre-
sponding to the continuum of single-particle excitations
(Fig. 5) [66]. In a magnetic field perpendicular to the
quantum well plane, the continuum of single-particle excita-
tions splits into a number of individual spectral components
corresponding to the intersubband Bernstein modes, i.e.,
collective excitations occurring with simultaneous changes
of the Landau level number and of the index of the
dimensionally quantized subband change. The energies of
the intersubband Bernstein mode give rise to a ‘fan’ of
Landau levels stemming from the energy of intersubband
splitting with the slope determined by the effective electron
mass in a semiconductor quantum well:

Epiy = |Q £ 0o, (11)
where |n| > 1 and Q is the single-particle energy of intersub-
band splitting.

Fundamental expression (11) is an analog of the Kohn
theorem for intersubband excitations: the energies of intersub-
band Bernstein modes at a zero momentum do not depend on the
electron—electron interaction [60, 69—71]. It is noteworthy
that expression (11) contains no contributions reflecting
peculiarities of the confining potential of the quantum well
(shape, width, and height), and the single-particle energy Q2 is
the sole parameter that characterizes the transverse motion of
electrons.

Unlike in the case of Bernstein modes, the energies of
singlet and triplet excitons are independent of the magnetic
field. These excitations are transformed into magnetoexcitons
related to electron transitions with the conserved Landau-
level number. In neglecting the nonparabolicity of the
conductivity band in the energy range of intersubband
splitting, the energies of all such transitions are equal to
each other and show no dependence on the magnetic field
value.

When more than one Landau level is filled in the ground
state of a 2D electron system, additional excitation branches
emerge in which the number of a given Landau level remains
unaltered. These are out-of-phase electron oscillations from
different Landau levels. They are presented in an inelastic
light scattering spectrum by the L, resonance [60, 61]. When n

Intensity

0

| 1 ! | | | | |
20 22 24 26 28 30 32 34
Raman shift, meV

Figure 5. Inelastic light scattering spectra of intersubband excitations with
an interval of 0.1 T in the range from 0.7 to 2.4 T at ¢ = 0.4 x 10° cm~!.
The spectrum in a zero magnetic field is presented for comparison.
Notation: SPE — single-particle continuum, ISBM — intersubband
Bernstein modes, CDE and SDE — spin-singlet and spin-triplet intersub-
band excitons, Ly — out-of-phase modes.

Landau levels are filled in the ground state, there are 2n
collective intersubband branches joined in pairs, each
comprising charge and spin density excitations. The energies
of one pair are independent of the magnetic field; they are in-
phase branches (singlet and triplet intersubband magnetoex-
citons). The energies of all the remaining (out-of-phase)
branches decrease as the magnetic field increases; as B — 0,
they converge to the energy of single-particle intersubband
splitting. Splitting of the in-phase branches is as large as the
depolarization shift. The energies of the out-of-phase
branches coincide within each pair and their interpair
difference is small [72, 73].

In a sense, the above branches are analogous to phonons
in crystals. An elementary crystal cell corresponds to a
magnetic flux quantum in an electron system. In-phase
intersubband branches are analogous to the acoustic
branch. Their energies are determined by the total electron
density in a 2D system. All other out-of-phase branches are
analogous to optical branches. Their number for each
excitation type (charge or spin density) is n— 1; these
branches are absent at v < 2, when there is only one electron
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of each spin per magnetic flux quantum [61]. Naturally, the
analogy between phonons and collective magnetoexcitations
is provisional. For example, the electron filling factor is a
continuous function of the magnetic field, whereas the
number of atoms in an elementary cell changes discretely.
As a result, the energies of out-of-phase branches vary
monotonically with alteration of the filling factor.

4.2 Dispersion of intersubband magnetoexcitations

in the longwave limit

Relation (11) describes the behavior of the intersubband
Bernstein modes at g/g — 0. As the momentum grows, their
energies deviate from the linear dependences in the energy
resonance region with intersubband magnetoexcitons. Cou-
lomb interactions result in hybrid collective excitations with
and without altering the numbers of the Landau levels; the
hybrid gaps are proportional to (qlB)‘”‘, where 7n is the
Bernstein mode number [60]. The size of the hybrid gaps and
the character of their dispersion dependences are consistent
with theoretical predictions in the framework of the local
density approximation (Fig. 6) [65, 69, 74, 75].

The dependences of hybrid gaps on the electron density
exhibit some interesting features. The upper hybrid gaps
n > 1 disappear at a certain critical (nonzero) electron
density found from the condition of equality of the depolar-
ization and exciton shifts (Fig. 7). At densities below the
critical value, the energy of a singlet intersubband exciton
becomes smaller than the energy of single-particle intersub-
band splitting, and the energy resonance with the Bernstein
modes is unfeasible.

The upper hybrid gaps exhibit a nonmonotonic depen-
dence on the electron density by virtue of the dynamic
screening of the Coulomb interaction by optical phonons. As
aresult of band bending in the semiconductor quantum well, a
rise in the electron density inevitably leads to an enhanced
energy of intersubband splitting. Simultaneously, the energy
of the singlet intersubband exciton increases and, at a certain
electron density, comes into resonance with a longitudinal
optic phonon. The macroscopic polarization field merges the
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Figure 6. Energies of intersubband excitations: dots — experiment, dashed
lines — values calculated in the local density approximation. The
maximum of the single-particle continuum is represented by the white
circle.
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Figure 7. The plot of hybrid gap A*! versus electron density at a fixed value
of momentum ¢ = 1.1 x 10° cm~!; the dashed line represents the results of
calculations in the local density approximation.

electron and phonon modes, and the inelastic light scattering
spectrum exhibits two hybrid modes [62].

The hybrid modes in their turn interact with the intersub-
band Bernstein modes, giving rise to triple modes (Fig. 8). The
Bernstein modes themselves do not interact with the optical
phonon mode, at least in the longwave limit; instead, they
interact only with the electron component of hybrid modes.
The interaction of the Bernstein modes with the electron
component of the hybrid mode is enhanced and the interac-
tion with the phonon mode impaired if the parameters of
quantum wells are changed such that the singlet exciton is out
of resonance with the optical phonon.

4.3 Intersubband excitations and magnetoexcitations

in a parallel magnetic field

Intersubband excitations in parallel and tilted magnetic fields
show unusual properties. Nonlocality of the electron wave
functions in the direction of the quantum well growth makes
electrons and holes of intersubband excitations propagate in
two spatially separated planes. They are dipoles with the
dipole moments

dI—e‘Zoo—le|n, (12)

where n is the normal to the well plane,

Zo0— 211 = j Az (2) 2 ol2) - J dz () 29, (2)

is the mean distance between the electron and the hole, and
V;(z) is the component of the electron wave function in the
direction of the quantum well growth in a dimensionally
quantized subband with index i.

In the external magnetic field oriented along the well
plane, the vector

P=1II +é dxB (13)
plays the role of the generalized momentum of intersubband
excitations conserved in scattering processes (P = q), where
IT is the kinematic momentum in the well plane [76].
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The kinetic energy of intersubband excitations is a
function of the kinematic momentum

E(H):E(’P—%deD7 (14)

which means that the energy involves the gauge term
c~'d x B, in addition to the generalized momentum. This
allows studying the dispersion of intersubband excitations by
applying an in-phase magnetic field. The condition

1
P=-dxB
c

(15)
being satisfied, the kinematic momentum and, accordingly,
the kinetic energy vanish, although neither the generalized
momentum nor the gauge term taken separately are equal to
Zero.

The influence of the gauge term on intersubband excita-
tion energies is illustrated using a singlet intersubband exciton
as an example (Fig. 9). When the momentum is zero, its
energy depends on the magnetic field quadratically. As the
longitudinal momentum along the vector d x B grows, the
magnetic field dependence shifts on the abscissa axis by the
value of the momentum. This means that the magnetic field
dependence of the excitation energy may be identified with
the dispersion dependence.

When the relative orientation of q and d x B changes
without alteration of their absolute values, the kinetic energy
shows rotational anisotropy (Fig. 10), while its angular
dependence is fairly accurately described by expression (14):

1 1 2
= ——dxB
2m* (q ct ) ’

where m* is the effective mass of the singlet intersubband
exciton. Although individual intersubband excitations are
characterized by different quantum numbers of the internal

E(IT) (16)

E(IT), meV

0.5 F

¢ 'dB, 105 cm™!

Figure 9. Experimental dependence of the kinetic energy of a singlet
intersubband exciton on ¢~'dB for two values of the inelastic light
scattering momentum: ¢ = 0 (white circles) and ¢ = 1 x 10° cm~! (black
circles). The vector d x B is directed along q. Dash-dotted lines represent
singlet exciton dispersion values calculated in the framework of the local
density approximation; solid line is the same dispersion curve displaced by
1 x 10° cm~! along the abscissa axis.

and spin degrees of freedom, they have equal dipole moments
and their dispersion dependences behave similarly [64].

A special case is constituted by single-particle excitations
that are not bound complexes characterized by an intrinsic
dispersion dependence. The energies of single-particle and
collective excitations show different dependences on the
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confining potential, i.e., the dipole moment of intersubband
excitations. The knowledge of the dipole moment allows
determining the direction and the magnitude of the potential
gradient. Moreover, the anisotropic part of the excitation
energy being a linear function of the magnetic field, the
measurements are feasible in small magnetic fields.

We consider the dispersion of intersubband excitations in
an external magnetic field oriented at an arbitrary angle to the
quantum well plane (Fig. 11). In this case, the kinematic
momentum in expression (14) should be substituted by
generalized momentum (4). Then, the parallel field effect on
the excitation energy is again reduced to the gauge term
¢~ 'd x B. This can be shown in the example of the dispersion
dependence of hybrid modes in the region of the resonance
between a singlet exciton and an intersubband Bernstein
mode with index +1. When the magnetic field is oriented
orthogonally to the quantum well plane, the dispersion of the
hybrid gap or the total dispersion of two hybrid modes
becomes linear. The same dependence exists if the general-
ized momentum is fixed and the magnetic field component is
varied such that the vectors q and d x B are codirected and the
dependence is shifted along the axis of abscissas by the value
of the generalized momentum (Fig. 12). The hybrid gap is
nonexistent when q = ¢~'d x B, although neither the gen-
eralized momentum q nor ¢~'d x B taken separately is equal
to zero. It may be concluded that the form of the dispersion
dependence of intersubband excitations in the case of an
arbitrary orientation of the magnetic field is determined by
the perpendicular component of the field alone. Its parallel
component displaces the dispersion dependence in the
momentum space by the value of the gauge term. Using a
parallel magnetic field, it is possible to measure the dispersion
of intersubband magnetoexcitations in the region of

Figure 11. Inelastic light scattering spectra at ¢ = ¢~ dB when the vectors d
and d x B are codirected (top) and oppositely directed (bottom). Dashed
lines represent theoretical excitation energies calculated in the local density
approximation on the assumption that the parallel component of the
magnetic field contributes to the excitation energy only through the gauge
term ¢'d x B, i.e., P =0 (top) and P = 2 x 10° cm~! (bottom).

momenta unattainable in standard inelastic light scattering
experiments [64].

5. Excitations and magnetoexcitations
in double quantum wells

Intersubband excitations in single quantum wells have much
in common with intersubband (interlayer) excitations in
double quantum wells. It was accepted in the past that the
principal physical parameter characterizing properties of the
ground and excited states in DQW is the ratio of the tunnel
energy Asas to the Fermi electron energy Ep. It is demon-
strated in the present section that the degree of spatial
asymmetry is a more important characteristic. This inference
ensues from the fact that the ratio of the tunnel energy to the
Fermi energy cannot be made arbitrarily small while preser-
ving the symmetry of a given electron system. At a certain
value of this ratio, the ground state symmetry is broken and
the transition parameter is determined not only by the tunnel
and Fermi energies but also by the well widths and the
random impurity potential distribution.

Below, we call a state symmetric or asymmetric depending
on whether the wave functions of single-particle states have or
do not have parity. Documentation of the degree of DQW
asymmetry is a very important experimental problem, dis-
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cussed in Section 5.1 [77, 78]. The effects of asymmetry on
plasma excitations are considered in Section 5.2 and on
magnetoexcitations in Section 5.3 [79-81].

5.1 Single-particle excitations in double quantum wells
in a parallel magnetic field
In what follows, we consider the spectrum of intersubband
single-particle excitations in asymmetric DQWs. In the weak-
tunneling limit 4gas < Ep, wave functions of single-particle
states are localized in separate layers. For each value of the
momentum, there is a continuum of single-particle excitations
from under the Fermi surface of electrons of the first
dimensionally quantized subband to the empty states over
the Fermi surface of the second subband. In asymmetric
DQWs, such excitations occur between different layers.

The boundary energies of the continuum, Q — gug and
Q + qug, are achieved for the excitations whose momentum is
either parallel or antiparallel to the Fermi momentum of
electrons in the first subband. As the momentum grows, the
energies change in opposite directions. The phase space of the
second subband being filled, the density of states for
resonances between inelastic light scattering and boundary
energies is considerably higher than for the remaining part of
the continuum; therefore, the spectrum consists of two lines
with boundary energies of the continuum [77, 82]. Extrapola-
tion of their energies to ¢ = 0 yields the intersubband splitting
Q and the slope of linear dependences gives the Fermi velocity
of electrons in the first dimensionally quantized subband.

According to (14), excitation energies at the boundaries of
the continuum show a linear dependence on the magnetic
field oriented along the DQW plane:

1
E=Q+ qug| +— dBug;
C

if q and B are parallel, and

1
E:Qi‘q——dXBUFl
c

if q and B are perpendicular to each other. Here, vg(y) is the
Fermi velocity in the first (second) subband.

We consider changes in the excitation spectrum during the
transition of a DQW from the asymmetric to the symmetric
state, taking a nonrealistic model of virtual excitations
between two isolated quantum wells as an example (Fig. 13).

Excitation energies decrease proportionally to a fall in the
energy of intersubband splitting, while the critical magnetic
field at which condition (15) is satisfied does not change
because the dipole moment remains constant.

A nontrivial situation occurs when the term
|q —c! d><B|vF2 exceeds the intersubband splitting energy.
In this case, the spectrum contains two branches of single-
particle excitations corresponding to direct transitions of
electrons from a high-density layer to one of lower density
(A-branch):

UFI} )

[Q—‘q—%de

1
VFI , Q+’qud><B

Q=19 meV

Q =42meV
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Raman shift, meV
o
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Figure 13. Variation of the DQW intersubband excitations spectrum
during transition from the asymmetric to the symmetric state. The top
figure depicts the limiting potential profile, wave functions (dashed lines),
and squared wave functions (solid lines) in asymmetric (left) and
symmetric (right) states. Shaded zones correspond to excitations from
the first to the second quantum subband (A-branch), light ones to
excitations from the second to the first subband (B-branch) disregarding
tunneling. Zones where the energies of the two branches coincide are
marked with light hatching and experimental points by white circles. The
intersubband splitting energy for each state is denoted by Q.
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and to reverse transitions (B-branch):

vF2:| .

Excitations of either branch have dipole moments of equal
moduli but opposite directions. Therefore, as the energy of
one branch in a magnetic field increases, that of the other
branch decreases. At certain values of system parameters,

UFI) ’

the upper boundary of the B-branch exceeds that of the
A-branch, which leads to symmetrization of the excitation
spectrum (Fig. 13).

This model describes virtual interlayer excitations having
the same dipole moment in any state. In real DQWs,
symmetrization leads to a decrease in the dipole moment of
excitations. Nevertheless, excitation energies in a symmetric
state undergo a shift in a magnetic field as if the dipole
moment of excitations were retained, because, in contrast to
the case of single quantum wells, the splitting between
symmetric and asymmetric subbands in DQWs is smaller
than or comparable to the magnetic quantization energy [83,
84]. A parallel magnetic field alters electron states such that
everywhere except a small magnetic field range,

1
|:0,—Q+’q_deB

1 1
Q<—<‘q——de
2 c

1
UFQ—'q—;dXB

1
Asas ~ — dBuF
¢

where Agas is the tunnel energy, i.e., the boundary excitations
of the continuum occur as interlayer ones [78]. The critical
magnetic field in which the energy of single-particle excita-
tions achieves an extremum is not defined by relation (15) but
vanishes.

We compare the critical magnetic fields for single and
double-layer systems as functions of the dipole moment in a
zero magnetic field. In the former system, the dipole moment
decreases with decreasing the width of the quantum well
(Fig. 14). In a DQW, the dipole moment decreases upon
symmetrization. Single- and double-layer systems differ in
terms of the action of the magnetic field on electron states in
the two lowest dimensionally quantized subbands. The
magnetic field in a double-layer system alters wave functions
but has virtually no effect on them in a single-layer one. As a
result, the critical magnetic field is inversely proportional to
the dipole moment for single-layer system (15) and tends to
zero when a double-layer system undergoes symmetrization.
Therefore, if the DQW is to be transferred to the symmetric
state, a finite momentum must be transmitted to single-
particle electron excitations and the system must be balanced
until the excitation energy persists despite the magnetic field
inversion. The accuracy of this method is determined by the
relation between the line widths of inelastic light scattering
and the tunnel energy. It was estimated in experiments that
balancing DQWs is feasible at the tunnel energies up to
0.1 meV [78].

5.2 Plasma excitations in double quantum wells

The above balance method was used to study plasma modes
in symmetric and asymmetric DQW states and their mod-
ification during transition from a symmetric state to an
asymmetric one (Fig. 15). A characteristic feature of the
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Figure 14. Experimental critical magnetic field as a function of the
theoretical dipole moment of single-particle excitations (14) for single
(triangles) and double (circles) quantum wells. The inset schematically
shows the results of self-consistent calculations of the limiting potential
profile of single quantum wells and the squared electron wave functions in
the first two dimensionally quantized subbands for the widest and the
narrowest quantum wells; the solid line is the calculated critical magnetic
field B = gc/d.

symmetric state is the absence in the spectrum of a gapless
plasma mode with the linear dispersion law or an acoustic
plasmon, i.e., out-of-phase oscillation of the charge density in
symmetric and asymmetric subbands [79, 85]. The energy of
the acoustic plasmon is determined by the difference between
the intra- and intersubband of Coulomb interactions of
electrons. The electron density distributions in two subbands
of a symmetric DQW almost coincide, and therefore the
acoustic plasmon mode is smoothed and falls into into the
continuum of single-particle excitations.

The acoustic plasmon is replaced by a tunnel one, which is
a gap mode with linear dispersion in the longwave limit
(gqap < 1) (Fig. 16). The linear slope is close to that of the
acoustic plasmon in an asymmetric DQW with the same
parameters (the total electron density and interwell dis-
tance). This property of the tunnel plasmon was a source of
gross theoretical mistakes [86—89]. It was supposed that the
tunnel plasmon is not a separate plasma mode but an acoustic
plasmon mode with the opening longwave plasma gap.

Indeed, the two plasma modes of totally different nature,
tunnel and acoustic, display linear dispersion dependences
with the slopes equalized as the tunnel coupling decreases.
Moreover, the cross sections of inelastic light scattering from
the tunnel plasmon in the symmetric state and the acoustic
one in the asymmetric state coincide (Fig. 17). Because the
cross section is proportional to the dynamic structural factor,
the distributions of charge fluctuations in the tunnel and
acoustic plasma modes are identical. It can be concluded that
the tunnel plasmon is an out-of-phase excitation of the
electron density in two DQW layers. As the tunnel gap
increases (4sas ~ qug), the cross section of the tunnel
plasmon decreases and the longwave dispersion flattens [90].
In this limit, the energy of electron transverse oscillations
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Figure 15. Inelastic light scattering spectra of an acoustic plasmon in a
double quantum well in the asymmetric state at different momentum
values. The inset shows dispersion dependences of acoustic (AP) and
optical (OP) plasmons, found experimentally (dots) and calculated in the
framework of classical electrodynamics.
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Figure 16. Dispersion dependences of tunnel (TP) and optical (OP)
plasmons found experimentally (circles) and calculated in the random-
phase approximation (solid lines). Shaded areas are intra- and intersub-
band continua of single-particle excitations. The dash-dotted line repre-
sents the dispersion dependence of the acoustic plasmon in the asymmetric
state. The insets demonstrate the spectrum of inelastic light scattering
from the tunnel plasmon and the profile of the double quantum well
potential with envelopes of wave functions in the symmetric and
asymmetric subbands of dimensional quantization.

exceeds the kinetic energy in the plane and the tunnel plasmon
becomes a collective mode of the exciton type.

Inelastic light scattering spectra contain an optical
plasmon, besides a tunnel one, whose energy is only weakly
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Figure 17. Variation of inelastic light scattering spectra depending on the
degree of asymmetry of the double quantum well (left) and on the energy
of tunnel and acoustic plasmons for two momentum values depending on
the degree of asymmetry of the double quantum well (right); white circles
— experimental data, black circles — calculation in the random-phase
approximation. The size of the experimental points is proportional to the
cross section of inelastic light scattering. Shaded areas are intra- and
intersubband continua of single-particle excitations. The degree of
skewness & = (N} — N2)/(N; + N;) determines the electric field imbal-
ance on two sides of the DQW.

dependent on the tunnel coupling. The difference of tunneling
effects on the tunnel and optical plasma modes may be
interpreted as follows. In the case of in-phase oscillations of
the electron density in two subbands and layers, there is an
equal probability of electron tunneling from each layer to its
counterpart; therefore, tunneling does not considerably
influence in-phase oscillations. In the tunnel mode, charge
fluctuations in the two layers have opposite signs and hence
different probabilities of tunneling in different layers. Elec-
trons travel not only in the plane of the layers but also across
it, which accounts for a change in the tunnel plasmon energy.

The transition from the symmetric state to the asymmetric
one is accompanied by a decrease in the tunnel plasmon
scattering cross section, and the plasmon itself decays into
intersubband one-particle excitations. In contrast, the energy
of the acoustic plasmon increases and may exceed the
boundary energy of the single-particle continuum at a certain
degree of the DQW skewness. Thus, a DQW with the tunnel
coupling involves a skewness such that the spectrum contains
two out-of phase weakly decaying plasma modes (Fig. 17).
There is a phase transition from the symmetric to the
asymmetric state when the tunnel coupling tends to zero.
The tunnel plasmon exists only in the symmetric phase and
the acoustic plasmon in the asymmetric one; the two plasma
modes do not occur simultaneously.

We note that acoustic and tunnel plasmons are totally
different oscillations, the former being an intrasubband
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oscillation and the latter an intersubband one associated with
electron transitions between the lowest subbands of dimen-
sional quantization. Physical properties of tunnel and
acoustic plasmons are identical only in the weak-tunneling
limit. In the opposite limit, the tunnel plasmon is an exciton-
type excitation with a quadratic dispersion dependence. In
contrast, the acoustic plasmon shows a linear dispersion
dependence virtually unrelated to the tunnel gap size.

5.3 Magnetoplasma excitations in double quantum wells
We consider a modification of the intersubband excitation
spectrum in DQWs in a perpendicular magnetic field. The
simplest case is represented by an asymmetric DQW in which
collective excitations are acoustic and optical plasmons.

Acoustic and optical plasmons are transformed by the
magnetic field into hybrid magnetoacoustic and magnetoop-
tic plasma modes, respectively, in which electrons are
simultaneously involved in plasma and cyclotron oscilla-
tions. Their energies are expressed in the framework of
classical electrodynamics as

w*(k) = of + wzzxp,op(ll) ) (17)
where wiaop(q) are the plasma frequencies of acoustic and
optical plasmons without a magnetic field with the momen-
tum ¢ = k (8) [79]. This expression is in good agreement with
experiment (Fig. 18). Both magnetoplasma modes interact
with intrasubband Bernstein modes, with two types of the
Bernstein modes being observed under experimental condi-
tions. These modes with the same index can interact with
either an optical or an acoustic plasmon, and the energies of
the corresponding hybrid plasma-Bernstein modes anticross
with each other [80]. The energies of the two Bernstein modes
coincide outside the resonance area.

Inelastic light scattering spectra in the magnetic field of
symmetric and asymmetric DQWs in the weak-tunneling
limit virtually coincide due to the similar physical properties
of acoustic and tunnel plasmons. The place of the magnetoa-
coustic plasmon is taken by the magnetotunnel plasmon
associated with electron transitions from the upper filled
Landau level of the symmetric dimensionally quantized

16
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Raman shift, meV

Magnetic field, T

Figure 18. Magnetofield dependences of the energies of magnetoacoustic
(AP) and magnetooptic (OP) plasmons. Solid lines — multiple cyclotron
energies, dashed lines — dependences w(k) = (w? + a)f“,_op(q))l/z‘ The
insets schematically represent characteristic spectra of inelastic light
scatteringat B=0and B=7T.

subband with a number 7 to the unfilled Landau level with
the number n+ 1 of the antisymmetric subband. The
difference between the energies of magnetoacoustic and
magnetotunnel plasmons is determined by the tunnel gap,
which is small in the weak-tunneling limit.

The magnetoexcitation spectrum also shows an exciton-
type mode with the energy exceeding the tunnel gap by the
depolarization shift,

2V2ne*L
w2 = AéAS B

(18)

(n1 — n) Asas,

where L is the parameter characterizing nonlocality of the
electron wave function in each well [34]. This mode is
analogous with the intersubband singlet magnetoexciton in
single quantum wells, and its energy is independent of the
magnetic field. In the strong-tunneling limit Agas ~ Ef, the
DQW magnetoexcitation spectrum is similar to the spectrum
of intersubband magnetoexcitations of single quantum wells
and the inelastic light spectra are dominated by the exciton-
type mode.

6. Conclusion

This review was aimed at discussing intersubband and
cyclotron branches of collective excitations and magnetoex-
citations, which by no means exhaust the diversity of possible
degrees of freedom of a strongly correlated 2D electron
system. For example, neither intralevel excitations in frac-
tional QHE states nor excitations in a system of composite
fermions were considered. Recent research in these areas has
demonstrated a marked discrepancy between the energy of
cyclotron resonance on composite fermions and the energies
of supraliquid excitations obtained by the inelastic light
scattering technique [91, 92]. The nature of this discordance
remains to be clarified.

Another important problem is the appearance of so-called
‘magnetotron’ resonances in experiments on inelastic light
scattering [93, 94]. Attempts to ascribe them to processes
resulting from gross violation of the momentum conservation
law have not been confirmed by theoretical calculations and
experiments on superhigh-quality quantum wells with the
electron mobility up to 2 x 107 cm? V-!s~! [58]. Studies of
inelastic light scattering on the Goldstone mode in the
ferromagnetic state v = 1 have thus far been hampered by
the poor quality of heterostructures with double quantum
wells. Further progress in the technology for obtaining
heterostructures with single and double quantum wells may
be instrumental in resolving these experimental problems.
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