
Abstract. The properties of Bose ±Einstein condensates in an
external potential produced by a laser light field are discussed.
Considered are the condensates embedded in periodic lattices
produced by standing laser waves and the condensates confined
within `optical traps' near the focus of a traveling wave. Ob-
servations of the Mott transition in a periodic lattice are de-
scribed, as are experiments on atoms near the Feshbach
resonance and experiments on the condensates in a double
potential well, which permit investigating the tunnel dynamics
of condensate phases.

1. Introduction

In his previous review, the author set forth the fundamental
tenets of the Bose ±Einstein condensation (BEC) theory [1].
The period of time elapsed since the experimental discovery of
this amazing phenomenon has seen the performance of many
interesting experiments of fundamental importance for the
understanding of quantum processes in many-particle sys-
tems. Consequently, the theory has also gained a strong
impetus.

In the proposed paper we dwell on a recently investigated
range of phenomena. The case in point is the behavior of
Bose ± Einstein condensates in an external field produced by
the light fields of laser sources. The reader should bear in
mind that the number of papers concerning this matter is very
large, although they account for only a small fraction of

recent papers on BEC. I endeavored to describe papers of a
fundamental nature. Of course, the author's preferences also
play a part.

First of all, we should bear in mind some propositions of
the BEC theory. Bose ± Einstein condensation signifies that a
macroscopically large number of atoms are `condensed' in
one quantum state. We consider the atom-annihilation
operator ĉ�r; t� in the secondary quantization representation
and separate out its ĉ0�r; t� part which destructs the state into
which the condensation takes place. Owing to the presence of
a large number of bosons in this state, ĉ0�r; t�may be replaced
with the classical function c0�r; t�, which is referred to as the
wave function of the condensate. This change has a profound
physical significance. It is similar to the passage from
quantum electrodynamics to the classical theory of electro-
magnetic phenomena. This transition is justified if a large
number of photons are in a common quantum state. In this
case, the noncommutativity of electromagnetic field opera-
tors is insignificant and the field may be described by the
classical functions E�r; t� and B�r; t�, which obey theMaxwell
equations. In our case, the presence of a large number of
atoms in the Bose ±Einstein condensate permits introducing
the classical function c0�r; t�. (In the subsequent discussion
we omit the subscript `0'.)

When the density of gas in the condensation state is low
enough, it is described by the mean field approximation,
which corresponds to the first approximation of the Bogo-
lyubov theory of a nonideal uniform Bose gas [2]. In this
approximation, for T � 0 all particles reside in the conden-
sate, so that the gas density is

n�r; t� � ��c�r; t���2 : �1�

Thec�r; t� function itself satisfies the nonlinear equation [3, 4]

i�h
q
qt

c�r; t� �
�
ÿ �h 2H 2

2m
� Vext�r; t� � g

��c�r; t���2�c�r; t� :
�2�
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The nonlinear term in this equation describes the interaction
between the condensate atoms, the interaction constant g
being defined by the scattering length a for atoms in the s state:

g � 4p�h 2a

m
: �3�

The energy of interaction of a given atom with the remaining
ones is proportional to the atomic number density. It is as if
the atom travels in the mean field produced by other atoms.
That is why the theory based on Eqn (2) is conventionally
referred to as the mean field theory.

The Gross ± Pitaevskii equation (2) for the condensate
wave function c�r; t� plays a similar role to the Maxwell
equations in classical electrodynamics. It is valid to say that
this function is the classical limit of the de Broglie wave, in
which the corpuscular properties of matter play no part.
Unlike theMaxwell equations, however, Eqn (2) contains the
Planck constant �h. This difference is underlain by the
difference between the relations binding the energy E and the
momentum p for photons and atoms, which leads to different
relations between the frequency o � E=�h and the wave vector
k � p=�h of the corresponding classical waves. For photons,
the equation E � cp gives the classical dispersion relation
o � ck, which does not contain the quantum constant. For
atoms, the equation E � p 2=2m gives the dispersion relation
o � �hk 2=2m instead, which contains the quantum constant �h
explicitly. This signifies, in particular, that the interference
effects for classical waves of matter depend on the magnitude
of �h [see, for instance, Eqn (54) below].

In a stationary state, the wave function depends on the
time according to the Josephson equation

c�r; t� � c�r� exp
�
ÿ imt

�h

�
; �4�

where the constant m has the meaning of the chemical
potential of a given state. In this case, Eqn (2) reduces to the
form�

ÿ �h 2H 2

2m
� Vext�r; t� � g

��c�r; t���2 ÿ m
�
c�r; t� � 0 : �5�

A mathematically rigorous derivation of Eqn (5) for a dilute
gas was made by Lieb, Seiringer, and Ingvason [5].

2. An atom in a light field

Let us consider a condensate embedded in the field of a
monochromatic light wave. The electric field of the wave can
be written as

E�r; t� � E0�r� exp �ÿiot� � c:c: : �6�
The time-average force acting on a gas atom is

f�r� � a�o�H E 2

2
� a�o�HjE0j2 ; �7�

where a�o� is the polarizability of the atom. This formula is
valid when the frequency o is far enough from the atomic
absorption lineo0, so that a�o� is real. On the other hand, it is
expedient to operate sufficiently close to o0, where the
polarizability is high and hence the force is strong. There-
fore, the frequency should satisfy the conditions

o0 4 joÿ o0j4G ; �8�

where G is the absorption line width. It is noteworthy that the
Bose ± Einstein condensate is a convenient phenomenon in
this respect, too, because atomic absorption lines in the
condensate are extremely narrow.

Under condition (8), the polarizability can be approxi-
mately written as

a�o� � A

o0 ÿ o
; �9�

with A > 0. This signifies that the atoms are drawn into the
strong-field region foro < o0 (`red detuning') and forced out
of it for o > o0 (`blue detuning').

To force (7) there corresponds the average potential
energy of an atom embedded in a light field

Uopt�r� � ÿa�o�jE0j2 : �10�

A one-dimensional periodic potential may be produced by a
standing light wave. In such a wave, jE0j2 � sin2 �qz�, where q
is the wave vector. In this case, the potential energy is
commonly written as

Uopt�z� � sEr sin
2 �qz� ; �11�

where Er is the so-called `recoil energy' (m is the atomic mass)

Er � �h 2q 2

2m
�12�

and s is the dimensionless parameter proportional to the laser
beam intensity. In the majority of real experiments, s < 20.
The potential (11) has a period d � p=q. We point out that the
period of the reciprocal lattice is 2q. Three mutually
orthogonal laser beams make up a three-dimensional lattice:

Uopt�r� � sEr

�
sin2 �qx� � sin2 �qy� � sin2 �qz�� : �13�

3. Bose ± Einstein condensate
in a one-dimensional periodic potential.
Ground state

In this section we mostly consider, for the sake of simplicity,
one-dimensional condensate motion in the periodic potential
(11). We thereby assume that the condensate wave function is
of the form c�z� exp �ÿimt=�h�. Naturally, in experiment there
is also, apart from this potential, the confining potential of the
`trap'. However, the condensate dimension is, as a rule, large
in comparison with the lattice period d. The confining
potential changes little for this distance and in many
problems it may be neglected to a first approximation.
Then, Eqn (5) for c�z� reduces to the equation�
ÿ �h 2

2m

d2

dz 2
� sEr sin

2 �qz� � g
��c�z���2�c�z� � mc�z� : �14�

It is common knowledge that the quantum-mechanical
description of particle motion in a periodic field was
elaborated by F Bloch many years ago. Up to now,
however, experiments have primarily dealt with electrons,
i.e., fermions, in a periodic crystal lattice.

We will see that the behavior of a Bose ±Einstein
condensate in a periodic field exhibits many nontrivial
features. Furthermore, artificial `optical' lattices differ
favorably from `natural' ones in many respects. Their period
is macroscopically long, which facilitates observations, and is
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controllable, as is the intensity of the periodic potential. They
are practically devoid of defects. Lastly, it is easy to produce
one- and two-dimensional structures which are hard to realize
in solids.

It therefore comes as no surprise that even the first
experiments on condensates in optical lattices yielded very
interesting results. Special mention should be made of the
discovery of a new physical effect: the Mott transition
between the superfluid phase of Bose atoms in a lattice and
the dielectric phase, in which superfluid flow is impossible (see
Section 8 of this review).

Let us consider the ground state of the system. The wave
function of this state is the real periodic function
c0�z� � c0�z� d �. It may be expanded into the Fourier series

c0�z� �
X1

l�ÿ1
c �l � exp �il2qz� ; c �l � � c �ÿl �� : �15�

In accordance with the basic principles of quantum
mechanics, expression (15) is the expansion of the ground
state in terms of states with momentum values equal to
pl � �h2ql. This statement is well known in the theory of
electrons in a crystal lattice, where this statement is hard to
verify experimentally. In a condensate, it can be verified in a
direct and elegant experiment. To do this it would suffice to
rapidly turn off the confining potential and the periodic
lattice potential at some point in time. Then, atoms with
l � 0 would remain immobile, while those with momenta pl
would recede from them by the law1

zl�t� � �hl2q

m
t : �16�

Figure 1 shows the spatial condensate density distribution
obtained in experiments by Pedri et al. [6]. One can clearly see
the central group of atoms with l � 0 and the `detached'
condensates with l � �1. The ratio P1 between the number of
atoms with l � 1 and the number of atoms in the central peak,
according to expression (15), is jc �1�j2=jc �0�j2. This ratio
depends on the amplitude s of the periodic potential and
(owing to the existence of interatomic interaction) on the gas
density. The P1 values measured in Ref. [6] and those
calculated by solving Eqn (14) are compared in Fig. 2.

4. Quasimomentum and mass flux

The system of bosons in the Bose ±Einstein condensation
state is superfluid and can move without friction relative to
the lattice. The solutions of Eqn (14), which describe the flow
of condensate as a whole, are of the form of the Bloch
functions

ckr�z� � exp �ikz� ukr�z� : �17�

Here, as usual, �hk is the quasimomentum, r is the zone
number, i.e., a discrete index that numbers the solutions for

a given k, and ukr�z� is a complex periodic function of zwith a
period d. We emphasize that the very existence of solutions of
the form of expression (17) to the nonlinear equation (14) is
absolutely nontrivial and is intimately related to the gauge
invariance of this equation. The chemical potential corre-
sponding to solution (17) is also a function of k and r:
m � mr�k�. In the subsequent discussion we will usually omit
the zone index r in all quantities. Integration of solution (17)
yields the state energy. We will consider the energy per unit
length of the lattice:

E�k� � 1

L

� L

0

�
�h 2

2m

���� dck

dz

����2 � sEr sin
2 �qz���ck�z�

��2
� g

2

��ck�z�
��4� dz ; �18�

with m�k� � qE�k�=qn, where n � N=L is the number of
atoms per unit length, L is the lattice length, and N is the

1 This result, which we obtained bymeans of simplified reasoning, is in fact

the special case of a general theorem of quantum mechanics. If the

dimension of a system upon expansion is far greater than the initial one

and the interatomic interaction during the expansionmay be neglected, the

spatial density distribution upon the expansion reproduces the initial

momentum distribution: n�r; t� � �m=t�3n �p��p � mr=t; 0� for t!1,

where n �p��p; t� is the distribution function in the momentum space

normalized by the condition
�
n �p��p; t� d3p � N.
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Figure 1. (a) Absorption image of the condensate obtained 10 s after its

release from the optical lattice. (b) Spatial density distribution of the

condensate. The�'s represent the experimental data corresponding to the

upper Figure. The solid line represents the theoretical predictions by Pedri

et al. [6]. The parameter s � 5.
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Figure 2. First additional-to-central peak population density ratio. Black

circles represent the experimental data and triangles the theory of Ref. [6].
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total number of atoms. In lieu of the energy E�k�, quite often
it is more expedient to employ the energy of the grand
canonical ensemble

Em�k� � E�k� ÿ m�k�n � E�k� ÿ m�k�
� L

0

��ck�z�
��2 dz

L
; �19�

which coincides with the thermodynamic potential O for
T � 0, so that n � ÿqEm�k�=qm. It is significant for the
subsequent discussion that Eqn (14) can be obtained as the
condition for the minimum of the functional E in c for a
constant n, or of the functional Em for a constant m.

It is well known that the values of a wave vector k differing
by the reciprocal lattice vector 2q are physically equivalent. It
would therefore suffice to consider only the values of k lying
in the first Brillouin zone ÿq < k < q. However, k is some-
times conveniently allowed to assume arbitrary values when
E�k� [and j�k� below] are considered as periodic functions
with a period 2q.

Wave functions (17) describe the stationary states of the
system. In these states, the condensate moves and there is a
mass flux. It can be calculated if we resort to the general
expression for the flux following from Eqn (2). It coincides
with the conventional quantum-mechanical expression for
the mass flux from the one-particle SchroÈ dinger equation,
and the nonlinear term plays no part in this case. In the one-
dimensional case,

j � i�h

2

�
c
dc �

dz
ÿ c �

dc
dz

�
: �20�

In the stationary state, the flux j is constant and is
independent of t and z. It can be calculated for the Bloch
wave function (17) with the knowledge of E�k� as a function
of k.

To derive the corresponding formula, in Eqn (14) and
accordingly in the energy functional (19) we replace the
operator d=dz with ��d=dz� ÿ iA�, where A is the constant
`vector potential'. Then, it is easily verified by direct
differentiation that

ÿm
�
qEm

q�hA

�
A� 0;m

� i�h

2L

� L

0

�
c
dc �

dz
ÿ c �

dc
dz

�
dz � j : �21�

In this case, it is significant that the wave function, which
depends on A itself, should not be differentiated, because the
variation of the functional inc is equal to zero by virtue of the
equation for c. Introducing the constant A does not change
the periodicity of the equation, and therefore the modified
wave function c�z;A� is of the Bloch form. However, the
constant A can be eliminated from the equation by the gauge
transformation

c � exp �iAz�c 0 : �22�

Therefore, the modified equation has the same dispersion law
Em�k 0�, where �hk 0 is the quasimomentum corresponding to
the function c 0. Equality (22) signifies, however, that the
function c�z;A� possesses the quasimomentum �hk �
�h�k 0 � A�, so that Em�k;A� � Em�kÿ A�. In view of this
relation, formula (21) gives the desired expression for the flux:

j�k� � m

�
qEm

�h qk

�
m
� m

�
qE
�h qk

�
n

: �23�

This equation plays an important part in the theory of metals.
Its ordinary derivation, however, essentially relies on the
linearity of the SchroÈ dinger equation. Furthermore, in a
linear theory it remains unclear whether the flux is defined
by the functions E�k� or m�k�, for in such a theory E � nm.
That it why I adduced another derivation which invokes the
gauge invariance of the Gross ± Pitaevskii equation (2). This
derivation is, of course, also suitable for the conventional
SchroÈ dinger equation. The last-given equality is expediently
rewritten by introducing the `group velocity':

vg�k� � 1

r
j�k� � 1

n

�
qE
q�hk

�
n

; �24�

where r � mn is the linear density. The functionsEr�k� for the
first three zones and the group velocity vg�k� in the first zone
are plotted in Fig. 3 [7].

Equation (23) defines the mass flux in the lattice frame of
reference.When the lattice moves with a velocity vlat, themass
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Figure 3. (a) Energy as a function of quasimomentum for the first three

zones in a one-dimensional Bloch lattice with the potential (11), s � 3;

(b) group velocity vs quasimomentum [7].
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flux in the laboratory system of coordinates is given by the
general formula of the Galilean transformation:

jlab � j�k� � rvlat : �25�

We now consider the condensate behavior in circum-
stances where the condensate experiences, apart from a
periodic field, a weak uniform force F. Then, on the right-
hand side of the temporal equation (2) one should add the
term ÿFzc�z; t�. Despite the smallness of F, this term
significantly changes the solution, for it unrestrictedly
increases with z. To compensate for it, we will seek the
solution of Eqn (2) in the form of Bloch function (17) with a
time-dependent quasimomentum �hk. Then, on the left-hand
side of the equation there appears the termÿ�h�dk=dt�zc�z; t�,
which is proportional to z. The terms proportional to z cancel
out when

d�hk

dt
� F : �26�

We point out that the periodic part of Bloch function (17)
should not be differentiated with respect to time. The
corresponding terms do not contain z and are negligible for
weak F. Equation (26) again is in the same form as in the
conventional one-particle theory.

When the force F is constant, Eqn (26) has a simple
solution:

�hk � Ft : �27�

However, since the values of k that differ by a whole multiple
of 2q are physically equivalent, all observable quantities will
be periodic functions of time with the period

TB � 2q

�hF
: �28�

Since the quantity q is known to a high degree of accuracy,
observing theseBloch oscillations permits measuring the force
F to a high degree of accuracy [8, 9]. Roati et al. [8]
experimentally observed the periodic variation of themomen-
tum distribution of atoms in the lattice. However, polarized
fermions are better suited for this kind of measurement. The
interatomic interaction leads to oscillation damping, while
polarized cold Fermions barely interact with each other.

Employing the resulting equations, in experiment it is
possible to directly determine the function vg�k� [10]. In the
experiment, the lattice was set in motion. To this end, a small
frequency difference do was introduced between the laser
beams that produced the standing wave. In this case, the
lattice moves with a time-dependent velocity vlat�t� �
do�t�=q. In the lattice frame of reference, the condensate
experiences the force of inertia F � ÿm dvlat=dt. According to
Eqn (26), by the point in time t the condensate acquires the
quasimomentum

�hk � ÿmvlat�t� : �29�

At this point in time, the fields of the lattice and the trap are
turned off and measurements are made of the average
condensate motion velocity, which is, according to formula
(25), equal to

vm � jlab
r
� vlat ÿ vg

�
mvlat

�h

�
: �30�

By repeating this experiment for different values of the final
lattice velocity vlat, it is possible to reconstruct the function
vg�k�. The results of these measurements are plotted in Fig. 4.

For small values of the quasimomentum, the function
E�k�may be expanded as

E�k� � E0 � n
�h 2k 2

2m �
: �31�

The quantity m � means the effective mass of condensate
atoms in the lattice. Accordingly,

vg�k� � �h

m �
k : �32�

It is easily shown with the use of the quantum-mechanical
perturbation theory that m � > m in the first Bloch zone. In
Section 5 we will see that the effective mass defines the density
of the superfluid gas fraction. A similar expansion of the
chemical potential is of the form

m�k� � m0 �
�h 2k 2

2m1
; �33�

with

m0 �
qE0

qn
;

1

m1
� q

qn
n

m �
: �34�

5. Density of the superfluid fraction
and dipole vibrations

According to the fundamental tenets of the Landau theory of
superfluidity [11], a homogeneous superfluid liquid for T � 0
is entirely superfluid, rs � r. This is not the case for a liquid in
nonuniform ambient conditions, for instance, in the presence
of impurities or, as in our case, of a periodic lattice field. In
this case, rs < r even for T � 0. However, the situation is
different from that which occurs at a finite temperature. The
normal liquid fraction, whose density is rn � rÿ rs, is at rest
relative to the lattice and there is no point in introducing the
velocity of the normal fraction.

4
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Figure 4. Measured dependences on the lattice velocity vlat for (a) the

average condensate velocity vm and (b) the average velocity in the lattice

frame of reference vm ÿ vlat � ÿvg. In units of vB � 2p�h=md [10].
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The superfluid fraction in the Landau theory is `that
which cannot rotate'. This leads to the following definition
of the superfluid density. Let us assume that the lattice is
`rolled up' in a ring of large radiusR. Let the ring rotate slowly
with an angular velocity O. Then, the angular momentum of
the nonsuperfluid would be M � r2pR 2O. If the liquid is
superfluid, only its normal fraction rotates and the angular
momentum is

M � rn2pR
2O � �rÿ rs�2pR 2O : �35�

This is precisely the way the superfluid density was measured
in the pioneering experiments of Andronikashvili. Bishop and
Reppy [12] employed this method to measure rs in spatially
inhomogeneous systems: superfluid 4He films on a Vycor
substrate. For a condensate in an optical lattice, this
experiment should be considered as an imaginary experiment.

Our derivation calls for theGalilean transformation of the
wave function. Let

c�z; t� � ck�z� exp
�
ÿ imt

�h

�

be the wave function in the lattice frame of reference. Then,
the wave function in the laboratory system of coordinates, in
which the lattice moves with a velocity vlat, is

clab�z; t� � exp

�
imvlatz

�h

�
c�zÿ vlatt; t� exp

�
ÿ imv 2

latt

2�h

�
:

�36�

[See Ref. [13], the problem to æ 17. It is also easy to directly
verify that function (36) satisfies Eqn (2) when ck�z� is the
solution of Eqn (14).]

We employ expression (17) for ck to find that

clab�z; t� � exp

�
i

�
k�mvlat

�h

�
z

�
uk�zÿ vlatt�

� exp

�
ÿ i
�
m�k� � �hkvlat �mv 2

lat=2
�
t

�h

�
: �37�

Now let the lattice be rolled up in a ring. When the ring
radius R is sufficiently large, we may take advantage of this
equation, where z is taken to mean the coordinate along the
ring and the change vlat � OR is made. The unambiguity of
the wave function now requires that it be periodic in z:

clab�z; t� � clab�z� 2pR; t� : �38�

According to Eqn (36) this signifies that�
k�mvlat

�h

�
2pR � 2pl ; l � 0;�1; . . . : �39�

In the presence of rotation, l � 0. This condition should
therefore be fulfilled for a slow rotation as well. This gives
�hk � ÿmvlat again. We calculate the mass flux according to
expression (25) to find for a low rotation velocity that

jlab � mnvlat �m

�h

�
qE�k�
qk

�
k�ÿmvlat=�h

� mnvlat

�
1ÿ m

m �

�
;

�40�

so that the angular momentum is

M � jlab2pR � mnO2pR 2

�
1ÿ m

m �

�
: �41�

By way of comparison with expression (35) we find the
superfluid density:

rs � mn
m

m �
� r

m

m �
: �42�

We return to the lattice frame of reference. Knowing rs lets us
determine the superfluid velocity according to j � rsvs.
Therefore,

vs � �h

m
k : �43�

Expression (42) for the superfluid density was obtained in
a different way in the papers by Eggington [14] and
Ambegaokar et al. [15] concerned with the properties of
superfluid 4He films. However, recently there have appeared
papers dedicated to the Bose gas in a one-dimensional lattice
in the presence of disorder whose authors adhere to the
opinion that in the absence of interaction rs � r. This is
evidently at variance with expression (42), because m � 6� m
even in the absence of interaction. In particular, Rapsch et al.
[16] believe that rs=r � 1 in the absence of interaction and
disorder. Similarly, Roth and Burnett [17] state that the
superfluid fraction is equal to unity for a noninteracting
system. This variance impelled me to make a more rigorous,
in my view, derivation of the expression for the superfluid
fraction density. My result coincides, as noted above, with
that of Refs [14, 15]. As regards the disagreement with
Refs [16, 17], it is likely to arise merely from misunderstand-
ing. The authors of these papers, it seems to me, identified the
effective mass of the Hamiltonian in the Bose ±Hubbard
model with the physical mass of a free particle.

The first experimental confirmation of formula (42) for
the superfluid fraction density was obtained by Cataliotti et
al. [18]. The authors observed the vibrations of the condensate
embedded in a periodic optical potential and the harmonic
field of a magnetic trap. To describe this effect requires some
development of the theory outlined.

The wave vector k in solution (17) is constant. However,
one may consider approximate solutions of the form

c�z; t� � exp
�
if�z; t�� uk�df=dz�z� ; �44�

where the phase f�z; t� slowly varies in distances on the order
of the lattice period d. The superfluid velocity will then be
coordinate- and time-dependent and formula (43) will assume
the form

vs � �h

m

q
qz

f : �45�

The equations for the density r and the superfluid velocity can
be derived similarly to the Landau equations [11] for the fluid
dynamics of a superfluid liquid when it is considered that the
entropy and velocity of the normal fraction are equal to zero
in our case.

The continuity equation is of the form

qr
qt
� q�rsvs�

qz
� 0 : �46�

When writing the equation of motion we assume that there is
also, apart from the periodic potential, a slowly varying one
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Uext�z�. Then,
qvs
qt
� q
qz

�
m

m1

v 2s
2
� m0�n� �Uext�z�

�
� 0 ; �47�

where we neglected terms of higher order than v 2s .
With the aid of these equations we consider the con-

densate vibrations in a periodic lattice in the presence of the
harmonic potential Uext�z� � mo2

zz
2=2, which were investi-

gated by Cataliotti et al. [18]. We assume that the effective
mass m � is independent of the gas density and hence of the
coordinates and the time. (Under experimental conditions,
this dependence is quite insignificant.) Then, as is easily
verified, the linearized system of equations (46), (47) has a
solution in the form r�z; t� � r0�zÿ z0�t��, which describes
the vibrations of the condensate as a whole with a velocity
dz0=dt. Here, r0�z� is the equilibrium condensate density,
which satisfies the condition

q
qz

ÿ
m0
�
r0�z�

��Uext�z�
� � 0 :

The equations then yield

dz0
dt
� m

m �
vs ;

dvs
dt
� ÿmo2

zz0 : �48�

The former of these equations shows that the condensate
travels with a group velocity �m=m ��vs � vg rather than with
a superfluid velocity vs. According to Eqn (48), the frequency
of these `dipole' vibrations is [18]

od �
�������
m

m �

r
oz : �49�

In experiments, at some point in time the lattice was
swiftly shifted from its initial position and thereby excited
the condensate vibrations. After some `time delay', the lattice
and the confining potential were removed, the gas expanded,
and the density distribution was recorded. Subsequently, the
experiment was repeated with a different delay in the lattice
removal relative to the onset of vibrations.

The dependence of the dipole vibrations frequency on the
amplitude s of the periodic potential measured in Ref. [18] is
depicted in Fig. 5. The experimental data are compared with
the theoretical formula (49). The values of the effective mass
were calculated by KraÈ mer et al. [19] by way of a numerical
solution of Eqn (14). In this case, owing to the diluteness of
gas, the interaction between the atoms and therefore the
nonlinear term in this equation turned out to be practically
insignificant.

It is noteworthy that them=m � ratio corresponding to the
maximum attained value s � 9 turns out to be approximately
equal to 6.3. Under these conditions, the atoms canmove only
by way of tunneling across the potential barriers separating
the minima of the periodic potential. Therefore, the quantum
tunneling of a macroscopic body was observed in the
experiment. Here, the superfluid nature of condensate flow
is of significance. A thermal atomic cloud cannot vibrate
under these conditions (Fig. 6).

Wave function (17) can be expanded in terms of the states
with momentum values p�k; l � � �h�k� 2ql �, l � 0;�1; . . . .
Similarly to expansion (15), we have:

crk�z� �
X1

l�ÿ1
c �l �rk exp

�
i�k� l 2q�z� : �50�

Accordingly, the expansion of a plane wave in terms of the
Bloch functions is of the form

exp �ikz� � 1

2p

X1
r� 0

c �0��rk crk�z� : �51�

The coefficients c �l �rk are easy to calculate theoretically. The
results of calculations were employed to interpret experi-
mental data [21]. At the beginning of the experiment, there
was no periodic potential and the condensate moved as a
whole with a wave vector k. At the point in time t � 0, the
periodic potential was quickly (`diabatically') turned on. The
wave function has no time to change under this engagement
and is given by expression (51). In the experiment, the gas was
quite dilute and interatomic interaction was negligible, so that
Eqn (14) reduces to the ordinary linear SchroÈ dinger equation.
Then, the expansion in the form of (51) holds true in what
follows as well, and the temporal dependence reduces to the
appearance of factors of the form exp

�ÿimr�k�t=�h
�
in every

term:

c�z; t� � 1

2p

X1
r� 0

c �0��rk crk�z� exp
�
ÿ imr�k�t

�h

�
; �52�

where mr�k� are the eigenvalues of the linearized equation
(14), i.e., the single-particle energy levels. At the point in time
t � t, the confining and periodic potentials were disengaged
and the condensate was allowed to expand freely. As in the
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Figure 5. The frequency of dipole vibrations as a function of the amplitude
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experiment of Ref. [6], this allowed measuring the coefficients
of the wave function expansion (52) in terms of the states with
specific values of momentum. Expanding the Bloch functions
on the right-hand side of expression (52) according to
expansion (15), for the expansion coefficients we find

c �l �rk �t� �
1

2p

X1
r� 0

c �0��rk c �l �rk exp

�
ÿ imr�k�t

�h

�
: �53�

Of course, the `populations' jc �l �rk �t�j2 rather than the
coefficients c �l �rk themselves are experimentally measured.
The results of the measurements are presented in Fig. 7.

The situation was radically different when the optical
potential was slowly imposed adiabatically. Here, the con-
densate, which had initially been in the stationary state of a
free particle, transited to a Bloch state, which was also
stationary. In this case, when the initial condensate momen-
tum p (in the lattice frame of reference) was smaller than �hq in
the modulus, the condensate found itself in the first Bloch
zone with a quasimomentum �hk � p. When the initial pulse
was, for instance, in the limits �hq < p < 2�hq, this state, as is
easy to see, passed into the state with the quasimomentum
�hk � pÿ 2�hq in the second Bloch zone, so that the adiabatic
engagement of the lattice enabled transferring the condensate
to a predetermined Bloch state. 2

The nontrivial character of the quantum dynamics of the
condensate in a lattice is clearly seen in an elegant experiment
described in the same Ref. [21]. A lattice with a condensate in
the ground state was adiabatically accelerated to a relatively
high velocity vlat, which was much higher than the maximum
value of the group velocity in the first zone. Then, the first
term in Eqn (25) is small, and the condensate momentum is
simply equal to rvlat and increases as the lattice is accelerated.
The wave function in the laboratory system of coordinates is
defined by Eqn (37). According to Eqn (29), however, during
acceleration �hk�mvlat � 0 and the wave function remains
periodic, so that all atoms are in states with moments that are
whole multiples of 2�hq. The momentum distribution was
measured by observing the free expansion of the condensate,

as described above. The measured data are shown in Fig. 8.
One can see that the total condensate momentum increases
steadily due to the increase in the number of atoms with
higher values of the `multiplicity' l.

It is pertinent to note that experiments in which the
condensate travels with a considerable velocity relative to
the lattice are possible only when the interatomic interaction
is sufficiently weak, i.e., the gas is diluted enough. The point is
that the condensate becomes unstable at such velocities [22,
23]. However, the characteristic buildup times for these
instabilities turn out to be long for a weak interaction.

The energy Er�k� introduced above, which describes the
motion of a condensate as a whole, should not be confused
with elementary condensate excitation energies. For a uni-
form periodic lattice, these energies Er�k� are also dependent
on the zone number r and the quasimomentum of an
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Figure 7. Shown at the left of the figure is the condensate density distribution at different points in time t upon release from the lattice. In the experiment,

s � 14 and the lattice was immobile �k � 0�. On the right is the t-dependence of the populations for the momentum values p � 0;�2�hq, and�4�hq, which
are represented, respectively, by black squares, white squares, and circles. The data calculated in Ref. [21] are represented by solid lines.

2 Recall that the engagement of an arbitrarily weak potential changes the

classification of states without changing the particle energies. For

instance, states in the momentum interval q < j pj < 2q should be

considered as states in the second Bloch zone with the dispersion law

�j�hkj ÿ 2q�2=2m (see Ref. [20], problem 2 to æ 55).
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elementary excitation k. In the framework of the Bogolyubov
approximation, Er�k� � �hor�k�, where or�k� are the frequen-
cies of small condensate vibrations. To findor�k�, one should
represent the wave function of the condensate in a lattice as
c�z; t� � �c�z� � c 0�z; t�� exp �ÿimt=�h�, where c�z� is the
wave function of the ground state and c 0�z; t� is a small
addition, substitutec�z; t� into the temporal equation (2), and
linearize this equation in c 0. The eigenfrequencies of the
system of linear equations for c 0 and c 0 � determine or�k�. I
shall not discuss this issue in detail (see Refs [7, 24]).

To summarize this section, I mention several new lines of
investigation related to optical lattices, which I cannot discuss
in greater detail.

Two mutually orthogonal standing light lattices produce
a two-dimensional optical lattice. When the field intensity is
high enough, a system of virtually independent one-dimen-
sional (more precisely, needle-shaped) condensates results
[25]. In this system it has been possible to verify for the first
time several predictions of the theory of one-dimensional
Bose gases [26, 27]. This theory, which predicts quite unusual
properties of the gases, was constructed many years ago but
has heretofore had no experimental applications.

An appropriately selected set of laser beams makes it
possible to produce a `Kagome lattice' [28]. The atoms in such
a lattice possess, for a specific number of atoms per site,
special magnetic properties.

StoÈ ferle et al. [25] investigated gas vibrations excited by
the periodicmodulation of the lattice depth.KraÈ mer et al. [29]
constructed the theory of this excitation. The damping of
these oscillations at absolute zero constitutes an intricate
theoretical problem. It was solved by Yu M Kagan and
L AMaksimov [30].

6. Optical traps

For several years early on, experiments on the BEC were
carried out on atoms confined near the minimum of a
quadrupole magnetic field. Of course, in this way it is
possible to confine only those atoms that possess a magnetic
moment and are in a state in which the magnetic moment is
opposed to the field. Comparatively recently, however, it has
been possible to make purely optical traps, where atoms are
confined near the intensity peak of a light beam [31]. Such a
peak is formed by focusing the laser beam with a lens. The
light intensity near the peak rapidly decreases with distance to
the axis and decreases much more slowly along the axis. That
is why the condensate in this trap possesses a strongly
elongated `cigar-like' shape.

This method of condensate retention opens up entirely
new possibilities. Optical traps are much smaller than
magnetic ones, and their parameters are easy to change in
a very short time. In particular, it has been possible to form
a double potential well, which permits a quantitative
investigation of condensate phase dynamics. To this end,
Shin et al. [31] allowed the laser beam to pass through a
special device Ð an acousto-optical modulator (AOM). It is a
transparent dielectric, in which two standing sound waves
with close frequencies are excited. The laser beam experi-
ences Bragg reflection from these waves and, owing to the
difference in their wavelengths, splits into two almost
parallel beams with closely located foci, where the con-
densates are located. In this case, the mutual arrangement
of the foci can be adjusted by changing the frequency
difference of the sound waves.

The setup is schematically represented in Fig. 9. It is
significant that it permits measuring the phase difference
between the condensates. To do this requires removing the
laser field and observing the pattern of interference between
the condensates, which overlap in the course of expansion,
i.e., measuring the spatial density distribution. When the
condensates are sufficiently widely spaced, the interaction
between the atoms is insignificant and the wave function is
simply equal to the sum of the wave functions of the
condensates: c � c1 � c2. To determine the phases of the
wave functions we note that the point with a radius vector
rÿ r1 at a point in time t is reached by the atoms of
condensate 1 with a velocity v � �rÿ r1�=t, where r1 is the
condensate center (it is assumed that the distance jrj is much
longer than the initial condensate dimension). Accordingly,
the wave function c1 acquires an additional phase F1 �
m
�
v dr=�h � m�rÿ r1�2=2t�h. Then, as is easily shown, the

density distribution in the interference of condensates spaced
at a distance d along the x-axis is

n�r; t� �
�
n1 � n2 � 2

���������
n1n2
p

cos

�
md

�ht
x� F

��
; �54�

where F � F1 ÿ F2 is the initial phase difference, which can
thus be determined from the location of interference fringes.
The interference pattern is exemplified in Fig. 10.

This method was employed to demonstrate the validity of
Eqn (4), which defines the time evolution of the condensate
phase. From this equation it follows that the condensates with
different chemical potentials acquire in a time t the phase
difference

F � ÿ it�m1 ÿ m2�
�h

: �55�

In the experiment by Shin et al. [31], the laser beam which
produced one of the potential wells was turned off for a short
time tp. This produced a difference in chemical potentials
equal to the condensate-averaged potential energy propor-
tional to the depth of the potential well. The condensate did
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Figure 9. (a) Schematic representation of the experimental setup for

measuring the phase difference between condensates. An acousto-optical

modulator AOM is placed in the focal plane of the lens, which concen-

trates the split laser beam in the other focus to produce two traps separated

by a distance d. Shown at the upper right of the figure is the absorption

image of the condensates in the trap. The field of view measures 70 by

300 mm. (b) Potential energy as a function of the x-coordinate for a

nonsplit trap for d � 6 mm. (c) Potential energy in a double potential well

for d � 13 mm. Trap parameters: energy U0 � h� 5 kHz in both cases (b)

and (c), the potential barrier in the case (c) is h� 4:7 kHz, the interaction

energy of atoms is � h� 3 kHz [31].
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not manage to noticeably expand in the time tp, but the
condensates acquired a phase difference according to expres-
sion (55). After that, the second trap was also turned off and
the phase difference was measured from the interference
pattern. The measuring data are given in Fig. 11.

The abovemethod ofmeasuring the phase difference has a
significant drawback. It is `destructive'. The condensates are
lost upon every phase measurement, and an individual
measurement had to be performed to obtain each point in
Fig. 11.

However, it is also possible to continuously measure the
phase difference. This method was proposed by Stringari and
the author [32] and is based on the phenomenon termed the
interference in the momentum space. The momentum distribu-
tion of two condensates considered as a single quantum-
mechanical system depends on their relative phase. For
instance, for two identical quantum wells,

n�p� � ��c1�p� � c2�p�
��2 � 2

�
1� cos

�
pzd

�h
� F

��
n1�p� :
�56�

Expression (56) predicts characteristic oscillations in the
pz-variable, the phase of which depends on the relative phase
of the condensates.

It is significant that the momentum distribution can be
measured and, what is more, measured in principle nondes-
tructively. The measurement is performed by way of observa-
tion of two-photon Bragg light scattering. The condensate is
illuminated by two laser beams with a small frequency
difference O � o1 ÿ o2 and a wave-vector difference q �
k1 ÿ k2 (use is usually made of oppositely directed beams, so
that k1 � ÿk2). The scattering may be considered as the
atomic absorption of a photon of the first beam and the
stimulated emission of a photon of the second beam. As this
takes place, the atom gains an energy �hO and amomentum �hq.
When the frequency O is high enough, the interatomic
interaction has no effect on the scattering and its probabil-
ity, i.e., the number of photons absorbed from one beam, is
proportional to the quantity

S�q;O� � m

�hq
nz�Y� ; �57�

where nz� pz� �
�
n�p� dpx dpy and the Y variable is

Y � m�Oÿ �hq 2=2m�
q

: �58�

By changing the frequency differenceO and measuring S, it is
possible to determine the momentum distribution and,
according to expression (56), the difference between the
condensate phases. This method was first applied by Stenger
et al. [33] to measure the momentum distribution of con-
densate atoms related to the nonuniformity of the condensate
in a magnetic trap.
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Figure 10. (a) Absorption image of the condensates interference pattern

upon expansion from the trap shown in Fig. 9c. (b) Density distribution

integrated over the condensate section [31].
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in the number of photons in one of the beams. The control coils produce
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Recently, Saba et al. [34] employed two-photon Bragg
scattering for the continuous measurement of the difference
between condensate phases. The setup is schematically
represented in Fig. 12.

As in the preceding experiment of Shin et al. [31], the
condensates were confined in the optical traps in the vicinity
of the foci of two parallel laser beams. As explained above,
the scattering of atoms by two parallel laser beams n1 and
n2 with close frequencies propagating in opposite directions
is observed. The number of scattering events was measured
by recording the number of scattered atoms and therefore
the atoms `knocked out' of the traps, as well as by
recording the variation of the difference in the number of
photons in the measuring light beams. Additional control
coils produced the magnetic field to enable changing the
difference of the chemical potentials of the condensates
and, according to Eqn (4), the time dependence of the
phase difference. According to Eqns (56) and (57), this
results in scattering intensity oscillations with a frequency
oJ � �m2 ÿ m1�=�h.

Figure 13 shows the results of measurements of the
oscillation frequency as a function of the difference of the
chemical potentials of the condensates. We emphasize that
this experiment opens up the possibility of measuring weak
forces experienced by atoms with the use of BECs.

The authors of Ref. [34] also provided the answer to the
long-standing question: ``Is interference possible between
initially independent condensates?'' The question is not
quite trivial. Indeed, let as assume that two widely
separated condensates were independently produced and
have not interacted. Then, as is easy to see, the ground
state of the system corresponds to the given numbers of
atoms in each of the condensates and the value of their
phase difference as a quantum-mechanical variable is not
defined, i.e., the state of the system is not an eigenfunction
of the phase difference operator. Now let the condensates be
allowed to overlap. Will the interference pattern be visible?
The correct answer is ``Yes, it will'' [35]. The observation of
an interference pattern signifies the quantum-mechanical
measurement of the phase difference. As a result of this
measurement, the system transits to a state with a specific
phase difference. The fact that this difference was indeter-
minate in the initial state manifests itself in the measure-

ments of similarly prepared systems each time yielding
different phase values. 3

The interference of independent condensates was investi-
gated in Ref. [34]. At the beginning of the experiment, the
optical traps were spaced far apart (at about 14 mm). Under
these conditions, the condensates produced in the traps were
independent and did not possess a specific phase difference.
At some point in time, the laser beams n1 and n2 were engaged
and measurements were made of the relative phase, which
yielded a value F1. After the measurement, the phase
difference changed with time according to Eqn (55). In this
case, the difference in chemical potentials was defined by the
difference in the depth of the optical traps and by the gradient
of the magnetic field produced by control coils. After a time,
the phase difference measurement was repeated and yielded a
value F2. Measurements of similarly prepared condensates
were repeated several times. As would be expected, the values
of the phase differencesF1 and F2 were randomly distributed
for different repetitions of the experiment. However, the
measured values F1 ÿ F2 corresponded to Eqn (55).

In the above experiments, the tunneling of condensate
atoms between the traps was negligible. The condensate
dynamics in the presence of such a tunneling was experimen-
tally investigated recently by Albiez et al. [37]. However,

3 Here, I have outlined a viewpoint on this interesting problem which, I

believe, is shared by the majority of experts. In my view, however, the

classical nature of the condensate wave function c allows one to arrive at

the same correct conclusion without invoking the quantum theory of

measurements. From this viewpoint it may be assumed that the wave

function c, being a classical quantity, possesses a certain phase even prior

to the measurement, which merely reveals the existing value of the phase

difference. That is why stating that the measured value of the relative

phase is produced in the course of measurement makes little more sense

than saying that a parked-car position is produced by the observer who

looks out of the window. It is not merely a matter of words. The statement

that the wave function phase possessed a value prior to the measurement

does not, owing to its classical nature, lead to any contradictions in this

case. By contrast, the assumption that such a `true quantum' quantity as

the spin projection of a 1=2-spin particle possessed the measured value

even prior to the measurement is well known to lead to contradictions.

From this assumption there follow Bell inequalities, which are at contra-

diction with quantum mechanics and experiment (see Ref. [36], Ch. 6).

Delicate experiments, which would reveal the `true quantum properties' of

the phase are discussed in Ref. [36a].
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before describing these experiments, I will set forth some
theoretical considerations.

7. Tunnel condensate dynamics
in a double potential well

We consider two condensates separated by a high, but not
infinite, potential barrier. The wave function inside the
barrier is small but nevertheless finite, and atoms can tunnel
between the condensates. When the tunneling probability is
low enough, the condensates inside each trap will be in
equilibrium and the system will be described by the assign-
ment of only three variables: the numbersN1 andN2 of atoms
in the traps and the phase differenceF of the condensate wave
functions.

In the presence of tunneling, the difference between the
condensate phases signifies that atoms `go over' from one
condensate to the other. First of all we note that the wave
function of the system may be written, despite the nonlinear-
ity of Eqn (2), as c � c1 � c2, where c1 and c2 are the
solutions of Eqn (2) localized respectively in the first and
second traps. In the barrier area, wherec1 andc2 overlap, the
wave functions are small and the nonlinearity of the equation
is insignificant. Therefore, the wave function can be written in
the form

c�x; t� �
���������������
n1�x; t�

p
exp

�
iF1�t�

�� ���������������
n2�x; t�

p
exp

�
iF2�t�

�
:

�59�

With the aid of Eqn (20) we now find the current density at the
point x � 0 in the middle of the barrier. Simple calculation
gives

j � ÿIJ sinF ; �60�

where

IJ � �h

m

� �����
n1
p

qx� �����n2p � ÿ �����
n2
p

qx� �����n1p ��
x� 0

; F � F1 ÿ F2 :

By definition of the current, Eqn (60) defines the temporal
dependence of the numbers of particles in the condensate:
j � qN1=qt � ÿqN2=qt.

The phase equation can be derived by generalizing the
Josephson equation (4), which was written under the
assumption that the chemical potentials were time-indepen-
dent. When they are sufficiently slow functions of the time, in
lieu of Eqn (4) the differential equation

qF
qt
� ÿ 1

�h
�m1 ÿ m2� �61�

holds. In the subsequent discussion it will be assumed for
simplicity that the numbers of atoms in the condensates differ
little: jN1 ÿN2j5N1;N2. In this case, one may treat the
coefficient IJ in expression (60) as a constant and expand the
right-hand side of Eqn (61) in terms of N1 ÿN2, with the
result that this equation takes on the form

qF
qt
� ÿEC

�h
k ; �62�

where EC � �2dm1=dN1�N1 �N2
and a convenient variable

k � N1 ÿN2

2
; �63�

which characterizes the difference of the potential well
populations was introduced. Similarly, Eqn (60) can be
rewritten as

qk
qt
� IJ sinF : �64�

Equations (62) and (64) make up the system of equations of
the tunnel or Josephson dynamics of a condensate in a double
potential well. WhenF and k are small enough, Eqn (64) may
be linearized by putting sinF � F. Then, the system describes
harmonic oscillations with a frequency

oJ �
�����������
ECEJ

p
�h

; �65�

where the energy dimension quantity EJ � �hIJ is introduced.
We note that the theory under consideration is valid only
when the tunneling probability is sufficiently low. This
condition can be qualitatively formulated in the form of the
inequality �hoJ 5 eex, where eex is the energy difference
between the ground and first excited atomic states in a
potential well.

It is significant that the system (62), (64) can be rewritten
in the form of the Hamilton equations for the canonically
conjugate quantities F and �hk:

qF
qt
� ÿ qHJ

q��hk� �66�

and

q��hk�
qt
� ÿ qHJ

qF
�67�

with the Hamiltonian

HJ � ECk
2

2
ÿ EJ�cosFÿ 1� �68�

(see, for instance, Ref. [38]). The solutions of these equations
are qualitatively different in character for different initial
conditions. Let us assume that the condensates initially
possess equal phases, F � 0, and that k � k0 > 0. Then,
when k0 < kc �

����������������
2EJ=EC

p
, the variation in both the phase

and the quantity k is oscillatory in character. On the strength
of the temporal constancy of the Hamiltonian HJ, the
quantity k oscillates in the limits ÿk0 < k < k0 and cosF
between unity and 1ÿ ECk

2
0 =2EJ.

By contrast, when the initial value k0 > kc, the phase
unrestrictedly grows with time and k oscillates about the k0
value without changing sign:�������������������

k 2
0 ÿ

4EJ

EC

s
< k < k0 :

Therefore, the populations of the potential wells do not
become equal in this case, despite the tunneling. The so-
called `self-trapping' effect occurs [39, 40].

This effect has a simple mechanical analogue. Hamilto-
nian (68) is equivalent to that of a physical pendulum, with F
playing the part of the angular displacement and k of the
angular velocity. When the initial angular velocity is high
enough, the pendulum rotates about the support point rather
than oscillating.
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These interesting effects were investigated inRef. [37]. The
authors employed an optical trap formed by a focused laser
beam. Unlike the preceding experimental work, however, the
double trap was produced by imposing a standing light wave
directed along the focused laser beam. This produced the
potential shown schematically in Fig. 14. It has several
minima. The condensate is trapped in the two deepest. The
barrier height can be adjusted by changing the amplitude of
the standing wave. To produce the initial potential-well
population difference, the standing wave was somewhat
shifted relative to the focal point. In this case, one well
became deeper than the other and more atoms found
themselves in this trap upon establishment of equilibrium.
After that, the wells were rapidly shifted to the symmetric
position and the tunneling motion of the condensate began.
At some point in time the laser field was turned off and the
condensate was observed to expand. As this took place, the
researchers managed to measure the number of atoms in the
traps and, from the interference pattern, the phase difference.
The measurement data are presented in Fig. 15, which
exemplifies the oscillatory regime and the self-trapping
regime.

Once again, I draw the reader's attention to the fact that in
the photographs given we can see the quantum tunneling of a
macroscopic body virtually with the unaided eye.

The above-outlined experimental device holds great
promise. For instance, it can underlie quantitative investiga-
tions into the quantum and classical fluctuations of the
condensate wave function (see Section 8). It is possible to
verify the unexpected prediction made by Kagan, Kovrizhin,
andMaksimov that the phonons excited in the condensate do
not experience reflection from the potential barrier [41].

8. The breaking of coherence by quantum
fluctuations and the Mott transition

The effects discussed thus far are, of course, of a quantum
nature. However, they can be adequately described within
the approximation of classical de Broglie waves, which
reduces to the Gross ± Pitaevskii theory. It is noteworthy,
in particular, that the parameter IJ, which describes
tunneling, can be calculated by solving Eqn (2). However,
when the tunneling probability is low enough, investigations
of the systems described above are of special interest

because they permit revealing the departures from the
mean field theory.

In a homogeneous gas, suchlike departures are described
by the correction terms of the Bogolyubov theory, which may
be considered as a manifestation of the quantum fluctuations
of the wave functionc. These corrections, generally speaking,
are of the relative order na3

ÿ �1=2
, where n is the number of

atoms per unit gas volume. This formula also applies to a
condensate in a trap by the order of magnitude, if n is
considered to mean the gas density at its center. Assuming
the trap potential to be harmonic, it is easy to verify that the
corrections to themean field theory are of the relative order of
magnitude

1

N

�
Na

aH

�6=5
;

where

aH �
�

�h

moH

�1=2
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Figure 14. Schematic plot of the dependence of the potential energy on the

coordinate along the beam for an optical trap [37].
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Figure 15. Tunnel dynamics of the condensate in a symmetric double well.

The temporal dependence of the condensate density is immediately evident

from the absorption images. The field of view is 19.4 by 9.2mm.Figure 15a

shows the condensate evolution in the Josephson oscillation mode, when

k < kc. Figure 15b corresponds to the self-trapping mode k > kc. When

the images were obtained, the condensates were spaced at 6.7 mm [37].
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and oH is the atomic oscillation frequency in the trap. The
dimensionless parameter Na=aH is of great importance in
BEC physics. When this parameter is large, as is usually the
case, advantage can be taken of the so-called Thomas ±Fermi
approximation (see Ref. [1]) in theory.

Exhibiting the most promise is the possibility of measur-
ing the departures of the condensate oscillation eigenfrequen-
cies in a trap from the results of mean field theory. The
corresponding corrections, which increase the oscillation
frequency, were calculated by Pitaevskii and Stringari [42]
and by Braaten and Pearson [43]. Despite the largemagnitude
of the Thomas ±Fermi parameter, owing to the small factor
1=N the corrections turn out to be small under typical
experimental conditions and have so far escaped reliable
measurement. It is likely that Chevy at el. [44] observed
them in the shift of the oscillation frequency of a strongly
elongated condensate.

In this respect, the situation near the so-called Feshbach
resonances, where the scattering length depends on the
magnetic field and may assume very large values, is of
considerable promise [54]. This effect is discussed in Section 9.

Departures from the mean field theory result, however,
in appreciable observable effects for weakly coupled con-
densates, i.e., those separated by high potential barriers.
Here, the case in point is the condensates both in optical
lattices and in double potential wells. The interatomic
interaction leads to quantum fluctuations of condensate
phases, which can be measured in sensitive interference
experiments.

The simplest way of describing quantum fluctuations of
the condensate phase difference in a double potential well
involves the quantization of the classical tunnel dynamics
equations (66), (67). To do this requires replacing the
canonically conjugate variables F and k by the operators
with the commutation relations

�F̂; k̂ � � i : �69�

In this case, it is expedient to operate in the `F representation',
whereby the operator

k̂ � ÿi q
qF

�70�

acts on the wave function, which should be a periodic
function of F with the period 2p. Accordingly, the
Hamilton operator is the quantum generalization of
Hamiltonian (68):

ĤJ � EC

2

q2

qF2
ÿ EJ�cosFÿ 1� : �71�

Hamiltonian (71) is sufficiently simple, and with its aid it
is possible to provide a complete description of phase
fluctuations. First of all, we consider the case when these
fluctuations are small. Then, we can approximately put
1ÿ cosF � F2=2, with the result that Hamiltonian (71)
reduces to the Hamiltonian of a harmonic oscillator. By
taking advantage of the well-known results, we find that the
ground state of the system involved exhibits the following
fluctuations:

hF2i � 1

2

�������
EC

EJ

r
: �72�

The above assumption about the smallness of fluctuations
therefore necessitates the fulfillment of the inequality

EC

EJ
5 1 ; �73�

which signifies that the interaction is sufficiently weak (EC is
low) and the tunneling coefficient EJ is large enough. In the
absence of interaction, when EC � 0, the phase fluctuations
are absent, as they must be. All atoms are condensed in one
state with a certain phase 4.

The quantityEJ is, generally speaking, proportional to the
number of condensate atoms N. However, since it decreases
exponentially with the barrier height, inequality (73) may be
violated even for high N.

Phase fluctuations have the effect that the interference
pattern shown in Fig. 10 turns out to be blurred upon
averaging over a set of many measurements. Indeed, every
measurement would yield a density distribution in accordance
with expression (54), but with different phase values in
different realizations of the experiment. Averaging the
resultant density distributions over different measurements
would then yield (in the case of similar condensates with
n2 � n1)


n�r; t�� � 2n1

�
1�

�
cos

�
md

�ht
x� F

���
� 2n1

�
1� cos

�
md

�ht
x

�
hcosFi

�
: �74�

Therefore, the sharpness of the interference pattern is
determined by the coherence factor

a � hcosFi � 1ÿ hF
2i
2

: �75�

In particular, the minimal-to-maximal intensity ratio turns
out to be equal to

1ÿ a
1� a

� hF
2i
4

:

We emphasize once again that the interference pattern
blurring occurs due to averaging over different realizations
of the experiment. Each individual experiment yields an
interference pattern with a certain phase F.

In the opposite limiting case of weak tunneling
�EJ=EC 5 1�, the fluctuations of the population difference
�Dk�2� � 2�EJ=EC�2 are found to be small. In this case, the
condensates are in the states with fixed numbers of particles
(they are referred to as the Fock states). The sharpness of the
averaged interference pattern is quite poor in this case:
a � hcosFi � 2EJ=EC.

Up to the present time, the phase fluctuations of a
condensate in a double potential well have not been
investigated (recall that the tunneling itself in this system has
been observed quite recently [37]). Optical lattices open up
greater opportunities to observe these fluctuations. Here, the

4 The transition to the case of noninteracting particles is in fact not quite

trivial. This is evident even from the following fact: in the same

approximation as that of formula (72), when EC ! 0, the fluctuation of

the population difference

�Dk�2� � �������������������EJ=EC�

p !1, which is impossi-

ble. This issue is discussed in greater detail in Ref. [45], æ 15.7.
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presence of fluctuations signifies that the condensates located
at different lattice sites possess different phases. This is
responsible for the blurring of the interference pattern even
in every individual measurement in an experiment like that
shown in Fig. 1.

The first experiments of this kind were performed by
Anderson and Kasevich [46] and by Orzel et al. [47]. They
observed the Bloch oscillations of the condensate in a one-
dimensional optical lattice under the effect of gravity. As in
other experiments, at some point in time the lattice was turned
off and the interference pattern was recorded. In Ref. [47], the
interference pattern, which was sharp in a low-intensity
lattice, was discovered to vanish with an increase in barrier
heights. However, it should be borne in mind that the
interpretation of these results is not quite unequivocal. It is
likely that the aforementioned instability of the condensate
moving in the lattice also played a part.

Greiner et al. [48] obtained important results in the
investigation of condensates in a three-dimensional lattice
with a potential of the form (13). Unlike the preceding
experimental papers discussed above, the number of atoms
in each lattice site was small: on the order of 1 ± 3. Because of
this, the departures from the mean field theory turned out to
be large. The authors observed the interference pattern upon
turning off the external field. The results are given in Fig. 16
for different values of the parameter s. Small s parameter
values signify that the lattice potential is low. In this case, the
condensate is almost uniform and the side peaks of the
interference pattern are weak, as is evident from Fig. 16a.
As s increases, these peaks rise in intensity. However, there
simultaneously appears an incoherent background related to
phase fluctuations. For s > 13, the discrete interference peaks
are `absorbed' by the background and disappear completely.
At this s value, the system undergoes a phase transition to a
new state. Unlike the superfluid condensate phase for small s
values, this phase is termed dielectric, because the gas can no
longer flow through the lattice. The absence of interference
peaks signifies the absence of non-diagonal long range
ordering, i.e., the absence of BEC.

The critical value of s is in agreement with the theoretical
predictions by Fisher et al. [49] (see also Jaksch et al. [50]). The
dielectric phase is characterized by the existence of a gap in

the energy spectrum. The gap has a simple physical signifi-
cance. This energy is required to transfer an atom from one
lattice site to the neighboring one. Owing to the repulsion
between the atoms, this process requires energy. The gap
width was measured by imposing a nonuniform external
potential. When the difference in potential between the
neighboring sites was as large as the gap, the atoms were set
in motion, which resulted in an irreversible heating of the
system. When the s parameter was decreased after that again,
the system did not return to the superfluid state, which
showed up in the absence of the interference pattern.

Mott predicted a transition of this type for electrons in a
metal, and it is commonly referred to as theMott transition.

Recently, Xu et al. [51] performed a quantitative investi-
gation of departures from the mean field theory in conditions
when they are not too small. The aim of the work was to
measure the number of `supracondensate' atoms. In the mean
field approximation, for T � 0 all atoms are in the con-
densate. The fluctuations of the wave function give rise to
out-of-condensate atoms. According to predictions by the
Bogolyubov theory, for a uniform condensate at T � 0 the
ratio Z between the out-of-condensate number of atoms and
the total number (the quantum depletion) is Z � 1:5�na 3�1=2.
Direct generalization of the Bogolyubov theory for conden-
sates in a lattice yields for this ratio the expression
Z � � v 2k dk=n, where k is the quasimomentum and v 2k is the
parameter similar to the parameter v of the Bogolyubov
transformation expressed in terms of the elementary spec-
trum E�k� of excitations in the lattice, according to vanOosten
et al. [52], as

v 2
k �

E�k� � gn0 ÿ
�
2E�k�gn0 � E 2�k��1=2

2
�
2E�k�gn0 � E 2�k��1=2 : �76�

It is easily shown that increasing the lattice potential
amplitude s increases the Z ratio, so that the supracondensate
atoms become observable.

The experimental setup was in principle similar to that of
Ref. [48], which was discussed above. The condensate,
containing up to 5� 105 atoms of 23Na, was placed in an
optical trap produced in the vicinity of the intersecting foci of

1

0

a b c d

e f g h

Figure 16. Interference pattern upon Bose-gas expansion from a three-dimensional lattice for different values of the parameter s: (a) s � 0, (b) 3, (c) 7,

(d) 10, (e) 13, (f) 14, (g) 16, (h) 20. The disappearance of diffraction spots for s > 13 signifies the Mott transition to the dielectric phase [48].
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two infrared laser beams with a wavelength of 1064 nm (for a
more detailed description of the experimental facility, see Xu
et al. [53]). The atomic eigenfrequencies in the trap were
ox; y; z � 2p� 60; 60; 85 Hz and the condensate radius was
equal to about 12 mm for 1:7� 105 atoms. Three mutually
perpendicular standing laser waves were imposed on the
condensate to produce a three-dimensional optical lattice. It
was also possible to produce one- or two-dimensional lattices
by using one or two of these waves. There were approximately
7 atoms per lattice site, i.e., appreciablymore than inRef. [48].
The experiment was performed up to parameter values
s � 22.

To measure the number of supracondensate atoms, the
trap and lattice potentials were rapidly (in a time shorter
than 1 ms) turned off and the condensate expanded freely for
10 ms. After that, the absorption condensate image was
obtained, i.e., measurements were made of the spatial density
distribution. As discussed above (see footnote 1), this
distribution reproduces the initial momentum distribution.
In this experiment, the condensate atoms produced sharp
interference peaks and the supracondensate atoms produced
the diffuse background. In the experiment, the peaks were
shaded and the number of background-producing atoms was
counted, thereby giving the number of the supracondensate
atoms. We do well to bear in mind that many pitfalls were
encountered when processing the data of this extremely
difficult experiment. For values s > 16, part of the con-
densate at the center of the trap underwent the Mott
transition to the dielectric phase. The nonuniformity of the
system obstructed the application of the theory. Never-
theless, the measuring data turned out to be in reasonable
agreement with the theory for three-, two-, and one-
dimensional lattices alike.

9. Feshbach resonance

As mentioned above, broad experimental possibilities are
opened up by the existence of Feshbach resonances, in the
vicinity of which the scattering length is long and depends on
the magnetic field. Before describing several experiments on
ultracold gases near the Feshbach resonances, we are
reminded of the central tenets of the scattering theory for
slow particles under conditions when a system of two atoms
possesses a bound state with a negative energy E close to zero
(see Ref. [13], æ 133). The term `close to zero' implies in this
context that the characteristic distance �h=

���������
mjEjp

between the
bound atoms is large in comparison with the interatomic
potential range r0:

�h���������
mjEjp 4 r0 : �77�

In this case, a quantum-mechanical description of the
interatomic interaction does not necessitate knowledge of
the specific properties of the potential. It would suffice to
consider the free atomic motion, but impose the following
boundary condition for r! 0 on the wave function of the
s state:�

d�rc�
dr

�
r� 0

� ÿ 1

a
�rc� ; �78�

where a is a constant subject to the condition a4 r0. When
a > 0, the SchroÈ dinger equation for the relativemotion of two

atoms possesses a solution of the form

c � const � exp �ÿr=a�
r

;

which describes the bound state with an energy

E � ÿ �h 2

ma 2
: �79�

When a is negative, the bound state is nonexistent. In this
case, the two atoms are said to have a `virtual level' as
opposed to the `real' level (79). However, irrespective of the
sign of a, the solution with a positive energy E is of the form
c � const � sin �kr� d0�=r, where k � p=�h � �������

mE
p

=�h. The s-
scattering phase is determined with the aid of Eqn (78), which
leads to the formula tan d0 � ÿka. The scattering amplitude
is

f � 1

k�cot d0 ÿ i� � ÿ
1

1=a� ik
: �80�

Therefore, the constant a � ÿ� f �k! 0 is nothing but the
scattering length. If E! 0, the length a!1. Then, the
scattering amplitude tends to its universal `unitarity limit':

f! i

k
: �81�

We note that the a-positivity condition, which ensures the
condensate stability, signifies that the system of two atoms
possesses a real level with a low negative energy for large
values of a. Itmay appear that the occurrence of this level is an
unlikely fortuity. However, alkali-earth atoms possess levels
whose position depends strongly on the magnetic field. We
consider the system of two atoms as a diatomic molecule. The
electronic terms, i.e., the potential energy curves of atomic
interaction, are determined by their electronic states. In this
case, it is significant that different electronic states possess
different magnetic moments. That is why the relative
positions of the terms depend on the external magnetic field.
We consider two terms: the upper term and the lower one,
which corresponds to the ground state. By changing the
magnetic field, it is possible to make the energy of one of the
bound states of the upper term approach zero. This is just the
Feshbach resonance [54]. In the absence of transitions
between the terms, the existence of this level has no effect on
the scattering in the ground state. However, the small terms in
the Hamiltonian which describe the nuclear ± electronic
motion interaction give rise to these transitions. And so the
existence of the upper term level manifests itself in atomic
scattering according to formulas (79), (80). As for the
weakness of the interaction between the terms, it shows up
in these formulas being valid only for very low energies, and
the lower the energies, the weaker the interaction.

The constant 1=a, which enters into boundary condition
(78), is a regular function of magnetic induction B, and it can
be expanded to about the value B0, whereby the level reaches
zero: 1=a � �Bÿ B0�=b. When the constant b is sufficiently
small, it is appropriate to include the next term of the
expansion as well. Eventually the scattering length in the
neighborhood of the Feshbach resonance can be written as

a � ag � b

Bÿ B0
: �82�
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The employment of the Feshbach resonance opens up
radically new experimental possibilities, for it permits con-
trolling the interaction intensity. As B0 is approached, the
scattering amplitude increases, so that attempts to obtain
rather large gas parameter values for a low gas density meet
with success. On the other hand, the interaction becomes
quite weak when the magnetic field is close to the value
B � B � � B0 ÿ b=ag, making it possible to investigate the
properties of a virtually perfect Bose gas. Interestingly, under
these conditions there is good reason to include in Eqn (2) the
fifth-order term as well, i.e., to describe the gas by an equation
in the form

i�h
q
qt

c�r; t� �
�
ÿ �h 2H 2

2m
� Vext�r; t�

� n�Bÿ B ����c�r; t���2 � g3
��c�r; t���4�c�r; t� : �83�

The constant g3 accounts for the three-particle interatomic
interaction.

There emerges a wide range of interesting effects when the
magnetic field changes rapidly in time. As mentioned above,
the condensate is stable in the vicinity of the resonance only
when the system of two atoms possesses a bound state with a
low binding energy. In stationary conditions, such molecules
are produced by three-body recombination, which has a low
probability in a dilute gas. In an alternative magnetic field,
however, atoms combine to formmolecules for a two-particle
interaction as well. As a result, along with atomic condensate
there also emerges a condensate of molecules [55]. The
molecular condensate is described by its own wave function.
The interference between the two condensates manifests itself
in characteristic beats Ð periodic variations in atomic
condensate density with a frequency �hjEj, where E is the
molecular binding energy (79).

The possibility of controlling the magnitude of the
scattering length makes it possible to radically change the
interaction properties of two bosons placed in a cylindrical
harmonic trap. When the frequency o? of transverse
vibrations in the trap is sufficiently high, the atomic motion
may be treated as one-dimensional. The interaction of two
slow atoms may then be described employing a one-dimen-
sional effective potential of the form

U1D�zÿ z 0� � g1D d�zÿ z 0� : �84�

It is possible to express the interaction constant g1D in terms
of the `three-dimensional' atomic scattering length a in free
space [56]:

g1D � 4�h 2

ma?
a

1ÿ C�a=a?� ; �85�

where a? � �2�h=mo?� and C � 0:56. One can see from
formula (85) that by changing the magnetic field and hence
the scattering length a it is possible to greatly increase the one-
dimensional interaction constant and change its sign. It is
noteworthy that the above formulas also apply to the
interaction of slow fermions with antiparallel spins.

Experimental BEC research in the immediate vicinity of
the Feshbach resonance is hindered by the short condensate
lifetime. Increasing the scattering length increases the prob-
ability of three-body recombination. However, there exist
systems that are free from this limitation. The case in point is

diatomic molecules made up of fermions with opposite spins.
(Slow fermions with parallel spins interact only slightly
because the s-scattering length of fermions with parallel
spins is equal to zero.) Such molecules evidently obey the
Bose ± Einstein statistics and have the capability to form a
condensate. However, their properties near the Feshbach
resonance are completely different from the properties of
atomic bosons. These properties were elucidated in an
important paper by Petrov, Salomon, and Shlyapnikov [57],
whose findings are discussed below.

First of all, it is possible to express the molecule±molecule
scattering length am in terms of the scattering length for atoms
with opposite spins. The problem allows an elegant solution,
which yields the result

am � 0:6a ; �86�

which is valid near the resonance, i.e., in the limit a!1. It is
noteworthy that the Fermi statistics of the atoms are of
significance. For molecules made up of two bosons, it is
impossible to express the molecular scattering length in terms
of the atomic one. The result in Ref. [57] was obtained by
solving the SchroÈ dinger equation in the coordinate space.
Brodsky et al. [58] developed a diagram approach to the
problem. Also investigated in Ref. [57] were the molecular
transitions to deep molecular levels occurring in the collisions
of two molecules. It turned out that the probability arel of this
relaxation process, which is responsible for the loss of
molecules from the condensate, lowers with an increase in
scattering length:

arel / aÿ2:55 : �87�

This signifies that the lifetime of the condensate of molecules
consisting of Fermi atoms lengthens rapidly as the Feshbach
resonance is approached. (Regal et al. [59] experimentally
observed a power dependence for the relaxation rate with an
exponentÿ2:3, which is close to expression (87).) I emphasize
that this effect is related to precisely the Fermi nature of the
atoms. For molecules made up of bosons, the molecular
relaxation probability near the resonance increases propor-
tionally to a 4. At present, Fermi gases near the Feshbach
resonance are the concern of numerous experimental and
theoretical papers and their discussion is beyond the scope of
the present review. Here, I will restrict myself to only brief
remarks.

It is significant that the system turns out to be stable for all
values of the scattering length a, both positive and negative.
For positive a, we are dealing with molecular bosons with a
positive, according to expression (86), scattering length. In
this case, the system is described by Eqn (2) with replacement
of the mass by 2m and of the scattering length by 0:6a. A
negative a signifies the absence of a bound state, and we are
dealing with a Fermi gas whose stability is provided by the
statistical properties of fermions.

Of special interest is the situation that takes place in the
immediate vicinity of the Feshbach resonance, when the
formally calculated scattering length a turns out to be much
longer than the average interatomic distance:

a4 nÿ1=3 : �88�

It is significant that in this case the gas remains dilute in the
sense that the atomic dimension is much smaller than the
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interatomic distances

r0 5 nÿ1=3 : �89�

The properties of the system should then be determined by the
parameters of the two-particle scattering amplitude. In a gas
with a density n, the majority of atoms possess momenta on
the order of �p � �hnÿ1=3 4 �h=a. The scattering amplitude for
such momenta reaches the unitary limit (81) and is indepen-
dent of a. In this situation, there remain no parameters at our
disposal, with the exception of the density, characterizing the
system.

Simple dimension considerations show that the equation
of state is of the same form as the equation of state of a perfect
Fermi gas. For instance, for T � 0 the energy E0=N
accounted for by one atom should be of the form

E0

N
� xp 2

F

2m
� x

�h 2�3p2n�2=3
2m

; �90�

with a universal coefficient x, i.e., one that is independent of
the kind of gas. Naturally, there is no way of calculating the x
coefficient analytically because the theory does not contain a
small parameter in the unitary domain. However, numerical
calculations by theMonte Carlo technique yield a reasonably
reliable value x � 0:44 [60, 61], which is in good agreement
with experimental data [62, 63]. It is pertinent to note that the
chemical potential in the unitary domain for T � 0 and the
energy are related by the same equation as in the ideal gas:
m � �5=3�E0=N. At finite temperatures, the curve E�T �
should also be universal.

There is good reason to believe that a Fermi gas close to
the resonance is, for T � 0, superfluid for all values of the
scattering length. Indeed, for relatively small positive values
of a we are dealing with a dilute gas of Bose molecules (the
BEC domain). For small negative a values we have a Fermi
gas with a weak attraction between the atoms. According to
the Bardeen ±Cooper ± Schrieffer ±Bogolyubov theory,
Cooper pairs form in the gas in this case and the state of the
gas turns out to be similar to the state of electrons in a
superconducting metal. The calculation of the gap in the
spectrum and of the transition temperature is, however, an
arduous task, which was carried out by Gor'kov and Melik-
Barkhudarov [64]. I mention that the transition between the
two specified regimes is continuous, not involving a phase
transition.

In the unitary near-resonance regime, the superconduct-
ing gap for T � 0 should be on the order of p 2

F=2m, i.e.,
D�0� � gp 2

F=2m with a universal coefficient g. Calculations of
Ref. [60] yield a value g � 0:88. The transition temperature
should also be on the order of p 2

F=2m. Recent calculations
employing the diagram Monte Carlo technique [67] yield the
value [68]

Tc � �0:152� 0:003� p
2
F

2m
: �91�

A direct confirmation of superfluidity is the existence of
quantized vortices, which were observed in experiments [65].
I should mention that these vortices in a Fermi gas possess a
velocity circulation p�h=m Ð two times lower than in a Bose
superfluid liquid. The circulation can be determined by
calculating the number of vortices per unit area for a given
rotation velocity.

As discussed above, for a sufficiently small a the system is
a molecular Bose gas. To a first approximation, the equation
of state of this gas may be written as m � �2p�h 2=m��0:6an�. Of
fundamental importance is the question of whether, with the
aid of the Bogolyubov ±Lee ±Yang ±Huang theory, it is
possible to calculate the next correction as well, which is of
the relative order of magnitude �na 3�1=2 in this theory (see the
beginning of the previous section). This is not evident,
because the Fermi properties of the atoms that make up a
molecule are of significance, but the orders of magnitude of
statistics-related corrections are hard to estimate. However, I
am convinced that the correction �na 3�1=2 is the principal one.
This signifies that the frequency of collective gas oscillations
in the trap should rise with increasing a in the BEC domain.
At the same time, the oscillation frequency in the unitary limit
should be lower than in the BEC domain. Indeed, for a
`polytropic' equation of state of the form m � ns, the
frequencies lower with decreasing s, with s � 1 in the BEC
domain and s � 2=3 in the unitary domain. Therefore, the
oscillation frequencies as functions of a should have a
maximum [66]. Experimental evidence on this matter is
discrepant, but recent experiments by Grimm [69] seem to
bear out the existence of this maximum.

10. Conclusion

Investigations involving optical traps and optical lattices
play an increasingly important part in BEC physics. It is
just this technique that is actually employed in the majority
of new experiments. However, the technology of magnetic
traps is not standing still, either. Rapid strides are being
made by `microtraps', in which the magnetic field is
produced by the currents flowing through thin electrodes
deposited on a dielectric substrate, near which the atoms are
confined. (See, for instance, Treutlein et al. [70] and
references therein).

To summarize, I note that the work on BECs and
ultracold gases generally has entered a new phase. While
initial studies were concerned with the amazing properties of
the condensates themselves, at present the condensates are
used primarily for investigating different physical problems
that defy investigation by other methods. Among them is the
study of quantum phase transitions, which are exemplified by
the Mott transition discussed in the foregoing. Also worth
mentioning is the measurement of the force of molecular
attraction between an atom and a solid surface in the
measurement of near-surface condensate oscillations [71].
However, a truly vast range of applications of these systems
opens up in connection with their possible use for quantum
information processing and development of quantum com-
puters. Ultracold gases in optical traps and microtraps show
the greatest promise as candidates for the elements of such
computers, even though the idea of a gaseous, at least partly,
computer seems strange. There have already been many
achievements on this path. Although this problem is
extremely difficult, it is my belief that the present generation
of the Earth's population will witness the advent of quantum
computers. This topic undoubtedly deserves to be compre-
hensively reviewed on the pages of Physics ±Uspekhi.
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