
(in a system of units where the magnetic length lH � 1 and
e � c, oH � 1=m). Such a special form of the polarization
operator is because the electron ± hole polarization loop in the
coordinate representation is a function of �rÿ r 0� if an
external magnetic field is present.

A plasmon propagator, like D�o; q�, has the form (6). In
the presence of a completely filled Landau level in P�o; q�
valleys, additional energy comes into play due to the electron
being transferred from an occupied valley to the same level in
an empty valley, with a hole left behind. This energy has its
origin in exchange effects and corresponds to a spin wave in
the one-valley case. This is a neutral excitation, and onewhich
is characterized by a momentum, despite the presence of a
magnetic field. In this situation, an exchange exciton forms.
At a large momentum, the electron and the hole are far apart,
their interaction is negligible, and they can therefore be
considered free Ð leading to the conclusion that their energy
is the activation energy for charge excitations, the electron
energy difference between the empty and occupied valleys.
This energy can be calculated to give

D �
�
D�0; q� exp

�
ÿ q2

2

�
d2q

�2p�2

� �hoH

n

ÿ
log�rsn3=2� � 0:277

�
; �20�

(rs �
���
2
p

e2=oH lH
���
n
p

), showing that the activation energy is
approximately proportional to the magnetic field and is small
in the limit of large n. The linear behavior agrees qualitatively
with the magneto-conductance measurements of the activa-
tion energy [10], but Eqn (20) greatly overestimates the
activation energy Ð possibly because the extrapolation to
relatively large rs is itself a rather crude procedure or because
factors such as a finite thickness of the 2D layer or the image
force from the metal gate were not taken into account.

The energy of an exchange exciton at lowmomentumQ is
calculated in a similar way, giving

o�Q� � J�QlH�2; J � 0:6613
oH

n
: �21�

Thus, we see that the exchange constant J is also screening-
suppressed and varies linearly with the magnetic field.

Some of the results in this paper were previously presented
in Ref. [16].
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Interaction effects in the transport
and magnetotransport of two-dimensional
electrons in AlGaAs/GaAs
and Si/SiGe heterojunctions

E B Olshanetskii, V Renard, Z D Kvon,
I V Gornyi, A I Toropov, J C Portal

1. Introduction

Localization- and interaction-induced quantum corrections
to the conductivity of two-dimensional (2D) electron systems
[1, 2] have been the subject of considerable study since as long
as a quarter century ago. It should be noted that weak
localization effects do not present any problems, and that
their associated anomalous magnetoresistance very soon
became a powerful tool for probing the low-temperature
properties of disordered metallic systems, from thin super-
conducting films to near-surface 2D layers in semiconductors.
Unlike this, the behavior of interaction effects remained the
subject of continuous heated debate Ð primarily in connec-
tion with how they influence the metal ± insulator transition
in a 2D electron system [3]. What made things especially
topical was the discovery [4] that a high-mobility 2D electron
gas in silicon MOS (metal-oxide-semiconductor) transistors
exhibits states whose conductivity increases anomalously
with lowering the temperature, which is entirely inconsistent
with theoretical expectations [1, 2]. This situation has
stimulated new ideas in the theory of interaction-induced
quantum corrections and has recently led to its further
development in Refs [5 ± 7], which identified two regimes Ð
the diffusion one (for Tt=�h5 1) and the ballistic one (for
Tt=�h4 1) Ð in the behavior of quantum corrections. Both
regimes are of the same nature, i.e., are determined by single
and multiple scattering from impurities and from the Friedel
oscillations in their screening charge. Both mechanisms had
already been know before Refs [5 ± 7]. The first mechanism
[1, 2] was thought to be related to the quantum corrections
due to the interference of interacting electrons (see above),
and the second was linked to the temperature dependence of
screening due to the singularity in 2D screening near q � 2kF
[8] and was considered to be a temperature-dependent part of
the one-electron transport time, unrelated to quantum
interference.
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There was a series of experiments [9 ± 12] to verify the
predictions in Refs [5 ± 7], and although a number of
confirmations were obtained, none of the experiments
showed the transition from one regime to the other. Nor was
a study done to see experimentally how (or whether) the
ballistic and quantum corrections depend on whether the
primary scattering mechanism is short-range, long-range, or
mixed Ð even though this had been shown [7] to be a very
important factor in determining the behavior of the parabolic
magnetoresistance due to these corrections. This talk presents
experiments that used 2D electron systems (2D ESs) in an
AlGaAs/GaAs/AlGaAs quantum well and in a SiGe/Si
heterojunction to clarify the situation.

2. Transition from the ballistic to the diffusion
regime in a 2D ES in an AlGaAs/GaAs/AlGaAs
quantum well

The experiment to study the way quantum corrections change
from diffusion to ballistic behavior involved a specially
designed structure consisting of a high-density 2D electron
gas (2D EG) in an AlGaAs/GaAs/AlGaAs quantum well
doped with Si.With the concentrationNs varying in the range
(2.5 ± 4.5)�1012 cmÿ2 and the mobility m between 280 and
560 cm2 Vÿ1 sÿ1, the system under study was a low-mobility
2D EG with large values of the Fermi energy EF

(EF � 100ÿ200 meV) and the short-range potential of
doped Si atoms acting as the dominant scattering mechan-
ism. To catch the transition from Tt=�h5 1 to Tt=�h4 1, the
maximum possible temperature range, T � 1:4ÿ110 K, was

covered, in which the resistance, magnetoresistance, and Hall
effect were measured in detail (Fig. 1). Before proceeding to
the analysis of the experiment, a close look at the theory in
Refs [5, 6] is in order. According to this theory, the total
quantum correction to the conductivity of a 2DES consists of
a logarithmic part and a linear part, respectively dominant at
low (Tt=�h5 1) and high (Tt=�h4 1) temperatures. The point
to note here is that in the weak interaction case, rs 4 1
(rs � Eeÿe=EF), both corrections have the same sign Ð one
for which the conductivity falls with decreasing the tempera-
ture. An interesting prediction concerns the correction drxy to
the classical Hall resistance rDH: its temperature dependence
changes from logarithmic to hyperbolic as the temperature
increases. As already noted, there exists a correction due to
weak localization, along with that due to interaction. The
former was excluded by conducting experiments in a
magnetic field B, which completely suppresses the weak
localization in our samples at B > 5 T. Another output
from measurements in a magnetic field was the value of the
Drude conductivity, which is needed for correctly comparing
theory and experiment. Measurements of the temperature
dependence of conductivity due to the Ds eÿe

xx �T � interaction
are presented in Fig. 2a. It is clearly seen that the dependence
is close to linear at high temperatures, T > 20 K, and
becomes logarithmic for T < 20 K. A fairly good agreement
is seen with the dependence (solid curve) predicted by the
theory in Ref. [5]. We note that this agreement is obtained
without the use of any fitting parameters because in the weak
interaction case, the Fermi-liquid constant F s

0 , normally used
as a fitting parameter, is determined exactly [5] if the
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concentration of 2D electrons is known, which in our case was
determined which it is from the Hall effect and Shubnikov ±
de Haas measurements on the samples studied. A specially
developed technique allowed each of the interaction-induced
corrections to be determined separately. Taking the logarith-
mic correction as an illustration, it is clearly seen from Fig. 2b
that it tends to zero for T > 20 K. The measured and
predicted corrections to the Hall resistance are compared in
Fig. 3, fromwhich it is seen that the theory in Ref. [6] explains
the behavior of drxy=r

D
H only qualitatively and that the

experimental and theoretical dependences of drxy=r
D
H on

temperature disagree considerably. Still, the transition from
the ballistic to diffusion regime in the behavior of the Hall
effect is also clearly seen in the curves in Fig. 3, the lack of
perfect agreement being most likely due to the neglect of the
weak scattering anisotropy.

3. Metal ± insulator transition and quantum
corrections to the 2D EG conductivity
in the Si/SiGe heterostructure [14]

It has been about ten years since the silicon structure metal ±
insulator ± semiconductor (MIS) with a 2D EG was first
found [4] to undergo the metal ± insulator transition (MIT)
forbidden in the one-parameter scaling model [15]. However,
it is still unclear whether this is a phase transition. Although
publications abound on the metal ± insulator transition in
various types of 2D ESs, there has not yet been any report of
such a transition in a Si/SiGe heterojunction with a 2D EG,
which is all the more unfortunate because this would allow a
comparison with what has been seen on silicon MIS
structures. These two systems, while totally alike in their
electronic spectra, differ in the structure of the scattering
potential (which is primarily short-range in silicon MISs and
has a long-range component in Si/SiGe heterostructures), and
hence the difference in the behavior of these systems can
provide information on the role played by the dominant
scattering mechanism in the electron ± electron interaction.

Our experiments involved Si/SiGe heterostructures grown
by molecular beam epitaxy [12], with the electron density
Ns � �3:5ÿ6:23� � 1011 cmÿ2 and the maximum electron
mobility m � 6� 105 cm2 Vÿ1 sÿ1. The transport measure-

ment employed a standard four-probe technique using a low-
frequency (10 Hz) small-amplitude (0. 1 mA) ac to avoid
heating effects.

The metal ± insulator transition is usually observed by
measuring the temperature dependence of conductivity at
various concentrations of 2D electrons. The concentration in
this case was varied by varying the shutter voltage. In our
experiments, samples based on a 2D EG containing Si/SiGe
heterojunctions were brought from their initial insulating
state (which was achieved by cryostatically cooling them to
the base temperature) to themetallic state (which proved to be
very stable) by applying a succession of specially dosed short-
duration LED pulses.

Figure 4 shows the temperature dependence of the
resistance for various values of the electron concentration.
The transition between the insulating, drxx=dT < 0, and
metallic, drxx=dT > 0, behavior shown in this figure is the
first observation of this kind in a Si/SiGe heterostructure with
a 2D electron gas. At the electron concentration about
4:05� 1011 cmÿ2, there is a sort of boundary between these
states, corresponding to the sample resistance� 0:3h=e2. The
temperature dependence of resistance corresponding to this
boundary state is not monotonic (Fig. 4c). As its counterparts
in other 2D systems, the observed metal ± insulator transition
has so far defied explanation. A theoretical analysis is
possible only for states with small rs and rxx 5 h=e2, and
this is precisely where considerable progress has been made in
understanding the nature of corrections to the Drude
conductivity due to the electron ± electron interaction. We
now turn to a detailed discussion of this class of phenomena
found in samples based on the Si/SiGe heterostructure with a
2D EG.

As noted above, there are two major types of corrections
to the conductivity of a 2D electron system: weak localization
corrections and those due to the electron ± electron interac-
tion. The weak localization correction can be written as [1]

Dswl
xx � ap

e2

h
ln

�
kBTt

�h

�
;

where the phase coherence time is assumed to vary with
temperature as Tÿp, and the amplitude a is taken to be unity
for ordinary scattering.

Further, according to Ref. [5], the interaction-induced
correction at arbitrary kBTt=�h is given by

Ds ee
xx � dsC � 15dsT ;

where

dsC � e2

p�h

kBTt
�h

�
1ÿ 3

8
f �Tt�

�
ÿ e2

2p2�h
ln

�
1

Tt

�
and

dsT � F s
0

�1� F s
0 �

e2

p�h

Tt
�h

�
1ÿ 3

8
t
ÿ
Tt;Fs

0

��
ÿ
�
1ÿ 1

F s
0

ln
ÿ
1� F s

0

�� e2

2p2�h
ln

�
1

Tt

�
are the respective corrections for the interactions in the charge
and triplet channels [see Ref. [5] for the exact expressions for
the functions f �Tt� and t �Tt;F s

0 �].
We note that the expression above accounts for the fact

that the electronic spectrum of Si is doubly valley-degenerate
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near the (100) surface, increasing the numerical factor in front
of the triplet term from 3 to 15. In the diffusion limit, the
correction due to the interaction reduces to the familiar
logarithmic correction [2], whereas in the ballistic and
intermediate regime, it is linear in temperature, with the sign
and slope dependent on the coupling constant.

Figure 5a shows typical magnetoresistance (MR) curves
measured at different temperatures after the electron concen-
tration has been saturated to its maximum by LED radiation.
In this state, the electron mobility is m � 61800 cm2 Vÿ1 sÿ1

and the electron concentration is Ns � 6:23� 1011 cmÿ2

(corresponding to rs � 6:7). We note that for rs > 1, the
functional relation between the parameter rs and the constant
F s
0 is unknown. In Fig. 5b, we show the temperature

dependence of conductivity in a zero magnetic field. It is seen
that the dependence is linear for T5 1:25 K and saturates at
lower temperatures. TheDrude conductivity is determined by
extrapolating the linear part of the dependence to T � 0, and
its corresponding momentum relaxation time is t �
6:8� 10ÿ12 s. This means that Tt � 0:89T and hence the
sample under study is either in the intermediate or in the
ballistic regime in the temperature range 0.4 ± 2.7 K.
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The solid curve in Fig. 5b is the theoretical dependence
obtained by adding the weak localization correction and that
due to the interaction. It took only one fitting parameter,
Fs
0 � ÿ0:155, to fit the curve to experiment. The weak

localization factor ap � 1:5 was derived from the sample's
weak-magnetic-field behavior. The value Fs

0 � ÿ0:155
obtained by fitting turns out to be smaller than the
corresponding quantities in silicon MIS structures with
similar values of rs by a surprisingly large factor of about
two [10]. In our view, this results from the range difference
mentioned above between the scattering potentials in these
two silicon systems. According to Ref. [5], the temperature-
linear interaction-induced correction to the conductivity
results from the electron scattering by Friedel density
oscillations due to a short-range scattering potential. This
type of scattering occurs, for example, in silicon MIS
structures. In our samples, the one-particle scattering time
tq determined from the Shubnikov ± de Haas amplitude turns
out to be six times smaller than the momentum relaxation
time, implying that both types of disorder are present in the
samples. Although onemight expect that the theory inRef. [5]
is inadequate for describing the experiment in this case, good
agreement between theory and experiment is found for
T5 1:25 K. One explanation may be the predominance of
short-range scattering in a zero magnetic field. As regards the
saturation effect observed at low temperatures, it has already
been reported elsewhere [16], where intervalley scattering and
the lifting of the degeneracy of a zeromagnetic field were cited
as possible reasons for such behavior.

We next turn to our transverse magnetoresistance results
(Fig. 5a). In the diffusion regime, it is known that the zero-
magnetic-field interaction-induced correction to conductiv-
ity, Ds ee

xx�T �, also retains its form in classically strong
magnetic fields, leading to a negative parabolic magnetore-
sistance of the form rxx�B� � rD � r2D�mB�2Ds ee

xx�T � for
oct > 1. Unlike the diffusion regime, the situation with the
intermediate and ballistic regimes has received little attention
until recently. In particular, it remained unclear whether zero-
field corrections remain the same in strong magnetic fields.

Recently, a new theory was proposed [7], which calculates
magnetoresistance in a strong magnetic field for arbitrary
values of kBTt=�h. Analysis is carried out for both mixed
scattering and a smoothly varying scattering potential alone,
and it is shown that in both cases, the interaction leads to a
parabolicMR similar to that given above except thatDs ee

xx�T �
is expressed as

Ds ee
xx�T � � ÿ

2

p

h
GF

ÿ
kBTt=�h

�ÿ GH

ÿ
kBTt=�h;F s

0

�i
;

where GF�kBTt=�h� and GH�kBTt=�h;Fs
0 � are respectively the

exchange and triplet contributions, whose form is dependent,
among other things, on what scattering mechanism is at work
in the system. The exact expressions for these functions can be
found in Ref. [7].

The general features (in particular, the negative parabolic
MR) seen in the experimental dependences confirm the
conclusion about the presence of a magnetic-field-indepen-
dent correction. Indeed, the experimental curves obtained
following the suppression of the weak localization correction
show a relatively flat region, which, according to Ref. [7],
corresponds to the suppression at low magnetic fields of the
backscattering due to the presence of a long-period scattering
potential. At higher magnetic fields, the increased probability
of backscattering restores the interaction, leading to negative
parabolic MR.

For our sample, the condition oct � 1 is satisfied for
B � 0:16 T, with a parabolic MR observed in classically
strong fields. Moreover, all the dependences, except for the
curve for T � 0:4 K, were measured in magnetic fields for
which the influence of the Zeeman effect is negligible. Under
these conditions, the predictions of the theory inRef. [7] apply
to our experiment. The dots in Fig. 6a show the resistance as a
function of B2 and in Fig. 6b show the interaction-induced
corrections to conductivity,Ds ee

xx�T �, obtained from the slope
of the linear portion of the dependences in Fig. 6a. Also
shown in Fig. 6b are two theoretical curves from Ref. [7], one
of which (1) is obtained on the assumption of a smooth
scattering potential alone, and the other (2) is drawn for the
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case of mixed scattering. In the latter case, a parameter g is
introduced to describe the relative contribution of each type
of scattering [7]. It is seen that whereas assuming scattering by
a long-period potential alone leads to disagreement with
experiment, good agreement is obtained in the mixed
scattering case. Thus, our analysis points to the correct
description of scattering as a necessary condition for
adequately describing interaction-induced corrections to
conductivity Ð whether in a zero magnetic field or in strong
magnetic fields leading to parabiotic magnetoresistance.
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