
sample. By way of estimate, we note that �h=ts � 10ÿ6 K; the
experimental data on �h=tvv in the range from 10ÿ1 to 10ÿ4 K
are as yet of low reliability. This question is purely academic,
however, because such low temperatures are many orders of
magnitude below the currently accessible level.

In summary, theory suggests an extraordinary picture,
where the metal ± insulator transition occurs at a finite
temperature and is a true quantum transition, but, strictly
speaking, the metallic state that results does not survive the
T � 0 limit (provided the 2D system does not make a
spontaneous transition to another universality class Ð due
to the formation of local magnetic moments [48] or of a two-
phase microemulsion state [49], for example). Other remain-
ing questions are whether the phase diagram of a 2D metal ±
insulator transition will be valid, at least in general terms, for
realistic cases such as nv � 6, 2 or 1, and down to what
temperatures a 2D metal can exist in real-life systems.
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Two-dimensional multicomponent electron
gas as a model for silicon heterostructures

S V Iordanskii, A Kashuba

1. Introduction

Two-dimensional electron gas in a Si-heterostructure can
vary very widely in density [1]. Effects due to the electron ±
electron Coulomb interaction are determined by the dimen-
sionless ratio of the average Coulomb energy to the electron
kinetic energy, rs � e2m=

������
pn
p

�h2, with n being the electron
density. For relatively large rs, 1 < rs < 10, Si-MOSFETs
(metal-oxide-semiconductor field-effect transistors) undergo
a transition from the metallic (growing) to dielectric (falling)
conductivity with decreasing temperature [2] and demon-
strate an increase in the effective mass and magnetic
susceptibility with increasing rs [3, 4]. Because of the lack of
exactly solvable models for large rs, various phenomenologi-
cal models have come to the fore. The electron ± hole plasma
observed in a three-dimensional (3D) electron ± hole droplet
in Si and Ge is also characterized by comparatively large
values of rs. As shown in the pioneering work of Ref. [5], the
multivalley band structure leads to the existence in these
semiconductors of a `metallized' electron ± hole plasma in
the region of relatively large rs (see also Ref. [6]). One would
expect that allowing for many valleys in two-dimensional
(2D) Si-heterostructures would lead to better agreement with
experiment compared with Landau's Fermi-liquid theory
with its small-rs corrections to the theory of a dense electron
gas. The Fermi-liquid theory predictions for Si-heterostruc-
tures are in quantitative disagreement with experiment even

208 Conferences and symposia Physics ±Uspekhi 49 (2)



at moderate values of rs. For example, the theory of a dense
electron gas predicts an increase in the effective mass at small
rs, [7],

m�

m
� 1ÿ rs

p
log

�
1

rs

�
; �1�

whereas Shubnikov ± de Haas measurements [8, 9] yield

m�

m
� 1� 0:08rs : �2�

Another point to note concerns charged excitations on the
lowest filled Landau level. Experimentally, their activation
energy (which is small according to the magnetoconductance
measurements in Ref. [10]) is roughly proportional to the
magnetic field H, whereas theoretically [11], it must be
proportional to its square root, e2

�������������
eH=�hc

p
(the same as the

electron ± electron interaction). These phenomena are
observed at 1:5 < rs < 3, which is far from the metal ±
insulator transition. We show that a systematic model of a
2D multicomponent high-density electron gas gives qualita-
tive agreement with the experimental data for highest-purity
silicon heterostructures.

Electron states in silicon have valley degeneracy [1] that
corresponds to different band energy maxima. For the
(1,0,0)-oriented heterostructure plane in a silicon crystal,
there are N � 4 equivalent, orthogonal spin-valley electron
states that differ by a factor exp��iQz� in the perpendicular
direction with atomic wave vector Q. For the (1, 1, 1)
orientation, the spin-valley degeneracy is N � 12. A 3D
electron gas in the limit N!1 was first treated in Ref. [12].

2. Multicomponent Fermi liquid

A systematic theory can be developed in the limit
1 > rs 4Nÿ3=2, where it differs quite substantially from the
rs 5Nÿ3=2 limit theory, which yields standard Fermi-liquid
results. The model is described by the Hamiltonian

Ĥ � 1

2m

�
cya�r�

�
ÿ i�hHH� e

c
A�r�

�2

ca�r� d2r

� 1

2

��
e2

jxÿ rj c
y
a�x�cyb�r�cb�r�ca�x� d2x d2r ; �3�

where valley-to-valley transitions are not allowed, a and b are
conserved (a; b4N) as in the exchange approximation, and
the mass m is isotropic. It is assumed that there is a
compensating positive charge at a large distance from the
heterostructure plane. The summation is over the spin-valley
indices.

The effect of a multivalley structure primarily shows up as
a highly screened Coulomb interaction. The Coulomb
interaction gives rise to polarization effects in each valley,
thus decreasing interaction between electrons residing in the
same valley. Accordingly, even though r

�1�
s calculated only for

the electrons in one valley may be large, rs�N� for all the N
valleys is small, enabling expressions for physical properties
to be systematically expanded in powers of rs�N�. For our
purposes, the Matsubara diagram technique as applied in its
low-temperature limit [13] is sufficient. In the 2D limit (i.e., at
distances much longer than the heterostructure thickness),
the Coulomb interaction between electrons in the hetero-

structure has the Fourier component

V�q� � 2pe2

jqj : �4�

Calculating the effective interaction requires knowing the
electron polarization by the interaction field in all the valleys,
which can be depicted by the diagram in Fig. 1, showing the
creation of electron ± hole pairs by the Coulomb interaction.
In this figure, the normal line represents the free electron
Green's function

G 0
a �e; p� �

1

ieÿ �ea�p� ÿ m� ; �5�

where e�p� � p2=2m is spin- and valley-independent, and the
wavy line is for the Fourier component of Coulomb
interaction (4). The calculation of the effective interaction
involves summation over all valleys and requires that the
polarization effects of all orders be included. This means
using the random-phase approximation (RPA) and summing
all diagrams with the number of polarization bubbles being
maximum for a given number of interaction lines:

Veff�o; q� � 2pe2=q
1� �2pe2=q�P�o; q� ; �6�

where P�o; q� corresponds to the diagrams for a single
polarization bubble. Because the one-valley electron density
n1 is small comparedwith the total density n � Nn1, the Fermi
momentum pF is also small compared with the momentum
transfer q. In the limit q4 pF, the quantity P�o; q� is easily
calculated to be

P�o; q� � 2ne�q�
o2 � e2�q� ; �7�

and the effective Coulomb interaction becomes

D�o; q� � 2pe2

q

o2 � e2�q�
o2 � e2�q� � 4pe2ne�q�=q : �8�

The poles of D�o; q� correspond to zeros of the dielectric
constant and yield the plasmon excitation energy

o�q� � �h2

2m

�����������������
q2 � q30q

q
; �9�

where q30 � 8pe2nm=�h2 is the characteristic momentum of the
effective interaction. Thus, the plasmon energy turns out to be
large compared to the kinetic energy eF, making the effective
interaction small.

Figure 1. Polarization bubble. Electron propagators and the Coulomb

interaction are represented by arrowed and wavy lines, respectively.
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Diagram calculations can be interpreted in terms of a
picture in which plasmons, described by the propagator
D�o; q�, interact with one another via closed loops contain-
ing more than two electron lines. A vertex containing k > 2
plasmon lines with large momenta � q0 and with frequencies
o0 � q20=2m is of the order of Vk � n=o kÿ1

0 . With these
estimates, it is possible to classify all the diagrams by powers
of r

2=3
s . The correlation energy per unit volume calculated in

the next-to-leading order is given by

Ec � ÿ
ÿ
2:03191 r4=3s ÿ 0:156�1� r2s

� n2

m
: �10�

But it is more interesting to calculate corrections to the
electron Green's function

Gÿ1�e; p� � ieÿ ÿe�p� ÿ m
�ÿ S�e; p� : �11�

Because of the small magnitude of the screened interaction,
the mass operator may be calculated in the first order in the
plasmon operator D�o; q�,

S�e; p� � ÿ
�
D�o; q�G�e� o; p� q� do d2q

�2p�3 : �12�

Because of the large values of the plasmon momentum and
energy, the integral can be evaluated by taking e5o and
p5 q, and the Green's function near the Fermi surface takes
the form

G�e; p� � Z� pF�
ieÿ eR� p� � m

; eR� p� � pF
m�
� pÿ pF� ; �13�

where, for small rs,

m

m�
� 1ÿ 1

10
���
p
p G

�
1

3

�
G
�
7

6

�
r 2=3s �O�r 4=3s � ;

Zÿ1� pF� � 1� 1

2
���
p
p G

�
1

3

�
G
�
7

6

�
r 2=3s �O�r 4=3s � ; �14�

where G�n� is the gamma function.
Similarly, for the spin magnetic susceptibility, we obtain

w�

w
� m�

m
; �15�

where w � m=2p�h2 is the susceptibility of a 2D Fermi gas of
Pauli. Figure 2 compares experimental data on m�=m and
w�=w [14] with theoretical predictions. It can be seen that the
effective mass shows good agreement, whereas the suscept-
ibility is somewhat underpredictedÐdue to exchange effects,
which are absent in the theory at N � 1 but should show
up in real silicon at N � 4. (We also note that at rs � 9, a
Si-MOSFET undergoes a metal ± insulator transition, which
is beyond our theoretical model).

We note that the effective mass and magnetic suscept-
ibility renormalization in Landau's Fermi liquid theory are
related to the properties of the (scattering-angle-dependent)
effective interaction function of the particles involved [15].
Unlike this, in a multicomponent gas, these Fermi-liquid
parameters are determined by the properties of plasmons,
whose energies and momenta are much larger than those of
the Fermi-surface electrons. Besides, the small Fermi momen-
tum together with strong screening effects prevents Friedel
density oscillations from occurring in a multicomponent gas.

To show this, we note that the induced charged density in a
multicomponent gas is given by

dn�r� �
�

2pe2P�0; q�
q� 2pe2P�0; q� exp�iqr� d2q

�2p�2

�
�1
0

q30
q3 � q30

J0�qr� q dq
2p

: �16�

The function dn�r� is concentrated at r � 1=q0 5 1=pF, where
it has one zero, and decreases exponentially with distance.
The outer charge is fully screened,�

dn�r� d2r � 1 : �17�

Friedel oscillations [15] are related to the singularity at
q � 2pF [which is neglected in Eqn (7)] and have the period
p�h=pF and the amplitude � p2F=N, which is vanishingly small
in the limit N!1. We therefore conclude that many Fermi
surface features are absent in a multicomponent gas.

3. Adding a magnetic field

The multicomponent model can be extended to include a
large external magnetic field perpendicular to the hetero-
structure plane. Then the ground state of the system is one
with the lowest Landau level filled. We suppose that of N
spin-valleys present, only 15 n < N have their zeroth level
completely filled. Although the system does not make real
transitions to higher Landau levels, the virtual transitions it
does make screen the Coulomb interaction as before. The
unperturbed electron Green's function for one valley can be
written as the sum

G0�e; r; r 0��
X
s; p

1

ieÿ�s�1=2�oH � m
Fsp�r�F�sp�r 0�; �18�

where s is the Landau index, Fsp is the Landau-level wave
function, andoH is the cyclotron frequency. The polarization
operator is calculated to be

P�o; q� � n
2p

X1
s�1

q2s

2s s!

2soH

o2 � o2
Hs

2
exp

�
ÿ q2

2

�
; �19�

4.0

m�=m

w�=w

3.5
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2.5

2.0

1.5

1.0
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rs

Figure 2. Experimental data for the magnetic susceptibility w�=w (black

squares) and effective mass m�=m (white circles and squares). Solid curve:

the susceptibility and mass obtained from the multicomponent model.
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(in a system of units where the magnetic length lH � 1 and
e � c, oH � 1=m). Such a special form of the polarization
operator is because the electron ± hole polarization loop in the
coordinate representation is a function of �rÿ r 0� if an
external magnetic field is present.

A plasmon propagator, like D�o; q�, has the form (6). In
the presence of a completely filled Landau level in P�o; q�
valleys, additional energy comes into play due to the electron
being transferred from an occupied valley to the same level in
an empty valley, with a hole left behind. This energy has its
origin in exchange effects and corresponds to a spin wave in
the one-valley case. This is a neutral excitation, and onewhich
is characterized by a momentum, despite the presence of a
magnetic field. In this situation, an exchange exciton forms.
At a large momentum, the electron and the hole are far apart,
their interaction is negligible, and they can therefore be
considered free Ð leading to the conclusion that their energy
is the activation energy for charge excitations, the electron
energy difference between the empty and occupied valleys.
This energy can be calculated to give

D �
�
D�0; q� exp

�
ÿ q2

2

�
d2q

�2p�2

� �hoH

n

ÿ
log�rsn3=2� � 0:277

�
; �20�

(rs �
���
2
p

e2=oH lH
���
n
p

), showing that the activation energy is
approximately proportional to the magnetic field and is small
in the limit of large n. The linear behavior agrees qualitatively
with the magneto-conductance measurements of the activa-
tion energy [10], but Eqn (20) greatly overestimates the
activation energy Ð possibly because the extrapolation to
relatively large rs is itself a rather crude procedure or because
factors such as a finite thickness of the 2D layer or the image
force from the metal gate were not taken into account.

The energy of an exchange exciton at lowmomentumQ is
calculated in a similar way, giving

o�Q� � J�QlH�2; J � 0:6613
oH

n
: �21�

Thus, we see that the exchange constant J is also screening-
suppressed and varies linearly with the magnetic field.

Some of the results in this paper were previously presented
in Ref. [16].
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Interaction effects in the transport
and magnetotransport of two-dimensional
electrons in AlGaAs/GaAs
and Si/SiGe heterojunctions

E B Olshanetskii, V Renard, Z D Kvon,
I V Gornyi, A I Toropov, J C Portal

1. Introduction

Localization- and interaction-induced quantum corrections
to the conductivity of two-dimensional (2D) electron systems
[1, 2] have been the subject of considerable study since as long
as a quarter century ago. It should be noted that weak
localization effects do not present any problems, and that
their associated anomalous magnetoresistance very soon
became a powerful tool for probing the low-temperature
properties of disordered metallic systems, from thin super-
conducting films to near-surface 2D layers in semiconductors.
Unlike this, the behavior of interaction effects remained the
subject of continuous heated debate Ð primarily in connec-
tion with how they influence the metal ± insulator transition
in a 2D electron system [3]. What made things especially
topical was the discovery [4] that a high-mobility 2D electron
gas in silicon MOS (metal-oxide-semiconductor) transistors
exhibits states whose conductivity increases anomalously
with lowering the temperature, which is entirely inconsistent
with theoretical expectations [1, 2]. This situation has
stimulated new ideas in the theory of interaction-induced
quantum corrections and has recently led to its further
development in Refs [5 ± 7], which identified two regimes Ð
the diffusion one (for Tt=�h5 1) and the ballistic one (for
Tt=�h4 1) Ð in the behavior of quantum corrections. Both
regimes are of the same nature, i.e., are determined by single
and multiple scattering from impurities and from the Friedel
oscillations in their screening charge. Both mechanisms had
already been know before Refs [5 ± 7]. The first mechanism
[1, 2] was thought to be related to the quantum corrections
due to the interference of interacting electrons (see above),
and the second was linked to the temperature dependence of
screening due to the singularity in 2D screening near q � 2kF
[8] and was considered to be a temperature-dependent part of
the one-electron transport time, unrelated to quantum
interference.
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