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Metal ± insulator transitions
and related phenomena in a strongly
correlated two-dimensional electron system

V M Pudalov

1. Introduction: competition of quantum
interference and dimensionality

Understanding the properties of two-dimensional (2D)
electron systems in the presence of both strong interparticle
interactions and disorder is an outstanding problem in
condensed matter physics that is still far from being solved.
The late 1970s witnessed the completion of the theory of
quantum (i.e., wave) interference corrections for noninteract-

ing electrons, according to which the quantum interference
correction dsqi to the semiclassical Drude ±Boltzmann value
sD acts to decrease the conductivity s and can be regarded as
`backscattering' [1 ± 3]:

s � sD � dsqi � sD ÿ e2
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�
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t

�
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While small in three dimensions, the quantum interference
correction is of fundamental importance in 2D systems, where
the conductance G is independent of size. As temperature
decreases, the quantum correction increases logarithmically
until it becomes comparable to sD and leads to localization,
which implies an exponential decrease in the conductivity.

These were the ideas that led to the creation of the scaling
theory of conductivity in 1979 [4]. According to this theory,
localization develops as the quantum length scale increases
and is a result of competition between quantum interference,
disorder, and dimensionality. In particular, a 2D system of
noninteracting electrons cannot have metallic conduction
and must become an insulator at T � 0. Figure 1a below
shows an example of such conductivity behavior for a
strongly disordered (low-mobility) sample. It can be seen
that at low electron concentration, the conductivity decreases
exponentially with decreasing temperature, suggesting a
strong localization in the system. As the density increases, a
transition occurs to the regime in which the conductivity
varies approximately logarithmically with the temperature.
Just as the scaling theory of conductivity predicts, at no
concentrations or temperatures does the conductivity show
evidence for metallic behavior (ds=dT < 0).

The theory of quantum corrections led to amajor revision
of the classical understanding of conductivity and (as
reviewed in Refs [1, 2]) was brilliantly confirmed in numerous
experimental studies on 3D metallic samples and metallic
films that were available in the 1970 ± 1980s and in which the
electron ± electron interaction is weak. Indeed, the nearly
15-year dominance of the scaling theory misled researchers to
believe that it is universal and works equally well when the
interparticle interaction is strong.

Over the years, with advances in semiconductor technol-
ogies and the fabrication of increasingly pure samples with
2D electron layers, 2D electron systems with much lower
concentrations have become available to study. In the low-
concentration limit, electrons in an ideally pure system must
form aWigner crystal [5 ± 7]. At higher densities, the electron
system remains in the `liquid' state and is characterized by
strong electron ± electron correlations. Such a strongly 2D
system can exhibit new quantum states different from those
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known for noninteracting electronsÐwhich is very attractive
to both theorists and experimenters.

The universal applicability of scaling theory was directly
compromised in the early 1990s when studying the transition
of an electron liquid from the state with quantized Hall
resistance to the insulator state [8 ± 11]. The experiments
revealed, namely, that localized states that lie at the centers
of the disorder-broadened Landau levels in the strong-
magnetic-field quantum-Hall-effect regime merge and
remain in a finite energy interval as the magnetic field H
decreases. This contradicts the scaling theory prediction that
delocalized states rise in energy and move across the Fermi
level as H! 0 [12, 13]. Furthermore, in a direct challenge to
the one-particle scaling theory, the subsequent studies of
conductivity in the absence of a magnetic field provided
evidence for metallic transport and the metal-to-insulator
transition in 2D systems of electrons in high-mobility Si
structures.

Figure 1b shows typical temperature behavior of con-
ductivity for pure (high-mobility) samples [16]. It is seen that
at low densities, the curves s�T � differ little from the
corresponding curves in Fig. 1a and demonstrate hopping
conductivity, the usual behavior for a strongly localized state.
But above a certain critical density nc (in our case, nc �
0:96� 1011 cmÿ2), s�T � shows a sharply different tempera-

ture dependence: similarly to what happens in an ideal metal,
the conductivity starts to increase rapidly with decreasing
temperature. Two branches of the dependence s�T � (the
`metallic' for n > nc, and the `insulating' for n < nc) are
mirror-symmetric with respect to s�nc� [15] Ð akin to the
symmetry the conductivity of 3D systems shows at the
metal ± insulator transition. A standard scaling analysis of
these curves shows [15] that the experimental s�T � curves for
n > nc and those for n < nc can indeed be reduced to two
universal dependences s�T �i�1;2 / exp��T0=T � in which the
scaling parameter T0 shows the critical behavior
T0 / �nÿ nc�ÿp near nc.

Experimental finding of new physics in the field where it
was not expected provided a major stimulus for subsequent
studies, both theoretical and experimental, of strongly
correlated 2D systems. Metallic conductivity and the
metal ± insulator transition were similarly found in a variety
of 2D systems, including 2D electron layers inGaAs/AlGaAs,
InAs/GaAs, n-AlAs, Si/SiGe and inverted silicon metal ±
insulator ± semiconductor (Si-MOS) structures, and 2D hole
layers in GaAs/AlGaAs and Si/SiGe (see reviews [17 ± 21]
and the references therein). In all the cases studied, the
metal ± insulator transition occurs with decreasing the elec-
tron density, when the system's conductance reaches a value
of the order of e2=h [17 ± 19]. Is the observed effect a true
quantum transition and is the metallic state of a 2D system
its ground state (at T � 0)? Or does the conventional physics
of disordered and interacting electrons suffice to settle
things? These fundamental questions are stimulating inter-
est in this field.

2. Quantitative study of the e ± e interaction

Because the critical behavior of conductivity as shown in
Fig. 1b contradicts the expectations for noninteracting
electrons, various types of interaction were analyzed theore-
tically for their possible effects. It was found that the spin ±
orbit interaction Ð even though it affects scaling behavior
even on the one-particle level [1 ± 3] Ð is not renormalized
with decreasing the electron density and does not have a
strong effect on transport processes. The electron ± phonon
interaction is also negligible in the low-temperature range
T5TF, especially for a monatomic crystal such as Si, in
which the electron ± phonon coupling is only via the deforma-
tion potential, with no piezoelectric component. Therefore,
by the method of exclusion, the only interaction left to
consider is the electron ± electron (e ± e) interaction.

In this case, it becomes clear where the high value of the
carrier mobility m comes into play. According to the Ioffe ±
Regel criterion, electrons become localized when their Fermi
wavelength becomes equal to the mean free path, lF � ltr.
Hence, at the localization threshold, the Fermi energy is
inversely proportional to the carrier mobility m:
EF / 1=ttr / 1=m. We note that for a 2D system, the Fermi
energy is proportional to the electron concentration, EF / n.
It then follows that the higher the mobility (purity) in the 2D
system, the lower the electron density that can be achieved in
the `metallic' phase and the stronger the electron ± electron
interaction, which is usually characterized by the dimension-
less ratio of the Coulomb potential energy Eee to the Fermi
kinetic energy EF,

rs � Eee

EF
� e22m

Kp1=2�h2n1=2
/ nÿ1=2 :
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Figure 1.The temperature dependence of the conductivity of a 2D electron

system in silicon in the absence of a magnetic field: (a) for a sample with a

low mobility of 0.15 m2 (V s)ÿ1, the curves, from bottom up, are for the

following electron densities (in units of 1011 cmÿ2): 3.85, 4.13, 4.83, 5.53,
6.23, 7.63, 9.03, 10.4, 11.8, 13.2, 16.0, 18.8, 21.6, 24.4, 30.0, 37.0; (b) for a

sample with a high mobility of 3.62 m2 (V s)ÿ1 [16], the curves are for

electron densities that vary (from bottom up) from 0.717 to 1.326 in steps

of 0.0218.
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In the relevant experiments, the critical values of the density
nc corresponded to the value rs � 10, making it obvious that
such a system is by no means an ideal Fermi gas.

Realizing the importance of the electron ± electron
interaction led to the intense theoretical and experimental
studies of its role in 2D systems in recent years. Experi-
mental studies were made of the e ± e interaction-induced
renormalization of the parameters such as the g-factor
g�=g�1=�1� F a

0 �, the effective mass m�=m � 1� F s
1=2, the

compressibility K�=K � �m�=m�=�1� F s
0�, and the spin sus-

ceptibility w�=w � �m�=m�=�1� F a
0 �. Here, g, m, K, and w are

the corresponding bare (band) values, and F
a�s�
i is the lowest-

order, antisymmetric (symmetric) Fermi-liquid constant.
Different groups used different experimental techniques

to measure the spin susceptibility and effective mass renor-
malization [22 ± 37] (for brief reviews, see Refs [20, 21]).
Figure 2a shows the results of two independent measure-
ments of w� for 2D electrons in Si-MOS structures [22, 23] and
a GaAs/AlGaAs heterojunction [24]. As one can see, the
results are in quite good agreement despite the difference in
the carrier effective mass between Si and GaAs by a factor of
three, the difference in the `thickness' of the 2D layer by a
factor of six, and the difference in the character and amount
of disorder between samples prepared by different techniques.
The dependence w��rs� turns out to be universal for samples
of the same type with different disorder: for example, for
Si-MOS structures, there is good agreement in results for
samples with different mobilities [20, 23].

Experimental determination of the renormalized effective
mass renormalization is a more difficult task experimentally
because it requires a detailed theory. While the experiments
on Si-MOS structures all suggest a strong mass renormaliza-
tion, there is only qualitative agreement among them [20].
One explanation for the quantitative spread is disagreement
between the models the researchers used to extract the
effective mass from the experimental data. It is also possible
that the effectivemass renormalization is different in different
effects Ð in kinetics and thermodynamics, for example.
Finally, the effective mass may be strongly temperature-
dependent, and hence measurements in different tempera-
ture ranges may lead to different results.

The first major result from the experimental study of the
renormalized parameters of 2D electrons was that, based on
the measured values of renormalized parameters and using
theoretical predictions for quantum interaction corrections
[38, 39], it allowed a satisfactorily qualitative (and, in some
cases, even quantitative) description of a) the `metallic'
temperature dependence of conductivity in the absence of a
field and b) magnetoresistivity in a parallel magnetic field
[25 ± 28, 40]. Figure 3 gives an example of how the measured
dependences s�T � compare with the calculated quantum
interaction corrections [28]. It can be seen that over a wide
range of electron densities (but for n4 nc), the agreement
between theory and experiment is good if one uses the
renormalized parameters g��n� and m��n� measured in
independent experiments [23].

To summarize, the metallic temperature dependence of
conductivity is nowwell understoodÐ at least away from the
transition, for s4 e2=h, n4 nc, and T5TF Ð and is
primarily determined by corrections in the triplet channel of
the e ± e interaction, which increase with decreasing the
density. For the two-valley system of carriers in a Si-MOS
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Figure 2. Renormalized spin susceptibility (a) and renormalized mass (b)

as measured from Shubnikov ± de Haas oscillations. White and black

circles: measurements in Si-MOS structures in crossed fields [23], straight

solid line: Si-MOS in a tilted field [22], squares: n-GaAs [24]. Horizontal

bars on vertical dashed straight lines indicate the upper and lower

estimates for w� as obtained from the period and phase of Shubnikov ± de

Haas oscillations [20].

50

60

70

80

90

100

110

120

0 2 4 6
Temperature, K

s;
�e2
=
h
�

Figure 3. Comparison of the measured temperature dependence of
conductivity [28] for the Si-MOS structure Si-22 (symbols) with predicted
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structure, the number of triplet terms increases by a factor of
five [41] Ð explaining why the metallic behavior of con-
ductivity is that strong in Si structures. But this picture cannot
be extended to the critical regime of small s � e2=h (i.e.,
kF l � 1) near the transition (n � nc), where the theory of
quantum corrections is invalid.

Another major experimental result is that the renormal-
ized parameters are verymuch the same, whether measured at
the Fermi level from Shubnikov ± de Haas oscillations [22 ±
24] or, alternatively, over a wider energy range from spin
polarization [31] or from magnetoresistance scaling in a
strong magnetic field [30]. This implies that the interaction
of 2D electrons in the strongly correlated regime is not
sensitive to the Zeeman energy, i.e., that it occurs via spinless
excitations over a wide energy range rather than in the narrow
kBT-neighborhood of the Fermi energy (which, we note, is
exactly the kind of interaction typical of bosons). Fully
consistently with this experimental fact, Iordanskii and
Kashuba [42] considered a 2D system of fermions in the
limit case of an infinite number of valleys, nv !1. In this
approximation, the exchange occurs via high-energy plas-
mons, leading to the renormalization of the polaron-type
effective mass and of the spin susceptibility; we note that the
g-factor remains unchanged in the process.

A third key finding is that w� increases dramatically (by a
factor of five or more) with decreasing density (see Fig. 2). In
some papers, this increase was interpreted as a signature of
the developing spontaneous spin polarization. If that were the
case, the metal ± insulator transition might result from a
spontaneous ferro- or antiferromagnetic transition.

This intriguing possibilityÐ the occurrence of a sponta-
neous magnetic transitionÐwas tested in Ref. [20] by
analyzing the frequency and phase of Shubnikov ± de Haas
oscillations at low densities. It was found that the frequency
of the oscillations does not double until the very moment of
the metal ± insulator transition, thereby not confirming the
doubling of the Fermi energy, which inevitably results from a
spontaneous transition of electrons to one spin band. The
analysis of the oscillation phase in the same study [20] also
shows that the spin splitting in a weak field is more than half
of the full cyclotron splitting but does not exceed it Ð an
experimental fact that imposes the upper and lower limits of
the spin susceptibility, as shown in Fig. 2a by the short
horizontal bars.

In principle, the spin susceptibility could diverge in
accordance with a power law with decreasing temperature,
signaling the non-Fermi-liquid behavior of a strongly
correlated 2D system. This possibility was examined by
measuring the temperature variation of spin susceptibility in
Refs [20, 43]. Typical w��T � curves are shown in Fig. 4, which
demonstrates that the temperature dependence of the
susceptibility is much slower than a power law and is in
qualitative agreement with the calculated quantum interac-
tion corrections [1] / lnT t for T t5 �h. We note that taken
together, the data above and those from other experiments
have not yet revealed any deviations from the Fermi-liquid
theory.

3. Interplay of disorder and interaction

The theory of quantum corrections is not applicable near nc,
where s � e2=h. In the presence of impurities, fluctuations in
local charge, spin, and valley densities show a decay on large
length scales, which is equivalent to the propagation of paired
electron ± hole and electron ± electron modes known as diffu-
sons and cooperons [1, 2, 44]. Diffusing electrons become
`more correlated' after spending much time close to each
other, which leads to disorder-dependent corrections to the
interaction amplitudes g2 � F a

0 =�1� F a
0 � and gc that charac-

terize the scattering of the diffuson and cooperon modes [44].
In a 2D system, all these corrections diverge logarithmically as
temperature decreases [1, 2].

In the 1980s, a technique for resummation of logarith-
mically divergent diagrams (in fact, an extension of the
nonlinear sigma-model) was developed by Finkel'stein [44]
and subsequently by Castellani and Di Castro [45, 46],
which starts from a weakly interacting system and allows
approaching the strong-coupling regime corresponding to
the metal ± insulator transition. It turns out that even in the
lowest-order small-resistance (small-disorder) approxima-
tion, the temperature diagram calculated in Ref. [41]
(Fig. 5) in terms of the temperature logarithm versus
disorder (i.e., resistance) is in qualitative agreement with
the observed r�T � behavior [16] in the critical regime. As
the temperature decreases, the resistivity first increases and
then, in accordance with the theory, its behavior starts to be
determined by the developing renormalization of g2 Ð with
the result that the resistivity passes a maximum and starts
decreasing.

In the corresponding two-parameter scaling theory [41,
44 ± 47], the renormalization of disorder with decreasing
temperature (the increase in the quantum length scale) leads
to an increase in interaction, which in turn affects the
resistivity (disorder). Therefore, the metal ± insulator transi-
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tion occurs not as a result of the competition between
dimensionality and interference (as in the 3D case) but
because of the competition between disorder and interac-
tion. Similarly to the theory of quantum corrections [38], the
large number (15) of the triplet terms in a two-valley system
that facilitate delocalization greatly increases the chances of
the system for delocalization compared with those of a one-
valley system.

Even though there is qualitative similarity between the
theoretical and observed behavior of the resistivity r�T �, so
far experiments have not yet supported the theoretical
prediction of a strong increase in g2 Ð demonstrating only a
slight variation in the susceptibility with temperature instead
(see Fig. 4). A possible reason for this is that the temperature
variation of the susceptibility (see Fig. 3) was probably
measured not in the critical regime n � nc but for n5 1:3nc
and in a finite magnetic field; we note that it is not yet possible
experimentally to measure susceptibility in a weak field
H < T=gmB, H < pT=eD (D is the diffusion coefficient) [1],
as needed for a strict comparison with theory [17].

The result in Ref. [41] derived in the lowest order in
resistivity only shows the `metallization' trend in a 2D
system and is not applicable near the transition, where the
change in the resistivity with temperature is not minor. Nor

does this result apply at the temperature at which g2
diverges, and even though this temperature is vanishingly
low, � exp�ÿ exp��2nv�2�� Kelvin [47], the failure of the
scaling equations at sufficiently low temperatures is a draw-
back of this approximation [41].

Recently, Punnoose and Finkel'stein [47] used the
approximation of an infinite number of valleys nv � 1 in
Ref. [42] to obtain a two-loop solution of the renormalization
group equations and to show the existence of a quantum
critical repulsive point for a metal ± insulator transition in the
phase diagram of an interacting 2D system. Figure 6 shows a
fragment of a phase diagram in Ref. [47], where the repulsive
point is shown as a white circle and the arrows indicate the
direction of flow as the temperature decreases. Seen in the
figure are two classes of trajectories above and below the
critical point, which correspond to the insulator and metal,
respectively. The dashed line that starts almost horizontally
from high temperatures (zero on the abscissa axis) is the
separatrix between the metallic phase (bottom left) and the
insulator (top left). The second separatrix [the one falling to
the point (0, 1)] and the two other phases (top right and
bottom right) that it separates have not yet been seen
experimentally and may be due to the approximation used
(nv � 1). Varying disorder (for example, the collision
frequency 1=t) at a fixed temperature results in motion
along a vertical trajectory that intersects the separatrix
(shown dashed in Fig. 6), thus leading to a metal ± insulator
quantum transition. Treating the electron concentration as a
parameter implies a simultaneous variation of the bare
disorder and bare interaction rs, such that the system under-
goes a metal ± insulator transition again, but with the
difference this time that it goes along a tilted rather than
vertical trajectory when intersecting the separatrix.

In the limit as T! 0, the flow lines in Fig. 6 converge to a
point corresponding to an ideal metal, seemingly violating the
Fermi-liquid picture [4, 48]. But it is reasonable to expect that
when the system is cooled such that T becomes less than both
�h=ts and �h=tvv (where ts and tvv are the spin flip and
intervalley scattering times, respectively), the contribution of
the triplet (delocalizing) terms sharply diminishes, restoring
the singlet-to-triplet ratio common for a single-component
Fermi liquid [1, 2]. The corresponding cut-off temperatures
depend on the parameters of the scatterers present in the
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sample. By way of estimate, we note that �h=ts � 10ÿ6 K; the
experimental data on �h=tvv in the range from 10ÿ1 to 10ÿ4 K
are as yet of low reliability. This question is purely academic,
however, because such low temperatures are many orders of
magnitude below the currently accessible level.

In summary, theory suggests an extraordinary picture,
where the metal ± insulator transition occurs at a finite
temperature and is a true quantum transition, but, strictly
speaking, the metallic state that results does not survive the
T � 0 limit (provided the 2D system does not make a
spontaneous transition to another universality class Ð due
to the formation of local magnetic moments [48] or of a two-
phase microemulsion state [49], for example). Other remain-
ing questions are whether the phase diagram of a 2D metal ±
insulator transition will be valid, at least in general terms, for
realistic cases such as nv � 6, 2 or 1, and down to what
temperatures a 2D metal can exist in real-life systems.
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Two-dimensional multicomponent electron
gas as a model for silicon heterostructures

S V Iordanskii, A Kashuba

1. Introduction

Two-dimensional electron gas in a Si-heterostructure can
vary very widely in density [1]. Effects due to the electron ±
electron Coulomb interaction are determined by the dimen-
sionless ratio of the average Coulomb energy to the electron
kinetic energy, rs � e2m=

������
pn
p

�h2, with n being the electron
density. For relatively large rs, 1 < rs < 10, Si-MOSFETs
(metal-oxide-semiconductor field-effect transistors) undergo
a transition from the metallic (growing) to dielectric (falling)
conductivity with decreasing temperature [2] and demon-
strate an increase in the effective mass and magnetic
susceptibility with increasing rs [3, 4]. Because of the lack of
exactly solvable models for large rs, various phenomenologi-
cal models have come to the fore. The electron ± hole plasma
observed in a three-dimensional (3D) electron ± hole droplet
in Si and Ge is also characterized by comparatively large
values of rs. As shown in the pioneering work of Ref. [5], the
multivalley band structure leads to the existence in these
semiconductors of a `metallized' electron ± hole plasma in
the region of relatively large rs (see also Ref. [6]). One would
expect that allowing for many valleys in two-dimensional
(2D) Si-heterostructures would lead to better agreement with
experiment compared with Landau's Fermi-liquid theory
with its small-rs corrections to the theory of a dense electron
gas. The Fermi-liquid theory predictions for Si-heterostruc-
tures are in quantitative disagreement with experiment even
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