
Abstract. One of the new methods of fiber optics uses cladding
modes for controlling propagation of radiation in optical fibers.
This paper reviews the results of studies on the propagation,
excitation, and interaction of cladding modes in optical fibers.
The resonance between core and cladding modes excited by
means of fiber Bragg gratings, including tilted ones, is ana-
lyzed. Propagation of cladding modes in microstructured fibers
is considered. The most frequently used method of exciting
cladding modes is described, based on the application of long-
period fiber gratings. Examples are presented of long-period
gratings used as sensors and gain equalizers for fiber amplifiers,
as well as devices for coupling light into and out of optical fibers.

1. Introduction

The development of fiber-optics technology has become an
important part of the revolution in telecommunications.
Recently, much progress has been achieved in the develop-

ment of fiber amplifiers, gratings, and microstructured fibers.
One of the new methods in fiber optics is controlling the
propagation of radiation in optical fibers by means of
cladding modes.

1.1 Core and cladding modes
A usual optical fiber consists of a doped silica core with the
diameter ranging from 2 to 8 mm for single-mode fibers, a
pure-silica cladding with an external radius equal to several
dozen microns, and a polymer coating that protects the
cladding from external influence.

Optical fibers are designed for guiding radiation through
the core, while the cladding provides total internal reflection
of radiation at the boundary with the core, occurring because
the refractive index (RI) of the core is few percent higher than
that of the cladding. However, the cladding itself is also an
optical waveguide and can support optical modes, which, in
contrast to the core modes, can be easily scattered or
converted even for relatively small deformations and strains
of the fiber, and may escape the cladding. Due to its
considerable size, the silica cladding of the fiber can support
a very large number of modes (for a fiber with the polymer
coating removed, it can be of the order of tens of thousands).
In practice, one uses modes with small azimuthal numbers
and the radial numbers from one to ten.

1.2 Methods of exciting cladding modes
There are several methods of exciting cladding modes. Most
often, fiber gratings are used for this purpose. The gratings
provide inter-mode coupling, and if the resonance condition
is satisfied and the overlap integrals are nonzero, the energy of
a core mode can be converted into the energy of a cladding
mode. For instance, counter-propagating claddingmodes can
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be excited by means of fiber Bragg gratings (FBGs) with
periods of the order of the radiation wavelength. Cladding
modes can also be excited by long-period fiber gratings
(LPFGs) with periods from 100 to 1000 mm, which couple
the copropagating modes of the core and the cladding.

Bending of the optical fiber can cause the incidence angle
for the radiation at the core ± cladding boundary to become
less than the critical one. The condition for the total internal
reflection is then violated and the mode energy leaves the core
mode and propagates through the cladding. Radiation can be
fed into the core directly, through the butt-end of the optical
fiber. It can also be coupled into or out of the cladding by
means of tunneling through contact with another fiber or a
planar waveguide.

1.3 Special features of cladding mode propagation
There are no principal differences between the cladding
modes and the core modes, except that they have different
transverse intensity distributions. For a core mode, most of
the flux goes through the core and only a small part
propagates through the cladding, the field amplitude at the
cladding external boundary being vanishingly small. For a
cladding mode, the field is distributed over the whole silica
cladding and decreases only in the vicinity of its external
boundary.

Some part of the cladding mode field penetrates through
the external boundary; therefore, cladding modes are quite
sensitive to the parameters of the medium surrounding the
silica cladding. As a rule, the RI of the polymer coating
protecting the cladding is higher than the RI of silica.
Therefore, if the polymer coating is not removed, cladding
modes are leaky, because there is no total external reflection
at the silica ± polymer boundary. However, for cladding
modes to exist, it is sufficient to provide a small RI difference
at the external boundary. For several dozen cladding modes,
the incidence angle is rather large, and therefore the usual
Fresnel reflection occurs. As a cladding mode propagates
through a fiber, it gradually loses energy due to the radiation
leakage into the polymer coating, where the radiation is soon
absorbed.

The cladding is a multimode optical fiber and, hence, the
dispersion properties of its modes are considerably different
from the dispersion properties of the core modes. The
effective refractive indices (ERIs) of the cladding modes are
close to each other but are much smaller than the ERIs of the
core. This difference in the dispersion properties is used, for
instance, for obtaining double resonances between the core
and cladding modes in the spectra.

1.4 Brief summary of the paper
The present paper is devoted to the study of the propagation,
excitation, and interaction of claddingmodes in optical fibers.
In Section 2, we describe the methods for calculating field
profiles and propagation constants of cladding modes. The
method for obtaining the exact solution in the case of a step-
index profile of the fiber and the approximate method valid in
the case of an arbitrary profile in the paraxial approximation
are reviewed. Dispersion of the cladding modes is described.
The properties of leaky and radiation modes are discussed.

In Section 3, we analyze the resonant interaction between
core and cladding modes induced by using fiber Bragg
gratings. Transmission spectra of FBGs are presented, with
multiple loss dips appearing at wavelengths shorter than the
Bragg wavelengths. Excitation of azimuthally asymmetric

cladding modes with the help of tilted gratings is considered.
The methods for suppressing cladding resonances in the
transmission spectra of Bragg gratings are described. Experi-
mental spectra of FBGs in microstructured fibers are
presented.

In Section 4, the most commonly used method for the
excitation of cladding modes is considered, based on using
LPFGs. Transmission spectra of LPFGs are calculated.
Various methods of fabricating LPFGs are described,
including photoinduction and microbending. Special fea-
tures of the transmission spectra of LPFGs in microstruc-
tured fibers are demonstrated. Nonlinear and polarization
effects in LPFGs are analyzed. Ways of tuning LPFGs and
using them as sensors, gain equalizers in fiber amplifiers, and
devices for coupling light into and out of optical fibers are
discussed. Cascaded gratings consisting of two LPFGs and
phase-shifted gratings are considered.

We note several research centers studying cladding modes
and their propagation: the University of Rochester and
Corning Incorporated in the USA, the Kwangju Institute of
Science and Technology in the Republic of Korea, and the
University of Southampton and Aston University in Great
Britain. InRussia, such studies aremainly concentrated in the
Fiber Optics Science Center of the General Physics Institute
of RAS.

Among the numerous publications on the propagation of
cladding modes in optical fibers, Russian-language papers on
this subject are very few. Therefore, we considered it
important to present a paper that would acquaint readers
the with the progress in this field.

2. Modes of optical fibers

In this paper, we consider single-mode optical fibers; there-
fore, we assume that the RI difference for the core and the
cladding is small (D � 10ÿ2) and the core diameter is several
microns. In this case, the core is a weakly guiding waveguide
and its field almost vanishes at the external boundary of the
cladding. Hence, a sufficiently accurate description for a core
mode is provided within the approximation of linearly
polarized mode. The situation becomes more complicated in
the case of cladding modes, whose propagation essentially
depends on the boundary between the cladding and the
coating. Cladding modes are reflected at this boundary and
hence the contrast parameter is considerable. In the case
where the cladding is surrounded by air, it is as large as 0.44.

For fibers with step-index profiles, one can obtain exact
analytic expressions for mode field distributions and the
dispersion relation, whose solution yields the propagation
constants for the modes [1, 2].

2.1 Exact solution
To describe the propagation of cladding modes in an optical
fiber in the simplest way, we must consider a structure
consisting of at least three layers: the core, the cladding, and
the surrounding medium. The solution of the three-layer
problem was obtained explicitly in Ref. [3] by using the
general method developed in Ref. [1] for an arbitrary number
of layers. In this section, we briefly review the matrix method
of calculating the cladding modes of a multi-layer cylindrical
optical fiber with an arbitrary number of layers, similar to the
method in Ref. [1].

We consider an optical fiber with a step-index azimuthally
symmetric profile of the dielectric permittivity e�r�. For a
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cylindrical fiber, the electric and magnetic fields have the
forms

E�r;j; z; t� � E�r� exp �i�bzÿ ot� nj�� ;
H�r;j; z; t� � H�r� exp �i�bzÿ ot� nj�� ; �1�

where b is the propagation constant,o is the cyclic frequency,
and n is the azimuthal number. From the Maxwell equations
written in cylindrical coordinates, we can obtain scalar
differential equations for the longitudinal components of the
electric and magnetic fields. In the general case, the solution
of these equations can be written in terms of the Bessel
functions,

E �z� � i
u2

k0e

ÿ
AJn�ur� � BYn�ur�

�
;

H �z� � ÿ u2

k0

ÿ
CJn�ur� �DYn�ur�

�
; �2�

where k0 � o=c is the wave number and u �
�����������������
k20eÿ b2

q
is the

transverse wavevector component, which is real for radially
oscillating fields and imaginary for fields exponentially
decaying far from the boundary. The tangent and radial
field components with respect to the boundaries between the
fiber layers can be found from E �z� and H �z�. The values of
E �r�, H �z�, and H �j� are real, while E �j�, E �z�, and H �r� are
imaginary. To find the solution in the case of a multilayer
cylindrical fiber, we must specify boundary conditions for the
tangent field components, as well as the conditions that the
field amplitudes are finite at the fiber center and decay at
infinity. We let the variables relating to a certain cylindrical
layer of the fiber be denoted by the subscript i (i � 1, 2, ..., a).

For fields in the central cylinder that are tangent to the
boundaries, we can write, in matrix form,

ik0E
�z�

ÿk0H �z�
iE �j�

Hj�

0BB@
1CCA�

ÿ u21
e1

Jn�u1r� 0 0 0

0 0 u21Jn�u1r� 0
s
re1

Jn�u1r� 0 ÿu1J 0n�u1r� 0

ÿu1J 0n�u1r� 0
s
r
Jn�u1r� 0

0BBBBBBB@

1CCCCCCCA

A1

0

C1

0

0BBBBBBB@

1CCCCCCCA

�M1

A1

0
C1

0

0B@
1CA ; �3�

where s � bn=k0. In the next cylindrical layers, the tangent
fields have the formÿ

ik0E
�z�;ÿk0H �z�; iE �j�;H �j�

�T�Mi

ÿ
Ai;Bi;Ci;Di

�T
; �4�

where

Mi

�

ÿ u2i
ei

Jn�ui r� ÿ u2i
ei

Yn�ui r� 0 0

0 0 u2i Jn�ui r� u2i Yn�ui r�
s
rei

Jn�ui r� s
rei

Yn�ui r� ÿui J 0n�ui r� ÿuiY 0n�ui r�

ÿui J 0n�ui r� ÿuiY 0n�ui r�
s
r
Jn�ui r� s

r
Yn�ui r�

0BBBBBBB@

1CCCCCCCA:

�5�

The condition that the field decays outside the fiber implies
that the value of k 2

0 ea ÿ b2, where ea pertains to the

surrounding medium, is negative, and the parameters Aa

and Ca are equal to zero. For the external layer, we then haveÿ
ik0E

�z�;ÿk0H �z�; iE �j�;H �j�
�T �Ma

ÿ
0;Ba; 0;Da

�T
; �6�

where

Ma �

0
w 2
a

ea
Kn�war� 0 0

0 0 0 ÿw 2
a Kn�war�

0
s
rea

Kn�war� 0 ÿwa K
0
n�war�

0 ÿwa K
0
n�war� 0

s
r
Kn�war�

0BBBBBBB@

1CCCCCCCA ;

Kn are themodifiedBessel functions, andwa � � b2 ÿ k 2
0 ea�1=2.

The boundary conditions can be expressed in the matrix
form as

M1�r1��A1; 0;C1; 0�T �M�0;Ba; 0;Da�T ;
M�M2�r1�Mÿ1

2 �r2�M3�r2� . . .Mÿ1
aÿ1�raÿ1�Ma�raÿ1� : �7�

Using the elements mi j and m
�1�
i j of the respective matricesM

andM1, we can rewrite relation (7) as

N �A1;Ba;C1;Da�T � 0 ;

N �

ÿm �1�11 m12 ÿm �1�13 m14

ÿm �1�21 m22 ÿm �1�23 m24

ÿm �1�31 m32 ÿm �1�33 m34

ÿm �1�41 m42 ÿm �1�43 m44

0BBBB@
1CCCCA: �8�

By setting the determinant of the matrix N equal to zero, we
obtain an equation with a single unknown variable b,

detN � 0 ; �9�

whose solution is a set of propagation constants for various
modes. Substituting the resulting values of b in (8), we can
obtain, up to an arbitrary common factor,A1,Ba,C1, andDa,
and then the rest of the Ai, Bi, Ci, and Di, and, finally, the
mode fields.

To calculate the core modes, we should replace the
oscillating Bessel functions Jn and Yn in the matrix describing
the cladding field by the respective modified functions In and
Kn, and substitute ui for wi. For a cladding of a sufficiently
large radius, the core mode amplitude at the external
boundary is vanishingly small; therefore, in the calculation
of the core modes, the medium surrounding the fiber cladding
is usually ignored.

2.2 The weak guidance approximation
and the paraxial approximation
In spite of the considerable difference between the RIs of the
cladding and the core, a good approximation is often that of
weak guidance. The advantage of this approximation is that it
can be easily applied to fibers with arbitrary gradient profiles
of the RI, for instance, to dispersion-shifted fibers, which
have triangular RI profiles. The weak guidance approxima-
tion is also relatively simple because it operates with
transverse linearly polarized modes and the scalar wave
equation.

In the case of cladding modes, it is more correct to use the
paraxial approximation, because the RI difference between
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the cladding and the coating is not a small value. Because this
paper deals with the propagation of low-order core and
cladding modes in standard single-mode fibers, the paraxial
approximation is applicable here.Within this approximation,
it is assumed that the modes propagate almost parallel to the
fiber axis and the relative difference between the mode ERI
and the cladding RI, d � �neff ÿ ncl�=ncl, is small, where
neff � b=k0. The relative RI difference between the cladding
and the core, D � �nco ÿ ncl�=ncl, is also assumed to be small,
i.e., the core is considered a weakly guiding waveguide.
Because the propagation directions of low-order modes
almost coincide with the fiber axis, the longitudinal field
components of these modes are rather small. Therefore, in the
zeroth-order paraxial approximation, the transverse field
components can be written as [4]

HEnm : E �r� � Elm�r�; E �j� � i sign�n�Elm�r� ;
H �r� � ÿsign�n� iblm

om0
Elm�r� ;

H �j� � blm
om0

Elm�r� ; l � jnj ÿ 1 ;

EHnm : E �r� � Elm�r� ; E �j� � ÿi sign�n�Elm�r� ;
H �r� � i sign�n� blm

om0
Elm�r� ;

H �j� � blm
om0

Elm�r� ; l � jnj � 1 ; �10�

TE0m : E �r� � 0 ; E �j� � iE1m�r� ;

H �r� � ÿ ib1m
om0

E1m�r� ; H �j� � 0 ;

TM0m : E �r� � E1m�r� ; E �j� � 0 ;

H �r� � 0 ; H �j� � b1m
om0

E1m�r� ;

where positive and negative n correspond to right and left
circularly polarized modes, respectively. The longitudinal
field components for all modes are equal to zero. The
function Elm�r� satisfies the equation

E 00lm �
1

r
E 0lm �

�
k20e�r� ÿ b2lm ÿ

l2

r 2

�
Elm � 0 ; �11�

with the primes denoting derivatives in the radial coordinate.
In the case of a step-index profile of the fiber, the solution

of Eqn (11) can be obtained as follows. The general solution is
represented in the form

Elm � AJl�ur� � BYl�ur� : �12�
The boundary conditions, which ensure the continuity of the
field Elm�r� and its first derivative, can be written in the
matrix form similarly to (7):

M1�r1��A1; 0�T �M�0;Ba�T ; �13�

where

Mi � Jl�ui r� Yl�ui r�
ui J

0
l�ui r� uiY

0
l�ui r�

� �
; Ma � 0 Kl�war�

0 waK
0
l�war�

� �
;

�14�

andM is defined in the same way as in (7). Equation (13) can
be written as

N �A1;Ba�T � 0 ; N � ÿm �1�11 m12

ÿm �1�21 m22

 !
: �15�

Setting the determinant of the matrix N equal to zero, we
obtain an equation for a single unknown b,

detN � 0 ; �16�
whose solution is a set of propagation constants for various
modes in the paraxial approximation. Substituting the
obtained values of b in (15), we can find, up to an arbitrary
common factor, the values of A1 and Ba, and then Ai and Bi

for the intermediate layers.
Linearly polarized modes can be obtained as exact

superpositions of two, three, or four hybrid modes found in
the zeroth-order paraxial approximation (10). In the general
case, a linearly polarized mode is the sum of two right
circularly polarized modes and two left circularly polarized
modes,

LPl;m�HEl�1;m �HEÿ�l�1�;m � EHlÿ1;m � EHÿ�lÿ1�;m :

�17�
The modes LP0m and LP1m are special cases:

LP0;m � HE1;m �HEÿ1;m ;

LP
�a�
1;m � HE2;m �HEÿ2;m � TE0;m ; �18�

LP
�b�
1;m � HE2;m �HEÿ2;m � TM0;m :

Usually, the zeroth-order paraxial approximation pro-
vides a simple and clear description of mode interaction in
optical fibers. But this approximation is not quite valid for
some problems where propagation of cladding modes is
considered. One such problem is propagation of modes in
twisted fibers [4]. The zeroth-order approximation is not valid
here primarily because it neglects the longitudinal field
components. It can be improved by introducing corrections
of higher order in the parameter d. Equations (10) were
obtained by taking only zeroth-order terms in this parameter
into account. If terms of the order of d 1=2 are taken into
account, nonzero longitudinal components of the field
appear, and the modes become not linearly polarized but
hybrid.

Using Eqn (10) as the first approximation and substitut-
ing it in the Maxwell equations, we find

HEnm : E �z� � i

blm

�
E 0lm ÿ

l
r
Elm

�
;

H �z� � ÿi sign�n� blm
om0

E �z� ; l � jnj ÿ 1 ;

EHnm : E �z� � i

blm

�
E 0lm �

l
r
Elm

�
;

H �z� � i sign�n� blm
om0

E �z� ; l � jnj � 1 ; �19�

TE0m : E �z� � 0 ; H �z� � 1

om0

�
E 01m �

1

r
E1m

�
;

TM0m : E �z� � i

b1m

�
E 01m �

1

r
E1m

�
; H �z� � 0

for the longitudinal components. For low-order modes, the
relative part of the longitudinal field components is 4 ± 10%.
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The transverse components include corrections of the order
of d; in contrast to longitudinal components, they do not play
a considerable role in the description of any phenomena.

2.3 Field profiles and dispersion of cladding modes
With the help of the method considered in Section 2.1, we
have calculated the cladding mode structure for a three-layer
optical fiber with the following parameters: nco � 1:4492,
ncl � 1:444, rco � 4:1 mm, and rcl � 62:5 mm. The wave-
length is assumed to be l � 1:55 mm. As an example, Fig. 1
shows distribution profiles of the electric field normalized to
the energy flux of the corresponding mode. For several
cladding modes, namely, HE12, EH11, TM01, and HE14, the
radial field components are shown. For all listed modes
except TM01, the azimuthal field component practically
coincides with the radial one, and the longitudinal field is
one order ofmagnitude smaller than the transverse fields. The
azimuthal field for the TM01 mode is equal to zero. Even a
small deviation of the core RI from the cladding RI has a
considerable effect on the mode field distribution; therefore,
the approximation where the fiber core is neglected [5] is a
crude one. The HE1m modes have a noticeable maximum at
the center of the core. For the EH1m modes, on the contrary,
the field amplitude is close to zero at the center.

Experimentally measured distributions of the field inten-
sity for two cladding modes, HE15 and HE16, are shown in
Figs 2a and 2b [6]. The cladding modes were excited by means
of an LPFG in a single-mode fiber with the numerical
aperture 0.23 and the respective diameters of the core and
the cladding 3.5 and 125 mm.One can see that the modes have
perfect azimuthal symmetry corresponding to the azimuthal
mode number 1 and the number of rings in the cladding is
equal to the radial mode number. The bright spot at the
center, formed by the core mode, makes it difficult to observe
the inner rings of the cladding modes.

For a fixed azimuthal number, Eqn (9) has a set of
solutions with two alternating types of modes. For instance,
at n � 0, odd solutions are TE-modes and even solutions are
TM-modes; for n5 1, odd solutions correspond toHE-modes
and even solutions to EH-modes. In some papers, including
work by T Erdogan, one of the most cited authors [3, 7],
cladding modes are numbered without distinguishing
between the HE- and EH-modes. In the present paper, we
distinguish between these two mode types. The second index

in the notation for cladding modes indicates the radial mode
number, which equals the number of intensity maxima in the
radial distribution of the field flux. In Refs [3, 7], the core
mode is distinguished from the total set of modes, and the
cladding modes' radial numbering starts from the first
cladding mode and not from the core mode.

The core modes and the cladding modes have different
phase propagation velocities. The phase velocity is directly
related to the ERI of themode, which is defined as the ratio of
the propagation constant to the wave number in the vacuum,
neff � b=k0. The ERI of the core modes are between the RI
values of the core and the cladding. The ERI of the cladding
modes are below the RI values of the cladding.

Waveguide dispersion manifests itself in the wavelength
dependence of the ERI of amode. This dependence originates
from the fact that the field distribution in a fiber depends on
the ratio of the fiber size to the wavelength. If variation of l
changes this ratio, then the relative parts of the optical flux
propagating to the core, the cladding, and the coating also
change. Because the RIs of different layers are different, the
ERI of the mode changes as well.

The other type of dispersion that is present in optical
fibers is material dispersion. Usually, material dispersion has
little effect on the properties of the cladding modes because it
almost equally changes theRIs of the core and the cladding. If
the RI variation is the same for the core and the cladding, the
mode profiles remain almost the same, while the ERI of the
core and cladding modes vary by a value equal to the change
of the fiber material PI due to the wavelength change. A slight
variation of the coating RI has almost no effect on the mode
properties because only a small part of the guided field
penetrates the coating.

Figure 3 shows the dependences of ERI on the wavelength
l for various mode types of a single-mode optical fiber with
the parameters given above. Solid lines correspond to the
HE1m�1 modes, dashed lines to the EH1m modes, and dotted
lines to the TM1m modes. The numbers on the right-hand side
of the figure are the radial mode numbers. The highest curve
corresponds to the core mode; at large wavelengths, its neff
approaches ncl. This curve has a concave shape, which
corresponds to a positive second derivative in the wave-
length. The curves below ncl � 1:444 correspond to the
cladding modes. They also decrease with increasing l, the
tilt being larger for higher-order modes. For low-order
modes, the tilt is less than that for the core mode. At some
radial number, the tilt of the ERI of one cladding mode
becomes equal to the tilt of the core mode curve.

At considerably smaller l, the fiber becomes multimode
i.e., it can guide more than one mode. We see from the figure
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Figure 1. Distribution profiles of the electric field radial component for

several cladding modes of an optical fiber.

a b

Figure 2. Photographs showing the intensity distributions of HE15 (a) and

HE16 (b) cladding modes [6].
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that at l4 1:3 mm, the ERI of the cladding TM01 mode
exceeds ncl, i.e., the cladding mode becomes a core mode.

2.4 Leaky and radiation modes
When the RI of the fiber coating exceeds the RI of the
cladding, the condition for the total internal reflection at the
outer boundary of the cladding is no longer satisfied, and the
parameter wa becomes imaginary. In this case, the field
distribution for r > rcl is described by nonmodified Bessel
functions, which oscillate with the increase in r and do not
tend to zero as r!1. Such a mode propagates within the
whole infinite space and is a radiation mode.

However, even in this case, propagation of light in an
optical fiber can be approximately described by the set of
modes obtained for a fiber with a coatingwhoseRI is less than
the cladding RI. In this case, the modes existing due to the
Fresnel reflection at the cladding ± coating boundary become
decaying, because the energy penetrates the outer space. In
other words, such modes are leaking in the course of their
propagation. The energy losses for cladding modes propagat-
ing along the fiber can also be treated as losses caused by the
coupling between these modes and the radiation modes.
Propagation of a radiation mode can be described in terms
of a complex propagation constant,

b � br ÿ ibi ; �20�

where br corresponds to the phase velocity of some particular
mode and bi corresponds to its attenuation coefficient.

In the description of leaky modes, a common problem is
that the fields of such modes are nonzero outside the fiber
layers andmay increase with the distance from it. This feature
makes it difficult to use traditional methods of mode
propagation analysis.

If theRI of the coating is larger than theRI of the cladding
and the core, which is the case for real optical fibers, the core
modes are leaky as well. However, their leakage is much
weaker than that of the claddingmodes, due to an exponential
decay of the core mode field in the cladding.

As mentioned above, the fields of radiation modes do not
decay but oscillate with the distance from the cladding; they
are described by the functions Jn and Yn. The coefficients Aa

and Ca for guided cladding modes, in contrast to these

coefficients for radiation modes, are nonzero in the general
case and represent two additional free variables. Therefore,
radiation modes have a continuous spectrum, not a discrete
one. The additional free parameter specifies the mode
polarization. There exist two independent differently polar-
ized modes, and their arbitrary superposition is also a mode
of the fiber. Thus, one can arbitrarily choose two linearly
independent orthogonal modes.

Field distributions of a radiation mode can be obtained
from the relation

M1�r1��A1; 0;C1; 0�T �M�Aa;Ba;Ca;Da�T : �21�

By fixingAa � 0 andCa � 1 orAa � 1 andCa � 0, we obtain
modes that are similar, respectively, to the ITE and ITM
radiationmodes of a two-layer fiber with infinite cladding. By
fixing Aa � k0n

2
co and Ca � �b, we obtain modes close to the

hybrid HE and EH, TE and TM fiber modes that would exist
in a cladding coated by a material with a smaller RI.

The effect of the RI of the surrounding medium on the
properties of leaky modes can be studied with the help of a
simplified two-layer model in which the effect of the core is
neglected [8]. Under certain assumptions, the real and
imaginary parts of the propagation constant for modes with
n � 1 can be written as

br � k0ncl

�
1ÿ 1

2

� �m� 0:25�p
rclk0ncl

�2�
;

bi � 2p
n2a � n2cl

rclk0n
3
cl

����������������
n2a ÿ n2cl

q �m� 0:25� : �22�

However, as shown in Ref. [3], this approximation does not
give the correct field profiles in the fiber; hence, it cannot be
used for calculating the mode coupling coefficients.

From the expression for the imaginary part of the
propagation constant in Eqn (22), we can see that as the RI
of the cladding approaches the RI of the coating (na ! ncl),
special behavior can be observed, namely, there is a dramatic
infinite growth of loss. This effect can be used for designing
sensors that are highly sensitive to the RI of the surrounding
medium. On the other hand, the ERIs of leaky cladding
modes depend on the RI of the surrounding medium less than
the ERIs of guided modes, because the field of leaky modes,
unlike the field of guided modes, is not confined by the
boundary between the cladding and the surrounding med-
ium [9].

Similarly to the case of guided modes, radiative cladding
modes can be calculated using the weak guidance approxima-
tion and the approximation of linearly polarized modes [10].
The radial distribution for the LP0m modes can be represented
as

Ex�r� �
Ax J0�u1r� ; r < rco ;

Bx J0�u2r� � CxY0�u2r� ; rco < r < rcl ;

Dx J0�u3r� � ExY0�u3r� ; r > rcl ;

8<: �23�

where x � w3 is the transverse wavevector component
selecting a single mode from a continuous spectrum.

Figure 4 shows the results of numerical simulation for the
transverse electric field amplitude in an optical fiber with the
parameters given in Section 2.3 and the RI of the surrounding
medium na � 1:46. For the two modes shown in the figure,
which have n � 1 and RIs neff � 1:44390 and 1.44395, the
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Figure 3. Wavelength dependences of the ERI for the core mode and

several cladding modes. The curve numbers correspond to the index m.
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field distribution is close to that of the HE12mode.We can see
from the figure that even a small difference in the mode ERIs
has a significant influence on the field distribution. The
oscillation periods in the radial direction are very different
in the coating and the cladding, because the wavevector radial
component in the cladding, u2, is much smaller than the
corresponding value for the coating, u3. The amplitude of
field oscillations in the coating periodically depends on the
ERI because this amplitude is determined by the field at the
cladding ± coating boundary,which is a periodic functionofb.
If the ERI decreases, the field distribution becomes more
similar to that of the HE13 mode, then to that of the HE14

mode, etc. The beginning of this process can be seen in the
figure as we move from neff � 1:44395 to neff � 1:44390.

Propagation of leaky cladding modes in optical fibers can
be analyzed bymeans of the one-dimensional raymethod [11].
Power losses can be calculated in this case from the Fresnel
transmission coefficients.

Leaky cladding modes also exist in optical fibers with
inner cladding whose RI is less than that of the outer
cladding [12]. The cladding modes of microstructured (MS)
(photonic-crystal, holey) fibers are leaky [13, 14]. As a rule,
such fibers do not have a core with a higher RI and therefore
cannot support truly guided modes. Instead, they guide leaky
modes, whose energy is gradually lost in the course of
propagation by leaking between the holes or through the
holes. The study ofmode propagation in holey fibers ismostly
based on numerical simulation, because the structure of such
fibers is rather complex.

There are various numerical methods for calculating the
mode structure of holey fibers. One of them is the beam
propagation method, which is widely used in studies on
complicated waveguide structures and is very convenient for
the calculation of leaky modes in MS fibers. We briefly
describe the procedure for calculating field profiles and
propagation constants of various modes [14]. As the first
step, the field at the waveguide input is defined, E �x; y; 0�.
Then propagation of the field along the waveguide is
calculated numerically and E �x; y; z� is found. This calcula-
tion does not require knowing the profiles and propagation
constants of themodes.We recall that the field in a waveguide
can be written as a sum of orthogonal modes,

E �x; y; z� �
X

AjEj �x; y� exp�ibjz� ; �24�

where Ej �x; y� are the profiles of the modes, Aj are their
amplitudes, and bj are their propagation constants.

Knowing the field E�x; y; z� for many values of z, we can
use the correlationmethod to findEj �x; y�,Aj, and bj for each
mode. In this method, first, the correlation function of the
initial profile and the profile at a distance z from the input is
calculated:

P �z� �
�
E�x; y; 0�E ��x; y; z� dxdy : �25�

Because the modes are orthogonal, P �z� can be simplified:

P �z� �
X
jAjj2 exp�ibjz� : �26�

The Fourier transform of the correlation function P �z� has
sharp peaks at the frequencies corresponding to the propaga-
tion constants bj. The intensities of these peaks give the
squared amplitudes of the modes, jAjj2. The profiles Ej �x; y�
can be calculated by taking the values of the Fourier
transform E �x; y; b� of the function E �x; y; z� at the points bj:

E �x; y; b� �
�
E �x; y; z� exp �ibz� dz

�
X

AjEj �x; y� d�bÿ bj� : �27�

The scalar beampropagationmethodwas used inRef. [15]
for calculating the mode structure of holey fibers. A separate
problem in the study of holey fibers is the calculation of mode
losses [13].

3. Fiber Bragg gratings

One of the most common ways to excite cladding modes is
based on using fiber gratings, whose technology is rapidly
developing. Depending on whether intermode coupling and
resonances are introduced between counterpropagating or
copropagating modes of an optical fiber, two types of
gratings are used: Bragg and long-period, respectively. For
the Bragg gratings, the period is of the order of the optical
wavelength. For instance, to provide Bragg reflection in a
fiber at the wavelength 1.55 mm, the grating period must be
equal to 0.54 mm. A fiber Bragg grating is produced by
exposing the fiber to ultraviolet (UV) radiation, which
induces a periodic modulation of the core RI. To make the
UV-radiation intensity periodically vary along the fiber, a
two-beam interferometric scheme is applied. Two coherent
beams can be produced by means of a beamsplitter,
reflections in a prism, or a phase grating. Fiber Bragg
gratings are mainly used for coupling two counterpropagat-
ing modes of the core. However, in real fibers with a finite
cladding diameter, FBGs also excite cladding modes. This
effect is sometimes undesirable, and it is then necessary to
suppress the coupling between the core and cladding modes.

3.1 Theory
We consider the interaction between the guided modes of the
core and the cladding of a standard single-mode fiber in more
detail.

In standard fibers, the RI of the core and the cladding
differ very little, and therefore, a core mode can be calculated
with high accuracy in the LP approximation by assuming that
the fiber cladding is infinitely large. The dispersion relation
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Figure 4.Distribution profile for the electric field transverse component of
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for an LP core mode has the form

V
�����������
1ÿ b
p J1

ÿ
V

�����������
1ÿ b
p �

J0
ÿ
V

�����������
1ÿ b
p � � V

���
b
p K1

ÿ
V

���
b
p �

K0

ÿ
V

���
b
p � ; �28�

where V��2p=l�rco
�����������������
n2co ÿ n2cl

q
and b��n2eff ÿ n2cl�=�n2coÿ n2cl�

is the normalized ERI. The mode field at the core center is
written as

E �co�r � EcoJ0

�
V

�����������
1ÿ b
p r

rco

�
; E �co�j � iE �co�r : �29�

In the cladding, the field of the core mode decays exponen-
tially with the distance from the boundary; therefore, this
field is almost equal to zero at the external boundary of the
cladding. A claddingmode can be calculated exactly using the
method described in Section 2.1.

Because the amplitude of gratings induced by UV
radiation is about 10ÿ3, i.e., much less than unity, calculation
can be carried out in terms of the coupled mode theory with
slowly varying amplitudes. To analyze the mode interaction,
we must calculate the coupling coefficients, which can be
expressed in terms of mode overlap integrals.

Symmetric FBGs couple modes with the same azimuthal
numbers; therefore, the fundamental core mode, which has
n � 1, can be coupled to the HE1m and EH1m modes. The
coupling coefficient for two modes is determined by the
overlap integral

Kpq � oe0
4

�
1
E �p �r;j�DeEq�r;j� dS ; �30�

where De is the dielectric function variation induced by the
UV radiation. In the calculation of coupling coefficients for
counterpropagating modes, we can neglect the longitudinal
electric field components because they are an order of
magnitude less than the transverse components.

When an FBG is induced in an optical fiber, as a rule, only
the core RI is changed. Therefore, for photo-induced
gratings, De is nonzero only at r < rco. In this area, the RI
can be written as

n�z� � nco

�
1� s�z�

�
1�M cos

�
2pz
L

���
; �31�

where s�z� is a slowly varying envelope, M is the RI
modulation amplitude induced in the grating, or the grating
visibility, and L the grating period. Taking Eqn (31) into
account, we can represent the coupling coefficient as
Kpq � kpq�1�M cos�2pz=L��, where

kpq � oe0
2

n2cos�z�
� rco

0

E�p�r;j�Eq�r;j� dS : �32�

The coupling coefficient kpq normalized to the RI
modulation amplitude in the grating, Dn � ncos�z�, for the
coupling between a core mode and the HE1m and EH1m

cladding modes is shown in Fig. 5 [3] as a function of the
radial mode number.We see from the figure that the coupling
with the EH1m modes having small radial numbers is much
weaker than the coupling with the HE1m modes. This is
caused by the small amplitudes of the EH1m modes near the
core. However, for m020, the HE1m and EH1m modes have
comparable coupling coefficients. Slow oscillations in the
dependence on the radial mode number are caused by the

fact that when the mode number is increased by unity, the
number of oscillations in the field of a cladding mode
increases accordingly, and hence the dependence of the
mode field on the radial coordinate in the core is shifted
towards the fiber center.

In the analysis of the intermode interaction, any coupling
between cladding modes can be neglected, including the self-
coupling of cladding modes, which leads to corrections in the
expressions for the mode propagation constants. This
approximation is possible here because only a small part of
the cladding mode field is contained in the core, where the
grating is induced. Therefore, the overlap integral for two
cladding modes is smaller than the overlap integral for a core
mode and a cladding mode, which, in turn, is smaller than the
overlap integral for two core modes. Using the approxima-
tionsmentioned above and omitting rapidly oscillating terms,
we can obtain a system of coupled-mode equations for the
slowly varying amplitudes of the coupled modes [3]:

dA co

dz
� ik coÿcoA co � i

M

2
k coÿcoB co exp�ÿi2d coÿcoz�

� i
X
m

M

2
k coÿcl
m B cl

m exp�ÿi2d coÿcl
m z� ;

dB co

dz
� ÿik coÿcoB co ÿ i

M

2
k coÿcoA co exp�i2d coÿcoz� ;

dB cl
m

dz
� ÿi M

2
k coÿcl
m A co

m exp�i2d coÿcl
m z� ; �33�

where A and B denote the respective amplitudes of forward
and backward modes and d coÿco and d coÿcl

m are mismatch
parameters defined as d coÿco � �2b co ÿ 2p=L�=2 and
d coÿcl
m � �b co � b cl

m ÿ 2p=L�=2. Resonant interaction with
the cladding modes occurs under the condition

b co � Db co � b cl
m �

2p
L
; �34�

with Db co � k coÿco, from which the resonance wavelength
can be found. We assume that the resonances are sufficiently
narrow and well separated, and hence, for a fixed wave-
length, only two waves interact: a core mode and a cladding
mode. In this case, a separate resonance with a cladding
mode can be selected. If the grating is assumed to be uniform
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(s�z� � const), then the solution of system (33) yields the
reflection and transmission coefficients for this resonance,
similar to the reflection and transmission coefficients of a
Bragg mirror. (At the center of a resonance, the transmission
coefficient is T � tanh2kL, where k � k coÿcl

m M=2.) The
normalized width of the resonance is approximately given by

Dl
l
� lk

pnav

�������������������������
1�

�
p
kL

�2
s

; �35�

where nav is the average ERI for the two coupled modes.
In the case where the RI of the coating is larger than or

close to the RI of the cladding, an FBG cannot excite
cladding modes but only radiative ones. For describing
coupling with the radiation modes, we replace the sum of
the cladding mode fields in the decomposition of the field of
an optical fiber by the integral over the continuous spectrum
of radiation modes:

E � A coE co� exp�ibcoz� � B coE coÿ exp�ÿibcoz�
�
� �

AxEx� exp�ibxz� � BxExÿ exp�ÿibxz�
�
dx : �36�

Substituting field (36) in the Maxwell equations and neglect-
ing rapidly oscillating terms, we obtain the coupled-mode
equations

dA co

dz
� ÿi

�
K coÿrd

x exp�ijxz�Bx dx ; �37�

dBx

dz
� iK rdÿco

x exp�ÿijxz�A co ; �38�

where jx � bco � bx ÿ 2p=L. Equations (37) and (38) can be
solved by expanding the mode amplitudes A co and Bx in the
small parameter sM. Keeping the terms up to the second
order in this expansion and taking the boundary conditions
into account, Koyamada et al. [10] obtained the following
expression for the grating transmission coefficient:

A co

A0
� 1�

�
ax
j2
x

�
ijxLÿ 1� exp�ÿijxL�

�
dbx ; �39�

where ax � K coÿrd
x K rdÿco

x �bx=x�. Relation (39) is valid under
the condition that the energy loss for the coremode is small. If
the loss is large, higher-order terms in the expansion should be
taken into account. The largest contribution to the integral is
given by the domain where bx � 2p=Lÿ bco and jx � 0. The
behavior of the factor ax determines the FBG transmission at
wavelengths corresponding to coupling with radiation
modes.

3.2 Transmission spectra
The diagram shown in Fig. 6 illustrates the mode conversion
that occurs in an optical fiber in the presence of anRI grating.
The whole range wheremodes exist is divided into three areas:
area I contains radiation modes, area II, cladding modes, and
area III, core modes. The areas are separated by dashed lines
b � ncok0, b � nclk0, and b � nak0. Long arrows show inter-
mode coupling caused by fiber Bragg gratings. The length of
an arrow is inversely proportional to the grating period,
kg � 2p=L. For a small wavenumber (large wavelength), the
core mode is coupled to a similar mode propagating in the
opposite direction and having negative propagation con-
stants. At somewhat larger k0 (smaller wavelengths), a core

mode becomes coupled to one of the counterpropagating
cladding modes; at still larger k0, the grating converts a core
mode into radiation modes.

Figure 7 shows the transmission spectra calculated for an
FBG with the period L � 530 nm, length 0.5 cm, and RI
modulation amplitude 5� 10ÿ4 [10]. Calculations were
carried out for the following cases: the RI of the cladding is
larger than the RI of the coating (Fig. 7a); the RI of the
cladding is equal to the RI of the coating, i.e., cladding modes
do not exist (Fig. 7b); theRI of the cladding is smaller than the
RI of the coating, i.e., cladding modes are leaky (Fig. 7c). In
all three cases, the spectra contain a Bragg reflection peak, its
shape and position being practically independent of the RI of
the coating. In the short-wavelength part of the spectra
(Figs 7a, c), a series of peaks is observed, corresponding to
resonances with the HE1m cladding modes. In Fig. 7b, the
resonances are absent; instead, there is a continuous absorp-
tion spectrum caused by the coupling between the core mode
and radiationmodes.When theRI of the cladding exceeds the
RI of the coating, the energy is most efficiently coupled into
cladding modes with m � 11, because these modes have the
largest coupling coefficient with the core modes (see Fig. 5).
In Fig. 7a, cladding resonances at l > 1546 nm are consider-
ably narrower than the resonances at l < 1546 nm. This is
because the resonances at wavelengths above 1546 nm are
formed by guided cladding modes, while the resonances at
wavelengths below that are created by leaky cladding modes.
The resonances of leaky cladding modes have smaller
amplitudes and are more `smeared' than the resonances of
guided modes. That the cladding supports only a few (16)
modes is because of the small difference between the refractive
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indices of the coating and the cladding assumed in the
calculation. In fibers surrounded by air, with more than a
hundred modes having n � 1, only resonances of guided
modes are observed. Experimental spectra measured for
fibers of various types are qualitatively the same as the
spectra shown in Fig. 7.

As we have already mentioned, the character of the
spectrum is determined by the behavior of the factor ax. If
the RI of the coating equals the RI of the cladding, this factor
has a monotonic dependence on the wavelength (similar to
the dependence in Fig. 7b) in the range of cladding-mode
resonances. If the RI of the coating exceeds the RI of the
cladding, ax has an oscillating dependence (similar to the
dependence in Fig. 7c).

3.3 Tilted gratings
In the usual, nontilted gratings, coupling is only possible
betweenmodes with equal azimuthal numbers. Therefore, the
fundamental core mode HE11 can exchange energy only with
modes for which n � 1, i.e., with the HE1m and EH1m modes.
In tilted gratings, mode coupling is more complicated,
because in general, coupling can exist between modes with

arbitrary azimuthal numbers [16]. A grating can be tilted in
two ways with respect to the polarization of the core mode
direction: the grating vector can be either in the polarization
plane (p-grating) or orthogonal to it (s-grating). The
coordinate dependence of the RI variation in the core can be
written as

Dn�x; y; z; y� � ncos�z 0�
�
1�M cos

�
2p
L

z 0
��

; �40�

where

z 0 � z cos yÿ x sin y ; p�grating;

z cos yÿ y sin y ; s�grating;

�
y is the tilt angle of the grating, and s�z 0� is the grating
envelope, which describes the slow variation of the grating
amplitude along the coordinate z 0. Interaction of themodes in
tilted gratings can be described similarly to the case of non-
tilted gratings using the coupled mode theory and calculating
the coupling coefficients in terms of the overlap integrals. The
coupling coefficients depend on the polarization directions of
the modes. Calculations show that the coupling coefficients
for modes with orthogonal polarizations are small. Similarly,
the coupling coefficient for two cladding modes is small
compared with the coupling coefficient for a core mode and
a cladding mode, as is the case for nontilted gratings.

The coupling coefficients for the interaction between
core and cladding modes in tilted gratings depend on the
radial mode number in the same way as the coupling
coefficients in nontilted gratings. However, there are still
some differences: as a rule, the EH2m and EH3m cladding
modes have higher coupling coefficients than the HE2m and
HE3m modes; the coupling coefficient decreases with the
increase in the azimuthal mode number; the strongest
coupling occurs at higher radial numbers than in the case
of nontilted gratings. The coupling coefficients have
periodic dependences on the grating tilt angle. At the same
time, the oscillation amplitude decreases with the increase in
the angle. For n � 1, the maximum occurs at y � 0. For
n � 2, the coupling coefficient is maximal at y � 5�, and for
n � 3, at y � 7:5�; therefore, if a high coefficient of reflection
into cladding modes is to be obtained, the tilt angle of the
FBG with respect to the fiber axis should not exceed several
degrees (5ÿ10�) [16].

If tilted gratings in optical fibers are used at wavelengths
smaller than the cutoff wavelength, the basic core mode LP01

can exchange energy not only with cladding modes but also,
and primarily, with higher-order core modes, for instance,
with the asymmetric LP11 mode [17].

In the measured transmission spectra of tilted FBGs,
similarly to the case of nontilted gratings, there are multiple
absorption peaks at wavelengths shorter than the Bragg
wavelength. These peaks are caused by resonances with the
cladding modes. The difference from the case of nontilted
gratings is that for a tilted grating, the spectrum is a sequence
of alternating resonances with various mode types, which
have different azimuthal mode numbers. The largest peaks
are the those related to the LP0m and LP1m modes [18, 19]. The
spectrum also contains a broad loss band caused by the
coupling with radiation modes and overlapping with the
resonance peaks of cladding modes. Positions of the reso-
nance peaks and of the band of losses into radiation modes
depend on the RI of the surrounding medium; this fact made
it possible to propose FBG-based sensors for measuring
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RI [19]. If the fiber with an FBG in the core is bent, the angle
between the beam and the grating varies, which leads to a
change in the coupling coefficient between the forward core
mode and the backward cladding mode. As a result, the
transmission coefficients at the resonance frequencies of
cladding modes also change. Thus, by measuring the
transmission coefficient, one can determine the fiber curva-
ture, and a bending sensor can be built based on this
principle [20]. Finally, tilted FBGs can be used for construct-
ing a low-loss narrow-band filter [21].

3.4 Suppression of cladding resonances
In Section 3.3, we described possible applications of resonant
reflection from an FBG into cladding modes. However, this
phenomenon is quite often undesirable, and it is necessary to
suppress reflections into cladding modes and eliminate the
corresponding losses. In particular, this is the case if only a
narrow Bragg band providing reflection into the basic core
mode is required. Loss peaks in the short-wavelength part of
the spectrum can be extremely harmful, especially in systems
with wavelength division multiplexing (WDM). For this
reason, active studies on the suppression of cladding
resonances are being carried out [22 ± 26].

The basic way to suppress cladding resonances is to reduce
the coupling coefficients for the interaction between core and
cladding modes. This can be achieved by controlling the three
parameters determining the coupling coefficients.

First, by choosing the RI profile of an optical fiber, one
can vary the field profiles for both core and cladding modes.
In particular, it is possible to choose the RF profile that
minimizes the mode overlap integrals. As a rule, the coupling
coefficients for low-order cladding modes can be suppressed
in optical fibers whose cladding contains a ring of reduced RI
around the core (depressed cladding) [22]. Such a ring
efficiently decreases the field amplitudes of the cladding
modes in the core and hence reduces the overlap integrals
with the core mode. However, for a fiber with depressed
cladding, additional loss peaks are observed in the interval
between the Bragg resonance and the cladding resonances.
These peaks are caused by the existence of leaky modes in the
part of the cladding where the RI is reduced. The amplitudes
of these peaks increase considerably when the grating is tilted,
even slightly, with respect to the fiber axis. Therefore,
accurate positioning of the fiber during the grating writing
becomes critical [23].

Second, the mode overlap integrals can be reduced by
varying the photosensitivity profile of the fiber [24]. In an
ideal case, the cladding should have the same photosensitivity
as the core. Then the overlap integral is zero due to the
orthogonality of the modes. In practice, it is sufficient to
extend the photosensitivity profile by several microns and
reach the area where the exponentially decaying amplitude of
the core mode approaches zero. As a result, the product of
three functions, the photosensitivity and the mode fields of
the core and the cladding, is then also close to zero. The
photosensitivity profile can be expanded by doping the
cladding with germanium and other dopants necessary for
compensating the change in the RI. A drawback of this
method is the reduction of the grating strength caused by
the absorption of UV radiation outside the core, where the
core mode has a small amplitude. The most efficient way is to
vary both the RI profile and the photosensitivity profile [27].
In order to considerably suppress the cladding resonances,
accurate measurement and control of the fiber photosensitiv-

ity profile is required. This allows obtaining the values of
losses into cladding modes less than 0.1 dB when writing
FBGs with strengths up to 30 dB [24].

It is also possible to create gratings with nonstandard
distributions of the induced RI over the fiber cross section.
Parker and de Sterke [25] suggested a new method of FBG
writing in standard fibers, in which the fiber rotates around its
axis during the tilted grating writing. Theoretical calculation
has shown that cladding modes in such gratings have
considerably weaker resonances. However, so far this state-
ment has no experimental evidence.

Third, the influence of cladding resonances in FBGs can
be eliminated by increasing the numerical aperture of the
fiber, which leads to an increase (up to 10 nm) in the
wavelength interval between the Bragg resonance and the
multiple resonances of cladding modes. This expands the
wavelength range of the Bragg gratings used in WDM
systems. An important part of the problem is splicing the
special fiber designed for the FBG writing and the standard
fiber, because splicing fibers with different RI profiles can
introduce additional losses. By optimizing the parameters of
the fibers, losses caused by splicing with the standard SMF-28
fiber have been reduced to 0.04 dB.

If the fiber grating writing is not ideal, the methods
developed for the ideal case may not be optimal. Indeed, in
the case where the normal to the grating forms a small angle
with the fiber axis, reflection into cladding modes can grow
considerably. To reduce the sensitivity of an FBG to small tilt
angles, it was suggested [26] to make the diameter of the
cladding area with a reduced RI smaller than its standard
value. Such fibers are also less sensitive to a possible azimuthal
asymmetry of the induced grating. For large tilt angles
(> 1:3�), it is reasonable to use fibers with matched cladding.

Finally, the suppression of cladding resonances can be
achieved by producing obstacles for the propagation of
cladding modes along the fiber. For this, the cladding is
covered by an absorbing material or a transparent polymer
whose RI coincides with that of the cladding. Attenuation of
the cladding modes smears and weakens the corresponding
resonances.

3.5 Bragg gratings in microstructured fibers
Many applications of FBGs are based on complex gratings
with various profiles,which arewritten in theusual germano ±
silicate fibers. The new generation of fiber optical systems
requires optical components with greater functionality; there-
fore, the attention of researchers is focused on the creation of
usual gratings in modified waveguide structures with more
complex configurations [15, 28, 29]. Modified optical fibers
can be divided into two groups, according to the methods of
their fabrication: (1) those obtained by processing standard
fibers and (2) thosewith the structuremodified in the course of
fabrication. In this section, we consider fibers of the second
group, namely, microstructured (MS) fibers, which are being
intensively studied at present [30].

Microstructured fibers are produced from structured
preforms and contain air holes along the whole fiber. Interest
in such structures was caused, in particular, by the fact that
light can be guided not by the total internal reflection but by
the Bragg reflection from the periodic array of holes, as well
as by the possibility of generating a supercontinuum [31]. MS
fibers provide additional possibilities in the design of devices
based on claddingmodes, because the sizes of the air gaps and
their distribution in the cladding can be controlled. More-
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over, air gaps can be filled by various active media, which can
be used to control the parameters of gratings induced in such
a fiber.

Microstructured fibers can be divided into two classes:
photonic-crystal (PC) fibers, in which the holes form a two-
dimensional periodic superlattice, and simple holey fibers
where holes do not form any periodic structure. In addition,
two different mechanisms of wave guiding are possible in MS
fibers. In the first case, the wave undergoes Bragg reflection
from the periodic structure where it cannot propagate due to
the existence of a band gap. This mechanism is only possible
in PC fibers. In the other case, total internal reflection occurs
at the core ± cladding boundary. The condition for total
internal reflection is provided by making the RI of the silica
core (which may be doped) higher than the average RI of the
holey cladding.

The application of MS fibers in communication lines is
limited by losses, which are typically larger in such fibers than
in standard ones. On the other hand, if MS fibers are used for
grating writing, the losses become completely unessential
because the lengths of the gratings do not exceed several
centimeters.

In some applications, the holes of MS fibers are designed
not for guiding core modes but for the control of the cladding
modes. In such fibers, a core mode is guided by the doped
silica core, as in the case of standard fibers [29]. Doping allows
writing photo-induced FBGs and LPFGs in such fibers.

An investigation of the spectra of MS fibers can be used
for characterizing both core modes and cladding modes. In
particular, transmission spectra of FBGs written inMS fibers
manifest resonances related to the cladding modes. These
resonances provide information on the mode structure of the
fibers, propagation constants, and field profiles for the
modes. The obtained characteristics can be used for the
design of new optical components based on MS fibers.

The insets in Fig. 8 show four types of MS fibers where
gratings were written: a PC fiber (Fig. 8a), a fiber with a
`grapefruit' structure (Fig. 8b), a fiber with inner air cladding
(Fig. 8c), and a fiber with a high RI contrast (`high-delta'
fiber, Fig. 8d). The cladding of the PC fiber is filled by
periodic holes. In the case shown here, light was confined in
the fiber not because of the Bragg reflection but due to the
existence of the core having no air hole. The properties of an
MS fiber are very similar to the properties of the usual fiber
with the radius equal to the inner radius of the MS fiber silica
cladding.When the inner radius of the cladding becomes close
to the core radius, the result is a fiber with a large RI contrast,
whose modes are strongly squeezed by the air gaps. Such
modes manifest considerable anomalous dispersion in the
visible wavelength range.

In fibers of all these types, FBGs were written using phase
masks and pulsed UV laser radiation with the wavelength
242 nm [14]. The transmission spectra of the gratings were
obtained by measuring the power of laser light transmitted
through the fiber, the wavelength of the radiation being
scanned within a certain range. At the wavelengths where
loss peaks were observed, the profiles of reflected cladding
modes were registered by means of a microscope.

A special PC fiber was designed, with the core doped by a
small amount of germanium, such that the doping did not
introduce noticeable perturbation of the guided modes but
was still sufficient for writing a grating. A typical core radius
was of the order of 1 mm and the contrast was D � 5� 10ÿ3.
The core of the high-delta fiber had the same parameters. The

distance between the holes in the hexagonal lattice was about
10 mm; hence, the modes were confined in the core due to the
total internal reflection rather than the Bragg reflection. In
fibers with a `grapefruit' structure and inner air cladding, the
core radius was� 4 mm and the contrast was D � 3:5� 10ÿ3.

Figure 8 shows the transmission spectra of gratings
written in fibers of the four types described above: a PC
fiber (Fig. 8a), a fiber with a `grapefruit' structure (Fig. 8b), a
fiber with inner air cladding (Fig. 8c), and a fiber with a high
RI contrast (Fig. 8d). The resonance denoted by `01' in Fig. 8
corresponds to reflection into the core mode. Further
resonances, at shorter wavelengths, correspond to leaky
cladding modes, which quickly become scattered in the
course of their propagation along the fiber. In contrast to
the case of usual fibers, the intensity of reflections into
cladding modes in PC fibers is comparable to the intensity
of reflection into the core mode. This is because several low-
order cladding modes propagate close to the fiber core and
have large overlap integrals with the core mode. The distance
between the cladding-mode resonances is larger in PC fibers
than in usual fibers, which is also due to a smaller mode
radius. Near the peaks in the spectrum, field profiles for the
corresponding excited cladding modes are also shown in the
figure.

In the `grapefruit' fiber, the distance between the cladding
resonances is also larger than in standard fibers. The strongest

T
ra
n
sm

is
si
o
n
,d

B

c

d

a

1540 1545 1550 1555

0

ÿ1
ÿ2
ÿ3
ÿ4

0204 03 01

b

1549 1550 1551 1552 1553 1554

0

ÿ10

ÿ20

ÿ30

04 03 02 01

0

01

15381536 1540 1542
ÿ12

ÿ8

ÿ4

1490 1495 1500 1505

ÿ10
ÿ5
ÿ3
ÿ2
ÿ1
0

Wavelength, nm

01

Figure 8. Transmission spectra of FBGs in MS fibers of various types: a

PC-fiber (a) a fiber with a `grapefruit' structure (b), a fiber with inner air

cladding (c), and a fiber with a high RI contrast (d) [14]. The insets show

the cross sections of the fibers and the profiles of cladding modes

corresponding to some resonances.

178 O V Ivanov, S A Nikitov, Yu V Gulyaev Physics ±Uspekhi 49 (2)



resonances correspond to the modes whose field profiles are
mostly contained in the inner area between six holes. A small
part of the light escapes from the fiber through thin silica
walls.

The properties of the fiber with inner air cladding are very
similar to those of the usual fiber with the outer diameter
equal to the inner cladding diameter of the fiber shown in
Fig. 8c. The spectrum in Fig. 8c therefore resembles the
transmission spectrum of a grating in a standard fiber. The
mode profiles of such a fiber have almost circular symmetry;
they also have been observed in experiment [14].

The spectrum of the high-delta fiber contains no
cladding-mode resonances. This is because the radius of the
inner cladding is very small and the RI of the first cladding
mode differs significantly from the RI of the core. As a
result, this resonance is very far from the Bragg peak. Strictly
speaking, in such a fiber, the core mode is already a cladding
mode, because its RI is about 1.40, which is less than the
cladding RI.

The structure of MS fibers allows them to be filled with
various gases or liquids. Westbrook et al. [32] filled the holes
with a UV-curable polymer and then exposed it to UV
radiation. The refractive index of a polymer depends on the
temperature much more strongly than that of fused silica;
therefore, the cladding-mode resonances excited by means of
an FBG in such a structure are more sensitive to temperature
changes than the resonances in usual fibers. This fact has been
confirmed experimentally. At room temperature, the RI of
the polymer is higher than the RI of silica, but it reduces due
to the increase in temperature and may become smaller than
the RI of silica in the case of strong heating. Because of this, a
temperature variation can lead to a change in the regime of
the waveguide propagation of a cladding mode.

Thus, microstructuring optical fibers enables one to
control the characteristics of cladding modes in new ways,
which are impossible for usual fibers.

4. Long-period fiber gratings

A long-period fiber grating is a fiber structure with the
properties periodically varying along the fiber, such that the
conditions for the interaction of several copropagatingmodes
are satisfied. The period of such a structure is of the order of a
fraction of a millimeter. In contrast to the Bragg gratings,
LPFGs couple copropagating modes with close propagation
constants; therefore, the period of such a grating can
considerably exceed the wavelength of radiation propagating
in the fiber. Because the period of an LPFG is much larger
than the wavelength, LPFGs are relatively simple to manu-
facture. Since LPFGs couple copropagating modes, their
resonances can only be observed in transmission spectra.
The transmission spectrum has dips at the wavelengths
corresponding to resonances with various cladding modes
(in a single-mode fiber) [33].

Depending on the symmetry of the perturbation that is
used to write the LPFG, modes of different symmetries may
be coupled. For instance, cylindrically symmetric gratings
couple symmetric LP0m modes of the fiber. Microbend
gratings, which are antisymmetric with respect to the fiber
axis, create a resonance between the core mode and the
asymmetric LP1m modes of the core and the cladding.

Various gratings with complex structures have been
designed: gratings combining several LPFGs, LPFGs with
superstructures, chirped gratings, and gratings with apodiza-

tion. Various LPFG-based devices have been developed:
filters, sensors, fiber dispersion compensators, etc.

4.1 Theory
There are two basic methods of calculating the LPFG
transmission spectra. The first is based on the standard
coupled-mode theory, which involves the approximations of
phase synchronism and weak perturbation, i.e., the assump-
tion that the perturbation introduced into the fiber due to the
grating formation has little effect on the fiber mode structure
[3, 34]. In the analysis of gratings where the RI profile is not
sinusoidal but rectangular, only the zeroth-order and the
first-order harmonics are taken into account; contributions of
higher-order Fourier harmonics of the grating are neglected.

The second method, known as the transfer-matrix
method, is based on dividing the fiber into uniform parts
whose cross sections are constant along the fiber [35]. For
each part, one calculates the mode structure and the transfer
matrix that relates the electromagnetic fields at the input and
the output. Bymultiplying the matrices of different parts, one
obtains the matrix describing the whole grating. The transfer-
matrix method provides the exact solution to the problem,
but it can only be obtained numerically. Used together with
the reflection-free approximation and the approximation of
weak perturbation of the mode structure [36], this method
yields results that are only 2%different from the results of the
coupled-mode theory.

There also exists an intermediate method, in which the
transfer matrix of a single uniform part of the fiber is
found from the coupled-mode theory and then the total
transfer matrix is found as a product of matrices for
separate layers [37]. This way, the phase matching approx-
imation is not used and all Fourier harmonics of the grating
are taken into account. Comparison shows that the transmis-
sion spectrum obtained by means of this method differs from
the one calculated through the coupled-mode theory by not
more than 2.5%.

Propagation and conversion of cladding modes in LPFGs
can be studied by numerical methods. For instance, Murtaza
et al. [38] used the beam propagation method and the finite-
difference method to calculate the transmission spectrum of
an LPFG with microbends. The results agree well with the
experimental data.

We consider the application of the coupled mode method
to an LPFG in more detail. Similarly to the case of an FBG,
we consider a photo-induced grating and assume that the RI
is varied only in the core of the fiber and is described by
Eqn (31). The expression for the mode coupling coefficient in
an LPFG has the same form as in the case of an FBG [see
Eqn (30)]. Due to the radially symmetric perturbation, the
core mode is coupled to the HE1m and EH1m modes of the
cladding. For the same reasons as in the case of FBGs, we
neglect the interaction between the cladding modes. We take
only the mode self-coupling into account, which can shift
resonances in the LPFG transmission spectra. Then, neglect-
ing rapidly oscillating terms, we obtain the coupled-mode
equations [3]

dA co
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� ik coÿcoA co � i
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n exp�ÿi2d coÿcl
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where d coÿcl
m � �b co ÿ b cl

m ÿ 2p=L�=2. The resonance condi-
tion is given by

b co � Db co ÿ b cl
m ÿ Db cl

m �
2p
L
; �42�

where Db co � k coÿco and Db cl
m � k clÿcl

m are corrections to the
propagation constants of the core and the cladding modes,
which appear because of the mode self-coupling at the zeroth-
order Fourier component of the grating RI.

As a rule, cladding mode resonances are rather far from
each other in the spectrum. Therefore, in the coupled-mode
equations for a certain wavelength, it is sufficient to take only
a single cladding mode into account.

For a grating that couples two fiber modes and has a
uniform distribution of the induced RI (s�z� � const), the
analytic solution of system (41) can be easily obtained. We
assume that the fiber modes were calculated with the constant
component of s taken into account, i.e., with the RI of the
core assumed to be nco�1� s�. In this case, Db co and Db cl are
equal to zero, and the solution of (41) is written as
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A cl
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where Z �
������������������
d2 � jkj2

q
and k � k coÿcl

n M=2; for brevity, the
subscripts of the mismatch parameter are omitted here.

The usual photo-induced gratings couple the core mode
with the azimuthally symmetric cladding modes and the
HE1m and EH1m modes. Exposure to the UV radiation
changes only the RI of the core. In this case, the coupling
coefficient for the core mode and hybrid modes depends on
the radial mode number as shown in Fig. 5.

In asymmetric gratings, depending on the grating type, the
core mode HE11 can be coupled to the modes of various
polarizations having arbitrary azimuthal and radial numbers.
In gratings with microbends, the induced grating has an
antisymmetric structure over the fiber cross section,
De�x; y; z� � �x=rcl�De0 cos�2pz=L�, where De0 is the grating
amplitude at the external boundary of the cladding. The only
nonzero overlap integrals for the coremodes are the ones with
the TM0m (TE0m) and HE2m modes. Because these modes are
almost degenerate in the paraxial approximation and corre-
spond to the LP1m mode, their resonances overlap with each
other and become indistinguishable in the LPFG spectra for
fibers of standard radii and modes with small radial numbers.

4.2 Transmission spectra
Resonance coupling between the core mode and other modes
of an optical fiber is illustrated in Fig. 6, where short arrows
corresponding to LPFGs have the length kg � 2p=L. At large
wavelengths (small k0), a core mode is coupled to radiation
modes, at medium wavelengths (medium k0), to cladding
modes, and at small wavelengths (large k0), to core modes.
The order of the modes in the resonance spectrum of an
LPFG is reversed compared to the case of an FBG.

We assume that the mode structure of a fiber is calculated
with only the constant component of the RI induced by the
UV radiation (the zeroth-order Fourier harmonic of the RI)
taken into account. The corrections Db co and Db cl to the
propagation constants can then be set equal to zero. In this
case, the resonance wavelengths are found from the relation

l � ÿn co
eff ÿ n cl

eff;m

�
L : �44�

It is convenient to find the resonance wavelengths
graphically, by plotting the dependence L�l�. The horizontal
line corresponding to a certain grating period intersects the
resonance curves of the modes at wavelengths where cladding
resonances are to be observed (Fig. 9).

The entire spectrum of an LPFG consists of several dips,
each one corresponding to a resonancewith a certain cladding
mode. An example of such a spectrum is shown in Fig. 10 [34].
One can see that the depth of the dips increases as the
wavelength grows, which is because higher-order cladding
modes have larger coupling coefficients.

The dependences of the grating period on the resonance
wavelength L�l� have smaller tilt for higher-order modes; for
some mode number, the dependences become nonmonotonic
functions of the wavelength in the range under study. Such a
curve can intersect the same horizontal line twice. This is the
case for curve 10 in Fig. 9. The transmission spectrum of such
a grating has two loss peaks, corresponding to resonances
with the same cladding mode [39 ± 41]. Even slight variations
in the mode coupling conditions lead to a change in the
distance between the two loss peaks.

Gratings with a period close to the peak of the resonance
curve L�l� were used in Ref. [40] to achieve mode coupling in
the broadest possible wavelength range. Mode conversion
with an efficiency above 99% has been obtained within the
range 1525 ± 1588 nm. A special case occurs if the grating
period coincides with the peak of a nonmonotonic curve (as
for curve 10 in Fig. 10 at the wavelength 1600 nm) [42].
Variation of the coupling conditions at this point would result
not in a shift of the resonance wavelength but in a change in
the value of the loss.

For even larger mode numbers, the tilt of the curves
changes sign. Because of this, the increase in the average RI
of the core in the course of the grating writing leads to a shift
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in the corresponding dips of the LPFG towards shorter
wavelengths, i.e., oppositely to the shift of the resonances of
cladding modes with small mode numbers [43].

The initial condition for measuring the transmission
spectrum is that the amplitude of the cladding mode is equal
to zero. Then, the transmission coefficient of an LPFG for a
single cladding mode is given by

T � 1ÿ k2

Z2
sin2 ZL : �45�

This function describes a dip with oscillations decaying on
both of its sides (Fig. 11). The depth of the dip at the center is
d � 0, and the minimum of transmission is achieved at
kL � p=2. The normalized spectral width of the dip is
approximately given by the relation [3]

Dl
l
� l

DneffL

�����������������
1� 4kL

p

r
; �46�

where Dneff � n co
eff ÿ n cl

eff;m. If the cladding mode is not
lossless, which is always the case in practice, the shape of the
resonance curve changes. The dip becomes somewhat
broadened, and the side lobes are smoothed [44], which
makes LPFGs more convenient for application in sensors

and gain equalizers. Experimental spectra, are often not
symmetric with respect to the resonance center. In Ref. [45],
such an asymmetry is explained by the nonuniformity of the
grating and the resulting inhomogeneity of Db co along the
grating.

As the wavelength increases, the widths of the dips and the
distance between them increase as well, due to both the
increase in the wavelength and the resulting decrease in the
ERI difference between the core and cladding modes, Dneff.
Because of the sinusoidal factor sin2 kL in the grating
transmission coefficient, the growth of the grating amplitude
or its length may reduce the depths of dips corresponding to
higher-order cladding modes in the transmission spectrum.
This regime (kL > p=2) is not used in LPFG-based devices
because it leads to the suppression of the main resonance and
the enhancement of additional maxima.

When a fiber with an LPFG is perturbed, the transmission
spectrum of the LPFG is modified. First and foremost, the
resonances change their positions. The wavelength shift of a
resonance, Dl, can be found from relation (42), which
involves the propagation constants of two coupled modes
and the grating period [46],

Dl � ÿDb co ÿ Db cl
n � 2pDL=L

db co=dlÿ db cl
n =dl

: �47�

In a long-period fiber grating, much larger wavelength shifts
can be obtained than in an FBG, for the same perturbation of
the propagation constants. This is due to the extremely small
denominator in Eqn (47), containing the difference
db co=dlÿ db cl

n =dl. Exceptions are situations where identi-
cal perturbations are created both in the core and in the
cladding of the fiber (for instance, due to stretching or
heating) and, hence, Db co and Db cl

n almost cancel each
other. The shifts observed in this case can be either larger or
smaller than for FBGs [47].

Effective refractive indices of cladding modes have a
strong dependence on the external radius of the cladding.
Therefore, by changing the cladding radius, one can con-
siderably change the positions of the resonances [48, 49]. The
simplest way to change the radius of the fiber is chemical
etching. However, this reduces the mechanical strength of the
fiber and does not allow the positions of the resonances to be
controlled in a dynamic way.

One can also control the positions of the resonances by
doping the cladding with fluorine, Ba2O3 [50], or chromium
ions, Cr3+. Using these methods, it is possible to obtain
LPFG spectra with a single resonance in a broad wavelength
range. When germanium-doped fibers are kept in a hydrogen
atmosphere in order to increase their photosensitivity, the
positions of LPFG resonances may also change because
hydrogen diffuses through the cladding and modifies the RI
of the silica.

4.3 Fabrication methods
Because the period of an LPFG is much larger than that of an
FBG, long-period fiber gratings are rather easy to produce,
and there are many methods for fabricating them. All these
methods are based on creating a periodic perturbation of the
parameters of the fiber along its length (Fig. 12).

Historically, an LPFG was first produced by forming
microbends of the fiber [5, 51]. In order to create a grating by
means of this method, the fiber is fixed between two
corrugated surfaces with grooves shifted by half the period
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(Fig. 12a). Gratings with microbends couple the core mode to
the antisymmetric cladding modes LP1m. In the first experi-
ment, the dependence of the fiber transmission at a fixed
wavelength on the period of microbends was studied; for
certain periods of the grating, resonance energy losses were
registered. Further, transmission spectra were measured with
the grating period being fixed, and peaks of resonance losses
were observed.

The most widely used method of creating LPFGs is based
on photoinduction of gratings in germanosilicate fibers by
UV laser pulses in the wavelength range 193 ± 266 nm.
Nonhomogeneous irradiation increases the RI in the illumi-
nated parts of the core, which leads to a coupling between the
core mode and the symmetric modes of the cladding. To
enhance the photosensitivity of the fiber, it is kept, as in the
case with FBG writing, in a hydrogen atmosphere. The
gratings can be written point-by-point [52 ± 54], using
amplitude masks (Fig. 12b) [55, 56], holograms, microlenses
[57], or reflecting amplitude masks [58]. Point-by-point
writing allows obtaining gratings with an arbitrary structure
along the fiber. Photo-induced LPFGs have a small
birefringence, which reveals itself in the splitting of the
resonances. The amplitudes and positions of loss peaks in
LPFGs may change with time after the writing, which is a
problem if a grating with given parameters is to be
produced. To fit the positions of loss peaks, the cladding
diameter is reduced by etching [48, 49, 59]. To reduce the
wavelength shift of the peaks in the course of the gratings'
photoinduction, the optical fiber can be preliminarily
exposed to UV radiation [60].

To create long-period fiber gratings, the fiber can be
irradiated by not only UV light but also visible or infrared
light. The list of laser lines used for this purpose includes the
157 nm line of the F2 laser [61], 193 nm [62] and 264 nm [63]
lines of the ArF laser, the third harmonic of the neodimium
laser and the 351 nm line of the Ar+ laser, the second
harmonic of the Ti: sapphire laser (400 nm) [64] or its
fundamental harmonic (800 nm) [65], and the 10.6 mm line
of the CO2 laser [66 ± 68]. The advantage of writing using a
wavelength� 355 nm rather than 248 nm is that in the former
case, it is not necessary to remove the polymer coating,

which means that the mechanical strength of the fiber is
preserved [69]. Gratings produced with IR radiation have
better stability at high temperatures. At the same time, such
gratings have losses caused by fiber microdeformations and
insufficient homogeneity [70]. Periodic laser heating of the
fiber can be used for the diffusion of the doping agent from
the core into the cladding (Fig. 12c) [71] or for creating
microthinnings (Fig. 12d) [72, 73]. Poole et al. [74] produced
microthinnings in a fiber by means of laser ablation and
further annealing.

By heating a fiber in an electric arc, one can create
microbends (Fig. 12e) [75] and remove stresses, which leads
to the formation of an LPFG [76, 77]. A grating of periodic
compression is formed when the fiber is pressed between two
surfaces, a corrugated one and a flat one (Fig. 12f) [78, 79]. By
removing parts of the fiber through chemical etching, one can
form an etched LPBG (Fig. 12g) [46, 80 ± 83]. When a
stretching load is applied to such a grating, the etched parts
undergo larger elastic deformations than the nonetched parts.
This deformation modulation is converted, due to the
photoelastic effect, into RI modulation. Similar effects take
place when the etched structure is twisted or bent. A long-
period fiber grating is also formed in an optical fiber glued to
a periodically etched silicon substrate. The optical inhomo-
geneity of the fiber is caused in this case by the strains arising
due to the hardening of polyamide adhesive (Fig. 12 h) [84].
LPFGs have also been created by the implantation of protons
[85] and helium ions [86].

Helical deformations created in a fiber by winding a wire
around it also form an LPFG (Fig. 12i) [87, 88]. A
deformation of this kind couples the fundamental mode to a
combination of four LP11 modes having various polarizations
and profile orientations. Acousto-optical coupling between
the core mode and the cladding modes occurs when an
acoustic wave is excited in the fiber. This can be done by
generating microbending waves in a fiber by means of a
piezoelectric converter fixed to it; as a result, an antisym-
metric LPFG is formed in the fiber [89]. The spectrum of such
an LPFG can be controlled by means of a free parameter,
which is the cladding radius; it can be reduced by stretching
the fiber [90, 91].

Rego et al. [92] showed that etching can also be used for
controlling the positions of peaks in the spectra of microbend
gratings. In their experiment, microbend gratings were
created with the help of corrugated rod. A fiber was placed
against the rod, around both of which was wound a string,
pressing the fiber into a groove in the rod. The strength of the
resonances was controlled by varying the string tension.

Jeong et al. [93] induced an LPFG in a fiber with a
capillary passing through its center and filled with a liquid
crystal. The orientation of the liquid crystal director was set
by electrodes periodically distributed along the fiber. In the
absence of a bias field, the director was parallel to the
capillary. When the field was applied, the director orienta-
tion in the sections between the electrodes was given by the
field direction.

Recently, a new method of creating periodicity in a fiber
was proposed, in which modes with different circular
polarizations were distinguished [94]. A rectangular-core
fiber was strongly twisted in a mini-oven. The resulting
structure had a period of about 100 mm and the symmetry of
a double helicoid (Fig. 12 j). Such a structure can be right- or
left-handed. Each type of grating interacts only withmodes of
the corresponding circular polarization and transmits ortho-
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Figure 12.Methods of creating LPFGs: by microbending (a), photoinduc-

tion (b), IR irradiation (c), stretching (d), bending in an electric arc (e),

pressing (f), etching (g), gluing to a substrate (h), winding (i), twisting (j).
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gonally polarized modes without any changes. The twisting
period determines the optical properties of the grating
because the period enters the condition for the resonance
between the core mode (with the corresponding polarization)
and a cladding mode or, if the period is small, between the
core mode and a radiation mode. Structures of this type are
used as polarizers transmitting one polarization and dissipat-
ing the other.

4.4 Tilted gratings
Tilted LPFGs couple the fundamental mode of the core to the
copropagating modes of the cladding with various radial and
azimuthal numbers. The resonance condition is given by the
relation b co � Db co ÿ b cl

m ÿ Db cl
m � 2p cos y=L, where y is the

tilt angle of the grating. Calculations show that the coupling
coefficients for s- and p-gratings have close values [16]. The
effect of the tilt of an LPFG can be noticeable only at angles
close to 90�. At the same time, the coupling coefficient for the
HE1m modes with m < 17 is much higher than the coupling
coefficient for the corresponding EH1m modes. The strongest
coupling occurs for a certain radial mode number depending
on the grating tilt angle, for instance, y � 88� for m � 8.
(Calculations were carried out for the same parameters of the
fiber as in Section 3.3.) For modes with the azimuthal
number 2, the situation is the opposite: the coupling
coefficient for the EH2m modes is much higher than for the
HE2m modes. Meanwhile, its maximal value is approximately
1.5 times less than the maximal coupling coefficient for the
HE1m modes. The maximal coupling coefficient for the HE3m

modes is 5 times smaller than the maximal coupling coeffi-
cient for the HE1m modes. Modes with higher azimuthal
numbers have negligibly small coupling coefficients.

Coupling coefficients for the HE1m modes remain almost
constant up to the tilt angle � 87� and then dramatically
decrease to zero at y � 90� [16]. By contrast, for modes with
higher azimuthal numbers (n5 2), the coupling coefficients
are essentially nonzero only at tilt angles larger than 80�. The
maximum coupling is achieved at tilt angles close to 88�. Thus,
efficient coupling with higher-order cladding modes is
possible at y � 88�. The exact value of the tilt angle at which
themaximum is achieved depends on the radialmode number.
It is worth noting that gratings of this kind, strictly speaking,
cannot be considered long-period ones, because cos ybecomes
very small. For instance, for longitudinal period of the grating
being 400 mm, the nominal period is 14 mm for a y � 88� tilt
and 7 mm for a y � 89� tilt.

Tilted LPFGs can also be used for converting the core
modes of few-mode optical fibers [17, 79]. If the fiber is
rotated when a tilted grating is being written, a spiral grating
is formed [95]. The resonance of such a grating is split into two
peaks, the distance between them increasing as the twist
period is reduced.

4.5 Long-period gratings in microstructured fibers
Similarly to FBGs, LPFGs can be created in microstructured
fibers. Recently, several applications of such gratings were
demonstrated: LPFG filters tunable in a broad range [32],
LPFGs with thin-film heating elements [96], and LPFGs
insensitive to external RI [29, 97].

A detailed study of LPFGs in MS fibers has been carried
out in Refs [14, 29]. Long-period fiber gratings have been
written in MS fibers by means of UV radiation at the
wavelength 248 nm by scanning along the fiber through
amplitude masks. To make the fiber photo-sensitive, a small

germanium-doped core with the diameter � 1 mm and
D � 5� 10ÿ4 was formed in it. LPFGs were written in MS
fibers of various types and transmission spectra were
measured. The grating periods were chosen such that the
resonance under study occurred at a wavelength near
1550 nm. In a PC fiber, an LPFG with the period 155 nm
was written. Two resonances were observed in its spectrum, at
wavelengths � 1050 nm and � 1600 nm. The second peak
corresponded to a resonance with the fourth cladding mode,
whose dip in the FBG spectrum (Fig. 8a) is denoted as 04.
Placing the fiber into an immersion liquid led to practically no
changes in the spectrum, which indicates that the cladding
mode is guided by the holes of the PC fiber and its amplitude
on the external boundary of the cladding is negligibly small.
In contrast to LPFGs in ordinary fibers, long-period gratings
in MS fibers are not sensitive to the RI of the surrounding
medium [3, 7].

The small effective diameter of the `grapefruit' fiber inner
cladding can be used for the development of tunable LPFG
filters whose central wavelength can be tuned within a
broader range than that typical for LPFG filters written in
ordinary fibers. A broader tuning range for the resonance
wavelength is achieved due to the larger distance between the
peaks of the cladding modes, which is inversely proportional
to the cladding diameter. Filling the holes of theMS fiber with
a polymer whose RI has a strong temperature dependence
also leads to an increase the tuning range. In experiments of
this type, an acrylic polymer with an RI close to that of fused
silica was introduced into the air holes of a `grapefruit' fiber
[32] and then cured under UV radiation. An LPFG with the
period 550 mmwas induced in the fiber through an amplitude
mask. The grating provided a cladding resonance at the
wavelength � 1550 nm for the mode denoted as 02 in
Fig. 8b. For this grating, the tuning range was over 150 nm,
which much exceeded the tuning ranges of ordinary DPFGs.

Measurements of the LPFG spectra in `air-ring' fibers,
both in the air and in an immersion liquid, show that such
LPFGs are almost insensitive to the RI of the surrounding
medium [97]. If the air holes are filled with a polymer, these
LPFGs can also be tuned by heating within a broader range
than LPFGs in ordinary fibers [96].

Creation of an LPFG in an MS fiber does not necessarily
require a photosensitive core. In anMS fiber without a doped
core, an LPFG can be induced by periodic compression of the
fiber [98, 99], an acoustic microbending wave [100], collapse
of the holes due to fiber heating by CO2 laser radiation [101,
102], or electric arc [103]. It should be mentioned that a
polymer PC fiber was used in Ref. [98]. For gratings induced
through microcompressions and microbendings, both the
amplitude and the resonance wavelength of the grating can
be controlled. The amplitude can be controlled by varying the
pressure or the acoustic wave amplitude, while to control the
resonance wavelength, one can change the grating period by
variation of the angle between the fiber and the plate grooves
or variation of the acoustic wave frequency. Lim et al. [99]
described an unusual behavior of LPFGs in PC fibers, where
the resonance wavelength was shifted towards the shortwave
side of the spectrum with increase in the grating period,
whereas in ordinary fibers, the shift is towards the longwave
range.

Long-period fiber gratings obtained by means of an
electric arc, which causes the collapse of the holes in a PC
fiber, have very high temperature stability up to 1200 �C. The
resonance wavelength shift observed in such gratings due to
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heating is six times smaller than the shift in an ordinary
LPFG. Using a CO2 laser, Zhu et al. [102] formed in a PC
fiber an ultra-short grating having only 8 periods with the
total length 2.8 mm. Collapse of the holes reduced the fiber
diameter to 101 nm. The obtained grating had a 31 dB
absorption peak; however, in a broad region around the
resonance, the losses exceeded 10 ± 15 dB, which made this
grating not very suitable for practical applications.

An interesting way to control resonance LPFGs in a
`grapefruit' MS fiber was suggested by Mach et al. [104]. A
microstructured fiber with a written LPFG is partly filled by
two liquids, one of them having an RI larger than that of the
silica cladding and the other one smaller than the claddingRI.
Then, this fiber is spliced between two ordinary single-mode
fibers. If a temperature difference is created between the ends
of the MS fiber, then the air pressure makes the two liquids
move with respect to the LPFG. Thus, the cladding mode is
propagating through a fiber in which one part is filled by a
liquid with an RI higher than that of the silica and the other
part by a liquid with an RI lower than that of the silica. The
considerable difference between the type of propagation of
various claddingmodes allows tuning the LPFG transmission
spectrum.

4.6 Nonlinear effects in long-period gratings
High-speed fiber-optical communications of the future
require the creation of simple, compact devices based on all-
optical signal processing, i.e., devices where light is controlled
by light only. This means that nonlinear-optical elements are
needed. The most important nonlinearities are the second-
order and third-order ones. For instance, the second-order
nonlinearity of potassium dihydrophosphate (KDP) is
successfully used in bulk-crystal systems for signal proces-
sing, pulse compression, and soliton propagation. However,
standard optical fibers are center-symmetric and hence
manifest no quadratic nonlinear effects. Therefore, studies
in fiber optics are focused on weaker third-order nonlinear
phenomena [105], which consist of the RI dependence on the
light wave intensity,

n � n0 � n2I ; �48�
where n0 is the linear RI, I the light wave intensity, and n2 the
nonlinear RI, which, in the case of silica and the wavelength
1500 nm, is equal to 2:6� 10ÿ16 cm2 Wÿ1.

It is especially interesting to study nonlinear effects in
periodic fiber structures such as Bragg and long-period
gratings. Nonlinear effects in LPFGs were first observed in
birefringent fibers with a periodically rocking anisotropy axis
(rocking filters) [106]. In a structure of this kind, a mode of a
certain polarization is converted into a mode of orthogonal
polarization. For the modes to be resonantly coupled, the
anisotropy axis rocking period must coincide with the beat
length. As the intensity of light propagating through the fiber
increases, the nonlinear variation of the fiber RI changes the
beat length and leads to the dependence of the inter-mode
conversion efficiency on the light intensity.

The two copropagatingmodes can be the core mode and a
cladding mode. The nonlinearity of an LPFG can bring the
modes into resonance or from resonance, due to the variation
of the intensity-dependent RI. To control the resonance in
LPFGs, much smaller intensities are required than in the case
of Bragg gratings [107 ± 109]. The reason, as we already
mentioned in Section 4.2, is that even small variations of the
RI lead to a considerable shift in the LPFG resonance

wavelength. In addition, in contrast to the case of Bragg
gratings, the influence of the material dispersion on the
properties of LPFGs is negligibly small due to the small
difference between the ERIs of the core and the cladding.
Similarly to the linear case, nonlinear propagation of a pulse
in an LPFG can be described by the coupled-mode equations
[110], which, in general, can be solved only numerically:
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where Gpq � 3=16oe0w �3�
� jEpj2jEqj2 dS are nonlinear cou-

pling coefficients, b 0p � qbp=qo are inverse group velocities,
the indices p and q correspond to either the core mode or the
mth cladding mode, and w �3� is the third-order nonlinear
susceptibility.

Equations (49) were analyzed numerically for a 50-mm-
long LPFG and a 70 ps Gaussian pulse fed into the core [108].
The RI modulation amplitude in the LPFG was chosen such
that in the linear regime at the center of the resonance, the
core mode would be fully converted into a cladding mode.
Figure 13 shows the evolution of the pulse shape in the core
(Fig. 13a, c, e) and the cladding (Fig. 13b, d, f) of an optical
fiber at the detuning corresponding to the first side maximum
of the LPFG spectrum, d � 150 mÿ1 and the initial intensity
I0 � 20 GW cmÿ2 (Fig. 13a, b), d � 150 mÿ1 and I0 �
25 GW cmÿ2 (Fig. 13c, d), and the center of the spectrum,
d � 0 and I0 � 12 GW cmÿ2 (Fig. 13e, f). From Fig. 13a, b,
one can see that the pulse wings, which have small intensity,
are mismatched with the resonance and weakly interact with
the cladding mode, while the pulse peak is in resonance with
the cladding mode, its energy being efficiently converted into
the cladding mode, such that a single-peak pulse is formed in
the cladding. If the intensity of the pulse increases, the shift
becomes larger than the mismatch, and the peak exits from
the resonance. This case is shown in Figs 13c, d, where the
pulse peak has a weak coupling with the cladding mode. For
intermediate intensities, nonlinearity brings the core and
cladding modes back into resonance, and the pulse in the
cladding takes a double-peak shape. Thus, the initial intensity
of the pulse determines its shape at the output from the
LPFG. Figure 13e, f shows the case where the mismatch is
zero and low-intensity pulse wings are at resonance, while the
pulse peak is detuned from the resonance because of the
nonlinearity. This effect creates a doubly peaked pulse
propagating through the cladding; in other words, it is
possible to split a pulse into several shorter pulses. Compar-
ison of the numerical simulation results with the experimental
data demonstrated their good agreement [108]. To vary the
mismatch with the resonance, the fiber was heated, which
shifted the center of the LPFG spectrum.

An alternative theoretical analysis of nonlinear pulse
propagation in LPFGs was carried out by Jeong et al. [109],
who used the coupled-mode discrete theory and considered a
more general case of coupling with several cladding modes
due to a nonsinusoidal distribution of the RI along the fiber.
The possibility of pulse compression was demonstrated.

184 O V Ivanov, S A Nikitov, Yu V Gulyaev Physics ±Uspekhi 49 (2)



The nonlinear effects described above can be observed at
intensities about 10 GW cmÿ2, which are far too high for
application in telecommunication lines. High intensities are
required because the length at which the modes interact is of
the order of only several centimeters. For this reason, Perlin
et al. [111] proposed a new scheme of a longer grating, based
on cascaded LPFGs, which requires intensities two orders of
magnitude smaller than in the case of a usual LPFG. The idea
is to increase the distance along which the interacting modes
propagate. For this, a piece of ordinary fiber of length D is
inserted into the grating, such that a cascaded grating is
formed, which consists of two parts with lengths aL and
�1ÿ a�L, separated by the distance D. While propagating
through the fiber between the gratings, the pulse accumulates
a sufficiently large nonlinear phase shift. However, in this
case, the pulses propagating along the core and the cladding
have different velocities and arrive at the end of the grating at
different moments of time. To compensate for this effect, a
mirror-symmetric cascade grating consisting of parts with
lengths �1ÿ a�L and aL is placed at the distance 2D from the
end of the first structure. The resulting length of the grating is
4D� 2L.

A scheme with a cascaded LPFG was also used for the
measurement of the optical nonlinearities of fibers dopedwith
ytterbium and aluminum ions [112]. A nonlinear RI at the
signal mode wavelength (l � 1550 nm) was shown to depend
on the intensity of the pump (at the wavelength 96 nm) and to
be 7:5� 10ÿ15 m2 Wÿ1. According to the Kramers ±Kronig
relation, the change in the RI is caused by the decrease in the
absorption of ytterbium ions caused by the pump. This
nonlinear effect was used for the experimental demonstra-
tion of all-optical switching in a cascaded LPFG [113, 114]
within the frequency range 1± 250 Hz with the extinction
coefficient � 18 dB for the pump power 35 mW. The signal
mode is transmitted or not transmitted through the cascade
LPFG depending on the pump intensity. A similar
principle allows the signal to be switched between two
fiber channels [115]. However, in this case, it is impossible to
observe the whole variety of nonlinear phenomena because
theRI variation is observed at awavelength different from the
pump wavelength.

The coupled-mode method has been used in Refs [116,
117] to study the conditions for the formation and propaga-
tion of soliton pulses in optical fibers with LPFGs. Coupled-
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Figure 13. Evolution of the shape of a pulse passing through an LPFG, in the core (a, c, e) and the cladding (b, d, f) for the detuning d � 150 mÿ1 and
intensity I0 � 20 GW cmÿ2 (a, b); d � 150 mÿ1 and I0 � 25 Gw cmÿ2 (c, d); d � 0 and I0 � 12 GW cmÿ2(e, f) [108].
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mode equations were reduced to equations for partial pulses
with the dispersion and nonlinearity given by some effective
parameters. Based on these equations, modulation instability
of a wave packet propagating in an LPFG was studied [117].
It was shown that modulation instability could exist in the
range of normal material dispersion of the fiber.

The nonlinear optical properties of LPFGs can be
analyzed not only via the standard coupled-mode theory but
also using the transfer-matrix method [118]. For rectangular
pulses, this method has shown that nonlinear propagation
through anLPFG is equivalent to linear propagation through
a chirped grating.

Nonlinear interaction between the core mode and a
cladding mode can be used for passive mode locking in a
fiber laser [119]. For this, an LPFG is written in a fiber, such
that a low-intensity signal is resonantly coupled to one of the
cladding modes. At higher intensities, the resonance condi-
tion is violated. As a result, for a pulse passing through the
grating, the weak wings are converted into a cladding mode
and the pulse center, being nonresonant, propagates further
as a core mode.

4.7 Polarization effects in long-period gratings
The RI changes induced in a germanium-doped fiber core
under exposure to UV radiation, similarly to the RI changes
in mechanically induced LPFGs or other types of gratings, is
generally asymmetric with respect to the fiber axis [120, 121].
This asymmetry reveals itself in the birefringence of fiber
modes, i.e., in the dependence of the mode ERI on their
polarization, and may be useful in designing polarization
fiber-optical elements. But in some cases, birefringence can be
harmful and its influence should be reduced. In any case,
polarization effects in LPFGs should be investigated because
they have a considerable effect on the parameters of the
gratings.

An efficient way to enhance polarization effects in LPFGs
is to write the gratings in strongly birefringent fibers [122 ±
125]. Transmission spectra of LPFGs in birefringent fibers
contain absorption peaks that are split into two. The splitting
is caused by the fact that the phase matching conditions for
orthogonally polarized modes are different, which, in turn, is
because orthogonally polarized modes in a birefringent fiber
have different propagation constants. For fibers with asym-
metric cladding, polarization splitting can be caused by the
polarization properties of the cladding modes [123].

In addition, the maximal RI modulation amplitudes are
different for different polarization states. A change in the
modulation amplitude leads to different coupling and
transmission coefficients for differently polarized modes.
Thus, modes of each polarization have their own resonance
wavelengths and amplitudes [126].

If the transmitted radiation is polarized along one of the
birefringence axes, the spectrum contains a corresponding
cladding resonance peak. Therefore, LPFGs with large
resonance splitting can be used as polarization filters [125].
The resonance splitting can vary from several nanometers up
to 40 nm in fibers with asymmetric cladding.

The dependence of losses on the polarization direction has
been used for the precise local measurement of birefringence
in optical fibers [127]. The accuracy of birefringence measure-
ment was � 10ÿ8, which is two orders of magnitude better
than the accuracy of other methods. An erbium laser was
created based on an LPFG used as a polarization filter [128].
The light emitted by this laser is linearly polarized, with the

polarization degree being being as high as 98%. Polarization
effects caused in LPFGs by fiber twisting and the application
of a magnetic field have been studied in Refs [129, 4].

An important task is to eliminate polarization dependence
of losses in the fiber-optical elements whose properties should
be as little polarization-dependent as possible [71, 130, 121].

4.8 Applications of long-period fiber gratings
Long-period fiber gratings find applications in various fiber-
optical devices. In particular, LPFGs are used in radiation
sources for equalizing their spectra, in elements with tunable
spectral characteristics, for dispersion control, and for group-
velocity dispersion compensation. Based on LPFGs, fiber
interferometers and multi-wavelength lasers are created.

Amplifiers based on erbium-doped fibers (EDFs) are
widely used in communication systems with WDM. How-
ever, the gain of such amplifiers has a nonuniformwavelength
distribution. To equalize the gain spectrum, LPFG-based
filters are used, their advantages being compactness, simpli-
city of fabrication, small loss, and extremely low intensity of
the reflected signal [131 ± 136]. To equalize the gain spectrum
of an EDF-based amplifier, it is necessary to use a filter with
the absorption spectrum inverted with respect to the gain
peak at the wavelength 1530 nm. This way, the gain peak is
flattened (Fig. 14).

Because LPFGs are used as spectrum equalizers, an
important practical problem is to develop LPFGs with a
given transmission spectrum. This requires solving an inverse
problem. For calculating the RI distribution along the fiber
grating from a given transmission spectrum, methods based
on solving the Gelfand ±Levitan ±Marchenko integral equa-
tions have been developed [137]. The main drawback of these
methods is the difficulty of solving the integral equations in
the general case. Iteration methods based on solving the
Gelfand ±Levitan ±Marchenko integral equations converge
slowly and have low algorithmic efficiency, because they
requireO�N 3� operations, whereN is the number of intervals
in the grating.

There are methods based on optimization algorithms
minimizing the discrepancy between the initial spectrum and
the spectrum of the calculated grating. Variation optimiza-
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Figure 14. Initial gain spectrum of an EDF-based amplifier (solid line), the

LPFG spectrum (dotted line), and the final amplifier spectrum after gain

equalization (dashed line) [133].
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tions and genetic algorithms are described in the literature.
However, these methods have even slower convergence.

The most efficient are differential methods, which take
full advantage of the layered structure of the grating in which
the wave propagates. These methods, based on the causality
principle, restore the parameters of the medium layer-by-
layer. The algorithmic efficiency of such methods is high
because the number of operations they require depends
quadratically on the number of intervals in the structure,
O�N 2�. The first differential algorithm developed was the
one for reconstructing the coupling coefficient profile in an
FBG in the case of coupling between counter-propagating
modes [138]. This algorithm, called the layer peeling method,
was later generalized to the case of coupling between
copropagating modes in an LPFG [139].

An important problem for integrating optoelectronic
devices into fiber-optical systems is radiation coupling into
and out of a single-mode fiber. An efficient way to reduce
losses in this case is to use cladding modes instead of the core
mode, which has a larger divergence angle [140 ± 143]. Using
cladding modes for radiation input and output considerably
reduces the requirements for the structure geometry, which
otherwise are too strict.

The following LPFG-based schemes have been proposed
for the input/output of radiation: the fiber ± fiber system
where LPFGs are written in both fibers (Fig. 15a) [140]; the
fiber ± fiber system (Fig. 15b) in which the transmitting fiber
radiates the core mode into free space and the receiving fiber
has a lens tip transforming the free-space beam into a
cladding mode, which is further converted by an LPFG into
the core mode of the receiving fiber; the diode ± fiber system
(Fig. 15c) [142, 143], and the fiber ± free space system
(Fig. 15d) [141]. For an optical fiber, the input/output can
be based on the surface coupling of the modes propagating in
joined parallel waveguides (Fig. 15e) [144 ± 147].

As we have mentioned, LPFGs are sensitive to various
factors influencing the optical fiber where the grating is

formed. This enables one to create, first, LPFG-based
devices with tunable spectral properties and, second, sensors
of various physical parameters.

Variation of the LPFG temperature leads to a shift in its
resonance wavelength [148 ± 151]. The value of the shift
depends on the mode number, wavelength, and grating
period and may be positive or negative [47, 55]. Figure 16
shows the temperature dependences of shifts for four cladding
resonances of a photo-induced LPFG (solid curves), their
linear approximations (dashed lines), and, for comparison,
the analogous shift for the peak of a Bragg grating (dashed-
dotted line).

Similarly to the temperature variation, stretching also
leads to a shift in the LPFG resonance wavelength [47, 55,
91]. In ordinary fibers, the shift is up to 2 nm meÿ1 (me, the
microstrain, is a dimensionless quantity characterizing
relative deformation, 1 me � 10ÿ6 cm cmÿ1). In etched grat-
ings, longitudinal stretching does not shift resonance peaks
but only changes their heights [80 ± 82]. If a transverse stress is
applied to the LPFG, the fiber becomes birefringent; as a
result, each resonance is split into two, corresponding to
orthogonal polarization states [152]. A shift is also observed
in the case of twisting [46, 67, 153 ± 155], but its value depends
quadratically on the twist angle. An example of such a
dependence is given in Fig. 17, where symbols denote
experimental values and curves are fitting parabolas. The
bending of anLPFG causes three kinds of responses: a shift of
the central wavelength, a change in the resonance amplitude,
and the resonance band splitting.

Microbend LPFGs are easily tunable: the grating strength
is determined by the amplitude of the microbends and the
grating period can be varied by varying the angle between the
fiber and the grooves of the plates between which the fiber is
pressed [153].

Because the cladding modes are guided by the external
cladding of the fiber, which is in contact with the surrounding
medium, propagation of cladding modes depends on the
parameters of the medium, such as the refractive index and
absorption coefficient [149, 157, 158]. The amplitude and
phase of the wave reflected at the boundary between the
cladding and the surrounding medium depends on the

a

b

c

d

e

Figure 15. Schemes for fiber input and output of radiation using cladding

modes and LPFGs.
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parameters of the surrounding medium, and therefore a
change in these parameters leads to a change in the ERI and
losses for the cladding modes. This, in its turn, modifies the
resonance condition and shifts the resonance wavelength [47,
73] or changes the height of the loss peak [149] (Fig. 18).

In LPFG spectra, several absorption peaks are observed.
External influences change both the shapes and positions of
the peaks. The way a peak is modified depends on the type of
external influence (variation of the temperature, strain, RI of
the surrounding medium, etc.). One can make a separate
measurement to find the response of the LPFG to the
variation of any certain parameter; then, it is possible to
solve the inverse problem and to calculate the necessary
parameters from the measured changes in the spectrum.
This way, it is possible to make multi-parameter sensors for
the simultaneous measurement of several parameters [159].

A detailed list of references on LPFG-based sensors can
be found in review [160].

4.9 Cascaded gratings
An optical-fiber interferometer based on two successive
LPFGs was first proposed by Dianov et al. [161, 162]. Its
operation is illustrated in Fig. 19. In the first grating, the core
mode converts half of its energy into the claddingmode.Next,
both modes propagate along the fiber with slightly different

velocities and reach the second grating, which couples them
again (Fig. 19a).

The spectrum of a cascaded LPFG has a comb-like shape
with multiple peaks, whose envelope coincides with the
transmission spectrum of a single LPFG (Fig. 19b). The
wavelength difference for the neighboring peaks is deter-
mined by the distance between the two LPFGs in the cascade
and is about one or several nanometers.

Because the spectrum of a cascaded LPFG consists of
narrow peaks, this structure is very sensitive to various factors
[124, 163]. Indeed, cascaded LPFGs have been used for
measuring photo-induced changes in the fiber RI under UV
radiation [162] and CO2-laser pulses [165]. A change in the RI
can be measured with a high accuracy through the measure-
ment of interference fringes shift. Cascaded LPFGs have also
been used as sensors of the temperature [166], longitudinal
[167] and transverse [169, 170] strains, bending [168, 169], and
refractive index of the external medium [169, 170, 172].

Recently, cascaded LPFGs with microbends were created
in PC fibers [99]. The transmission spectra of such LPFGs
manifest interference fringes, similar to the fringes of a
cascade grating in a standard fiber but with somewhat less
regular structure. Ramachandran et al. [173] proposed a
bandpass filter based on a cascaded grating. Losses in
cascaded gratings can show considerable polarization depen-
dence due to the small width of the resonance peaks [174, 175].

Cascaded LPFGs are used to study optical nonlinearity in
fibers as well as for all-optical switching. A piece of EDF is
placed between two LPFGs. Radiation at the wavelength
976 nm makes the transmission spectrum of the cascade
grating shift due to the RI dependence on the light wave
intensity [112, 176]. As the interference pattern shifts by half
the period, the regime of transmission at a certain wavelength
switches to the regime of nontransmission [113].

Because of the comb-like structure of their spectra,
cascaded LPFGs are used in the fabrication of multi-
wavelength radiation sources, which are required in WDM
systems [177 ± 180].

Another example of a system consisting of several uni-
form LPFGs is a structure with a series of successive LPFGs
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phase-shifted with respect to each other [133, 181 ± 185]. The
phase shift is created by a uniform piece of fiber, unexposed to
UV radiation and having the length equal to several fractions
of the LPFG period, placed between two gratings.

In addition to the above-described gratings, other com-
bined structures have been studied, containing an LPFG and
a mirror, a cascaded LPFG with core-mode blocking, a
combination of a short-period grating and a long-period
one, multiple LPFGs, two FBGs, chirped LPFGs, and
LPFGs with modulation of the amplitude, grating period,
fiber parameters, and microbending modulation.

5. Conclusion

In this review, we have considered various questions related
to the existence of special modes in optical fibers, namely,
those propagating in the cladding.

Exact and approximate methods of calculating the field
distribution profiles for cladding modes have been presented.
The exact calculation is based on the matrix method, in which
the fiber is divided into uniform coaxial layers, and each layer
is described by the corresponding 4� 4 matrix. The matrix of
the whole structure is found as the product of the matrices for
separate layers. The problem is solved by finding the
eigenvalues and eigenvectors of this matrix.

In the paraxial approximation, the solution for low-order
cladding modes can also be found for gradient fibers.
Although the refractive index perturbation in the core is
quite small, the core has considerable influence on the
distribution profiles of the cladding modes.

If the cladding has a coating with the refractive index
exceeding that of fused silica, cladding modes become leaky.
For such a mode, losses can be described by introducing the
imaginary part of the propagation constant. Another way of
solving this problem is to consider the radiation modes of the
fiber.

The transmission spectrum of an FBG contains not only
the Bragg peak but also a group of peaks shifted towards the
shortwave range. These peaks correspond to reflection into
the claddingmodes. If the cladding has a coatingwith a higher
refractive index, resonance peaks of the cladding modes are
smoothed. They disappear completely if the refractive index
of the coating is equal to the refractive index of the cladding.

In photoinduced FBGs and LPFGs, coupling with the
core mode is different for the HE and EH cladding modes.
The coupling coefficients for the HE modes are considerably
higher than the coupling coefficients for the corresponding
EHmodes with radial mode numbers below 10. The reason is
that the fields of EH modes have small amplitudes near the
core, where the grating is recorded. Tilted FBGs and LPFGs
couple the core mode to the cladding modes with arbitrary
azimuthal numbers, and not only with n � 1, as in the case of
nontilted gratings. To provide high coefficients of reflection
into low-order cladding modes, the tilt angle of a Bragg
grating should not exceed several degrees.

An important problem is the suppression of cladding
resonances in Bragg gratings. For this purpose, the refractive
index profile is chosen such that the overlap integrals for the
core and cladding modes are minimized. In addition, the
photosensitivity profile can be expanded to the cladding area,
where the core mode amplitude decays exponentially.

Cladding modes are most widely used in LPFGs that
couple copropagating modes. In the transmission spectra of

such LPFGs, there are broad dips (with widths as large as
dozens of nanometers) caused by energy coupling from the
core mode into cladding modes. About ten different methods
of fabricating LPFGs have been proposed, all of them
consisting of a periodic perturbation of the optical fiber.
Long-period gratings can be tilted, similarly to the Bragg
gratings, but the tilt angle should not differ from 90� by more
than several degrees for the tilt effect to be noticeable.

Resonances of the cladding modes can also be observed
for Bragg and long-period gratings written in MS fibers.
Long-period gratings written in MS fibers allow obtaining
effects that are not possible in the case of standard fibers.

In long-period fiber gratings, the third-order nonlinearity
can lead to the effects of pulse reshaping, including pulse
compression. In a cascaded LPFG, the possibility of all-
optical switching has been demonstrated. Polarization
effects lead to the splitting of cladding-mode resonances,
which can be used for fabricating polarization filters and for
the precise measurement of birefringence in optical fibers.

In order to use LPFGs as gain equalizers for fiber
radiation sources, special methods have been developed for
solving the inverse problem of calculating the refractive index
distribution along the fiber grating from a given transmission
spectrum. One of the most efficient is the layer peeling
method.

When cladding modes exit from the cladding into free
space, their divergence is much smaller than the divergence of
the core mode in a single-mode fiber. Therefore, cladding
modes can be used for radiation input and output.

In contrast to the core modes, cladding modes are
sensitive to the refraction index of the surrounding medium
and can therefore be used in refractive-index sensors. Other
sensors based on cladding modes have been proposed,
measuring temperature, longitudinal stress, transverse pres-
sure, bending, twisting, microbends, and other physical
parameters. Based on measurements of several cladding
peaks or measuring several parameters of the spectrum,
multi-parameter sensors can be constructed.

LPFGs are used in complex cascaded structures contain-
ing several gratings. The loss spectrum of a cascaded LPFG
grating consists of multiple closely spooned peaks, the
distances between them being determined by the length of
the fiber between the two gratings. Because of this, cascaded
LPFGs can be used for the design of multi-wavelength
radiation sources.

The presented results of the research on cladding modes
and components based on their existence in optical fibers
demonstrate the broad possibilities for their application in
fiber-optical devices and for the control of radiation, as well
as in various sensors.

List of abbreviations

FBG ì éber Bragg grating
LPFG ì long-period éber grating
RI ì refractive index
ERI ì effective refractive index
MS ì microstructure
WDMìwavelength division multiplexing
PC ì photonic crystal
EDF ì erbium-doped éber
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